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NEW RESOLUTION STRATEGY FOR MULTI-SCALE REACTION
WAVES USING TIME OPERATOR SPLITTING, SPACE ADAPTIVE

MULTIRESOLUTION AND DEDICATED HIGH ORDER
IMPLICIT/EXPLICIT TIME INTEGRATORS∗

MAX DUARTE†‡ , MARC MASSOT† , STÉPHANE DESCOMBES§ , CHRISTIAN TENAUD¶,

THIERRY DUMONT‖, VIOLAINE LOUVET‖, AND FRÉDÉRIQUE LAURENT†

Abstract. We tackle the numerical simulation of reaction-diffusion equations modeling multi-
scale reaction waves. This type of problems induces peculiar difficulties and potentially large stiffness
which stem from the broad spectrum of temporal scales in the nonlinear chemical source term as well
as from the presence of steep spatial gradients in the reaction fronts, spatially very localized. In this
paper, we introduce a new resolution strategy based on time operator splitting and space adaptive
multiresolution in the context of very localized and stiff reaction fronts. It considers a high order
implicit time integration of the reaction and an explicit one for the diffusion term in order to build a
time operator splitting scheme that exploits efficiently the special features of each problem. Based on
recent theoretical studies of numerical analysis, such a strategy leads to a splitting time step which is
not restricted neither by fast scales in the source term nor by restrictive diffusive step stability limits,
but only by the physics of the phenomenon. Thus, we aim at solving complete models including all
time and space scales within prescribed and controlled accuracy, considering large simulation domains
with conventional computing resources. The efficiency is evaluated through the numerical simulation
of configurations which were so far out of reach of standard methods in the field of nonlinear chemical
dynamics for 2D spiral waves and 3D scroll waves as an illustration. Future extensions of the proposed
strategy to more complex configurations involving other physical phenomena as well as optimization
capability on new computer architectures are finally discussed.

Key words. Reaction-diffusion equations, multi-scale reaction waves, operator splitting, adap-
tive multiresolution

AMS subject classifications. 33K57, 35A18, 65M50, 65M08

1. Introduction. Numerical simulations of multi-scale phenomena are com-
monly used for modeling purposes in many applications such as combustion, chemical
vapor deposition, or air pollution modeling. In general, all these models raise several
difficulties created by the high number of unknowns, the wide range of temporal scales
due to large and detailed chemical kinetic mechanisms, as well as steep spatial gra-
dients associated with very localized fronts of high chemical activity. Furthermore, a
natural stumbling block to perform 3D simulations with all scales resolution is either
the unreasonably small time step due to stability requirements or the unreasonable
memory requirements for implicit methods. In this context, one can consider var-
ious numerical strategies in order to treat the induced stiffness for time dependent
problems.
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The most natural idea is to use dedicated numerical methods and to solve the
complete models where diffusion, reaction and eventually convection are coupled to-
gether. One aims at solving strongly coupled nonlinear systems with either a fully
implicit method, or yet semi-implicit or linearized implicit methods instead (see [7]
and references therein). However, the strong stability restrictions for the latter when
dealing with very fast temporal scales, as well as the computing cost and the huge
memory requirements of these methods, even if adaptive grids are used, make these
strategies difficult to be handled.

An alternative numerical strategy is then to combine implicit and explicit schemes
to discretize nonlinear evolution problems in time. Further studies settled the appro-
priate numerical background for these methods called IMEX, which in particular
might be conceived to solve stiff nonlinear problems [29, 23]. These methods are usu-
ally very efficient. Nevertheless, on the one hand, the feasibility of utilizing dedicated
implicit solvers over a discretized domain becomes soon critical when treating large
computational domains. And on the other hand, the time steps globally imposed
over partial regions or the entire domain are strongly limited by either the stability
restrictions of the explicit solver or by the fastest scales treated by the implicit scheme.

If one takes into account that in many multi-scale problems, the fastest time
scales do not play a leading role in the global physics of the phenomenon, one might
consider the possibility of using reduced models where these chemical scales have been
previously relaxed. These simplified models provide reasonable predictions and the
associated computing costs are significantly reduced in comparison with comprehen-
sive chemical models. Nevertheless, these reduced models are usually accessible when
the system is well-partitioned and the fast scales can be identified or isolated [24], a
process that in realistic configurations, relies on sensitivity analysis which is most of
the time difficult to conduct and justify.

It is then natural to envision a compromise, since the resolution of the fully
coupled problem is most of the time out of reach and the appropriate definition
of reduced models is normally difficult to establish. In this context, time operator
splitting methods have been used for a long time and there exists a large literature
showing the efficiency of such methods for evolution problems. A splitting procedure
allows then to consider dedicated solvers for the reaction part which is decoupled from
the other physical phenomena like convection, diffusion or both, for which there also
exist dedicated numerical methods. Hence, a completely independent optimization of
the resolution of each subsystem might be pursued.

When considering multi-scale waves, the dedicated methods chosen for each sub-
system are then responsible for dealing with the fast scales associated with each one
of them, in a separate manner, while the reconstruction of the global solution by
the splitting scheme should guarantee an accurate description with error control of
the global physical coupling, without being related to the stability constraints of the
numerical resolution of each subsystem. A rigorous numerical analysis is therefore re-
quired to better establish the conditions for which the latter fundamental constraint
is verified. As a matter of fact, several works [30, 25, 7] proved that the standard
numerical analysis of splitting schemes fails in presence of scales much faster than the
splitting time step and motivated more rigorous studies for these stiff configurations
[12, 10] and in the case where spatial multi-scale phenomena arise as a consequence
of steep spatial gradients [9].

We therefore introduce a new operator splitting strategy, based on these theore-
tical results, that considers on the one hand, a high order method like Radau5 [17],
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based on implicit Runge-Kutta schemes for stiff ODEs, to solve the reaction term;
and on the other hand, another high order method like ROCK4 [1], based on explicit
stabilized Runge-Kutta schemes, to solve the diffusion problem. Finally, the proposed
numerical strategy is complemented by a mesh refinement technique based on Harten’s
pioneering work on adaptive multiresolution methods [18], being aware of the inte-
rest of adaptive mesh techniques for propagating waves exhibiting spatial multi-scale
phenomena due to locally steep spatial gradients. The main goal is then to perform
computationally very efficient as well as accurate in time and space simulations of the
complete dynamics of multi-scale phenomena under study with splitting time steps
purely dictated by the physics of the phenomenon and not by any stability constraints
associated with mesh size or source time scales.

The paper is organized as follows. In section 2, we first recall the standard
time operator splitting schemes; then, we describe the new operator splitting strategy
proposed for multi-scale problems, and its coupling with a suitable grid adaptation
strategy, the space adaptive multiresolution technique [5, 19], which is briefly pre-
sented. The implementation of the numerical strategy is detailed in section 3, as well
as the algorithm scheme. In section 4, we present 2D and 3D simulations of a three
species reaction-diffusion system modeling the Belousov-Zhabotinsky reaction, and we
illustrate the potential and performance of the method by conducting 3D numerical
simulations of very stiff reaction waves on a 5123 mesh size within a reasonable time
on a workstation, a simulation out of reach of any standard method. We end in sec-
tion 5 with some concluding remarks and prospects on future applications including
other phenomena such as convection, and numerical developments on new parallel
architecture, where we can envision very large scale simulations.

2. Construction of the Numerical Strategy. In this section, we first recall
standard operator splitting schemes to then introduce a new splitting strategy for
multi-scale waves modeled by stiff reaction-diffusion systems. In the last part, we
detail briefly the adaptive multiresolution method that we have implemented as mesh
refinement technique for this new resolution technique.

2.1. Time Operator Splitting. Let us first set the general mathematical frame-
work of this work. A class of multi-scale phenomena can be modeled by general
reaction-diffusion systems of type:

∂tu− ∂x (D(u)∂xu) = f (u) , x ∈ Rd, t > 0,
(2.1)

u(0,x) = u0(x), x ∈ Rd,

where f : Rm → Rm and u : R×Rd → Rm, with the diffusion matrix D(u), which
is a tensor of order d× d×m.

The proposed numerical strategy normally deals with general problem (2.1). How-
ever, to simplify the presentation, we shall consider problem (2.1) with linear di-
agonal diffusion, in which case the elements of the diffusion matrix are written as
Dijk(u) = Dkδij , so that the diffusion operator reduces to the heat operator with
scalar diffusion coefficient Dk for component uk of u, k = 1, . . . ,m. Performing a fine
spatial discretization, we obtain the semi-discretized initial value problem

dU

dt
−B U = F (U) , t > 0,

(2.2)
U(0) = U0,
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where B corresponds to the discretization of the Laplacian operator with the coeffi-
cients Dk within; U and F (U) are arranged component-wise all over the discretized
spatial domain. Considering a standard decoupling of the diffusion and reaction parts
of (2.2), we denote X∆t(U0) as the numerical solution of the diffusion equation

dUD

dt
−B UD = 0, t > 0,(2.3)

with initial data UD(0) = U0 after an integration time step ∆t. We also denote by
Y∆t(U0) the numerical solution of the reaction part,

dUR

dt
= F (UR) , t > 0,(2.4)

with initial data UR(0) = U0.
The two Lie approximation formulae of the solution of system (2.2) are then

defined by

L∆t
1 (U0) = X∆tY∆t(U0), L∆t

2 (U0) = Y∆tX∆t(U0),(2.5)

whereas the two Strang approximation formulae [26, 27] are given by

S∆t
1 (U0) = X∆t/2Y∆tX∆t/2(U0), S∆t

2 (U0) = Y∆t/2X∆tY∆t/2(U0),(2.6)

where ∆t is now the splitting time step. It is well known that Lie formulae (2.5)
(resp. Strang formulae (2.6)) are approximations of order 1 (resp. 2) of the exact
solution of (2.2) in the case where X∆t and Y∆t are the exact solutions X∆t and Y ∆t

of problems (2.3) and (2.4). Then, appropriate numerical approximations of X∆t and
Y ∆t are required in order to compute Lie and Strang formulae with the prescribed
order.

Higher order splitting schemes are also possible. Nevertheless, the order condi-
tions for such composition methods state that either negative time substeps or complex
coefficients are necessary (see [16]). The formers imply normally important stability
restrictions and more sophisticated numerical implementations. In the particular case
of negative time steps, they are completely undesirable for PDEs that are ill-posed
for negative time progression.

2.2. Time Integration Strategy. The standard orders achieved with a Lie or
Strang scheme are no longer valid when we consider very stiff reactive or diffusive
terms (see [12]). Furthermore, if the fastest time scales play a leading role in the
global physics of the phenomenon, then the solution obtained by means of a operator
splitting scheme will surely fail to capture the global dynamics of the phenomenon,
unless we consider splitting time steps which resolve such scales.

In the opposite case when these fast scales are not directly related to the phys-
ical evolution of the phenomenon, larger splitting time steps might be considered,
but order reductions may then appear due to short-life transients associated to fast
variables. This is usually the case for propagating reaction waves where for instance,
the speed of propagation is much slower than some of the chemical scales. In this
context, it has been proved in [12] that better performances are expected while end-
ing the splitting scheme by the time integration of the reaction part (2.4) or in a
more general case, the part involving the fastest time scales of the phenomenon (see a
numerical study with convection and complex chemistry in [10]). In particular, in the
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case of stiff reaction-diffusion systems with linear diagonal diffusion, no order loss is
expected for the L∆t

2 and S∆t
2 schemes when faster scales are present in the reactive

term. However, one must also take into account possible order reductions coming this
time from space multi-scale phenomena due to steep spatial gradients whenever large
splitting time steps are considered, as analyzed in [9].

All these theoretical considerations give us some insight into the numerical be-
havior of splitting techniques and thus, help us to select among the various splitting
alternatives, depending on the nature of the problem. Nevertheless, the choice of
suitable time integration methods for each subsystem is mandatory not only to guar-
antee such theoretical analysis but also to take advantage of the particular features of
each independent subproblem in order to solve them very accurately, with reasonable
resources, using error control and adaptive time steps, as it is detailed in the following.

2.2.1. Time Integration of the Reaction: Radau5. Radau5 [17] is not only
an A-stable method, but also L-stable, so that very stiff systems of ODEs might be
solved without any stability problem. It considers also an adapting time step strategy
which guarantees a requested accuracy of the numerical integration and at the same
time, allows to discriminate stiff zones from regular ones; hence, smaller time steps
correspond to stiffer behaviors. It is a high order method (formally of order 5, which
at worst might be reduced to 3) and thus, all error coming from the time integration
will be bounded by the one due to the splitting procedure itself.

Nevertheless, this high order method is achieved thanks to an implicit Runge-
Kutta scheme, this means that in a general case, nonlinear systems must be solved
throughout the time integration process. Even if the solving system tools are highly
optimized (which are based on modified Newton’s methods), these procedures become
very expensive for large systems and important memory requirements are needed in
order to carry out these computations. As a consequence, the size of the system of
equations to be solved is terribly limited by the computing resources. However, in a
splitting scheme context, we easily overcome this difficulty because the reactive term
of (2.2) is a system of ODEs without spatial coupling. Therefore, a local approach
node by node is adopted where the memory requirements are only set by the number
of local unknowns, which normally does not exceed conventional memory resources.
Even more, this approach allows straightforward computing parallelization where no
data exchange is needed among nodes (see numerical implementations in [13]).

Another very important feature of this strategy is that precious computing time
is saved because we adapt the time integration step only at nodes where the reaction
phenomenon takes place. For multi-scale reaction waves, this happens in a very low
percentage of the spatial domain, normally only in the neighborhood of the wavefront.
Therefore, larger time steps are considered at nodes with a chemistry at (partial)
equilibrium. This would not be possible if we integrated the entire reaction-diffusion
system (2.2) at once. In particular, for complex source mechanisms as considered in
[13], complementary studies proved that a huge amount of computing time is saved.

2.2.2. Time Integration of the Diffusion: ROCK4. If we now consider
ROCK4 [1], we recall that one of the most important advantages of such method is its
explicit character, hence the simplicity of its implementation. In fact, no sophisticated
Linear Algebra tools are needed (no resolution of linear systems required) and thus, the
resolution is based on simple matrix-vector products. Nevertheless, the computation
cost relies directly on the requested quantity of such products, that is the number of
internal stages s needed over one time integration step ∆t. The memory requirements
are also reduced as a consequence of its explicit scheme, nevertheless we must keep
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in mind that these requirements increase proportionally with the number of nodes
considered over the spatial domain.

ROCK4 is formally a stabilized explicit Runge-Kutta method and such methods
feature extended stability domain along the negative real axis [28]. Therefore, in order
to guarantee the stability for a fixed time step ∆t, the number of stages s needed is
directly related to the spectral radius ρ(∂g/∂v) (considering a general problem such
as v′ = g(v)), since it should verify

0.35 · s2 ≥ ∆t ρ

(
∂g

∂v
(v)

)
.(2.7)

The method is then very appropriate for diffusion problems because of the usual
predominance of negative real eigenvalues for which the method is efficiently stable. A
very suitable example is the linear diagonal diffusion problem (2.3) with only negative
real eigenvalues and constant spectral radius ρ(B). In our particular applications,
the diffusive phenomenon has a leading role of propagator of perturbations over the
(partial) equilibrium nodes that result on excitation of the reactive schemes and thus,
the propagation of the reaction wave. The resulting self-similar character implies that
the number of stages needed will remain practically constant throughout the evolution
of the phenomenon. The spectral radius must be previously estimated (for example,
using the Gershgoring theorem or even numerically, as proposed by the ROCK4 solver
by means of a nonlinear power method).

Once again, the implementation of this diffusion solver over the entire reaction-
diffusion system (2.2) will not be appropriate under neither theoretical nor practical
considerations, and highlights the inherited advantages of operator splitting. ROCK4
is also a high order method (order 4); therefore, the theoretical operator splitting
analysis rest valid and the overall time integration errors are mainly due to the split-
ting scheme, where all the inner reaction and diffusion time scales are properly solved
by these high order dedicated solvers.

2.3. Mesh Refinement Technique. We are concerned with the propagation of
reacting wavefronts, hence important reactive activity as well as steep spatial gradients
are localized phenomena. This implies that if we consider the resolution of reactive
problem (2.4), a considerable amount of computing time is spent on nodes that are
practically at (partial) equilibrium. Moreover, there is no need to represent these
quasi-stationary regions with the same spatial discretization needed to describe the
reaction front, so that the diffusion problem (2.3) might also be solved over a smaller
number of nodes. An adapted mesh obtained by a multiresolution process which
discriminates the various space scales of the phenomenon, turns out to be a very
convenient solution to overcome these difficulties; the basis of this strategy is presented
in the following. For further details on adaptive multiresolution techniques, we refer
to the books of Cohen [5] and Müller [19].

2.3.1. Basis of Multiresolution Representation. Let us consider nested fi-
nite volume discretizations of general problem (2.1) with only one component, m = 1.
For j = 0, 1, · · · , J from the coarsest to the finest grid, we build regular disjoint par-
titions (cells) (Ωγ)γ∈Sj of an open subset Ω ⊂ Rd, such that each Ωγ , γ ∈ Sj , is the
union of a finite number of cells Ωµ, µ ∈ Sj+1, and thus, Sj and Sj+1 are consecutive
embedded grids. We denote Uj := (uγ)γ∈Sj as the representation of U on the grid
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Sj where uγ represents the cell-average of u : R× Rd → R in Ωγ ,

uγ := |Ωγ |−1

∫
Ωγ

u(t, x)dx.(2.8)

Data at different levels of discretization are related by two inter-level transforma-
tions which are defined as follows: (1), the projection operator P jj−1, which maps Uj

to Uj−1. It is obtained through exact averages computed at the finer level by

uγ = |Ωγ |−1
∑

|µ|=|γ|+1,Ωµ⊂Ωγ

|Ωµ|uµ,(2.9)

where |γ| := j if γ ∈ Sj . As far as grids are nested, this projection operator is

exact and unique [5]. And (2), the prediction operator P j−1
j , which maps Uj−1 to an

approximation Ûj of Uj . There is an infinite number of choices to define P j−1
j , but

we impose at least two basic constraints:
1. The prediction is local, i.e., ûµ depends on the values uγ on a finite stencil
Rµ surrounding Ωµ, where |µ| = |γ|+ 1.

2. The prediction is consistent with the projection in the sense that

|Ωγ |uγ =
∑

|µ|=|γ|+1,Ωµ⊂Ωγ

|Ωµ|ûµ;(2.10)

i.e., P jj−1 ◦ P
j−1
j = Id.

In the case where P j−1
j is linear, we have

ûµ :=
∑
γ

cµ,γuγ ,(2.11)

and if the prediction has some prescribed order r > 0 of accuracy, then it is exact for
polynomials of degree r − 1, i.e., if u ∈

∏
r−1, then uγ = ûγ for all γ [18, 6].

With these operators, we define for each cell Ωµ the prediction error or detail as
the difference between the exact and predicted values:

dµ := uµ − ûµ.(2.12)

The consistency assumption (2.10), the definitions of the projection operator (2.9)
and of the detail (2.12) yield ∑

|µ|=|γ|+1,Ωµ⊂Ωγ

|Ωµ|dµ = 0.(2.13)

Thus, we define the detail vector as Dj = (dµ)µ∈∇j , where the set ∇j ⊂ Sj is
obtained by removing for each γ ∈ Sj−1 one µ ∈ Sj such that Ωµ ⊂ Ωγ in order
to avoid redundancy from expressions (2.12) and (2.10), and to get a one-to-one
correspondence:

Uj ←→ (Uj−1,Dj),(2.14)

issued by operators P jj−1 and P j−1
j . By iteration of this decomposition, we finally

obtain a multi-scale representation of UJ in terms of MJ = (U0,D1,D2, · · · ,DJ):

M : UJ 7−→MJ .(2.15)
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2.3.2. Compression and Time Evolution on Graded Tree-structured
Data. One of the main interests of carrying on such a multi-scale decomposition is
that this new representation defines a whole set of regularity estimators all over the
spatial domain and thus, a data compression might be achieved as follows.

Given a set of index Λ ⊂ ∇J where ∇J :=
⋃J
j=0∇j , we define a truncation

operator TΛ, that leaves unchanged the component dλ if λ ∈ Λ and replaces it by 0,
otherwise. In practice, we are interested in sets Λ obtained by thresholding:

λ ∈ Λ if |dλ| ≥ εj , j = |λ|,(2.16)

with the level-dependent threshold values:

εj = 2
d
2 (j−J)ε, j = |λ|, j ∈ [0, J ],(2.17)

where ε is the threshold value for the finest level J . A data compression is then
obtained by discarding the cells whose details are not into Λ according to (2.16).

Nevertheless, allegedly useless details can not be deliberately deleted because
a certain data structure must be respected in order to perform the different com-
putations associated to the multi-scale transformation itself, mainly the prediction
operator. The set Λ must then exhibit a graded tree structure in order to guarantee
the availability of cell values within the local prediction stencil (see [6, 21] for more de-
tails on the definition and construction of such structures). In this paper, we will not
conduct the analysis of such data structures, but we present the following terminology
associated to a tree representation that we will adopt throughout this paper:

• If Ωµ ⊂ Ωλ with |λ| = |µ| − 1, we say that Ωµ is a child of Ωγ and that Ωγ is
the parent of Ωµ.

• Moreover, we define the leaves L(Λ) of a tree Λ as the set of Ωλ with λ ∈ L(Λ)
such that Ωλ has no children in Λ.

• Finally, we define Ωλ as a root when it belongs to the coarsest grid, that is
λ ∈ S0 or |λ| = 0, in which case, we denote λ as λ0.

An effective data compression is accomplished because U is not represented on the
finest grid SJ as UJ anymore, but on Λε, where Λε is the smallest graded tree con-
taining Λ defined by (2.16). More precisely, the numerical solution Un at time n∆t
can be represented on an adapted grid by the set (unλ)λ∈L(Λnε ).

The time evolution is then performed only on the leaves of a fixed adapted grid.
A refinement operator R is therefore defined in order to generate a set Λ̃n+1

ε contain-
ing Λnε , on which the time integration is computed, such that Λ̃n+1

ε is adapted for
describing the solution at both n∆t and (n+ 1)∆t. In our numerical implementation,
operator R refines the adapted grid based on the values of the details: by creating
children for all λ ∈ L(Λnε ) such that |dλ| ≥ ε|λ|, which adds new levels to Λnε ; and ac-
cording to Harten’s heuristics (see [18]), enlarging uniformly the refined region of Λnε
in order to predict the propagation of the solution. The unλ with λ ∈ Λ̃n+1

ε \Λnε can be
constructed applying M−1. These criteria are rather conservative, nevertheless they
completely avoid unrefined resolution taking into account the propagating nature of
reaction waves at finite speed.

An important theoretical result is that if we denote by Vn
J := (vnλ)λ∈SJ , the solu-

tion fully computed on the finest grid, and denote by Un
J , the solution reconstructed

on the finest grid that used adaptive multiresolution (keeping in mind that the time
integration was really performed on the leaves L(Λ̃nε ) of a compressed representation
of Un); then, for a fixed time T = n∆t, it can be shown that [18, 6]:

‖Un
J −Vn

J‖L2 ∝ nε.(2.18)
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Numerical experiments, based on this error estimate and on the splitting ones, allow
one to properly choose the various simulation parameters used to predict the expected
level of accuracy of the resolution.

2.4. Summary of the Numerical Strategy. The numerical resolution stra-
tegy can be summarized as follows:

(unλ)λ∈L(Λ̃nε )
M−→ (unλ0

, dnλ)λ∈Λ̃nε
(2.19)

(unλ0
, dnλ)λ∈Λ̃nε

TΛnε−→ (unλ0
, dnλ)λ∈Λnε

(2.20)

(unλ0
, dnλ)λ∈Λnε

R−→ (unλ0
, dnλ)λ∈Λ̃n+1

ε
(2.21)

(unλ0
, dnλ)λ∈Λ̃n+1

ε

M−1

−→ (unλ)λ∈L(Λ̃n+1
ε )(2.22)

(unλ)λ∈L(Λ̃n+1
ε )

S∆t

−→ (un+1
λ )λ∈L(Λ̃n+1

ε )(2.23)

The set (unλ0
) is defined as the set of roots of Λ̃nε , that is all λ ∈ Λ̃nε such that |λ| = 0

or λ ∈ S0.
For n = 0, the initial condition should be represented on L(Λ̃0

ε) in step (2.19),
which can normally be the finest grid, that is all Ωλ such that |λ| = J or λ ∈ SJ .
Nevertheless, this is not possible for large domains simulations, in which case, the
initial condition is computed on an intermediate grid level j: all Ωλ such that |λ| = j
or λ ∈ Sj , and then refined after an initial thresholding process.

The algorithm can schematically be summarized by

Un+1 = S∆t(M−1RTΛnε
MUn),(2.24)

with the compressed representations of Un+1 and Un given by (un+1
λ )λ∈L(Λ̃n+1

ε ) and

(unλ)λ∈L(Λ̃nε ) respectively, and the Strang operator splitting S∆t given by one of the

formulae (2.6) as time integration operator. One might add a last thresholding step
in order to obtain the solution on L(Λn+1

ε ) instead of L(Λ̃n+1
ε ) in order to obtain

slightly higher data compression. In what follows, the key aspects of the implemented
algorithm are detailed.

3. Algorithm Implementation. A dynamic graded tree structure is used in
this implementation to represent data in the computer memory. The adapted grid
corresponds to a set of nested dyadic grids generated by refining recursively a given
cell, depending on the local regularity of the solution. The chosen data structure can
handle 1D, 2D and 3D Cartesian geometries; the basic element of the structure is the
cell itself, which consists of a set of geometric and physical values, plus pointers to
its parent, their children and the contiguous cells in each dimension, the neighbors.
Figure 3.1 shows an example of a graded tree structure in 1D.

The roots correspond to the basis of the tree, Ωλ0 , whereas the leaves are the
upper elements with no children in the tree. In d dimensions, a parent-cell at a level
j has at most 2d children cells at level j + 1. When there is only one root in the tree,
the maximal number of leaves N on which the solution might be represented is given
by N = 2dJ , which is exactly the number of cells on the finest grid. The maximal
number of cells M in the tree is given by M = (2d(J+1)−1)/(2d−1). Additionally, in
order to guarantee conservativity at the cell interfaces, virtual cells called phantoms
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Fig. 3.1. Example of 1D graded tree structure. Nodes and links to their corresponding children
are indicated (solid lines) as well as the leaves (solid bold lines) and the phantoms (dashed lines).

are added to the tree in order to always compute the numerical fluxes of diffusion and
convection operators at the highest grid level between two neighboring cells, following
the procedure introduced in [21] for finite volume discretizations.

The implemented code represents the tree-structured data as a set of cells linked
by pointers. In a FORTRAN 90/95 environment, a pointer is just an alias to the
target; nevertheless, we take advantage of the fact that each pointer has a different
state, depending on whether it is associated or not to another object. We work
then with cells that are at different grids and that are not necessarily arranged in a
contiguous way. Hence, we must conceive the mechanisms to navigate through the
tree structure. In this implementation, we adopt a recursive strategy in which one
moves from one cell to another passing by the child of the first, and by the consecutive
children, until one gets to the desired cell. At each step, the state of the pointers tells
us whether the target exists or not. In this recursive way, we are able to locate leaves
or any cell and the same kind of procedure is conducted in the opposite direction,
from leaves towards roots when necessary. Pointers to neighbors as well as other flags
or indicators are not strictly necessary but eases considerably the searching process
for certain routines.

3.1. Prediction Operator. To obtain the approximated values ûµ by P j−1
j

according to (2.11), we consider centered linear polynomial interpolations of order 2l,
i.e. accuracy order r = 2l+1, computed with the l nearest neighbors in each direction.
For instance, in 1D configuration for l = 1, the prediction is explicitly given by:

ûj+1,2k = uj,k +
1

8
(uj,k−1 − uj,k+1),

(3.1)

ûj+1,2k+1 = uj,k +
1

8
(uj,k+1 − uj,k−1),

where the first index denotes the grid level and the second, the indexation of the cell
into the tree. As Cartesian mesh is used, extension to multidimensional polynomial
interpolations is easily obtained by a tensorial product of the 1D operator [2, 21]. In
the numerical illustrations we will restrict the different analysis to the case l = 1.

3.2. Choice of Splitting Time Step. The splitting time step is set by the
desired level of accuracy in the resolution of the wave speed, the wave profile, both,
or any other parameter, depending on the problem and considering that each sub-
system if perfectly resolved. It is thus only depending on the phenomenon we want
to describe and therefore, on the degree of decoupling we can achieve between the
various subsystems within a prescribed error tolerance. For instance, if a reference
wave solution u of problem (2.1), or the corresponding wavefront speed v, can be
computed either numerically or based on theoretical/analytical estimates, then the
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approximated solution usplit of speed vsplit, computed with splitting time step ∆t and
an operator splitting technique with exact integration of the subsystems, must verify:

Ep = ‖u− usplit‖L2 ≤ ηp, Ev =
|v − vsplit|

v
≤ ηv,(3.2)

where ηp and ηv are accuracy tolerances for the profile and velocity errors: Ep and Ev,
respectively. The profile error Ep should be evaluated superposing both u and usplit;
however, a simpler and more practical strategy would just evaluate the L2-error at a
fixed time t?:

E = ‖u(t?)− usplit(t
?)‖L2 ≤ η,(3.3)

in which case, both profile and velocity errors are simultaneously considered. Notice
that in order to remain coherent with the previous constraints and also to guarantee an
accurate resolution of the reaction and diffusion problems, the corresponding accuracy
tolerances ηRadau5 and ηROCK4 of these solvers must verify:

ηRadau5, ηROCK4 < min{ηp, ηv, η}.(3.4)

Finally, taking into account that the time evolution is performed on an adapted
grid, fixed during each time step, the resulting splitting time step should verify a
CFL-like condition:

∆t ≤ n∆x

vsplit
,(3.5)

where ∆x corresponds to the spatial discretization at the finest grid and n ≥ 2 con-
siders the refinement criterion that enlarges uniformly the refined region (see §2.3.2).
This criterion is used to verify that the locally refined spatial gradients rest into the
finest regions during a time step evolution; this is required not because of stability
issues as for time integration of hyperbolic problems, but to guarantee the spatial
accuracy of the approximation.

In the case of self-similar progression of wavefronts, the selection of the time step
is simplified by the fact that usually it does not need to be computed more than once.
Let us underline that the proposed procedure has been designed in such a way that,
in case one is able to estimate such a splitting time step at any computed time based
on error control at a given tolerance, then the numerical strategy can be used exactly
as it is provided. We will come back on this issue in the concluding remarks.

3.3. Algorithm Scheme. The global algorithm can be summarized as:
1. INITIALIZATION:

• Initialization of parameters: e.g. maximum and minimum grid level,
domain size, number of roots.

• Initialization of the mesh structure:
– creation of the different grids;
– initialization of parameters of each cell from the roots, e.g. position,

coordinates, level threshold value εj ;
– assignation of children and neighbors from the roots.

• Computation of initial solution at an intermediary grid level.
2. LOOP IN TIME:

• Computation of cell values: projection operator P jj−1 from leaves to-
wards roots.
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• Computation of details: operator M from roots towards leaves.
• Thresholding and graduation: operator TΛε throughout the tree.
• Refinement of the tree: operator R throughout the tree.
• Computation of cell values from details: operator M−1 from roots to-

wards leaves.
• Creation of phantom cells: needed for diffusion time step.
• Time integration: Strang operator splitting S∆t

2 applied only on leaves:
– reaction half time step, time integration by Radau5 cell by cell;
– diffusion time step, time integration by ROCK4. At each time in-

ternal stage, virtual cells are updated through projection/prediction
operations;

– reaction half time step, time integration by Radau5 cell by cell.
3. OUTPUT:

Save adapted grid with the corresponding cell values represented on it.

4. Numerical Simulations. In this last section, we present some numerical
illustrations of the proposed strategy. A problem coming from nonlinear chemical
dynamics is described and treated. The performance of the method is discussed in
the context of 2D and 3D simulations.

4.1. Mathematical Model of Study. We are concerned with the numerical
approximation of a model of the Belousov-Zhabotinski reaction, a catalyzed oxidation
of an organic species by acid bromated ion (see [14] for more details and illustrations).
We thus consider the model introduced in [15] and coming from the classic work of
Field, Koros and Noyes (FKN) (1972), which takes into account three species: hypo-
bromous acid HBrO2, bromide ions Br− and cerium(IV). Denoting by a = [Ce(IV)],
b = [HBrO2] and c = [Br−], we obtain a very stiff system of three PDEs:

∂a

∂τ
−Da∆a =

1

µ
(−qa− ab+ fc),

∂b

∂τ
−Db∆b =

1

ε
(qa− ab+ b(1− b)) ,

∂c

∂τ
−Dc∆c = b− c,

(4.1)

with diffusion coefficients Da, Db and Dc, and some real positive parameters f , small
q, and small ε, µ, such that µ� ε.

The dynamical system associated with this system models reactive excitable me-
dia with a large time scale spectrum (see [15] for more details). Moreover, the spatial
configuration with addition of diffusion generates propagating wavefronts with steep
spatial gradients. Hence, this model presents all the difficulties associated with a stiff
multi-scale configuration. The advantages of applying a splitting strategy to these
models have already been studied and presented in [11]. In what follows, we will
consider 2D and 3D configurations of problem (4.1).

4.2. 2D BZ Equation. We first consider the 2D application of problem (4.1)
with homogeneous Neumann boundary conditions and the following parameters, taken
from a preliminary study [11]: ε = 10−2, µ = 10−5, f = 1.6 and q = 2 × 10−3, with
diffusion coefficients Da = 2.5×10−3, Db = 2.5×10−3 and Dc = 1.5×10−3. The phe-
nomenon is studied over a time domain of [0, 4] and a space region of [0, 1]× [0, 1]. We
define the reference or quasi-exact solution as the resolution of the coupled reaction-
diffusion problem (4.1) on an uniform mesh of 256× 256 performed by Radau5 with
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very fine tolerances, ηRadau5 = 10−10. The main limitation to perform such compu-
tation on finer grids comes from the important memory requirements of Radau5.

Let us consider an application of the proposed MR/Splitting numerical strategy
with 8 nested dyadic grids with N = 22×8 = 65536 = 256 × 256 cells on the finest
grid J = 8. The time integration method uses the RDR Strang S∆t

2 scheme with
Radau5 for the time integration of the reaction term and ROCK4 for the diffusive
part, ηRadau5 = ηROCK4 = 10−5. The spiral waves simulated can be seen into Figure
4.1, where colors represent the grid levels at t = 2, when the wave is fully developed
and at t = 4, after a complete rotation period: the adapted grids are tightened around
the stiff regions and clearly propagate along the waves.

Fig. 4.1. 2D BZ spiral waves. MR/Splitting solutions on adapted grids with ε = 10−2 at t = 2
(left) and t = 4 (right). Variable a (top), b (center) and c (bottom), where colors represent grid
levels. Finest grid: 2562.

To illustrate the performance of the method, we have set an accuracy tolerance of
η = 10−2, considering for simplicity the normalized L2-errors (3.3). Nevertheless, in
order to remain consistent with the physics of the phenomenon, we aim also at wave
speed resolutions with a maximum relative error of 1%, ηv = 10−2 according to (3.2).
After numerical experiments that considered the splitting solver with different ∆t on
an uniform grid of 256× 256, the order 2 of the numerical scheme according to §2.2,
and the reference quasi-exact solution previously defined, we have chosen a rounded
value of splitting time step with a L2-error close to η for all three variables and times
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t? ∈ [0, 4] into (3.3): ∆t = 4/1024 ≈ 3.9× 10−3.
Verification of ηv with the chosen ∆t was conducted in the following way: we

studied the time evolution of each variable contained in a 2D slice of the 3D represen-
tation into Figure 4.1, which results into a 1D configuration as shown in Figure 4.2 for
variable a along y-axis. Then we calculated the propagating speed of each variable
given by the quasi-exact and splitting solutions, and finally, the relative errors Ev
following (3.2), which remain practically lower than 0.2%, and thus, much lower than
ηv. Similar results were obtained while considering slices along x-axis. The profile
differences of the waves for a fixed t? ∈ [0, 4] show that the relative higher L2-errors
computed by (3.3), comes from the spatial shift of the steep gradients, even for a
slight speed discrepancy of both resolutions. This is a simple strategy to measure and
approximate wave speeds, nevertheless we might think of developing more sophisti-
cated techniques based on more detailed theoretical studies of wave dynamics (see for
example [22]), which are out of the scope of this work.

For this particular problem and with the selected ∆t, the CFL-like condition
(3.5) is verified for all ∆x ≥ (4× 0.7)/(1024× 3) ≈ 9.11× 10−4, that is up to ∼ 1024
points in each dimension, considering vsplit ≈ 0.7 and n = 3; therefore, this choice of
the splitting time step is really consistent and avoids any kind of refinement problem
for a wide range of spatial discretizations. Anyway, this is a rather conservative
estimate because the numerical tests show that the refined zones during a time step
imply normally more than 3 cells, mainly due to the extended stencils obtained by
graduation of the tree structure in multidimensional configurations.

The proposed MR/Splitting strategy represents and computes solutions only on
adapted grids, the leaves of the tree structure, throughout the time domain. Therefore,
we define the data compression (DC) as one minus the ratio between the number of
cells on the adapted grid (AG) and those on the finest uniform grid (FG), expressing
the whole as a percentage:

DC =

(
1− AG

FG

)
× 100.(4.2)

Table 4.1 shows different data compression rates for several threshold values. Smaller
threshold values ε imply more refinement and thus, compressions are less important.

Table 4.1
2D BZ. Data compression (DC) and number of cells on the adapted grid (AG) for different

threshold values ε. Finest grid: 2562.

t = 2 t = 4
ε AG DC AG DC

10−1 10594 83.97 14035 78.58
10−2 15244 76.74 18874 71.20
10−3 27544 57.97 29182 55.47
10−4 55207 15.76 51934 20.76

Considering now the L2-error of these results, uMR, with respect to the reference
quasi-exact solution, uJqe, we decompose it into two parts, the error coming from the
splitting process and that of the multiresolution decomposition:

‖uJqe(t)− uMR(t)‖L2 ≤ ‖uJqe(t)− uJsplit(t)‖L2 + ‖uJsplit(t)− uMR(t)‖L2 .(4.3)

Therefore, we also consider the splitting solution uJsplit obtained without grid adap-
tation on the uniform finest grid J = 8. Figure 4.3 shows these errors for variables
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Fig. 4.2. BZ wave speed for splitting time step ∆t = 4/1024. Top: left, time evolution of
variable a considering a slice along y-axis (see Figure 4.1); and right, speed relative errors Ev for
all three variables according to (3.2). Center: time evolution of wave speeds computed by quasi-
exact (left) and splitting (right) solvers. Bottom: Profile difference between variable a and asplit at
t? = 1.5.

a, b and c, and for different threshold values ε at final time t = 4. Notice that for
ε < 10−4 one should consider ηRadau5 = ηROCK4 < 10−5, in order to remain coherent
throughout the error analysis and to guarantee an accurate resolution of reactive and
diffusive time scales.

The splitting error ‖uJqe(t)− uJsplit(t)‖L2 is computed on the finest grid and does
not depend on the grid adaptation process: it is fixed by the splitting time step
∆t = 4/1024 ≈ 3.9 × 10−3. The error coming from the multiresolution process
is given by ‖uJsplit(t) − uMR(t)‖L2 ∝ ε according to (2.18), considering that both
solutions use the same time integration strategy. In this case, these error estimates
show that for ε ≤ 10−2, the multiresolution errors become negligible compared to the
operator splitting ones. All of these numerical results are then used to set the various
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Fig. 4.3. 2D BZ. L2 error at t = 4. Variables a (top left), b (top right) and c (bottom). Finest
grid: 2562.

parameters for larger and more accurate simulations, as presented in the following.
We therefore consider the same problem but with finer spatial discretization on

the finest grid J . Table 4.2 summarizes these results for a threshold value of ε = 10−2.
Data compression increases with the number of levels as the space scales present in
the problem are better discriminated by finer spatial resolutions.

Table 4.2
2D BZ. Data compression (DC) and number of cells on the adapted grid (AG) for ε = 10−2

and different finest grids (FG) and levels of refinement (J).

t = 2 t = 4
FG J AG DC AG DC

128× 128 7 6718 59.00 8008 51.12
256× 256 8 15244 76.74 18874 71.20
512× 512 9 33712 87.14 44917 82.87

1024× 1024 10 80425 92.33 110428 89.47

In order to take into account the memory requirements of each resolution strategy
for a fine spatial resolution of 1024× 1024, we estimate the array size of the working
space needed by Radau5 and ROCK4:

1. Radau5: L1 = 4×W1 ×W1 + 12×W1 + 20 (from [17]);
2. ROCK4: L2 = 8×W2 (from [1]);

where W1 and W2 are the number of unknowns solved by Radau5 and ROCK4. In
the case of an uniform mesh, the total number of unknowns is W = 3×1024×1024 ≈
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3.15× 106 and thus, the global size L required for each solver is:

1. Quasi-exact: W1 = W ≈ 3.15× 106 and L = L1 ≈ 4× 1013.
2. Splitting: W1 = 3, W2 = W ≈ 3.15× 106 and L = L1 + L2 ≈ 2.5× 107.
3. MR/Splitting with ε = 10−2: W1 = 3, W2 = 0.09 × W ≈ 2.9 × 105 and
L = L1 + L2 ≈ 2.3× 106; with an average data compression of 91%.

Considering a standard platform on which each double precision value is represented
by 64 bits, we shall require 2.3 Pb, 23.8 Mb and 2.2 Mb respectively, for each solver.

Therefore, on the one hand, it is hopeless trying to solve problem (4.1) with
the quasi-exact strategy for these very fine discretizations, at least with standard
computing resources. For instance, for these 2D simulations we have used an Intel(R)
Core(TM)2 processor of 2 GHz with memory capacity of 16 Gb. And on the other
hand, also a splitting strategy becomes more difficult to implement since the diffusion
term is solved considering the entire spatial domain at once. A major advantage of
the proposed numerical strategy is the possibility of representing results in a highly
compressed way. As an example, Figure 4.4 shows the adapted grids obtained for the
1024× 1024 configuration with threshold value of ε = 10−2.

Fig. 4.4. 2D BZ. Adapted grid at t = 2 (left) and t = 4 (right), ε = 10−2. Finest grid: 10242.

4.3. 3D BZ Equation. We consider now problem (4.1) in a 3D configuration
with the same parameters considered in the 2D case for a time domain of [0, 2] and in
a space region of [0, 1]× [0, 1]× [0, 1]. First, we take into account 8 nested dyadic grids
with N = 23×8 = 16777216 = 256×256×256 cells on the finest grid J = 8. Then, with
a threshold value of ε = 10−2 and a splitting time step ∆t = 4/1024 ≈ 3.9 × 10−3,
the proposed numerical strategy features data compressions of 83.06% for the initial
condition, 84.40% at t = 1 when the scroll waves are fully developed and 79.61% at
final time t = 2. Figure 4.5 shows the evolution of the finest grid of the adapted
grid during the period of study. We distinguish clearly the development of the scroll
wave where colors represent the values of variable a: the finest regions correspond to
the neighborhood of the wavefront. All of the 3D simulations were performed on an
AMD-Shanghai processor of 2.7 GHz with memory capacity of 32 Gb.

In order to explore the feasibility and potential advantages of the method, let us
consider 9 nested dyadic grids with N = 23×9 = 134217728 = 512 × 512 × 512 cells
on the finest grid J = 9. The initialization must take place on a intermediary grid,
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Fig. 4.5. 3D BZ scroll wave. Finest grid of the adapted grids at t = 0.5 (top left), t = 1 (top
right), t = 1.5 (bottom left) and t = 2 (bottom right), ε = 10−2, where colors represent values of
variable a. Finest grid: 2563.

j = 8 in this example. For this configuration, a two times larger splitting time step
of ∆t = 4/512 ≈ 7.8× 10−3, and a threshold value of ε = 10−1 were chosen in order
to have splitting and multiresolution errors potentially of the same order. Smaller
threshold values yield larger simulation domains which are not longer feasible with
the considered computing resource and the current state of development of the code.
Figure 4.6 shows the corresponding finest grids. Data compressions are now of 95.54%
for the initial condition, 89.62% at t = 1 and 87.05% for final time t = 2.

Performing the same comparison concerning memory requirements, the total num-
ber of unknowns for this case is W = 3× 512× 512× 512 ≈ 4.03× 108 and the global
size of L required by each solver is:

1. Quasi-exact: W1 = W ≈ 4.03× 108 and L = L1 ≈ 6.5× 1017.
2. Splitting: W1 = 3, W2 = W ≈ 4.03× 108 and L = L1 + L2 ≈ 3.2× 109.
3. MR/Splitting with ε = 10−1: W1 = 3, W2 = 0.13 × W ≈ 5.3 × 107 and
L = L1 + L2 ≈ 4.2× 108; with a data compression of 87%.

Therefore, we shall require at least 36.1 Eb, 190.7 Gb and 25.0 Gb of memory capacity,
respectively for each solver.
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Fig. 4.6. 3D BZ scroll wave. Finest grid of the adapted grids at t = 0.5 (top left), t = 1 (top
right), t = 1.5 (bottom left) and t = 2 (bottom right), ε = 10−1, where colors represent values of
variable a. Finest grid: 5123.

5. Concluding Remarks and Outlook. The present work proposes a new
numerical approach which is shown to be computationally efficient. It couples adap-
tive multiresolution techniques with a new operator splitting strategy for multi-scale
reactions waves modeled by stiff reaction-diffusion systems. The splitting time step is
chosen on the sole basis of the structure of the continuous system and its decoupling
capabilities, but not related to any stability requirement of the numerical methods
involved in order to integrate each subsystem, even if strong stiffness is present. The
technique considers, on the one hand, dedicated high order time integration methods
to properly solve the entire spectrum of temporal scales of both the reaction and diffu-
sion parts; and on the other hand, an adaptive multiresolution technique to represent
and treat more accurately local spatial gradients associated to the wave front. The
global accuracy of the simulation is evaluated based on theoretical and numerical re-
sults in the context of self-similar propagating waves. As a consequence, the resulting
highly compressed data representations as well as the accurate and feasible resolution
of these stiff phenomena prove that large computational domains previously out of
reach can be successfully simulated with conventional computing resources (typically
of the order of a couple of days of simulation on a single workstation). We claim that
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we thus have reached some sort of optimality of the splitting strategy.

For the moment, we have focused our attention on reaction-diffusion systems in
order to settle the foundations for simulation of more complex phenomena with fully
convection-reaction-diffusion systems and more detailed models such as combustion
with complex chemistry. The main difference of the method proposed here compared
to what has been done in the combustion community where other numerical techniques
have already been proposed (see for instance [8, 20]), is related to the fact that we
provide an error control in both space and time of the solution, once the splitting
time step for the continuous system of PDEs is defined in order to respect a given
tolerance compared to the coupled solution. So far, since we have investigated reaction
waves, this time step is evaluated once for all and does not need to be re-evaluated
dynamically during the simulation.

However, an important amount of work is still in progress concerning on the
one hand, programming features such as data structures, optimized routines and
parallelization strategies. For instance, some interesting investigations have recently
addressed this issue very nicely [3, 4]. And on the other hand, numerical analysis
of theoretical aspects, which may surely lead to better error estimates as well as
the ability to dynamically evaluate the splitting time step for more general unsteady
solutions of reaction-diffusion and convection-reaction-diffusion systems of equation,
to extend and further improve the proposed numerical strategy. Finally, when dealing
with more complex systems such as complex chemistry or stroke modeling in the brain,
the source term involves many species (typically 50) and many reactions (typically
several hundreds) or complex mechanisms. In such a case the integration of the
source term leads to a heavy computational cost, even if it is embarrassingly parallel
in the framework of operator splitting and if the multiresolution allows to optimize
its resolution as shown in [13]. Therefore, this field requires some further studies in
order to obtain high efficiency in terms of load balancing on parallel architectures.
These issues constitute particular topics of our current research.
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sonique, PhD thesis, Ecole Nationale des Ponts et Chaussées, 1994.
[8] M. S. Day and J. B. Bell, Numerical simulation of laminar reacting flows with complex

chemistry, Combust. Theory Modelling, 4 (2000), pp. 535–556.
[9] S. Descombes, T. Dumont, V. Louvet, and M. Massot, On the local and global errors of

splitting approximations of reaction-diffusion equations with high spatial gradients, Int. J.
of Computer Mathematics, 84 (2007), pp. 749–765.

[10] S. Descombes, T. Dumont, V. Louvet, M. Massot, F. Laurent, and J. Beaulaurier,
Operator splitting techniques for multi-scale reacting waves and application to low Mach
number flames with complex chemistry: Theoretical and numerical aspects, Submitted to
SIAM, available on HAL, (2010).

[11] S. Descombes, T. Dumont, and M. Massot, Operator splitting for stiff nonlinear reaction-



NEW RESOLUTION STRATEGY FOR MULTI-SCALE REACTION WAVES 21

diffusion systems: Order reduction and application to spiral waves, in Patterns and waves
(Saint Petersburg, 2002), AkademPrint, St. Petersburg, 2003, pp. 386–482.

[12] S. Descombes and M. Massot, Operator splitting for nonlinear reaction-diffusion systems
with an entropic structure: Singular perturbation and order reduction, Numer. Math., 97
(2004), pp. 667–698.

[13] T. Dumont, M. Duarte, S. Descombes, M.A. Dronne, M. Massot, and V. Louvet, Simu-
lation of human ischemic stroke in realistic 3D geometry: A numerical strategy, Submitted
to Bulletin of Mathematical Biology, available on HAL, (2010).

[14] I.R. Epstein and J.A. Pojman, An Introduction to Nonlinear Chemical Dynamics, Oxford
University Press, 1998. Oscillations, Waves, Patterns and Chaos.

[15] P. Gray and S. K. Scott, Chemical oscillations and instabilites, Oxford Univ. Press, 1994.
[16] E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration, Springer-Verlag,

Berlin, 2nd ed., 2006. Structure-Preserving Algorithms for Odinary Differential Equations.
[17] E. Hairer and G. Wanner, Solving ordinary differential equations II, Springer-Verlag, Berlin,

second ed., 1996. Stiff and differential-algebraic problems.
[18] A. Harten, Multiresolution algorithms for the numerical solution of hyperbolic conservation

laws, Comm. Pure and Applied Math., 48 (1995), pp. 1305–1342.
[19] S. Müller, Adaptive multiscale schemes for conservation laws, vol. 27, Springer-Verlag, 2003.
[20] H. N. Najm and O. M. Knio, Modeling low Mach number reacting flow with detailed chemistry

and transport, Journal of Scientific Computing, 25 (2005), pp. 263–287.
[21] O. Roussel, K. Schneider, A. Tsigulin, and H. Bockhorn, A conservative fully adaptive

multiresolution algorithm for parabolic PDEs, J. Comput. Phys., 188 (2003), pp. 493–523.
[22] B. Sandstede, A. Scheel, and C. Wulff, Bifurcations and dynamics of spiral waves, Journal

of Nonlinear Science, 9 (1999), pp. 439–478.
[23] L. F. Shampine, B. P. Sommeijer, and J. G. Verwer, IRKC: An IMEX solver for stiff

diffusion-reaction PDEs, J. Comput. Appl. Math., 196 (2006), pp. 485–497.
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