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Introduction
It is well-known, since the works of Miche (1944) and Longuet-Higgins (1950), that, under a standing wave

system, second-order pressures at twice the wave frequency penetrate the water column down to the sea-floor,
whatever the waterdepth. Recently Guével proposed that energy could be extracted from the waves with a
heaving horizontal plate at the sea bottom, located next to a reflective cliff or sea-wall, and tuned to oscillate
at twice the wave frequency. Encouraging preliminary experiments were conducted in ACRI’s wavetank (Lajoie
et al. 2007).

In this paper we address the theoretical modeling of wave energy extraction with such a device, in the
asymptotic case when the waterdepth is very large compared to the wavelength. In section I we assume that
the first-order wave system is little modified, i.e. the power taken from the waves is a small portion of the power
carried by the incoming wave. In section II we relieve this assumption and we show that one hundred percent
of the wave power can be extracted, notwithstanding how large the waterdepth.

I. Classical perturbation theory
We assume a regular incoming wave system, with amplitude A and frequency ω, that is fully reflected from

a vertical wall in x = 0. We use a coordinate system Oxz with −∞ < x ≤ 0; z = 0 the unperturbed free
surface. The waterdepth is h and we assume kh À 1 where k = ω2/g is the wave number.

We make use of potential flow theory and we look for the velocity potential Φ(x, z, t) under the form

Φ(x, z, t) = ε Φ(1) + ε2 Φ(2) + ε3 Φ(3) + . . . (1)

with the small parameter ε identified with the wave steepness kA.
At first order the free surface elevation is

η(1)(x, t) = A cos(kx− ωt) + A cos(−kx− ωt) = 2 A cos kx cos ωt (2)

and the velocity potential

Φ(1)(x, z, t) = −2 Ag

ω
ekz cos kx sin ωt = <

{
−2 i Ag

ω
ekz cos kx e−i ωt

}
= <

{
ϕ(1)(x, z) e−i ωt

}
(3)

The second-order velocity potential Φ(2) satisfies the free surface equation, in z = 0

Φ(2)
tt + g Φ(2)

z = −η(1) ∂

∂z
(Φ(1)

tt + g Φ(1)
z )− 2 ∇Φ(1) · ∇Φ(1)

t = −4 A2 ω3 sin 2ωt (4)

As a result, Φ(2) is simply
Φ(2) = A2 ω sin 2ωt (5)

The associated pressure −ρ Φ(2)
t = −2 ρA2 ω2 cos 2ωt is independent of the space coordinates.

At the foot of the reflective wall, a heaving plate with length l ¿ h is thus subjected to the load

F (2) = 2 ρA2 ω2 l cos 2ωt (6)

The vertical velocity of the plate being

V (2) = <
{

v(2) e−2i ωt
}

= <
{

q(2)

l
e−2i ωt

}
(7)



with v(2) and q(2) complex quantities, the time-averaged power absorbed by the plate is

P = ρA2 ω2 <
{

q(2)
}

(8)

From the free surface, the plate can be viewed as a point source located in x = 0, z = −h. Moreover,
since kh À 1, the associated velocity potential Ψ(2)(x, z, t) approximately satisfies an homogeneous Dirichlet
condition at the free surface. Therefore it writes

Ψ(2) = <
{

ψ(2) e−2i ωt
}

=
1
2π

<
{

q(2) e−2i ωt
}

ln
x2 + (z + h)2

x2 + (h− z)2
(9)

and the associated vertical velocity at the free surface is

ψ(2)
z (x, 0) =

2 q(2)

π

h

x2 + h2
(10)

We can now proceed to evaluating the third-order modification Φ(3) of the velocity potential, due to inter-
actions between Φ(1) and Ψ(2). It satisfies the free surface equation

g Φ(3)
z + Φ(3)

tt = −η(1) Ψ(2)
ttz − 2Φ(1)

z Ψ(2)
zt − 2Φ(1)

zt Ψ(2)
z (11)

Looking for the component at frequency ω

Φ(3)
1 (x, z, t) = <

{
ϕ

(3)
1 (x, z) e−i ωt

}
(12)

we obtain
g ϕ

(3)
1z − ω2 ϕ

(3)
1 = −i ω k ψ(2)

z ϕ(1)∗ (13)

with ∗ meaning the complex conjugate.
Replacing ψ

(2)
z and ϕ(1) with their expressions (10) and (3) we obtain

ϕ
(3)
1z − k ϕ

(3)
1 = −4 Ak h

π
q(2) cos kx

x2 + h2
= α

h cos kx

x2 + h2
(14)

The right-hand side of the equation can be viewed as a pressure distribution acting over the free surface
and generating a wave system. From Wehausen & Laitone (21.19) (with a correction in sign), we derive that
the free surface elevation, away from the wall, takes the form

η
(3)
1 = =

{
i ω
g

e−i kx−i ωt

∫ ∞

−∞
ei ku α

h cos ku

u2 + h2
du

}
= =

{−2i ωkA

g
q(2) e−i kx−i ωt

}
(15)

where, again, we have taken advantage that kh À 1.
This is to be added to the first-order reflected wave elevation η

(1)
R = A cos(kx + ωt). Its amplitude A is

therefore modified by −2ω kA <{
q(2)

}
/g. The radiated power (or energy flux) P = 1/2 ρ g A2 CG thus has

been modified by the quantity

∆P =
1
2

ρ g
ω

2k

[(
A− 2ωkA

g
<

{
q(2)

})2

−A2

]
(16)

that is, to the leading order
∆P = −ρA2 ω2 <

{
q(2)

}
(17)

in agreement with (8).
So we have made explicit the mechanism through which energy is being extracted from the waves: even

though the plate is deeply submerged, the free surface heaves up and down at frequency 2ω and this heaving
motion pumps energy from the waves. The larger the waterdepth the smaller the free surface motion amplitude
but the larger the interaction area and the final result is the same.

These results are asymptotic in the sense that we have assumed that the first-order incoming and reflected
wave systems are little modified by the energy transfer. In the following section we relieve this assumption.



II. Alternative approach
We make use of another small parameter, be µ, identified with (kh)−1. The free surface elevation, at

frequency ω, is now written as

η(1)(x, t) = <{[
AI(µx) ei kx + AR(µx) e−i kx

]
e−i ωt

}
(18)

with the incoming AI and reflected AR amplitudes complex quantities.
The associated velocity potential is

Φ(1)(x, z, t) = <
{
−i

[
AI(µx) g

ω
e[k+µ kI(µx)] z ei kx +

AR(µx) g

ω
e[k+µ kR(µx)] z e−i kx

]
e−i ωt

}
(19)

The Laplace equation, at order µ, gives

kI AI = −i A′I kR AR = i A′R (20)

The associated second-order potential at frequency 2ω satisfies the Boundary Value Problem

∆ϕ(2) = 0 − h ≤ z ≤ 0
g ϕ(2)

z − 4 ω2 ϕ(2) = −4 i AI AR ω3 z = 0 (21)
ϕ(2)

z = 0 z = −h

Neglecting the term g ϕ
(2)
z , of higher order in µ, in the free surface equation, we obtain the solution as

ϕ(2)(x, z) =
i ω

2π

∫ ∞

−∞

cosh λ(z + h)
cosh λh

ei λx dλ

∫ ∞

−∞
AI(u) AR(u) e−i λu du (22)

with AI AR symmetrized with respect to x = 0. As a result the potential ϕ(2) at the foot of the reflective wall
(x = 0, z = −h) is given by

ϕ(2)(0,−h) =
i ω

2π

∫ ∞

−∞

dλ

cosh λh

∫ ∞

−∞
AI(u) AR(u) e−i λu du

=
2i ω

π

∫ 0

−∞
AI(u) AR(u) du

∫ ∞

0

cos λu

cosh λh
dλ =

i ω

h

∫ 0

−∞

AI(u)AR(u)
cosh πu

2h

du (23)

The velocity potential induced by the heaving motion of the plate, at the double frequency 2ω, is the same
as in the previous section, with the associated vertical velocity at the free surface given by equation (10).

The right-hand side of equation (13) is now

−i ω k ψ(2)
z ϕ(1)∗ =

2
π

ω2 q(2) h

x2 + h2

{
A∗I e−i kx + A∗R ei kx

}
(24)

As for the left-hand side, to order one in µ, it is

g ϕ(1)
z − ω2 ϕ(1) = −i

AI g2 kI

ω
ei kx − i

AR g2 kR

ω
e−i kx = −g2

ω
A′I ei kx +

g2

ω
A′R e−i kx (25)

Separating the complex amplitudes of the ei kx and e−i kx terms we get the coupled equations

dAI

dx
= −2 ω3

πg2
q(2) h

x2 + h2
A∗R

dAR

dx
=

2 ω3

πg2
q(2) h

x2 + h2
A∗I (26)

together with the boundary conditions AI(−∞) = A, AR(0) = AI(0), where A is the incoming wave amplitude
at infinity. Setting x = hX it comes

dAI

dX
= −2 ω3

πg2
q(2) 1

X2 + 1
A∗R

dAR

dX
=

2 ω3

πg2
q(2) 1

X2 + 1
A∗I (27)

where the waterdepth h does not appear any longer.



It can be checked that the results of section I are recovered as the particular case when one assumes that
the initial amplitudes are little modified. This amounts to stating that AR ' AI ' A in the right-hand sides of
equations (27). Then it comes immediately

AI(0)−A = −2 ω3 A

πg2
q(2)

∫ 0

−∞

dX

X2 + 1
= −ω3 A

g2
q(2) (28)

and

AR(−∞) = AR(0)− ω3 A

g2
q(2) = A− 2 ω3 A

g2
q(2) (29)

in agreement with equation (15).

Equations (27) can be rewritten, introducing v = arctan X (v ∈ [−π/2 0]) as the new variable

dAI

dv
= −β A∗R

dAR

dv
= β A∗I (30)

where β = 2 ω3 q(2)/(π g2).
The solution, owing for AI(0) = AR(0), is

AI(v) = β c cos |β|v − |β| c∗ sin |β|v (31)
AR(v) = β c cos |β|v + |β| c∗ sin |β|v (32)

with c obtained from

AI(−π/2) = β c cos
|β|π

2
+ |β| c∗ sin

|β|π
2

= A (33)

Conversely, equations (31) and (32) can be used to see under which conditions the reflected wave amplitude
AR can be annihilated at infinity. Stating AR(−π/2) = 0 we get

tan |β|π
2

=
β c

|β| c∗ (34)

or, designating by θ the argument of β and by φ the argument of c

tan |β|π
2

= ei (θ+2 φ) (35)

Solutions are |β1| = 1/2, θ + 2 φ = 0 ; |β2| = 3/2, θ + 2 φ = π ; |β3| = 5/2, θ + 2 φ = 0, etc.
Correlatively the amplitude A = AI(−π/2) of the incoming waves is

√
2 |β| |c| ei θ/2 in the first case,

−√2 |β| |c| ei (π/2−θ/2) in the second one, etc.
Equation (23) gives for the potential ϕ(2) at the foot of the wall

ϕ(2)(0,−h) = i ω β2
i c2

∫ 0

−π/2

cos 2|βi|v (1 + tan2 v)
cosh (π/2 tan v)

dv (36)

Numerical evaluation of the integral gives 0.8119 for |β1| = 1/2, 0.0109 for |β2| = 3/2, −0.0675 for |β3| = 5/2,
etc. Since βi c2 is a real quantity (from (34)), it can be deduced that the load −2 i ω ρ ϕ(2)(−h, 0) and the
velocity flux q(2) are in phase, meaning that the heaving plate must be in resonating condition. Retaining the
first βi value, for which the depth attenuation is lowest (and our assumptions of slowly-varying amplitudes best
satisfied), the damping value of the heaving plate is finally obtained as

B1 = 1.034 ρ k2 A2 l2 ω (37)

proportional to the square of the wave steepness.
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