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Abstract

In this paper a new neuromusculoskeletal simulation strategy is proposed. It is

based on a cascade control approach with an inner muscular-force control loop and

an outer joint-position control loop. The originality of the work is located in the

optimization criterion used to distribute forces between synergistic and antagonistic

muscles. The cost function and the inequality constraints depend on an estimation

of the muscle fiber length and its time derivative. The advantages of a such criterion

are exposed by theoretical analysis and numerical tests. The simulation model used

in the numerical tests consists in an anthropomorphic arm model composed by two

joints and six muscles. Each muscle is modeled as a second order dynamical system

including activation and contraction dynamics. Contraction dynamics is represented

using a classical Hill’s model.
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1 Introduction

Computer simulation has become a very useful tool to investigate how the neuromusculoskele-

tal system interacts to produce coordinated motions [1]. Neuromusculoskeletal simulation

(NS) provides possibilities which are not generally possible by experimental ways. For ex-

ample, simulations allow to estimate physical variables which cannot be directly measured,

or to evaluate the outcome of physically activities which could be dangerous or impossible

to do through experimental ways [2], [3], [4]. NS has been also extensively used to study

normal and pathological gaits [5], [6], [7], [8], to investigate the transition between walking

and running [9], [10]. Even functional electrical stimulation strategies have been tested in

simulation before clinical experiments using NS [11].

One of the main difficulties in NS comes from the redundant nature of the biomechanical

systems. Redundancy in this context means that the number of muscles is greater than

the number of degrees of freedom related to joints. A first way for NS is based on inverse

dynamic approaches. Kinematic data are used to estimate joint torques by using inverse dy-

namic algorithms. Due to the redundancy, the determination of muscular efforts given the

joint torques is an indeterminate problem. Several optimization criteria have been proposed

to overcome this problem: the minimum sum of muscle efforts [12], the minimum sum of

muscle stresses [13] and the minimization of muscular energy consumption [14]. Although,

inverse dynamics approach is a computationally efficient technique because it does not in-

volve muscular models. By consequence maximal and minimal muscular forces, which define

the inequality constraints of the optimization problem, must be considered as constants.

This latter point appears as a main drawback given that these forces strongly depend on
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muscular fiber length and its time derivative [15].

A second way for NS uses forward dynamics approaches. It consists in finding a set of mus-

cle excitations, which produce desired motions when applied to forward dynamics equations.

However, due to the redundancy, different solutions of excitation patterns produce the same

motion. In [16], muscle excitations were taken as the optimization variables, which mini-

mize the metabolic energy consumption. Unfortunately, this approach is computationally

expensive: for example, muscle excitations computations for a 3D human walking model

require more than 10000 hours of computation with a supercomputer [16]. Another way

to overcome redundancy in forward dynamics NS consists in using real electromyographic

signals (EMG) [17], [18], [19]. The main difficult of this technique is the estimation of the

muscular activations from EMG recordings which requires a complex signal processing [20].

Due to the open loop nature of this technique, the calculated excitation inputs could lead to

motions which can be very sensitive to model uncertainties. In our opinion this fact seriously

limits its applicability to human walking simulations where stability is a fundamental issue.

Another kind of forward NS techniques is based on closed-loop control strategies [21], [22],

[23]. The controller inputs are the position and velocity tracking errors with respect to the

desired joint trajectories, whereas the outputs are the muscle excitations. As stated in [23],

the benefit of this tracking formulation is to constraint the model to produce more realistic

behaviors. In other cases, like in human gait simulations, feedback is required to ensure

stability. In the aforementioned cases it is assumed that the central nervous system (CNS)

defines the muscular excitation patterns as efficiently as possible. For example, in [21] and

[22], the Euclidean norm of the steady state muscular activation vector is minimized. This

means, the coactivation coefficient is zeroed. Actually, as commonly observed in EMG signals
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recordings, it is not the case because synergistic and antagonistic muscles can be activated

in the same time.

Optimization methods based on the minimal muscle force, the minimal muscle stress or the

minimal energy consumption do not predict co-contraction adequately [24], [25]. Moreover,

in most works the solution of the redundancy problem predicts co-contraction only if the

model includes joints with multiple degrees of freedom [26] or bi-articular muscles [27]. Ho-

wever, this is not co-contraction in the strict sense of the term [25]. In [28], a shift parameter

is introduced in the optimization criterion allowing to obtain co-contraction even for systems

with only one degree of freedom. Unfortunately, in the optimization problem, the incidence

of the muscle fiber length and its time derivative on the maximal and minimal forces pro-

duced by the muscle was not taken into account.

In the current paper, a new neuromusculoskeletal simulation strategy is proposed. Like [21]

[22], and [23], a closed-loop control approach is used. An inner loop controls the muscular

force and an outer loop tracks the desired motion. The originality of the work is located

in the optimization criterion used to distribute forces between synergistic and antagonistic

muscles and in the definition of the inequality constraints. This distribution is traditionally

made using only the joint torques and the matrix of moments arms. Here, the maximal and

minimal musculotendon forces, defining the inequality constraints of the optimization prob-

lem, are computed by using an estimation of the muscle fiber length and its time derivative.

Using a model of an anthropomorphic arm, it is shown that, when these variables are not

included in the optimization problem, the distribution of forces can be unfeasible.

The document is organized as follows. In Section 2, the maximal and the minimal forces

of a second-order musculotendon dynamic model are computed as a function of muscular
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fiber length and its time derivative. In Section 3, the model of an anthropomorphic arm

composed of two joints and six muscles is presented. This model is used to test the proposed

musculoskeletal simulation strategy. Section 4 is devoted to the main contribution of this

paper: the force sharing problem between synergistic and antagonistic muscles is addressed.

Numerical tests comparing the new optimization criterion with the criterion proposed in [28]

are presented in Section 5. The last Section offers our conclusions and perspectives.

2 Musculotendon model

Many muscle models can be found in the literature, ranging from very simple [29] to highly

complex [30] ones. On biomechanical applications the most popular models are based on the

phenomenological mechanical representation proposed by Hill in [31]. A modification of the

previous models including fatigue/recovery effects is presented in [32]. The current one uses

the Hill’s mechanical model completed by Zajac [15] by defining the connection between

the excitation and activation signals. As displayed in Figure 1, a musculotendon unit is

composed by activation and contraction dynamics. The inputs are the muscle excitation u,

and the musculotendon fiber length lmt(q) which depends on the joint positions q relative

to the skeletal model. The output ft is the force developed by the tendon whereas a is the

muscle activation level. In the model proposed in [15], four parameters and four curves are

required to describe the contraction dynamics. The parameters are the maximum isometric

force fo, the optimal fiber length lo, the tendon slack length ls and the pinnation angle

between the fibers of the tendon and the fibers of the muscle. The latter has been supposed

equal to zero without loss of generality for our consideration. The tendon model is based
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Dynamics Contraction
Dynamics

Activation

lmt(q)

u a
ft

Figure 1: Scheme of a musculotendon unit.

on a function ft describing the force-length relationship whereas the muscle model requires

the passive force fp and the active force fa. The last one is defined as the product of three

tems: the muscular activation a, and the force-length and the force-velocity relationships,

respectively noted fl and fv (fa = a · fl · fv).

2.1 Activation dynamics

Activation dynamics establish the relationship between the muscular excitation u and the

mechanical activation a. A bilinear activation model is presented in [15]. However in the

sake of simplicity, the piecewise linear model model proposed in [33] has been used

ȧ =







−
a

τa

+
u

τa

, u ≥ a

−
a

τd

+
u

τd

, u < a

(1)

τa and τd being respectively the activation and deactivation time constants. Excitation and

activation levels are allowed to continuously vary between 0 and 1 [15].

2.2 Contraction dynamics

As displayed in Figure 2, the contraction dynamics is represented as a mechanical system

composed by the models of both tendon and muscle [15]. The muscle is composed by two
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elements which are passive and active respectively (Figure 2). The muscular force is the

sum of fp, the force generated by the passive element, and fa, the force generated by the

active element. From data of [15] we have approximated functions fp, fl and fv by tangent

sigmoid functions because they are continuous and derivable in the scale of study and offer

an accurate representation. Other aproximations for these functions have been proposed

in [33].

Tendon force: The tendon is considered as a passive element which yields

Tendon Muscle

lt

lmt

lm

fa

fp

ft

Figure 2: Hill-type model of a musculotendon unit [15].

ft (lt) = Kt

[
lt − ls

ls

]

· fo (2)

with ft the tendon force, lt the tendon length, ls the tendon slack length, Kt the tendon

stress-strain constant and fo the maximum isometric force. lt is supposed ranging from ls to

1.1 · ls. The value lt = 1.1 · ls is the maximal tendon length before rupture [15].

Muscular passive force: The force fp is modeled by the equation

fp

(
l̄m

)
=

2.5

1 + e−12(l̄m−1.425)
· fo

with l̄m ≡ lm/lo the normalized muscle length, lo the optimal fiber length and fo the maxi-

mum isometric force. The muscle length lm is supposed ranging from 0.5 · lo to 1.8 · lo [15].
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Muscular Active force: The active element represents the muscle ability to generate force

as a function of the muscular activation a. The active force fa is the product of four terms:

the length-force relation fl

(
l̄m

)
, the velocity-force relation fv

(
˙̄lm

)

the muscular activation

level a and the maximum isometric force fo

fa

(

a, l̄m, ˙̄lm

)

= a · fl

(
l̄m

)
· fv

(
˙̄lm

)

· fo (3)

Functions fl(.) and fv(.) depicted in Figure 3 read as:

• Length-force relation

fl

(
l̄m

)
=

[
1

1 + e−12(l̄m−0.6)
+

1

1 + e+12(l̄m−1.4)
− 1

]

(4)

• Force-velocity relation

fv

(
˙̄lm

)

=







fvmin
, ˙̄lm < ˙̄lmmin

2

1 + e−6 ˙̄lm
, ˙̄lmmin

≤ ˙̄lm ≤ ˙̄lmmax

fvmax
, ˙̄lm > ˙̄lmmax

(5)

with

˙̄lmmin
= −1 fvmin

=
2

1 + e6

˙̄lmmax
= −

1

6
ln

(
2

1.8
− 1

)

fvmax
= 1.8

The parameters ˙̄lmmin
and fvmax

are taken from [15], ˙̄lmmax
and fvmin

, are deduced in

order to guarantee the continuity of fv with respect to ˙̄lm.
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0.25 1 1.75
0

1

2
fl

lm/lo
−1 0 1
0

1

1.8

2
fv

l̇m/lo

Figure 3: Active force: The force-length and force-velocity relationships.

Fiber length dynamics: Forces ft, fp, and fa acting on the musculotendon unit (Figure 2)

yield to an equilibrium such that

ft (lt) = fp

(
l̄m

)
+ fa

(

a, l̄m, ˙̄lm

)

= fp

(
l̄m

)
+ a · fl

(
l̄m

)
· fv

(
˙̄lm

)

· fo

(6)

Given lt = lmt − lm (see Figure 2), one gets

ft

(
lmt − l̄m · lo

)
= fp

(
l̄m

)
+ a · fl

(
l̄m

)
· fv

(
˙̄lm

)

· fo (7)
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Recalling that a and lmt are the inputs of the contraction dynamics model (Figure 1), the

contraction dynamics is given through the inversion of the function fv (from (5))

˙̄lm = gcd (fv) ≡







˙̄lmmin
, fv < fvmin

−
1

6
ln

(
2

fv

− 1

)

, fvmin
≤ fv ≤ fvmax

˙̄lmmax
, fv > fvmax

(8)

The argument fv of the above equation is deduced from (7)

fv =
ft

(
lmt − l̄m · lo

)
− fp

(
l̄m

)

a · fl

(
l̄m

)
· fo

(9)

When fv ∈ [fvmin
, fvmax

], ˙̄lm lies in the interval [ ˙̄lmmin
, ˙̄lmmax

]. Indertemination and division

by zero are prevented by restricting the minimal value of a to 10-6. As fv depends on the

variables l̄m, a and lmt, one gets

˙̄lm = gcd

(
l̄m, a, lmt

)
(10)

The output of the musculotendon unit is the tendon force. It can obtained by rewriting (2)

in terms of l̄m and the input lmt

ft = Kt

[
lmt − l̄m · lo − ls

ls

]

· fo (11)

A block diagram representing the contraction dynamics is presented in Figure 4.
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Eq. (9)

Eq. (8)

Eq. (11)

ft

˙̄lm

fv

l̄m

a

∫

lmt(q)

Figure 4: Contraction dynamics: The output of the model is the musculotendon force ft

and the external inputs are the activation level a and the musculotendon length lmt.

2.3 Maximal and minimal musculotendon forces

For a given l̄m and ˙̄lm, the maximal and minimal musculotendon forces can be respectively

computed evaluating the equation (7) at amin = 10-6 and amax = 1

ftmin
= fp

(
l̄m

)
+ amin · fl

(
l̄m

)
· fv

(
˙̄lm

)

· fo

ftmax
= fp

(
l̄m

)
+ amax · fl

(
l̄m

)
· fv

(
˙̄lm

)

· fo

(12)

When ˙̄lm tends to its minimal value fv tends to zero (Figure 3) and by consequence the

maximal and minimal forces becomes equals to fp

(
l̄m

)
. In such case, the force of the mus-

culotendon unit cannot be freely imposed, it is uniquely determined by the muscular fiber

length. As it can be seen from Figure 5, the minimal achievable musculotendon force is not

always zero, it strongly depends on the muscular fiber length.

In Figure 6, the maximal musculotendon force is plotted as a function of l̄m and ˙̄lm. These fig-
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1

1.5

2

l̇m/lo
lm/lo

f m
t
/f

o

Figure 5: Minimal normalized musculotendon force: It is obtained when the muscular

activation is at its minimal value (a = 10-6).

ures show that the upper and lower limits on the forces exerted by a muscle are not constant.

There are functions of l̄m and ˙̄lm. These non constant constraints must be considered in the

optimization problem solved to distribute the forces between synergistics and antagonistics

muscles.

3 Anthropomorphic arm model

The anthropomorphic arm is depicted in Figure 7. The arm model is composed of 6 mus-

cles and 2 joints representing the shoulder and the elbow. The anthropomorphic arm is

considered evolving in a vertical plane. The inputs are the muscular excitations and the

outputs are joints positions. The inputs ui (i = {1 . . . 6}) directly define muscular acti-

vations ai (i = {1 . . . 6}) through activation dynamics (1). The musculotendon lengths

Lmt = [lmt1 · · · lmt6 ]
T and the muscular activations are used by the contraction dynamics to

obtain the musculotendon forces fti (i = {1 . . . 6}). The joint torques Γi (i = {1, 2}) are
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Figure 6: Maximal normalized musculotendon force: It is obtained when the muscular

activation is at its maximal value (a = 1).

computed as the product of the musculotendon forces by the matrix of moment arms. The

torques are the inputs to the skeletal dynamics, which is used to determine joint positions and

velocities. The musculotendon lengths mentioned above are given by the musculo-skeletal

geometry as a function of the joint positions. A block diagram describing the interaction

between the subsystems composing the arm model is presented in Figure 8.

3.1 Skeletal dynamics

The relationship between torques and joint accelerations are given by the skeletal dynamics

D (q2) q̈ + C (q, q̇) q̇ + G(q) = Γ (13)

with q =

[

q1 q2

]T

respectively representing the shoulder and elbow joint angles1, D(q2)(2×

2) the symmetric positive inertia matrix, C(q, q̇)(2 × 2) the Coriolis and centrifugal effects

1Notation T denotes matrix transposition.
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Gravity

m4 m3

m2 m1

m6 m5

rc ra

rb ra

q2

q1

Figure 7: Schematic representation of the anthropomorphic arm. The arm motion is

made by 6 muscles: 4 monoarticular ones (m1, m2, m3, m4) and 2 biarticular ones (m5,m6).

matrix and G(q)(2 × 1) the gravity effects vector. The vector Γ =

[

Γ1 Γ2

]T

is composed

by the torques applied at each joint. Arm parameters are displayed in Table 1.

3.2 Activation and contraction models

For each muscle activation and contraction models are based on the equations (1) and (10).

Let us to note ui, ai, lmti , l̄mi
, fti as the muscular excitacion, the muscular activation, the

musculotendon fiber length, the normalized muscular fiber length and the tendon force of

the muscle i (i = 1 . . . 6). The parameters for each muscle are given in Table 2
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Model
Contraction

Activation
Dynamics

Matrix of
Moment

Arms

Skeletal
Dynamics

Musculo
Skeletal

Geometry

U

A

Γ

q, q̇

Ft

Lmt

Figure 8: Anthropomorphic arm block diagram. U = [u1 · · ·u6]
T is the muscular excita-

tions vector (and then the control input vector). A = [a1 · · · a6]
T is the muscular activations

vector. Ft = [Ft1 · · ·Ft6 ]
T is the musculotendon forces vector. Lmt = [lmt1 · · · lmt6 ]

T is the

musculotendon fiber length vector. Γ = [Γ1 Γ2]
T is the joint torques vector. q = [q1 q2]

T is

the joint positions vector.

3.3 Moment arms matrix

As no muscles are directly attached to the second segment (Figure 7), the relationship

between torques and forces is given by a constant matrix







Γ1

Γ2







= R ·











fmt1

...

fmt6











(14)

with

R =







ra −ra 0 0 rb −rb

0 0 ra −ra rc −rc







Carlos Rengifo BIO-09-1404 15



Description Parameter Value Unit

Upper arm mass M1 1.8 kg

Forearm mass M2 1.6 kg

Upper arm length l1 0.32 m

Forearm length l2 0.32 m

Upper arm center of mass c1 0.16 m

Forearm center of mass c2 0.16 m

Inertia of upper arm I1 0.015 kg.m2

Inertia of forearm I2 0.013 kg.m2

Table 1: Skeletal parameters of the anthropomorphic arm model [34].

Parameter m1 m2 m3 m4 m5 m6 Unit

τa 0.04 0.04 0.04 0.04 0.04 0.04 sec

τd 0.07 0.07 0.07 0.07 0.07 0.07 sec

fo 2000 2000 900 900 600 600 N

ls 0.02 0.02 0.02 0.02 0.04 0.04 m

lo 0.11 0.11 0.11 0.11 0.17 0.17 m

Table 2: Muscle parameters of the arm model [34].

with fti the force developed by the musculotendon i. The coefficients of the matrix R are

given in meters: ra = 0.03, rb = 0.025 and rc = 0.04 [34].
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3.4 Musculo-skeletal geometry

Muscles are now attached to both segments of the arm. It means that their lengths depend

on the articular positions. Denoting lrmti
the rest length of the musculotendon i and qrj

the

rest position of joint j, the relation between musculotendon fiber length and joint positions

reads as 









lmt1

...

lmt6











=











lrmt1

...

lrmt6











− RT







q1 − qr1

q2 − qr2







(15)

The shoulder rest angle is qr1
= −π/4 and the elbow rest angle is qr2

= π/4.

3.5 Desired motion

The desired motion for the arm is periodic and concerns only the elbow. Without loss of

generality the desired position for the shoulder is constant (qd
1(t) ≡ 0). The first half-cycle of

the motion begins at qd
2 (0) = 0 and finishes at qd

2 (tm) = 5π/9. The second half-cycle begins

at qd
2 (tm) = 5π/9 and is ended when qd

2 (2tm) = 0.

qd
2 (t) =







qf

tm

[

t −
tm
2π

sin

(
2π

tm
t

)]

0 ≤ t < tm

qf −
qf

tm

[

t −
tm
2π

sin

(
2π

tm
t

)]

tm ≤ t < 2tm

(16)

with qf = 5π/9. For the simulation results presented in Section 5, the parameter tm has

been fixed to 2.5 sec.
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4 Kinematic tracking

The proposed forward dynamics closed loop strategy for NS is composed by two control

loops. The outer loop uses the kinematic tracking error to compute the desired torques for

the two joints. Then, an optimization process is used to define the desired forces for the six

inner loops. The primary controller uses a computed torque approach to linearize and to

decouple the skeletal dynamics (13)

Γd = D (q2) η + C (q, q̇) q̇ + G(q) (17)

Vector η ∈ IR2 is composed by the desired joint accelerations. Each component of η, named

η1 and η2, is chosen such that

ηi = q̈d
i + kpi

(
qd
i − qi

)
+ kdi

(
q̇d
i − q̇i

)
, i = {1, 2} (18)

qd
i , q̇d

i and q̈d
i define the desired trajectory for the joint i.

The next step of the proposed musculoskeletal simulation strategy consists in computing

the desired forces for the six inner loops. Given Γd
1 and Γd

2, the components of vector Γd

and the moments arm matrix R(q), the desired musculotendon forces fd
ti

(i = {1 . . . 6})

are determined as the solution of the following underdetermined system of linear algebraic

equations







Γd
1

Γd
2







= R ·











fd
mt1

...

fd
mt6











︸ ︷︷ ︸

F d
mt

(19)
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In order to solve the previous system, a standart way consists to minimize the sum of the

squared normalized musculotendon forces [35], [36] which yields

minimize
6∑

i=1

(
fd

ti

foi

)2

subject to Γd = R · F d
t

fd
ti
≥ 0

(20)

with foi
the maximum isometric force of the muscle i. At each instant time, the optimization

problem (20) must be solved. When criterion (20) is used, co-contraction is possible only if

the model includes joints with multiple degrees of freedom [26] or bi-articular muscles [27].

However, this is not co-contraction in the strict sense of the term [25]. A modification of (20)

has been proposed in [28] with

minimize
6∑

i=1

(
fd

ti

foi

− α

)2

subject to Γd = R · F d
t

fd
ti
≥ 0

(21)

For a sake of clarity a simple system will be used to illustrate the effect of the parameter α

in the muscular co-contraction.

Example. Consider the following system composed of two antagonist muscles and one joint

Γd =

[

r −r

]

·











fd
t1

fd
t2











, (22)
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with r > 0. The objective being to solve the following quadratic optimization problem

minimize

(
fd

t1

fo

− α

)2

+

(
fd

t2

fo

− α

)2

subject to Γd = r · fd
t1
− r · fd

t2

fd
t1
≥ 0, fd

t2
≥ 0

(23)

The optimal musculotendonforces fd
t1

and fd
t2

are given by

fd
t1

=







αfo + Γd/2r Γd ≥ −2αrfo

0, otherwise

fd
t2

=







αfo − Γd/2r Γd ≤ 2αrfo

0, otherwise

(24)

When α = 0, criterion (23) coincides with criterion (21) and leads to a solution without

co-contraction: if the desired torque is negative, fd
t1

is zero. Conversely, when Γd is positive,

fd
t2

is zero. If Γd is zero both forces are zero. When α > 0, co-contraction exists only if

Γd < |2rfoα| otherwise one of the musculotendon forces is zero.

�

For system (19), the optimization of (20) leads to zero co-contraction when Γd
1 and Γd

2 have

the same sign. If Γd
1 and Γd

2 are greater than zero, then the forces fd
t2
, fd

t4
fd

t6
, which produce

negative torques are zero. Conversely, when Γd
1 and Γd

2 are both negatives, then the forces

fd
t1
, fd

t3
fd

t5
, which produce positive torques are zero. These facts can be directly deduced from

the moment arms matrix (14). As it was explained in Section 2.2, fd
ti

equal to zero cannot

be obtained for some musculotendon lengths (see Figure 5). If Γd
1 and Γd

2 have different
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signs, co-contraction appears. As it will see in the next section, solutions of the optimization

problem (21) with a constant α can produce non-achievable desired musculotendon forces

because the maximal and minimal forces which a musculotendon unit can produce are not

constant. They strongly depend on lmi
and l̇mi

(Figure 6).

Proposition. Let introduce a parameter αi for each force fd
ti

as a function of lmi
and l̇mi

minimize
n∑

i=1

[
fd

ti

foi

− αi

(

lmi
, l̇mi

)]2

subject to Γd = R · F d
t

fmini
≤ fd

ti
≤ fmaxi

(25)

with

αi

(

lmi
, l̇mi

)

= f̄mini
+

f̄maxi
− f̄mini

2
(26)

This term is introduced in order to be as far as possible from the limits of the musculotendon

forces. The maximal and minimal normalized musculotendon forces are given by (12), which

yields

f̄mini
= fp

(
l̄mi

)
/fo + amin · fl

(
l̄mi

)
· fv

(
˙̄lmi

)

f̄maxi
= fp

(
l̄mi

)
/fo + amax · fl

(
l̄mi

)
· fv

(
˙̄lmi

)

The proposed strategy including index (25) is described by Figure 9.

�

When criterion (25) is used the inequality constraints are often actives. That implies ac-

tivation levels near to saturation. In order to solve this problem we have introduced the
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Primary Controller

Distribution of forces

Matrix of moment arms

Skeletal Dynamics

Geometry
Skeletal
Musculo

q, q̇

fd
ti

qd, q̇d, q̈d

ui

Musculo tendon i

Ft

Γ

fti

lmti

q

F d
t

Γd

i = 1 . . . 6

Lm, L̇mSecondary controller i

Figure 9: The proposed musculoskeletal simulation strategy. U = [u1 · · ·u6]
T is the

muscular excitations vector (and then the control input vector). Ft = [Ft1 · · ·Ft6 ]
T is the

musculotendon forces vector. Lmt = [lmt1 · · · lmt6 ]
T is the musculotendon fiber length vector.

Γ = [Γ1 Γ2]
T is the joint torques vector. q = [q1 q2]

T is the joint positions vector. Γd, F d
t

and qd respectively represent the desired values of the variables Γ, Ft and q.

weighting factor ωi =
(
f̄maxi

− f̄mini

)
−1

in the cost function

minimize
6∑

i=1

ωi

[
fd

ti

foi

− αi

(

lmi
, l̇mi

)]2

subject to Γd = R · F d
t

fmini
≤ fd

mti
≤ fmaxi

(27)

A feedback linearization control [37] law was used for the inner loop (the so-called secondary

controller in Figure 9). The equation giving the musculotendon force (11) is derived with
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respect to time in order to involve the muscular activation a

ḟt =
∂ft

∂lmt

· l̇mt +
∂ft

∂l̄m
· ˙̄lm

=
kt

ls
· l̇mt −

kt · lo
ls

gcd

(
l̄m, a, lmt

)

The controller design consists in finding the activation a such that dynamical behaviour of

ft is linear

ḟt = kf

(
fd

t − ft

)

with kf = 10 a constant gain and fd
t the desired force. When the function gcd reads as the

second line of (8) one gets

a =
ft − fp

2fl




e

6ls
kt · lo

(

kf

(
fd

t − ft

)
−

kt

ls
· l̇mt

)

+ 1






which guarantees that equation (4) is fulfilled. The input to the musculotendon unit is the

muscular excitation and not the muscular activation. Thus, the controller synthesis is made

by assuming no dynamics between the activation and the excitation signals, then the relation

between the two variables can be defined by a gain which is equal to 1 according to (1).

5 Numerical tests

The proposed NS strategy of Section 4 has been applied to the anthropomorphic arm de-

scribed in Section 3. The musculotendon forces presented in Figure 10 are obtained by

applying criterion (21) with α = 1/3. In this case the musculotendon unit 3 cannot track

the desired force in the time interval [1.3, 2.1] (Figure 10). In such interval the desired force

is greater than the maximal one. Depending on the values of lm and l̇m, α = 1/3 can be

very high (muscle 3 at 1.3 < t < 2.1 sec) or very low (muscle 4 at 4.2 < t < 5 sec). The
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Figure 10: Distribution of forces using criterion (21) (α = 1/3). Normalized muscu-

lotendon forces versus time. Desired force (dotted line). Musculotendon force (solid line).

Maximal and minimal achievable musculotendon forces (dashed lines).
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Figure 11: Distribution of forces using criterion (27). Normalized musculotendon forces

versus time (sec). Desired force (dotted line). Musculotendon force (solid line). Maximal

and minimal achievable musculotendon forces (dashed lines).
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musculotendon forces presented in Figure 11 are obtained by applying criterion (27). For this

simulation, the parameter tm has been fixed to 3.0 sec. A comparison between the muscular

activations obtained from both criteria (21) and (27) is presented in Figure 12. As it can

be seen from this Figure, an optimization criterion independent of maximal and minimal

instantaneous forces leads to saturation in the muscular activation even for slow motion. If

saturation occurs, the muscular forces cannot track the desired forces, and by consequence

a position tracking error appears (Figure 13).

0 1 2 3 4 5
0.1
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0.4

0.5
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0 1 2 3 4 5
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0.5
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a2

0 1 2 3 4 5
0

0.5

1
a3

0 1 2 3 4 5
0

0.5

1
a4

0 1 2 3 4 5
0

0.5

1
a5

0 1 2 3 4 5
0

0.5

1
a6

Figure 12: Muscular activations versus time (sec). Criterion (21) (dashed line). Crite-

rion (27) (solid line)

6 Conclusion and perspectives

An optimization criterion for force sharing between synergistic and antagonistic muscles has

been proposed. A cost function depending on muscle fiber length and its derivative appears

to crucial in order to avoid saturation in muscle activation levels. If saturation occurs, the
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Figure 13: Elbow position tracking error versus time (sec). Criterion (21) (dashed

line). Criterion (27) (solid line).

muscular forces cannot track the desired forces, and by consequence the joint torques are

different of the desired ones. In this situation, the musculoskeletal system cannot follow the

desired motion.

In systems with one joint, optimization methods depending only on the matrix of moment

arms and the torques lead to an increasing or decreasing in unison of the forces in synergistic

muscles [38]. However an experimental test shows that it is not necessarily the case [39].

On the other hand, for systems with almost two of joints, like the anthropomorphic arm

presented here, these optimization strategies can produce an increase of force in a muscle

and a decrease in some of its synergistics. Thus, a further work consists to test our strategy

on a biomechanical system with one joint and to verify how the distribution of forces between

synergistics muscles is done.
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