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Max Duartea,∗, Marc Massota, Stéphane Descombesb, Christian Tenaudc, Thierry Dumontd,

Violaine Louvetd, Frédérique Laurenta

aLaboratoire EM2C - UPR CNRS 288, Ecole Centrale Paris, Grande Voie des Vignes, 92295 Chatenay-Malabry Cedex,

France
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Abstract

In this paper, we tackle the numerical simulation of reaction-diffusion equations modeling multi-

scale reaction waves. This type of problems induces peculiar difficulties and potentially large

stiffness which stem from the broad spectrum of temporal scales in the nonlinear chemical source

term as well as from the presence of large spatial gradients in the reactive fronts which are spa-

tially very localized. In a series of previous studies, the numerical analysis of operator splitting

techniques has been conducted and such an approach has shown a great potential in the frame-

work of reaction-diffusion and convection-diffusion-reaction systems. However, even if a firm

theoretical background is available, an optimal strategy for high performance numerical simu-

lation is still needed. In this paper, we introduce a new strategy for reaction-diffusion systems

based on time operator splitting in the context of very localized and very stiff reaction fronts.

It provides an optimal combination of adaptive spatial multiresolution, implicit resolution of re-

action and explicit resolution of diffusion. The optimality is reached in terms of the choice of

the operator splitting time step which, in the framework of self-similar reaction waves, allows

a very good combination of the various dedicated solvers used in the proposed strategy. The

computational efficiency is then evaluated through the numerical simulation of configurations

which were so far out of reach of standard methods in the field of nonlinear chemical dynamics

for spiral waves and scroll waves as an illustration.
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1. Introduction

Numerical simulations of multicomponent reactive flows are commonly used for modeling

purposes in many applications such as combustion [36, 21, 55, 49, 54], chemical vapor deposi-

tion [37], and air pollution modeling [68, 48, 52]. The important development of the numerical

strategies in these and in other fields such as nonlinear chemical dynamics for excitable media

[5, 31, 11] or biomedical engineering [40, 23, 32] is mainly due to the constant increase of the

computer power (see for instance [33] for a recent review of methods applied to turbulent com-

bustion). Most of the time, the multicomponent character featured in these applications yields

a large set of unknowns which satisfy a system of partial differential equations involving a very

nonlinear ”chemical” source term. Thus, in this study, we focus on reaction-diffusion systems

which is the subsystem that normally involves the strongest difficulties in terms of stiffness in

multi-scale phenomena, even if convection plays also a crucial role. In fact, the developments

provided in this contribution are meant in order to be extended to convecting cases.

In general, these models raise several difficulties created by the large number of unknowns

and the wide range of temporal scales due to large and detailed chemical kinetic mechanisms, as

well as by steep spatial gradients or large higher order derivatives associated with very localized

fronts of high chemical activity. Another stumbling block for 3D simulations is the unreasonable

memory requirements for such multi-scale problems. Therefore, there are several strategies in

order to treat the induced stiffness for time dependent problems. The most natural idea is to

use dedicated numerical methods and to solve the complete models where diffusion, reaction

and eventually convection are coupled together. In this context, one approach consists in the

resolution of strongly coupled nonlinear systems with a fully implicit method, using eventually

modified Newton methods for ill conditioned problems [29, 30, 60]. However, the computational

cost as well as the huge memory requirements, even if adaptive grid are used, make this strategy

difficult to handle. Yet another possibility is to use semi-implicit or linearized implicit methods

instead (see [19] and references therein). Nevertheless, these methods have shown to suffer of

strong stability restrictions, especially in the context of exothermic reactions [20, 19] and are not

adapted to reactive flows with very fast temporal scales.

Another numerical strategy first introduced in [4] is to combine implicit and explicit schemes

to discretize nonlinear evolution problems in time. In fact, further studies into [61, 73] settled

the appropriate numerical background for these methods called IMEX, which in particular might

be conceived to solve stiff nonlinear problems as presented in [74, 59]. These methods are

usually very efficient. Nevertheless, the feasibility of utilizing dedicated implicit solvers over

a discretized domain become soon critical when treating large computational domains. In fact,

complementary numerical strategies must be developed in order to overcome these computational

restrictions.

Finally, the only case where we can use the method of lines in conjunction with a dedicated

stiff ODE solver (so that the time discretization and the spatial discretization are disconnected)

is when we need a reference solution for validation and study purposes necessarily restricted to

low dimensional configurations with not many unknowns.

From another point of view, we might also consider the possibility to use reduced models

where the fastest chemical scales have been previously relaxed [43]. These simplified models

provide reasonable predictions when the fastest characteristic chemical times are small in com-

parison with the flow time, and the associated computational costs are significantly reduced in

comparison with comprehensive chemical models. A large literature has been devoted to this

subject. There has been a tremendous effort in creating efficient and predictive numerical me-
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thods in order to define and solve reduced systems of equations for combustion and air pollution

modeling applications. In particular, the derivation of the reduced model is usually accessible

when the system is well-partitioned and the fast scales have been isolated [63, 65]. In this case, a

rigorous singular perturbation analysis can be conducted even in the context of nonlinear source

terms for numerical analysis purposes [51, 27]. Nevertheless, the identification of these fast

scales in terms of reaction rates or species, which can change with time, relies on sensitivity

analysis which is most of the time difficult to conduct and justify in realistic configurations.

Hence, it reveals the need for other strategies which do not rely on the knowledge of the fast

scales.

It is then natural to envision a compromise, since the fully coupled problem is most of the time

out of reach and the reduced model does not always imply straightforward implementations. In

this context, splitting methods [50] also called fractional step methods [76, 69, 70] have been well

known for a long time and there exists a large literature showing the efficiency of such methods

for evolution problems. Yet from a theoretical point of view, they represent a suitable framework

to design even higher order methods for the integration in time of such problems [22, 58]. In the

practice, it is firstly necessary to decouple numerically the reaction part which can bring in some

very fast time scales from the rest of the physical phenomena like convection, diffusion or both

for which there also exist dedicated numerical methods. Nevertheless it is fundamental to keep

some information about the good description of the global physical coupling and that is why a

rigorous numerical analysis is required.

For instance, in the combustion domain, several numerical studies on multi-scale pheno-

mena were conducted that already coupled splitting techniques with dedicated time integration

methods such as Runge-Kutta-Chebyshev (RKC) [72] methods in [54] or local refined mesh

strategies in [21]. Nevertheless, in order to perform such numerical simulations very sophisti-

cated algorithms were constructed with splitting time steps defined by the fastest time scales of

the problem in order to guarantee the classical numerical behavior of the splitting schemes. In

fact, several works [43, 75, 64, 19] proved that the classical analysis of such methods fails in

presence of scales much faster than the splitting time step and motivated more rigorous studies

for these stiff configurations [27]. Moreover, complementary works described also the numerical

behavior of these methods when spatial multi-scale phenomena arise mainly as a consequence

of large spatial gradients [24], so that the influence of both spatial and time related stiffness has

been analyzed in detail for not arbitrarily small splitting time steps.

We therefore aim at conceiving a very compact and simple numerical strategy based on these

theoretical results for splitting schemes in order to guarantee a more accurate knowledge and

control of the time and spatial errors in the context of splitting time steps always much larger

than the fastest time scales. Keeping this in mind, on the one hand, a high order method like

Radau5 [43], based on implicit Runge-Kutta schemes for stiff ODEs, solves the reaction term

using adaptive time integration tools and highly optimized linear systems solvers. And on the

other hand, another high order method like Rock4 [2], based on explicit stabilized Runge-Kutta

schemes, solves the diffusion problem.

With the choice of the time integration solvers properly justified, the last ingredient of the

algorithm is a mesh refinement technique, being aware of the interest of adaptive mesh tech-

niques for problems exhibiting spatial multi-scale phenomena such as locally steep gradients or

shock-like structures in general. In the same context, another valid numerical strategy to treat

this kind of problems consists in adjusting artificially the spatial scales of interest present in the

phenomenon. For example, in the combustion domain, the thickened flame model [17, 13] pro-

poses to artificially thicken the flame front in order to solve it on a feasible LES mesh without
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altering the flame speed. Nevertheless, in this work we adopt a different approach with the main

goal of solving all the spatial scales without “scaling” the problem.

Historically, adaptive methods like Multi-Level Adaptive Techniques (MLAT) [10] or Adap-

tive Mesh Refinement (AMR) [6, 8, 7] were among the first to achieve this goal, using a set of

locally refined grids where steep gradients of high truncation errors are found. Then, adaptive

multiresolution methods, based on Harten’s pioneering work [45], have been developed for 1D

and 2D hyperbolic conservation laws [16, 38] and then extended to 3D parabolic problems [57].

A high data compression might be achieved with all these methods, nevertheless, one particular

advantage of the adaptive multiresolution techniques is that the numerical analysis of the errors

has already been conducted [45, 16], so that they can be previously estimated.

Considering all the features of the selected numerical methods, an optimal combination of

the adaptive spatial multiresolution, the implicit resolution of the reaction and the explicit reso-

lution of the diffusion is achieved taking into account the theoretical background of the splitting

techniques. In this work, we are mainly focused on time and space multi-scale reaction waves for

which the choice of a suitable splitting time step remains a delicate task. Thus, considering the

propagating nature of the studied phenomenon and based on theoretical considerations, a simple

and efficient heuristic is developed in order to overcome this difficulty. We thus prove that we

have designed a very efficient numerical strategy which is able to capture 3D large simulations

with feasible computational cost and memory requirements. Nevertheless, we search to utterly

identify the different aspects that need to be improved, expecting this work to become a starting

point towards optimal implementations. In particular, the extension to complete convection-

reaction-diffusion systems is foreseen based on the proposed numerical method.

The paper is organized as follows : in a first part, we present the various building blocks

which will be used in the numerical strategy. The latter is introduced in the second part, as

well as the corresponding algorithm and associated key issues. In the last part of this work,

we first present the three species reaction diffusion system, which is a model of the Belousov-

Zhabotinsky reaction. We then conduct a series of detailed and careful numerical simulations in a

one-dimensional case in order to illustrate the key issues highlighted in the second part and prove

the good behavior of the proposed strategy. Finally, the potential of the method is illustrated in

the framework of two- and three-dimensional simulations which allows a detailed discussion of

the capability and performance of the method.

2. Operator splitting, time integrators, adaptive multiresolution and numerical strategy

This first section contains a brief introduction to each and every numerical method considered

in this work. Therein, general splitting techniques as well as the selected reaction and diffusion

time integrators are presented in this order and in an independent way. Then, the principal

features of the adaptive multiresolution method is described to finally introduce the proposed

numerical strategy.

2.1. Operator splitting

As it was mentioned in the introduction, splitting methods represent an easy and convenient

way to simulate multi-scale phenomena. Moreover, these techniques are gaining a lot of interest

because of the constant development of sophisticated time integrator tools that allow even more
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dedicated and efficient solvers for each split subproblem. In this context, we recall that multi-

scale phenomena can be usually modeled by general reaction-diffusion systems of type

∂tu − ∂x (D(u)∂xu) = f (u) , x ∈ R
d, t > 0,

u(0, x) = u0(x), x ∈ R
d,

 (1)

where f : R
m → R

m and u : R × R
d → R

m, with the diffusion matrix D(u), which is a tensor

of order d × d × m.

In order to simplify the presentation, we consider problem (1) with linear diagonal diffusion,

in which case the elements of the diffusion matrix are written as Di jk(u) = Dkδi j, so that the

diffusion operator reduces to the heat operator with scalar diffusion coefficient Dk for component

uk of u, k = 1, . . . ,m. In any case, the proposed numerical strategy normally deals with general

problem (1). However, performing a fine spatial discretization, we obtain the semi-discretized

initial value problem
dU

dt
− B U = F (U) , t > 0,

U(0) = U0,


(2)

where B corresponds to the discretization of the Laplacian operator with the coefficients Dk

within; U and F (U) are arranged component-wise all over the discretized spatial domain. Per-

forming the classical decoupling of the diffusion and reaction parts of (2), we denote X∆t(U0) as

the numerical solution of the discretized diffusion equation

dUD

dt
− B UD = 0, t > 0, (3)

with initial data UD(0) = U0 after an integration time step ∆t. We also denote by Y∆t(U0) the

numerical solution of the reaction part,

dUR

dt
= F (UR) , t > 0, (4)

with initial data UR(0) = U0.

The two Lie approximation formulae of the solution of system (2) are then defined by

L∆t
1 (U0) = X∆tY∆t(U0), L∆t

2 (U0) = Y∆tX∆t(U0), (5)

while the two Strang approximation formulae [66, 67] of the solution of system (2) are given by

S∆t
1 (U0) = X∆t/2Y∆tX∆t/2(U0), S∆t

2 (U0) = Y∆t/2X∆tY∆t/2(U0), (6)

where ∆t is the splitting time step.

It is well known that Lie formulae (5) (resp. Strang formulae (6)) are an approximation of

order 1 (resp. 2) of the exact solution of (2) in the case where X∆t andY∆t are the exact solutions

X∆t and Y∆t of problems (3) and (4). Then, appropriate numerical approximations of X∆t and Y∆t

are required in order to compute Lie and Strang formulae with the prescribed order.

Higher order splitting configurations are also possible. Nevertheless, the order conditions

for such composition methods state that either negative time substeps or complex coefficients

are necessary (see [42]). These normally imply important stability restrictions and more so-

phisticated numerical implementations. In the particular case of negative time steps, they are

completely undesirable for PDEs that are ill-posed for negative time progression.
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However, the key point of a splitting strategy is that dedicated and often different time integra-

tion methods might be considered, taking advantage of the particular features of each subproblem

(3) and (4). Keeping this in mind, we will first present Radau5 and then Rock4 as respectively

the selected numerical solvers of the reaction and the diffusion time evolution problem.

2.2. Time integration of the reaction problem

For t > t0, let us consider the initial value problem

du

dt
= f(t,u), u(t0) = u0, (7)

with some integer m > 0, u : R → R
m and a general nonlinear function f : R × R

m → R
m,

which is equivalent to the reaction problem for general system (1) at a fixed point x. Taking into

account a general s-stage Runge-Kutta method, after an integration time step ∆t, the solution

u(t0 + ∆t) of problem (7) might be approximated by u1, which is given by

ki = u0 + ∆t

s∑

j=1

ai jf
(
t0 + c j∆t,k j

)
, i = 1, . . . , s,

u1 = u0 + ∆t

s∑

j=1

b jf
(
t0 + c j∆t,k j

)
,

(8)

where b and c are two vectors of R
s, b = (b1, · · · , bs)

t and c = (c1, · · · , cs)
t, and A is a s × s

matrix, A = (ai j)1≤i, j≤s. Usually, these coefficients are arranged in a mnemonic device, known as

a Butcher’s array

c1 a11 a12 · · · a1s−1 a1s

c2 a21 a22 · · · a2s−1 a2s

...
...

. . .
...

cs as1 as2 · · · as s−1 ass

b1 b2 · · · bs−1 bs

Moreover, a Runge-Kutta method is of order p if it satisfies

s∑

i=1

bic
q−1

i
=

1

q
, q = 1, . . . , p (9)

and for p ≤ η + ζ + 1 and p ≤ 2η + 2,

s∑

j=1

ai jc
q−1

j
=

c
q

i

q
, i = 1, . . . , s, q = 1, . . . , η,

s∑

i=1

bic
q−1

i
ai j =

b j

q
(1 − c

q

j
), j = 1, . . . , s, q = 1, . . . , ζ,

(10)

as it was proven by Butcher [12].
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If we now consider the stability features, a classical analysis based on the Dahlquist test

equation [18]

y′ = λy, y(0) = 1, (11)

allows to define the stability function R : C → C of a method as the numerical solution of (11)

given by the method itself after one time step ∆t. In the case of a Runge-Kutta method, solving

(11) with y(0) = y0 with the scheme given by (8) leads to

y1 = R(z)y0, z = ∆tλ,

where R is a rational function that becomes a polynomial for explicit Runge-Kutta schemes. In

the same context, the set

S := {z ∈ C : |R(z)| ≤ 1} (12)

is called the stability domain of the method and a particular method will remain stable as long as

z ∈ S . Notice that in a general case, problem (7) can be linearized and supposing a diagonalizable

Jacobian matrix J = ∂f/∂u, an analogous problem to that of Dalquist can be obtained with the

complex eigenvalues λi, i = 1, · · · ,m of J. As a consequence, if (7) is a stiff system of ODEs (see

[43] for characterization of a stiff ODE), then it is very likely that large λi withℜλi ≤ 0 will take

a leading role in the transient phase of the solution, whenever the initial solution does not belong

to a partial equilibrium manifold where the fast scales are already relaxed. Considering (12), this

implies that either larger stability domain S must be required for a fixed time step ∆t or smaller

∆t for a fixed S . In order to overcome this difficulty, A-stable methods for which

S ⊂ {z ∈ C : ℜz ≤ 0}, (13)

are usually preferred, so that prohibitive small time steps ∆t are dismissed.

However, it is not possible to construct such A-stable methods from explicit Runge-Kutta

methods with ai j = 0 for i ≤ j in the Butcher’s array, because in those cases, R will always be

a polynomial. Therefore, appropriate implicit Runge-Kutta schemes have been studied. Hence,

based on the works of Butcher on Radau quadrature formulae [56], Ehle has constructed a family

of formulae named ’Radau IIA’ in which implicit Runge-Kutta schemes are generated by collo-

cation at the nodes of these quadrature formulae [34]. These RadauIIA methods have been then

conceived in order to be A-stables and of order p = 2s − 1 for a given number of stages s given

conditions (9) and (10). For instance, it gives the backward Euler method for s = 1, but even

higher order methods are possible. Actually, the case s = 3 for which the Butcher array and the

corresponding stability function are given by

4 −
√

6

10

88 − 7
√

6

360

296 − 169
√

6

1800

−2 + 3
√

6

225
4 +
√

6

10

296 + 169
√

6

1800

88 + 7
√

6

360

−2 − 3
√

6

225

1
16 −

√
6

36

16 +
√

6

36

1

9

16 −
√

6

36

16 +
√

6

36

1

9

, R(z) =

1 +
2z

5
+

z2

20

1 − 3z

5
+

3z2

20
− z3

60

,

(14)
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is the Radau IIA method on which Radau5 is based [43, 44]. Hence, Radau5 is formally a fifth

order implicit Runge-Kutta method and it has been proven that this order might be reduced at

worst to a third order, for example, in the case of singular perturbation problems [41]. Even

though there are other implicit Runge-Kutta methods based this time on Gaussian quadrature

formulae that can normally yield higher order than p = 2s − 1, Radau-based formulae allow the

construction of L-stable methods, that is

lim
|z|→∞

R(z) = 0,

as it can be verified by (14). From a theoretical point of view, this implies that these methods are

more efficient in damping out fast transient phases, a very common situation when dealing with

very stiff problems (see [43] for further details).

2.3. Time integration of the diffusion problem

In many cases, there are stiff problems for which A-stable methods are not necessarily re-

quired. Some remarkable examples come from the discretization of parabolic PDEs which lead

to stiff problems with a Jacobian matrix involving (possibly large) eigenvalues close to the real

negative axis. This is the particular case of the discretized diffusion problem previously conside-

red (3) for which the real negative eigenvalues increase with finer spatial discretizations. There-

fore, instead of A-stable but time consuming implicit procedures, stabilized explicit Runge-Kutta

methods should be preferred. As a matter of fact, such methods feature extended stability domain

along the negative real axis and thus, are dedicated to these type of problems [72].

The main idea of these methods is to construct methods of order p with a family of stability

polynomial of degree s, Rs, such that

Rs(z) = 1 + z + · · · + zp

p!
+

s∑

p+1

αi,sz
i,

|Rs(z)| ≤ 1 for z ∈ [−ℓs, 0],

(15)

with s ≥ p + 1, αi,s ∈ C and ℓs as large as possible. If we consider Chebyshev-type polynomials,

they yield boundaries proportional to s2, i.e. ℓs = βss2. For instance, for p = 1, the optimal

polynomials are directly

Rs(z) = Ts

(
1 +

z

s2

)
,

the shifted Chebyshev polynomials which yield optimal ℓs = 2s2.

Great efforts were then made in order to achieve second order stabilized explicit Runge-

Kutta methods based on Chebyshev-type polynomials (for further details, see [46] and references

therein). For example, RKC methods proposed by Sommeijer, Shampine and Verwer in [61] have

gained notorious reputation over the last years and are based on the use of a three-term recurrence

relation of Chebyshev polynomials proposed in [71] and [62].

Nevertheless, with this background and based on the study of optimal stability polynomials

satisfying (15) in [1], Medovikov and Abdulle proposed in [3] to approximate Rs by

R̃s(z) = w̃p(z)P̃s−p(z) (16)

in order to achieved p = 2, where w̃p is a polynomial with p complex roots and P̃s−p is an ortho-

gonal polynomial associated with the weight function w̃p(z)2/
√

1 − z2. Moreover, they searched
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to satisfy (15) with an approximated ℓ̃s as close as possible to optimal ℓs. Based on the same

ideas, the fourth order case of (16) was proposed by Abdulle in [2] and gave birth to the Rock4

method which is a stabilized explicit Runge-Kutta with stability domain limited by ℓ̃s ≃ 0.35 · s2

along the negative real axis.

From a theoretical point of view, Rock4 uses the theory of composition of methods (the

”Butcher group”) in order to achieve a fourth order method denoted WP. The first method,

denoted by P, is built upon the three-term recurrence relation of the orthogonal polynomials

(P̃ j)
s−4
j=1

previously mentioned,

P̃ j(z) = (µ jz − υ j)P̃ j−1(z) − κ jP̃ j−2(z),

which is used to define the explicit Runge-Kutta scheme

k0 := U0,

k1 := U0 + ∆tµ1Bk0,

ki := ∆tµiBki−1 − υiki−1 − κiki−2, i = 2, . . . , s − 4,

U1 := ks−4,

(17)

applied for example to the diffusion problem (3). The corresponding coefficients in the Butcher’s

array of P (see Table 1) are then defined considering (17) and the general scheme (8) as showed

in [2]. Notice that necessarily s ≥ 5 and that scheme (17) applied to the Dahlquist test equation

(11) with y(0) = y0 yields

y1 = Ys−4 = P̃s−4y0,

and thus defines P̃s−4 as the stability function of method P.

On the other hand, the coefficients in the Butcher’s array of the method W (see Table 1),

which possesses w̃4 as stability function, are then derived out of the fourth order conditions

established for method WP and the previously calculated coefficients of P. Finally, construction

of the Rock4 method is based on method WP with stability function given by (16) with p = 4.

0

c̃2 ã21

...
...

. . .

c̃s−4 ãs−4,1 ãs−4,s−5

b̃1 · · · b̃s−5 b̃s−4

0

ĉ2 â21

ĉ3 â31 â32

ĉ4 â41 â42 â43

b̂1 b̂2 b̂3 b̂4

Table 1: Buthcher’s array of the method P (left) and W (right).

With the choice of the time integration methods of each subproblem, the reaction (4) and the

diffusion (3), we can now consider the last element of the algorithm which is the chosen method

of grid adaptation, the space adaptive multiresolution technique.

2.4. Adaptive multiresolution

In this subsection, only the basis of the adaptive multiresolution strategy will be presented.

Further details can be found in the literature and in the given references. In fact, for an overview
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on adaptive multiresolution techniques, we refer to the books of Cohen [14] and Müller [53].

Nevertheless the following concepts are fundamental for our numerical strategy.

2.4.1. Basis of a multiresolution representation

Let us consider that we have a set of nested spatial grids, from the coarsest to the finest one. A

multiresolution transformation allows to represent a discretized function as values on a coarser

grid plus a series of local estimates at different levels of such nested grids. These estimates

are related to the difference of values obtained by inter-level transformations : which are the

projection and prediction operators. The theoretical background of such configuration (see [16])

states that wavelet coefficients can be then defined as prediction errors, and they will retain these

estimates when going from a coarse to a finer grid. Hence, the main idea is to use the decay of

the wavelet coefficients to obtain information on local regularity of the solution : lower wavelet

coefficients are associated to local regular spatial configurations and vice-versa.

To clarify these ideas, we briefly introduce some fundamental concepts. Let us consider

nested finite volume discretizations of general problem (1) with only one component, m = 1 : that

is, for j = 0, 1, · · · , J from the coarsest to the finest grid, we consider regular disjoint partitions

(cells) (Ωγ)γ∈S j
of an open subset Ω ⊂ R

d, such that each Ωγ, γ ∈ S j, is the union of a finite

number of cells Ωµ, µ ∈ S j+1, and thus, S j and S j+1 are consecutive embedded grids. We are

considering here only Cartesian grids, however the method has already been developed on both

unstructured grids [14] and general coordinate systems [53].

Thus, we denote U j := (uγ)γ∈S j
as the representation of U on the grid S j where uγ represents

the cell-average of u : R × R
d → R in Ωγ. For instance, in the 1D configuration (d = 1) :

uγ := |Ωγ|−1

∫

Ωγ

u(x)dx. (18)

The inter-level transformations might be defined as follows,

• the projection operator P
j

j−1
, which maps U j to U j−1, can be obtained through exact avera-

ges computed at the coarser level by

uγ = |Ωγ|−1
∑

|µ|=|γ|+1,Ωµ⊂Ωγ
|Ωµ|uµ (19)

where |γ| := j if γ ∈ S j. As far as grids are nested, this projection operator is exact and

unique [14].

• the prediction operator P
j−1

j
, which maps U j−1 to an approximation Û j of U j. Let us notice

that there is an infinite number of choices to define P
j−1

j
, but we impose at least two basic

constraints :

a) The prediction is local, i.e., ûµ depends on the values uγ on a finite stencil Rµ sur-

rounding Ωµ, where |µ| = |γ| + 1.

b) The prediction is consistent with the projection in the sense that

|Ωγ|uγ =
∑

|µ|=|γ|+1,Ωµ⊂Ωγ
|Ωµ|ûµ (20)

i.e., P
j

j−1
◦ P

j−1

j
= Id.
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In the case where P
j−1

j
is linear, we have

ûµ :=
∑

γ

cµ,γuγ, (21)

and if the prediction has some prescribed order r > 0 of accuracy, then it is exact for

polynomials of degree r − 1, i.e., if u ∈∏
r−1, then uγ = ûγ for all γ [16].

With these operators defined, we define for each cell Ωµ the prediction error or detail asso-

ciated as the difference between the exact and predicted values,

dµ := uµ − ûµ. (22)

Moreover, from the consistency assumption (20), the projection operator (19) and the definition

of the detail (22) yield : ∑

|µ|=|γ|+1,Ωµ⊂Ωγ
|Ωµ|dµ = 0. (23)

Thus, we define the detail vector as D j = (dµ)µ∈∇ j
, where the set ∇ j ⊂ S j is obtained by removing

for each γ ∈ S j−1 one µ ∈ S j such that Ωµ ⊂ Ωγ in order to avoid redundancy from expressions

(22) and (20). In this way, there is a one-to-one correspondence

U j ←→ (U j−1,D j), (24)

which can be implemented using the operators P
j

j−1
and P

j−1

j
.

By iteration of this decomposition, we obtain a multi-scale representation of UJ in terms of

MJ = (U0,D1,D2, · · · ,DJ). Therefore, using the local structure of the projection and prediction

operators, we can implement the multi-scale transformation

M : UJ 7−→MJ . (25)

2.4.2. Compression and graded tree-structured data

One of the main interests of carrying on such a multi-scale decomposition is that this new

representation leads us to define a whole set of regularity estimators all over the spatial domain

and thus, a data compression might be performed in order to retain only a minimal quantity of

nodes where it is strictly necessary.

In fact, given a set of index Λ ⊂ ∇J where ∇J :=
⋃J

j=0 ∇ j, we define a truncation operator

TΛ, that leaves unchanged the component dλ if λ ∈ Λ and replaces it by 0, otherwise. In practice,

we are typically interested in sets Λ obtained by thresholding : given a set of level-dependent

threshold (ε0, ε1, · · · , εJ), we set

Λ = Λ(ε0, ε1, · · · , εJ) :=
{
λ s.t. |dλ| ≥ ε j ; j = |λ|

}
. (26)

Applying TΛ on the multi-scale decomposition of UJ amounts to building an approximation

AΛUJ , where the operatorAΛ is given by

AΛ :=M−1TΛM. (27)

Moreover, fixing the level-dependent threshold values to

ε j = 2
d
2

( j−J)ε, j = |λ|, j ∈ [0, J], (28)

11



where ε is the threshold value for the finest level J, definesAΛε := AΛ with truncation operator

TΛε in (27), so that the set Λε is given by (26) with all the level threshold values related to ε

through (28).

Then, a very important result is that operatorAΛε guarantees a thresholding error of prescri-

bed order ε, i.e.

‖UJ −AΛεUJ‖L2 ∝ ε, (29)

(see [45, 16] for further details), even though we have literally discarded some details by means

of the thresholding process, and thus, considered uµ = ûµ following (22).

However, we can not deliberately delete allegedly useless details because a certain data struc-

ture must be respected in order to perform the different computations associated to the multi-scale

transformation itself. In fact, during these transformations, the availability of cell values within

the local prediction stencil must be always guaranteed. And thus, the setΛε must exhibit a graded

tree structure (see [16, 57] for more details on the definition and construction of such structures).

In the practice, this means that among the indices λ ∈ ∇J , we shall retain only those for which

|dλ| ≥ ε|λ| and literally eliminate the rest of them verifying always the necessary conditions pres-

cribed by a graded tree structured data. Hence, an effective data compression is accomplished

because U is not represented on the finest grid S J as UJ anymore, but on a graded tree Λε.

In this paper, we will not conduct the analysis of such data structures which can be easily

found in the given references. However, we present the following terminology associated to a

tree representation that we will adopt throughout this paper:

• If Ωµ ⊂ Ωλ with |λ| = |µ| − 1, we say that Ωµ is a child of Ωγ and that Ωγ is the parent of

Ωµ.

• Moreover, we define the leaves L(Λ) of a graded tree Λ as the set of Ωλ with λ ∈ L(Λ)

such that Ωλ has no children in Λ.

• Finally, we defineΩλ as a root when it belongs to the coarsest grid, that is λ ∈ S 0 or |λ| = 0,

in which case, we denote λ as λ0.

2.4.3. Fully adaptive multiresolution scheme

With the previous definitions, we now present the fully adaptive multiresolution scheme as

presented in [16]. The key point of such method is that the numerical solution Un at time n∆t

can be represented on an adapted grid by the set (un
λ
)λ∈L(Λn

ε). And thus, the time evolution is

performed only on the leaves. Hence, given the current graded tree Λn
ε, we obtain Λn+1

ε and Un+1

through the following steps :

• Refinement. A new set Λ̃n+1
ε containing Λn

ε is constructed in order to predict the evolution

of the solution. The un
λ

with λ ∈ Λ̃n+1
ε \Λn

ε can be constructed applyingM−1.

• Computation. A first numerical solution Ũn+1 at time (n+ 1)∆t is computed on L(Λ̃n+1
ε ) by

Ũn+1 = S∆t(Un) or Ũn+1 = L∆t(Un), using one of the Lie or Strang formulae (5) or (6).

• Thresholding. We obtain Un+1 by thresholding Ũn+1 according to Un+1 = AΛn+1
ε

Ũn+1 where

Λn+1
ε ⊂ Λ̃n+1

ε .

Notice that Λ̃n+1
ε should be adapted for describing the solution at both n∆t and (n + 1)∆t. There-

fore, the definition of the refinement process accomplished by the refinement operator R, is a
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crucial aspect for the success of the method. Several heuristics have been developed and analy-

zed in order to accomplish this goal, see for example [45, 16]. In particular, there are the classical

Harten’s heuristics in the univariate dyadic case.

We now denote by Vn
J

:= (vn
λ
)λ∈S J

, the solution obtained by a classical finite volume scheme

performed on the finest grid. Moreover, denoting by Un
J
, the solution produced by the fully

adaptive multiresolution scheme reconstructed on the finest mesh S J , keeping in mind that the

adaptive scheme really operates with a compressed representation of Un on the L(Λn+1
ε ). Then,

for a fixed time T = n∆t, it can be shown that

‖Un
J − Vn

J‖L2 ∝ T

∆t
ε. (30)

Hence, the error is directly related to the prefixed threshold error chosen ε for the finest grid J

and thus, the level of accuracy expected from such adaptive strategy can be investigated with

this theoretical background. Even if this result comes from a classical error analysis developed

by Harten (see [45]), the validity of this estimate has been extended to a fully multiresolution

scheme in [16] and turns out to be one of the major advantages of such methods.

2.5. Summary of the Numerical Strategy

Once we have defined all the elements of the numerical strategy, the implementation of the

fully adaptive multiresolution technique can be summarized as follows :

(un
λ)λ∈L(Λ̃n

ε)

M−→ (un
λ0
, dn
λ)λ∈Λ̃n

ε
(31)

(un
λ0
, dn
λ)λ∈Λ̃n

ε

TΛn
ε−→ (un

λ0
, dn
λ)λ∈Λn

ε
(32)

(un
λ0
, dn
λ)λ∈Λn

ε

R−→ (un
λ0
, dn
λ)λ∈Λ̃n+1

ε
(33)

(un
λ0
, dn
λ)λ∈Λ̃n+1

ε

M−1

−→ (un
λ)λ∈L(Λ̃n+1

ε ) (34)

(un
λ)λ∈L(Λ̃n+1

ε )

S∆t

−→ (un+1
λ )λ∈L(Λ̃n+1

ε ) (35)

The set (un
λ0

) is defined as the set of roots of Λ̃n
ε, that is all λ ∈ Λ̃n

ε such that |λ| = 0 or

λ ∈ S 0. For n = 0, the initial condition should be represented on L(Λ̃0
ε) in step (31), which in a

general case can be the finest grid, that is all λ ∈ L(Λ̃0
ε) is such that |λ| = J or λ ∈ S J , and as a

consequence all the nested grids S :=
⋃J

j=0 S j are present, Λ̃0
ε = S .

Nevertheless, this is not always possible due to excessive high memory requirements, in

which case, the initial condition might be computed on an intermediate level of grid j, that is all

λ ∈ L(Λ̃0
ε) is such that |λ| = j or λ ∈ S j. Then, we must first threshold in order to project/predict

the values over the set of grids S .

The thresholded tree Λn
ε into (32) is obtained applying over Λ̃n

ε the operator TΛn
ε

with ε j given

by (28). Then, the refinement operator R is applied over the thresholded tree to locally refine in

order to foresee the time evolution of the solution. Finally, as an illustration, the time integration

operator is the Strang operator splitting S∆t given by one of the formulae (6) and it is computed

only on L(Λ̃n+1
ε ). In the same way, the algorithm can consider the Lie operator splitting (5) as the

time integration method.
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Thus, the algorithm can schematically be summarized by

Un+1 = S∆t(M−1RTΛn
ε
MUn), (36)

with the compressed representations of Un+1 and Un by (un+1
λ

)λ∈L(Λ̃n+1
ε ) and (un

λ
)λ∈L(Λ̃n

ε)
respectively.

Hence, the three basic steps established before: Refinement, Computation and Thresholding are

performed through steps (33), (35) and (32) by means of multi-scale transformations (31) and

(34).

3. Articulation of the building blocks and algorithm implementation

In the first part of this section, we first present the building process of our numerical strategy

in the context of multi-scale reaction waves. We highlight the interest of a splitting technique and

the different advantages associated to the time integration methods. Once established the time

integration strategy, the use of adaptive multiresolution techniques are discussed along with the

global and final considerations in order to achieve a self-sufficient and optimized algorithm. In

the second part, some aspects of the practical implementation of the algorithm are described.

3.1. Construction of the numerical strategy

The classical orders achieved with a Lie or Strang scheme are no longer valid since we

consider very stiff reactive terms (see [27]). Order reductions may then appear due to time multi-

scale phenomena, unless we consider very small integration time steps. In this context, it has

been proved in [27] that better performances are expected while ending the splitting scheme by

the time integration of the reaction part (4) or in a more general case, the part involving the fastest

time scales of the phenomenon (see the numerical application in [25]). In particular, in the case

of linear diagonal diffusion problems, no order loss is expected for the L∆t
1

and S∆t
2

schemes

when fast scales are present in the reactive term. Even more, as it was presented and analyzed in

[24], the presence of high spatial gradients may also degrade the performance of these methods

leading to order reductions coming from space multi-scale phenomena.

In this context, a multi-scale reaction wave implies both space and time multi-scale phenom-

ena. The theoretical studies conducted in [27, 24] then show how splitting methods should be

implemented in order to either maintain the classical orders or estimate correctly the associated

order loss in the case when the splitting time step largely exceeds the fastest time scale of the

problem. Actually, we are placed in a context in which the fastest time scales have always an

important impact on the numerical performance of the time integration methods, but do not have

a leading role in the physics of the phenomenon. Thus, larger splitting time steps might be con-

sidered as long as a correct representation of the physics of the phenomenon is guaranteed; in

our case, the propagation of a multi-scale reaction wave. This splitting strategy based on these

theoretical studies has already been validated and confronted to other methods in [26] for these

applications.

In order to remain coherent with the numerical analysis, we have to take into account a

natural assumption in all splitting order estimates which is that the solutions associated to each

subsystem (3) and (4) are known exactly or can be known with a sufficient accuracy (see for

example [42, 46, 28, 27]). This means that suitable time integration methods in terms of order

and stability must be chosen in order to guarantee the accuracy of the estimates established by

the corresponding numerical analysis.
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As mentioned before, Radau5 is not only an A-stable method, but also L-stable, so that very

stiff systems of ODEs might be solved without any stability problem. Moreover, it relies on

local adapting time integration which guarantees the requested accuracy and at the same time,

allows to discriminate stiff zones from regular ones, i.e. smaller time steps correspond to stiffer

behaviors. Finally, being a high order method (formally of order 5, which at worst might be

reduced to 3), the classical operator splitting orders are guaranteed and thus, all error coming

from the time integration will be bounded by the one due to the splitting procedure itself.

Nevertheless, this high order method is achieved thanks to an implicit Runge-Kutta scheme,

this means that in a general case, nonlinear systems must be solved throughout the time integra-

tion process. Even if the solving system tools are highly optimized (which are based on modified

Newton’s methods), these procedures become very expensive for large systems and important

memory requirements are needed in order to carry out these computations. That is why the

size of the system is terribly limited by the memory resources. However, in a splitting scheme

context, we easily overcome this difficulty since the reactive term of (2) is a system of ODEs

without spatial coupling. Hence, a local approach node by node is adopted where the memory

requirements will be only determined by the number of local unknowns, which normally does

not exceed conventional memory resources. Even more, this approach also allows a straightfor-

ward parallelization of computations where no data exchange is needed among nodes (see for

example the numerical implementations achieved in [32]).

Another very important feature of this strategy is that precious computation time is saved

because we adapt the time integration step only at the nodes where the reaction phenomenon

takes place. In the context of multi-scale reaction waves, this happens in a very low percentage of

the spatial domain, normally only in the neighborhood of the wavefront. Then, there is practically

no time step adaptation at nodes with a chemistry at (partial) equilibrium. This would not be

possible if we integrate the entire reaction-diffusion system (2) at once.

If we now consider Rock4, we recall that one of the most important advantages of such

method is its explicit character, hence the simplicity of its implementation. In fact, no sophis-

ticated Linear Algebra tools are needed (no resolution of linear systems required) and thus, the

resolution is based on simple matrix-vector products. Nevertheless, the cost of computations

relies directly on the requested quantity of such products, that is the number of internal stages s

needed over one time integration step ∆t. Notice also that the memory requirements are widely

reduced as a consequence of this explicit character, nevertheless we must keep in mind that these

memory requirements will proportionally increase with the number of nodes considered over the

spatial domain.

In order to guarantee the stability of the method for a fixed time step ∆t, the number of stages

s needed is directly related to the spectral radius ρ(∂f/∂u) (considering a general problem such

as (7)), since it should verify

ℓ̃s ≃ 0.35 · s2 ≥ ∆t ρ

(
∂f

∂u
(u)

)
.

Therefore, the spectral radius must be previously estimated (for example, using the Gershgo-

ring theorem or even numerically as proposed by the Rock4 solver by the means of a nonlinear

power method). The method then is very appropriate for diffusion problems because of the usual

predominance of negative real eigenvalues for which the method is efficiently stable. A very

suitable example is the linear diagonal diffusion problem (3) with only negative real eigenvalues

and constant spectral radius. In our particular applications, the diffusive phenomenon has a
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leading role of propagator of perturbations over the (partial) equilibrium nodes that result on

excitation of the reactive schemes and thus, the propagation of the reaction wave. The resulting

self-similar character implies that the number of stages needed will remain practically constant

throughout the evolution of the phenomenon.

These facts make of Rock4 a very suitable method for our simulation purposes and highlight

the particular advantages of the operator splitting. In the same way that we have seen for the

reaction solver, the implementation of this diffusion solver over the entire reaction-diffusion sys-

tem (2) will not be appropriate under neither theoretical nor practical considerations. Moreover,

taking into account that also Rock4 is a high order method (order 4), the classical operator split-

ting orders are guaranteed and thus, all error coming either from the diffusion or reaction time

integration process will be bounded by the one due to the splitting procedure itself.

Further considerations lead to other potential improvements in order to yet optimize our nu-

merical strategy. In fact, as stated before, we are concerned with the propagation of reacting

wavefronts, hence important reactive activity as well as steep spatial gradients are localized phe-

nomena. This implies that if we consider the resolution of the reactive problem (4), a considera-

ble amount of the time computation is spent on nodes that are practically at (partial) equilibrium

(see for example a precise computational time evaluation in [32]). Moreover, there is no need to

represent these quasi-stationary regions with the same spatial discretization needed to describe

the reacting wavefront, i.e. the multi-scale phenomenon itself, so that the diffusion problem (3)

might also be solved over a smaller number of nodes. An adapted mesh obtained by a multireso-

lution process then turn out to be a very convenient solution to overcome these difficulties.

These methods have the supplementary advantage that the numerical analysis on which they

are based introduces error estimates that can be analyzed and confronted to those established

by the splitting schemes. Hence, a more precise control of error can be drawn out of this opti-

mal combination of methods. Moreover, while considering the multiresolution implementation

coupled with the constructed time integration solver, we have to recall that no global or cou-

pled stability constraints are imposed on the integration time steps since the different numerical

methods were chosen in order to guarantee independently very stable features.

However, a natural constraint that might arise when considering an evolving adapted mesh

is that the dynamical configuration requiring refinement should not move off the fine grid region

before the next remeshing event takes place, as we have seen that the time evolution is performed

on a fixed graded tree. Nevertheless, this is not a problem as long as we guarantee that the

wavefront does not propagate and cross completely the adjacent cells on the finest grid during

a splitting time step. This can be easily achieved considering the wavefront speed (previously

estimated either theoretically or numerically), and verifying that this speed is solved with enough

accuracy by the chosen splitting time step. As a complement, the chosen refinement criteria

imply a fine grid region over a sufficiently large extent to predict the wavefront translation taking

into account the propagating nature of the phenomenon. In fact, this particularity makes of the

adaptive multiresolution technique a very suitable method for the simulation of very localized

reaction waves.

3.2. Description of the global algorithm

Let us first summarize the algorithm as follows : (i) We consider an initial graded tree created

by multi-scale transformation from an initial condition. Then, (ii) a time evolution based on the

operator splitting scheme is computed on the leaves. (iii) A new multi-scale transformation is

performed after each splitting time step in order to compute the details and adapt the tree, always
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respecting a graded tree structure. Step (iii) is repeated until the end of the time domain. In what

follows, the key aspects of the algorithm are detailed.

A dynamic graded tree structure is used in this implementation to represent data in the com-

puter memory. The adapted grid corresponds to a set of nested dyadic grids generated by refining

recursively a given cell depending on the local regularity of the solution. The chosen data struc-

ture can handle 1D, 2D and 3D Cartesian geometries. In the practice, the tree is represented

by a arranged set of cells (defined as nodes) so that they can be easily retrieved by means of a

searching process from the basis of the tree or from a coarser grid in a general case. Then, the

basic element of the structure is the cell itself, which consists of a set of geometric and physical

values, plus pointers to its parent, their children and the contiguous cells in each dimension, the

neighbors. Figure 1 shows an example of a graded tree structure in 1D.

Figure 1: Example of a graded tree structure in 1D. Nodes and links to their corresponding children are indicated (solid

lines) as well as the leaves (solid bold lines) and the phantoms (dashed lines).

We have previously defined the roots as the first cells of the tree structure which correspond

to the basis of the tree, Ωλ0
in Figure 1. The nodes are elements of the tree and the leaves, the

upper elements with no children in the tree (see Figure 1). In d dimensions, a parent-cell at a

level j has at most 2d children cells at the level j + 1. When there is only one root in the tree

structure, the maximal number of leaves N on which the solution might be represented is given

by N = 2dJ , which is exactly the number of cells on the finest grid. The maximal number of cells

M in the tree is given by M = (2d(J+1) − 1)/(2d − 1).

To ensure conservativity, numerical fluxes on a cell face must have the same value for any cell

or set of cell contiguous to the face. Concerning a leaf of a locally refined grid, the adjacent cell

might however not exist at the same grid level. In such a situation, the numerical fluxes should

always be computed at the highest grid level by using virtual cells called phantoms that must be

added. Figure 2 depicts this situation in a 2D configuration where the ingoing and outgoing flux

are not balanced for two different grid levels. In particular, we follow the procedure introduced

in [57] and the flux are computed at the highest grid level by means of the phantoms as shown in

Figure 2. Considering the explicit algorithm for the diffusion term, let us note that the solution is

not integrated on these virtual cells but just evaluated by using the prediction operator from the

previous solution at time n∆t. Thus, in the case of a multi-stage method such as Rock4, these

evaluations must be performed at each stage which implies an updating of the whole tree through

projection/prediction operations. Hence, the interest of limiting the number of staged performed

by Rock4 is enhanced.

Following (21), in order to predict the approximated values ûµ by P
j−1

j
, we use a centered

linear polynomial interpolation of order 2l, i.e. accuracy order r = 2l + 1, where we consider

the l nearest neighbors in each direction. Raising the accuracy order imposes larger stencils but

more accurate interpolations. In a 1D configuration for the case l = 1, a third order accurate
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Figure 2: Example of flux computations in 2D. Nodes (solid lines), leaves (solid bold lines) and phantoms (dashed lines)

are indicated along with the corresponding level flux.

multiresolution, the prediction is explicitly given by

û j+1,2k = u j,k +
1

8
(u j,k−1 − u j,k+1) and û j+1,2k+1 = u j,k +

1

8
(u j,k+1 − u j,k−1), (37)

where the first index denotes the grid level and the second, the indexation of the cell into the

tree. Notice that depending on the accuracy order (2l) of the centered polynomial interpolation,

details recover null values for smooth solutions with locally bounded 2l-th order derivatives

[15]. As Cartesian mesh is used, extension to multidimensional polynomial interpolations is

easily obtained by a tensorial product of the 1D operator [9, 57]. In the numerical illustrations

presented in this paper we will restrict the different analysis to the case l = 1.

Considering the propagating character of reaction waves, we adopt a refinement strategy

based on the increase of the details in the neighborhood of the wavefront. Since we are studying

very localized configurations, the details are naturally arranged alike. Thus, considering a leaf

with index k at a grid level j, if the following criterion:

∥∥∥d j,k

∥∥∥
L2

maxk

∣∣∣d j,k

∣∣∣
≥ 2(2l−1)ε j, (38)

is satisfied, children at a grid level j + 1 are added to the tree, where we consider a measure of

details scaled by the global maximum. This criterion is based on the classical Harten’s heuristics,

slightly modified, and prove to be very efficient taking advantage of the self similarity character

of the phenomena under consideration.

Finally, the choice of the splitting time step ∆tsplitting is mainly based on two considerations.

On the one hand, the idea is to achieve a certain level of accuracy in the physical resolution of

the phenomenon. And thus, we take into account the error estimates provided by the theoretical

studies previously conducted on splitting errors. On the other hand, a heuristic based criterion

is developed in order to guarantee the coherence between the propagating phenomenon solved

by the splitting technique and the dynamical refined mesh. The global process can be then

summarized by the following heuristic :

a) Computation of the wavefront speed v either numerically using a coupled solver (if possible)

or based on theoretical/analytical estimates.

b) Computation of the wavefront speed vsplit using the splitting solver with initial splitting time

step ∆t.

c) We then consider ∆t′
splitting

= (η/Ev)1/2∆t with Ev = |v − vsplit |/v and previously chosen η.
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d) We also consider ∆t′′
splitting

= n∆xJ/(1 ± η)v where ± η depends on v ≶ vsplit and with pre-

viously chosen n ≥ 1.

e) Finally, ∆tsplitting = min
(
∆t′

splitting
,∆t′′

splitting

)
.

The estimate given in c) considers the approximation error of the wavefront speed due to the

splitting technique. As mentioned before, the splitting time step is meant to solve as accurate

as possible physical features of the phenomenon. Then, η is a fixed value that limits this loss of

accuracy of the wavefront speed. In particular, we have limited the maximum relative error to

η = 0.05 ≥ Ev.

Furthermore, the estimate given in d) verifies a classical CFL-like condition which relates

spatial discretization to the splitting time step. Notice that ∆xJ corresponds to the finest grid at

level J and n takes into account the refined region around the front, which normally implies more

than one cell. In particular, we have found a suitable value of n = 2.5 after some numerical tests

for the problems we have studied.

In the case of self-similar progression of wavefronts, the problem of the time step selection is

simplified by the fact that usually it does not need to be computed more than one time. However,

in an extended general case, the heuristic established before is a continuous process during the

execution of the algorithm. In fact, this heuristic mimics a self-adapted time step procedure based

on estimated splitting errors in which case the computed splitting time step should in addition

verify the CFL-like condition. However, further studies and error characterizations are required

in order to establish an extended self-adaptation process of the splitting time step, valid for more

general configurations; in particular, this is a current topic of research.

The global algorithm can be summarized by the following procedure :

1. INITIALIZATION

• Initialization of parameters : e.g. maximum and minimum grid level, domain size,

number of roots

• Initialization of the mesh structure :

– creation of the different grids

– initialization of parameters of each cell from the roots, e.g. position, coordinates,

level threshold value ε j

– assignation of children and neighbors from the roots

• Computation of initial solution

• Computation of the splitting time step

2. LOOP IN TIME

• Computation of cell averages : projection operator P
j

j−1
from leaves towards roots

• Computation of details : operatorM from roots towards leaves

• Thresholding of the tree : operator TΛε from roots towards leaves

• Refinement of the tree : creation of the graded tree by operator R
• Computation of cell averages from details : operatorM−1 from roots towards leaves

• Creation of phantom cells : needed to compute the diffusion time step

• Time integration : operator splitting S∆t or L∆t applied only on leaves

– reaction time step, time integration performed by Radau5 cell by cell
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– diffusion time step, time integration performed by Rock4. At each time internal

stage we must update virtual cells through projection/prediction operations

3. OUTPUT

Save the adapted grid with the corresponding cell values represented on it

4. Numerical Simulations

In this last section, we present some numerical illustrations of the proposed numerical strate-

gy. An academical problem coming from the nonlinear chemical dynamics is then described and

treated. The different features of the method as well as the numerical results are then presented

and discussed for the one- and two-dimensional cases : for instance error estimates, data com-

pression values and time consumption. Finally, the potential of the method is highlighted in the

context of two- and three-dimensional simulations of important size.

4.1. Mathematical model of study

We are concerned with the numerical approximation of some models coming from nonlinear

chemical dynamics : the Belousov-Zhabotinski reaction, a catalyzed oxidation of an organic

species by acid bromated ion (see [35] for more details and illustrations). We can first consider

the two-variable Oregonator model, studied in [47]; it has solutions that represent propagation

of a steep wavefront by interplay of HBrO2 (hypobromous acid) diffusion with an autocatalytic

reaction that quickly generates HBrO2 (using bromide ions Br− as an intermediary species that

remains always in equilibrium with local instantaneous HBrO2). Denoting by b = [HBrO2] and

c = [Br−], we might consider the following model :

∂b

∂τ
− Db∆b =

1

ǫ

(
b(1 − b) +

f (q − b)c

q + b

)
,

∂c

∂τ
− Dc∆c = b − c,


(39)

with diffusion coefficients Db and Dc and some real positive parameters f , small q and small ǫ.

Nevertheless, a more refined model, introduced in [39] and coming from the classic work of

Field, Koros and Noyes (FKN), takes into account not only the two species HBrO2 and Br− but

also the cerium(IV). Denoting by a = [Ce(IV)], we obtain a very stiff system of three partial

differential equations :

∂a

∂τ
− Da∆a =

1

µ
(−qa − ab + f c),

∂b

∂τ
− Db∆b =

1

ǫ
(qa − ab + b(1 − b)) ,

∂c

∂τ
− Dc∆c = b − c,



(40)

with additional diffusion coefficient Da and real positive parameter µ ≪ ǫ.
An interesting study on these reactions scheme can be found in [39]. In fact, the dynamical

systems associated to systems (39) and (40) model reactive excitable media with an important

time scale spectrum. Moreover, the addition of diffusive phenomenon generates propagating

wavefronts, and thus, we have a reactive medium spatially propagated under induction of the
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diffusive effect. Hence, multi-scale reaction waves are developed. The spatial multi-scale aspect

is associated to the high spatial gradients propagating in time.

This model presents all the difficulties associated to a multi-scale and moreover stiff configu-

ration, thus the main goal of the following simulations is to show the interest of applying such

numerical strategies on this kind of problem. A preliminary description of the advantages of

applying a splitting strategy to these models has already been presented in [26]. In what follows

we consider all 1D, 2D and 3D configurations of problem (40). The same conclusions might be

then extended to problem (39) since it comes from a simplification of model (40).

4.2. 1D BZ equation

Let us first consider the 1D case of problem (40) with homogeneous Neumann boundary

conditions and the following parameters based on the theoretical studies conducted in [39] :

ǫ = 10−2, µ = 10−5, f = 3 and q = 2.10−4, with diffusion coefficients Da = 1, Db = 1 and

Dc = 0.6. We study the phenomenon over a time domain of [0, 2] and for the space region of

[0, 80].

On the one hand, in order to conduct an analysis of the numerical results, we define as a re-

ference solution a quasi-exact resolution of the coupled problem (40). This quasi-exact solution

is obtained after the time integration of the coupled system performed by Radau5 using very fine

tolerances. For this one-dimensional configuration and with the considered discretization of 4096

points in space, the memory requirements is acceptable and the simulation is totally feasible.

And on the other hand, the chosen time integration method for the proposed numerical stra-

tegy is the Strang splitting technique S∆t
2

in (6), based on the previous considerations and the

theoretical background conducted in [27]. Then, Radau5 integrates the reaction problem (4) for

(40) during the first and last half-steps ∆t/2, and Rock4 solves the diffusion problem (3) during

the intermediary step ∆t. For these simulations, we choose a splitting time step ∆t ≈ 3.9 × 10−3,

based on the heuristic previously presented.

With this operator splitting strategy, the space adaptive multiresolution technique is per-

formed on 12 nested dyadic grids with N = 21×12 = 4096 cells on the finest grid j = J = 12.

In this application as well as in the following, we always compute the local details under a

discretized L2-norm of vector (a, b, c)t in order to perform the thresholding and refining pro-

cesses. The resulting traveling waves can be seen in Figure 3 for three different times considering

ε = 1.10−4 as the thresholding value into (28). Figure 4 shows the evolution of the correspond-

ing adapted grid where the different level grids are indicated. We notice that the adapted grid is

tightened around the stiff regions and clearly propagates along the traveling wave.

Let us now define the data compression as one minus the ratio between the number of real

leaves and the number of cells on the finest uniform grid, expressing the whole as a percentage.

This definition comes from the fact that the solutions are represented and computed only on the

leaves throughout the time domain. Table 2 shows the number of leaves considered and the

different data compression rates for different thresholding values. Smaller thresholding values

of ε imply more refinement in order to guarantee (29) and thus, the data compression is less

important.

Considering now the L2-error of these results, uMR, with respect to the reference quasi-exact

solution, uJ
qe, we decompose it into two parts, the error coming from the splitting process and

that of the multiresolution decomposition :

‖uJ
qe(t) − uMR(t)‖L2 ≤ ‖uJ

qe(t) − uJ
split(t)‖L2 + ‖uJ

split(t) − uMR(t)‖L2 . (41)

21



Figure 3: 1D BZ traveling waves. MR solutions for times t = 0, t = 1 and t = 2. Variable a (top left), b (top right) and c

(bottom), ε = 1.10−4. Finest grid : 4096.

Figure 4: 1D BZ. Grid levels at t = 0 (top left), t = 1 (top right) and t = 2 (bottom), ε = 1.10−4. Finest grid : 4096.

Then, we must also solve problem (40) with the proposed splitting scheme on the uniform finest

grid J = 12 in order to obtain uJ
split

and perform the comparisons.

Figure 5 shows these errors for variables a, b and c, and for different thresholding values of

ε. The splitting error ‖uJ
qe(t) − uJ

split
(t)‖L2 is computed on the finest grid and does not depend on

the grid adaptation process, and thus, it is fixed by the splitting time step. The error coming from

the multiresolution process is given by ‖uJ
split

(t) − uMR(t)‖L2 considering that both solutions use

the same time integration strategy. However, in order to compare solutions uJ
split

and uMR we

must consider the same spatial discretization which is easily achieved by projection/prediction

operations.

The multiresolution error is estimated by expression (30) as we have presented before and
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ε t = 1 t = 2

Leaves number Comp % Leaves number Comp %

1.10−1 84 97.95 94 97.71

1.10−2 137 96.66 142 96.53

1.10−3 215 94.75 242 94.09

1.10−4 342 91.65 410 89.99

1.10−5 518 87.35 632 84.57

1.10−6 789 80.74 881 78.49

1.10−7 1154 71.83 1318 67.82

1.10−8 1771 56.76 2156 47.36

1.10−9 1893 53.78 2660 35.06

1.10−10 1906 53.47 2688 34.37

Table 2: 1D BZ. Data compression for different thresholding values ε. Finest grid : 4096.

Figure 5: 1D BZ. Splitting and multiresolution L2 errors at t = 2. Variable a (top left), b (top right) and c (bottom).

Finest grid : 4096.

as it can also be seen in Figure 5. For ε < 1.10−3 the global error ‖uJ
qe(t) − uMR(t)‖L2 is given

mostly by the process of splitting, hence an important data compression is obtained with the

same accuracy of the time integration solver. These estimates are computed at final time t = 2

where a worst performance of all the methods is expected. These conclusions are also valid for

t < 2, even though they are not presented.

We now consider the time consumption of the numerical strategy proposed, and of those

calculated on an uniform fixed grid, the quasi-exact and the splitting solutions. Table 3 shows

these results where we consider as the reference consumption time the one utilized by the quasi-

exact computation. However, the consumption of the multiresolution/grid adaptation process can

be estimated from the time consumption of the splitting strategy.

As expected, a splitting computation is less expensive in computation time than a coupled

one. This is a straightforward result of the local resolution of the reactive term in the splitting
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Method Time Ratio Comp %

Quasi-exact 62.71 1 0

Splitting 44.36 1.41 0

MR 1.10−1 7.22 8.69 98

MR 1.10−2 10.38 6.04 96

MR 1.10−3 15.23 4.12 94

MR 1.10−4 21.66 2.90 91

MR 1.10−5 31.05 2.02 86

MR 1.10−6 51.36 1.22 80

MR 1.10−7 68.66 0.91 70

MR 1.10−8 104.43 0.60 52

MR 1.10−9 113.22 0.55 44

MR 1.10−10 113.86 0.55 44

Table 3: 1D BZ. Computation time in seconds, ratio computed with respect to the quasi-exact computation time and

average data compression. Finest grid : 4096.

strategy, which allows to save precious time on zones where no important reactive behavior is

present. This local approach also implies very important savings concerning memory require-

ments for the implicit solver. Considering the splitting/multiresolution strategy, it turns out to be

very efficient when the data compression is high enough to compensate extra computations re-

lated to the method. As an illustration, for ε = 1.10−6 practically no gain in the time consumption

is obtained while the data compression is still very high, ∼ 80%. However, for a suitable value

of ε = 1.10−3, a data compression of ∼ 94% is achieved with a very acceptable level of accuracy

as seen in Figure (5) and this configuration is ∼ 3 times faster than the split solver without grid

adaptation.

An analysis of the distribution of the total computation time over the different processes in

the splitting/multiresolution strategy reveals that : in general, ∼ 70% of the time is used by the

diffusion integration against ∼ 25% used by the reaction. Nevertheless, a splitting implementa-

tion without multiresolution shows the opposite behavior : ∼ 87% for the reaction against ∼ 12%

for the diffusion integration. Taking into account these values, a more precise analysis for the

first case, reveals that out of the 70% previously mentioned, ∼ 68% of the time is used to update

the phantom values at each internal stage of Rock4, leaving only a ∼ 2% utilized by the diffusion

integration itself. These results clearly indicate the potential and very high gains that might be

achieved if the updating procedure is properly optimized. As a matter of fact, these issues are

related to more technical programming aspects of the method.

These numerical illustrations show the feasibility and the potential advantages of the numeri-

cal strategy, keeping in mind that important improvements related to programming issues are still

possible and even necessary. However, the main advantage of the proposed numerical strategy

is the very high data compression achieved. This is a very important issue when we aim at

performing more precise simulations of very discretized domains or whenever the smallest space

scales might impose prohibitive uniform meshes.
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4.3. 2D BZ equation

We now consider the 2D application of problem (40) with homogeneous Neumann boundary

conditions and the following parameters, taken from a preliminary study [26] : ǫ = 10−2, µ =

10−5, f = 1.6 and q = 2.10−3, with diffusion coefficients Da = 2.5 × 10−3, Db = 2.5 × 10−3 and

Dc = 1.5 × 10−3. The phenomenon is studied over a time domain of [0, 4] and a space region of

[0, 1] × [0, 1].

We are interested in conducting the same previous analysis of performance of the numerical

strategy proposed. Therefore, we consider the quasi-exact resolution of problem (40) on an

uniform mesh of 256 × 256 performed by Radau5 with fine tolerances. The main limitation

to perform such computation on finer grids comes from the important memory requirements of

Radau5. We can easily overcome this problem with a splitting strategy, while further advantages

are obtained through a combined multiresolution-splitting strategy.

Let us consider an application of the proposed numerical strategy with 8 nested dyadic grids

with N = 22×8 = 65536 cells on the finest grid j = J = 8. For the time integration method, the

same Strang splitting technique presented in the previous case is implemented with splitting time

step ∆t ≈ 3.9×10−3. The corresponding solutions from the initial condition until the development

of the spiral waves can be seen through Figures 6, 7 and 8, where the colors represent the grid

levels. Figure 9 shows the evolution of the corresponding adapted grid with ε = 1.10−2 as the

thresholding value into (28).

Figure 6: 2D BZ spiral waves. Initial conditions (t = 0) on the initial adapted grid. Variable a (top left), b (top right) and

c (bottom) where the colors represent the grid levels. Finest grid : 256 × 256.

Table 4 shows the data compression achieved for different thresholding values. Taking into

account the previous results in the 1D case, the current results show that the data compression

might not be large enough to achieve the operator splitting accuracy, important data compression

and savings in time consumption at the same time.
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Figure 7: 2D BZ spiral waves. MR solutions on an adapted grid with ε = 1.10−2 at t = 2. Variable a (top left), b (top

right) and c (bottom) where the colors represent the grid levels. Finest grid : 256 × 256.

Figure 8: 2D BZ spiral waves. MR solutions on an adapted grid with ε = 1.10−2 at t = 4. Variable a (top left), b (top

right) and c (bottom) where the colors represent the grid levels. Finest grid : 256 × 256.
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Figure 9: 2D BZ. Adapted grids at t = 0 (top left), t = 2 (top right) and t = 4 (bottom), ε = 1.10−2. Finest grid :

256 × 256.

ε t = 2 t = 4

Leaves number Comp % Leaves number Comp %

1.10−1 10594 83.97 14035 78.58

1.10−2 15244 76.74 18874 71.20

1.10−3 27544 57.97 29182 55.47

1.10−4 55207 15.76 51934 20.76

Table 4: 2D BZ. Data compression for different thresholding values ε. Finest grid : 256 × 256.

The L2-error estimates based also on the expression (41) and computed in the same way as

before, show that for ε ≤ 1.10−2, the multiresolution errors become negligible compared to the

splitting ones. Figure 10 shows these error estimates. The proportionality given by (30) is once

27



again verified while the splitting error depends only on the splitting time step.

Figure 10: 2D BZ. L2 errors at t = 4. Variable a (top left), b (top right) and c (bottom). Finest grid : 256 × 256.

Considering the time consumption of the different alternatives summarized in Table 5, we

can note that for this configuration, a splitting strategy is always faster for the same final accu-

racy, which is the one fixed by the splitting error. As a matter of fact, Table 4 shows that for

data compressions ∼ 80% or less, the extra computations previously mentioned are not fully

compensated.

Method Time Ratio Comp %

Quasi exact 16833 1 0

Splitting 2057 8.18 0

MR 1.10−1 3095 5.44 81

MR 1.10−2 4176 4.03 74

MR 1.10−3 6699 2.51 57

MR 1.10−4 12221 1.38 37

Table 5: 2D BZ. Computation time in seconds, ratio computed with respect to the quasi-exact computation time and

average data compression. Finest grid : 256 × 256.

A similar analysis of the time elapsed on each process gives the same proportions previously

seen in the 1D case for the reaction and the diffusion integration, and in particular, for the up-

dating process for the diffusion. Nevertheless, an adapted grid implies very important savings

in terms of memory requirements and moreover, makes possible simulations with a still higher

number of points. Hence, this numerical strategy becomes really interesting on behalf of more

accurate simulations of phenomena requiring very fine spatial resolution, for which classical

strategies are simply unfeasible with conventional computational resources.

Therefore, we now consider the same problem but with finer spatial discretizations on the

finest grid at j = J. Table 6 summarizes these results for the thresholding values ε of 1.10−1 and

1.10−2. As expected, the data compression increases with the number of levels which is defined
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by the spatial discretization on the finest grid. In fact, looking at expression (28), for a fixed

thresholding value ε on the finest grid J, more intermediary thresholding values are possible in

order to utterly discriminate the space scales present.

Grid Levels ε t = 2 t = 4

j = J J Leaves Comp % Leaves Comp %

128 × 128 7 1.10−1 4507 72.49 5884 64.09

128 × 128 7 1.10−2 6718 59.00 8008 51.12

256 × 256 8 1.10−1 10594 83.97 14035 78.58

256 × 256 8 1.10−2 15244 76.74 18874 71.20

512 × 512 9 1.10−1 21205 91.91 31315 88.05

512 × 512 9 1.10−2 33712 87.14 44917 82.87

1024 × 1024 10 1.10−1 40921 96.10 60511 94.23

1024 × 1024 10 1.10−2 80425 92.33 110428 89.47

Table 6: 2D BZ. Data compression for different thresholding values ε and finest grids.

Considering the time consumption of the case 512 × 512, for which a splitting resolution is

still feasible, the latter is more expensive than the splitting/multiresolution strategy for ε = 1.10−1

and of the same order for ε = 1.10−2. Hence, for the case 1024 × 1024 with ε = 1.10−2 we can

expect a better global performance, considering the higher data compression achieved. The

multiresolution errors for the case 512 × 512 give similar results to those previously obtained

for the 256 × 256 case, however, we can not compute the quasi-exact solution with the same

resources in order to estimate the splitting error.

As an illustrating example, let us consider the case 1024 × 1024 and the corresponding me-

mory requirements for each solver. Moreover, as a measure of this requirement, let us consider

the array size of the working space needed by Radau5 and Rock4 in a general case :

• Radau5 : L1 = 4 ×W1 ×W1 + 12 ×W1 + 20 (from [43])

• Rock4 : L2 = 8 ×W2 (from [2])

where W1 and W2 are the number of unknowns solved by Radau5 and Rock4. In the case of an

uniform mesh, the total number of unknowns is W = 3× 1024× 1024 ≈ 3.15× 106 and thus, the

global size L required for each solver is :

• Quasi-exact : W1 = W ≈ 3.15 × 106 and L = L1 ≈ 4 × 1013

• Splitting : W1 = 3, W2 = W ≈ 3.15 × 106 and L = L1 + L2 ≈ 2.5 × 107

In the case of the proposed numerical strategy considering an average data compression, we have

• MR 1.10−1 : W1 = 3, W2 = 0.05 ×W ≈ 1.5 × 105 and L = L1 + L2 ≈ 1.2 × 106

• MR 1.10−2 : W1 = 3, W2 = 0.09 ×W ≈ 2.9 × 105 and L = L1 + L2 ≈ 2.3 × 106

Therefore, on the one hand, it is hopeless trying to solve problem (40) with the quasi-exact

scheme for these very fine discretizations, at least with standard computational resources. For in-

stance, for the one- and two-dimensional simulations we have used so far, an Intel(R) Core(TM)2
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processor of 2 GHz with memory capacity of 2 Gb. And on the other hand, also a splitting strat-

egy becomes more difficult to implement since the diffusion term is solved considering the entire

spatial domain at once. Finally, a major advantage of the proposed numerical strategy is the

possibility of representing the results in a highly compressed way. As an example, Figure 11

shows the adapted grid obtained for the 1024 × 1024 configuration with a thresholding value of

ε = 1.10−2.

Figure 11: 2D BZ. Adapted grid at t = 0 (top left), t = 2 (top right) and t = 4 (bottom), ε = 1.10−2. Finest grid :

1024 × 1024.

4.4. 3D BZ equation

We consider problem (40), now in a 3D configuration with the same parameters considered

in the 2D case for a time domain of [0, 2] and in a space region of [0, 1] × [0, 1] × [0, 1]. We

first apply the proposed numerical strategy in a configuration of 8 nested dyadic grids with N =

23×8 = 16777216 = 256 × 256 × 256 cells on the finest grid j = J = 8.
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Based on the previous results for the 2D case, we consider thresholding values of ε = 1.10−1

and ε = 1.10−2 and a splitting time step ∆t ≈ 3.9 × 10−3. For ε = 1.10−1, the implementation of

the proposed numerical strategy features data compressions that goes from 83.06% for the initial

condition, 84.40% at t = 1 when the scroll waves are fully developed and 79.61% at final time

t = 2. As a matter of fact, following (28), we see that the thresholding values for the intermediary

meshes are smaller than for the 2D case and as a consequence, the data compressions are also

smaller even though we consider the same parameters for this three-dimensional configuration

(see Table 4 for the 2D results). In this way, for ε = 1.10−2, an even smaller average data

compression of ∼ 20.52% is accomplished and, once again, the advantages of the method are

enhanced for simulations requiring very fine spatial resolution.

Figures (12), (13) and (14) show the evolution of the finest grid J = 8 of the adapted grid

from the initial condition until the final time of study for ε = 1.10−1. We can clearly distinguish

the developed scroll waves where the colors represent the values of variable a. As expected,

the finest regions correspond to the neighborhood of the wavefront. For these three-dimensional

implementations, we use an AMD-Shanghai processor of 2.7 GHz with memory capacity of 32

Gb.

Figure 12: 3D BZ scroll wave. Finest grid of the adapted grid at t = 0 (left) and t = 0.5 (right), ε = 1.10−1, where the

colors represent values of variable a. Finest grid : 256 × 256 × 256.

Finally, in order to explore the feasibility and potential advantages of the method, let us

consider 9 nested dyadic grids with N = 23×9 = 134217728 = 512 × 512 × 512 cells on the

finest grid j = J = 9. In this case and with the mentioned resources, it is not possible to

initialize the problem directly on the finest grid anymore, and thus, the initialization takes place

on a intermediary grid like j = 8. With a thresholding value of ε = 1.10−1 and a splitting

time step ∆t ≈ 7.8 × 10−3, the implementation of the proposed numerical strategy features data

compressions that goes from 95.54% for the initial condition, 89.62% at t = 1 when the scroll

waves are fully developed and 87.05% at final time t = 2.

For this configuration, a two times larger splitting time step is chosen in order to have splitting

and multiresolution errors potentially of the same order, considering the higher multiresolution

error given by ε = 1.10−1. In fact, computations with smaller thresholding values are not feasible

with the considered computational resource and at the same time, we aim at maintaining an
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Figure 13: 3D BZ scroll wave. Finest grid of the adapted grid at t = 1 (left) and t = 1.5 (right), ε = 1.10−1, where the

colors represent values of variable a. Finest grid : 256 × 256 × 256.

Figure 14: 3D BZ scroll wave. Finest grid of the adapted grid at t = 2, ε = 1.10−1, where the colors represent values of

variable a. Finest grid : 256 × 256 × 256.

accurate physical resolution of the problem with the mentioned splitting time step. Figures (15),

(16) and (17) show the evolution of the finest grid of the adapted grid from the initial condition

until the final time of study. Once again, the finest regions correspond to the neighborhood of the

wavefront and considering a qualitative comparison, both resolutions for 2563 and 5123 points

give the same results.

Performing the same comparison concerning the memory requirements, the total number of

unknowns for this case is W = 3 × 512 × 512 × 512 ≈ 4.03 × 108 and thus, the global size L

required for each solver is :

• Quasi-exact : W1 = W ≈ 4.03 × 108 and L = L1 ≈ 6.5 × 1017
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Figure 15: 3D BZ scroll wave. Finest grid of the adapted grid at t = 0 (left) and t = 0.5 (right), ε = 1.10−1, where the

colors represent values of variable a. Finest grid : 512 × 512 × 512.

Figure 16: 3D BZ scroll wave. Finest grid of the adapted grid at t = 1 (left) and t = 1.5 (right), ε = 1.10−1, where the

colors represent values of variable a. Finest grid : 512 × 512 × 512.

• Splitting : W1 = 3, W2 = W ≈ 4.03 × 108 and L = L1 + L2 ≈ 3.2 × 109

• MR 1.10−1 : W1 = 3, W2 = 0.13 ×W ≈ 5.3 × 107 and L = L1 + L2 ≈ 4.2 × 108

Therefore, important resource restrictions are necessarily associated to solvers acting on an

uniform mesh whenever an accurate spatial resolution like this is required. In particular, nu-

merical strategies without grid adaptation for this level of resolution are usually out of reach.

Concerning the proposed numerical strategy, the feasibility of performing very large simulations

is proven, and even greater advantages might be obtained with further and appropriate optimiza-

tions.
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Figure 17: 3D BZ scroll wave. Finest grid of the adapted grid at t = 2, ε = 1.10−1, where the colors represent values of

variable a. Finest grid : 512 × 512 × 512.

5. Conclusions

The numerical illustrations as well as the theoretical considerations conducted have shown

that the splitting techniques are highly recommended for the simulation of this kind of multi-

scale problems. This decomposition allows the use of dedicated solvers for each type of problem,

but also relies on a numerical analysis already developed about the numerical behavior of these

methods in this particular multi-scale context. One of the key points is that usually prohibitive

small integration time steps are not required. Thus, very simple but optimal combination of

heterogeneous numerical strategies can be accomplished.

As an outstanding example, the present work proposes a very simple but solid numerical

strategy that couples adaptive multiresolution techniques with splitting techniques plus optimal

time integration methods. The highly compressed data representation as well as the accurate

and feasible resolution of these localized and stiff phenomena prove that large computational

domains previously out of reach can be successfully simulated with conventional computational

resources. For the moment, we have focused on reaction-diffusion systems, however, these nu-

merical developments are meant in order to be extended to convecting cases.

At the same time, an important amount of work is still in progress concerning programming

features such as data structures, optimized routines and parallelization strategies in order to con-

struct yet more efficient algorithms. Finally, from a theoretical point of view, the continuous

construction of a more precise numerical analysis of the different aspects of the method may

surely lead to even better characterizations of the splitting errors and with them, to improve these

numerical strategies; this is a particular topic of our current research.
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