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Abstract

This paper presents a polygon soup representation for multiview data. Starting from
a sequence of multi-view video plus depth (MVD) data, the proposed quad-based repre-
sentation takes into account, in a unified manner, different issues such as compactness,
compression, and intermediate view synthesis. The representation is extracted from MVD
data in two steps. First, a set of 3D quads is extracted thanks to quadtree decomposi-
tion performed on depth maps. Second, a selective elimination of the quads is performed
in order to reduce inter-view redundancies and thus provide a compact representation.
Moreover, the proposed methodology for extracting the representation allows to reduce
ghosting artifacts. Finally, an adapted compression technique is proposed that limits
coding artifacts. The results presented on two real sequences show that the proposed rep-
resentation provides a good trade-off between rendering quality and data compactness.
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1. INTRODUCTION

3D video is expected as the logical evolution of 2D video [1]. Two types of 3D video
applications are envisioned. The first one, called 3DTV for 3 dimensional television,
provides a relief sensation to the user by reproducing the human binocular vision with
two views. Display devices allowing 3D visualization are today available. They may not
require to wear special glasses. They display two views (autostereoscopic displays) and
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even N=8,10,12... views (multiview autostereoscopic displays) in order to maximize the
user comfort. The second application, called FTV for Free-viewpoint TeleVision, allows for
interactive selection of the viewpoint and direction in the scene within a certain operating
range.

In order to achieve 3DTV and FTV, one can capture all the views required at the
rendering stage [2]. This method may be used for stereoscopic video (2 views) but it can
hardly be generalized to N views due to acquisition and storage complexity. An alternative
is to reduce the number of cameras and to synthesize the required intermediate views by
using information about the geometry of the scene. Many studies are being conducted on
this issue. In particular, within the normalization group ISO-MPEG, the working group
3D Video is currently studying the representation and coding of multiview data in order
to achieve a compression standard suitable for 3D video. Here, the quality of synthesized
intermediate views is essential.

Considering 3D video applications displayed on multiview autostereoscopic screens,
interest for depth image-based representations has increased a lot. A depth map is an
image that associates one depth value (i.e. the distance to the camera) to each pixel. It
enables to synthesize intermediate views using a perspective projection method.

Depth image-based representations

The simplest representation consists of using only one view made up of an image plus
a depth map per time instant (2D+Z) [3]. But occluded regions are not contained in
the depth map, and therefore disocclusion regions are not well reconstructed during view
synthesis and might create strong visual artifacts.

For a wider range of viewpoints, multiple views made of 2D+Z data must be used. It
is called MVD (Multi-view Video Plus Depth) data and enables to synthesize an inter-
mediate view based on a set of views. Using MVD data, most of the occluded regions
in one view can be filled with the other views [4,5]. The redundancies between all views
are usually high since the same scene is captured from several close viewpoints, therefore
the data load is high. To limit this overload, DES (Depth Enhanced Stereo) [1] has been
recently proposed. DES is a specific case of MVD with only two views and associated
depth maps.

In order to deal with both the disocclusion areas and inter-view redundancies, a solu-
tion is to select a certain view as reference and extract, from the other views, only the
information which is not contained in the reference view, i.e. the occluded areas [6–8].
This is called LDV (Layered Depth Video). The advantage is that the inter-view redun-
dancies may be easily reduced while the disocclusion areas are available. However, some
color differences can appear since only a central view plus the occlusion areas are used.
Moreover, the construction and compression of such data is still an open problem. In the
Layered Depth Images (LDI) [6], all the side information is projected into the reference
view so that one pixel can contain multiple depth and color values, yet this leads to a loss
of quality due to resampling during the projection.

In addition, many contributions in the field of global model reconstruction present
efficient algorithms for merging multiple depth-maps and polygonal meshes [9,10].
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Depth maps compression

Depth maps are gray level images, so they can be compressed with an efficient video
codec such as H.264. However, depth maps describe the surface of a scene and have
different properties compared to an image describing the texture. Therefore, rendering
intermediate views using compressed depth maps creates visually disturbing artifacts,
especially around depth discontinuities (objects boundaries) as studied in [11]. With this
in mind, several approaches have been proposed such as platelet-based depth coding [12].
This algorithm employs a decomposition of the depth maps using geometric primitives
such that the depth discontinuities are preserved. Wavelet based coding of depth map has
also been proposed in order to preserve depth discontinuities [13]. An other interesting
approach is the use of scalable coding technique with ROI to ensure lossless coding around
depth discontinuities [14]. These methods provide a better rendering quality for a given
compression rate.

Depth based rendering

Rendering intermediate views using depth maps is generally performed using a point-
based method: each pixel is independently reconstructed in 3D and then re-projected
into the desired intermediate view. As a result, many small holes appear in the inter-
mediate view and must be filled with post-processing techniques [5]. An alternative is
to transform the depth maps into a surface using geometric primitives such as triangles
[4] or quadrilaterals [15] and to disconnect these primitives at depth discontinuities so
that the background and foreground are not connected. This solution eliminates the
post-processing stage but requires a graphic processor.

As stated above, multiview processing for 3DTV and FTV applications raises several
issues concerning data compactness, depth map compression, and intermediate view syn-
thesis. The contribution of this study is to propose a new data representation that takes
into account all these issues as a whole, i.e. that is appropriate for both the compression,
transmission and rendering stages. This representation is based on 3D polygons and takes
as an input, MVD data (Multi-View plus Depth).

In section 2, an overview of the proposed representation is given in 2.1 and the next
subsections detail the polygon extraction taking into account discontinuity preservation
and geometry refinement. Inter-view redundancies in that preliminary representation have
to be subsequently reduced (section 2.3). Afterwards, the encoding techniques for depth
data are presented (section 3). Section 4 presents several visual results illustrating the
different stages of the algorithm and representation extraction, and results on depth map
coding efficiency.

2. PROPOSED REPRESENTATION

In this section, an overview of the proposed representation is first given. Then an
extraction methodology is proposed to generate such representation.

2.1. Overview

The proposed representation is based on a set of 3D polygons that are defined with
2D+Z data: a polygon is delimited by a block of pixels in one view; the polygon’s depth
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depth−map Z1

view V2, Z2

view V3, Z3

view V1

Figure 1. Proposed representation : a set of 3D polygons. Each 3D polygon is defined
by a 2D polygon (here a quadrilateral) in one of the acquired views, and by the depth
information for each corner of the polygon.

is defined by the depth information at the corners of the block; the polygon’s texture is
given by the block’s texture in the image. No assumption is made on the fact that a quad
is of constant depth or connected to its neighbors (see Figure 1).

Polygonal geometric primitives have several advantages.

• The size of the polygons can be adaptively determined so as to keep the number of
polygons low. Thus a compact representation can be obtained (such as in [15]).

• As presented in [12], a polygonal decomposition of the depth maps that preserves
the object boundaries results in a compression algorithm offering a better rendering
quality compared to an H.264 algorithm, for a given compression rate.

• Polygons are frequently used as primitives at the rendering stage [4,15] since they
model the continuity of the surface and thus avoid post-processing operation that
fill empty pixels in the rendered image [5] [16]. Figure 2 shows an example where
the data from one view has been synthesized into a different view. The rendering
result can be observed with a point-based representation (depth map) (a) and a
polygon-based representation (b). In (a), a post-processing algorithm is necessary
to fill the small disocclusion areas (thin white lines). In (b), the continuity of the
surface is preserved and only large depth discontinuities create disocclusion areas.

• Since the representation is a set of textured 3D facets, real-time rendering can
easily be achieved using off-the shelf rendering tools from the computer graphics
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(a) (b)

Figure 2. Comparison: point-based VS quad-based rendering

community (such as OpenGL or Direct-X APIs that benefit from GPU for real time
rendering).

• This representation is very well suited for ensuring inter-operability between acquisi-
tion and display : once the representation has been extracted, it can be rendered for
any view, either original views or virtual views, using the same rendering procedure
in both cases.

• On the contrary to [4,15] where the polygons are used only at the rendering stage,
the representation proposed here is directly based on polygons.

• The representation is based on a set of possibly disconnected polygons, contrary
to a 3D polygonal mesh. This is why we call it a polygon soup. A polygon soup
has several advantages over a 3D mesh: depth discontinuities are easily represented
without extra information, and 3D surface continuity can be ensured by setting
same coordinates to some vertexes of distinct polygons.

In the proposed representation, the chosen polygon type is the quadrilateral (quad). This
choice is motivated by the following considerations:

• In the context of video coding, using such a quad-based representation enables
texture information to readily be coded using a classical block-based video coding
algorithm. Moreover, the coherence between block-based depth information and
texture information can be exploited.

• Use of quadtree decomposition will allow to subdivide quads at depth disconti-
nuities. Object contours, when associated with depth discontinuity, will thus be
included in the quad-based representation, without the need to transmit the con-
tour map as extra information. Furthermore adaptive quad size provides a uniform
representation for smooth areas and depth discontinuities.

• Use of quadtree allows to retrieve (x, y) position of quads thanks to quadtree struc-
ture, thus limiting the information sent to quadtree structure and depth information
at quadtree leafs.
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In a word, the polygon-based proposed representation offers the same advantages as a
3D mesh-based representation in terms of 3D description and rendering, and it also offers
the same advantages as a 2D+Z representation in terms of coding simplicity.

The proposed algorithm follows the following steps:

• Generation of the polygon soup is performed using a quadtree decomposition to
extract and structure the set of quads. This first step will be explained in section
2.2.

• Polygons are then selectively eliminated to reduce redundancies between views (us-
ing a similar concept to the one proposed in [8]), and also to reduce artifacts around
discontinuities due to mixing colors between the background and foreground (e.g.
ghosting artifacts). This second step is presented in section 2.3.

• Once the representation has been extracted, rendering can be performed. Thanks
to the chosen representation, ghosting artifacts have already been removed by the
polygon selection step. Only texture blending and hole filling is performed during
the rendering process, which will be briefly described in section 2.4.

Figure 3 sums up the different steps of the method as well as its application framework
(compression of MVD data and rendering of virtual views). Note that three views are
here considered. But the proposed framework applies to any number of views.

Figure 3. General overview of the proposed framework. I: image, D: depth, P: polygons,
I’(resp. P’): I (resp. P) reduced, Is: synthesized image



A polygon soup representation for Free-View-point Video 7

p3

p3p2p1

p1 p2

p3

p1 p2

p3

p1 p2

Figure 4. Warping projection distance is small between p1 and p2, and large between p2

and p3.

2.2. Polygon extraction

This section describes the polygons extraction from the MVD data, using a quad-tree
decomposition. At this step, only depth information is used. Each depth map is processed
independently so that a quad-tree is created for each view.

The quad-tree decomposition for one view aims at providing an accurate model of
the associated depth map while preserving depth discontinuities. Quads are recursively
scanned and divided either if the quad contains a depth discontinuity, or if it does not
provide a good enough approximation of the depth map.

Since depth information will be used for warping, and not for 3D reconstruction, the
two division criteria are not based on a 3D distance between original depth data and
approximate depth model, as it is usually proposed in the computer vision community.
Instead, we propose to use an image-based distance which aims to reduce the projection
error, that is the distance between a point warped using the original depth map and a
point warped using the approximated depth map.

The proposed measure that we call warping projection error, is the euclidean distance
between two pixels after projection into the right-most or left-most camera (see Figure
4). This measure allows to take into account the range of projection (navigation range
related to the application) and allows to tune the precision of the quadtree.

Let p be a pixel in the reference view. Let Pref→left(p) and Pref→right(p) be the projec-
tions of p into the left-most and right-most camera. dist(p1, p2) is the euclidean distance
between p1 and p2 and Pref→right() (resp. Pref→left() ) denotes the warping function from
reference view onto view right (resp. left), using depth information.

The subdivision method holds in two steps which we call discontinuity preservation and
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geometry refinement.

2.2.1. Discontinuity preservation

Blocks in the image are sub-divided if they contain large discontinuities. Let p1 and p2

be any two adjacent pixels in block B in view Vref . Considering threshold Td, then block
B is sub-divided if:

max
p1,p2∈B×B,|p1−p2|<1

(dist(Pref→left(p1),Pref→left(p2)), dist(Pref→right(p1),Pref→right(p2)) > Td

Similar procedure is performed for pixels in view Vleft (resp. Vright) projected onto Vref

and Vright (resp. Vleft). This criterion will lead to have small quads located close to depth
discontinuities.

2.2.2. Geometry refinement

From the coarse representation obtained, a block is again sub-divided if the geometry
approximation is too high. First, a block is represented as 2 triangles corresponding to
the 2 triangles that form a 3D quad. The plane equations π1, π2 of these 2 triangles
are computed using the depth values of the corners of the block. Let porig be a pixel at
position (x, y) and original depth value Z, and pπ1,2

a pixel at the same position (x, y)
but depth value Zπ1,2

on the plane π1 or π2. Then, the block is sub-divided if:

max
porig,pπ1,2

∈B

(

dist(pleft
orig, p

left
π1,2

), dist(pright
orig , pright

π1,2
)
)

> Tg

As both criteria use the image-based distance, thresholds are distances Td and Tg pixels.
It thus quite easy to set their values. Typical values are a couple of pixel for Tg and around
10 pixels for Td. Moreover, the thresholds Td and Tg used for this decomposition may be
adjusted according to the desired bitrate.

2.3. Redundancy reduction

From the set of quads obtained previously, inter-view redundancies are now reduced by
selecting a set of active quads in each view, which then define the final representation. The
proposed process also enables to reduce ghosting artifacts around depth discontinuities.

Typically, quads situated around depth discontinuities are small and unreliable because
they contain mixed color between foreground objects and background objects. Moreover,
small quads often correspond to 3D surfaces whose normal vector is parallel to the image
plane. Such 3D surfaces are more reliably represented using side view points (see figure
5).

To achieve this objective the following framework is proposed. The principle is to
initialize the representation with a reference view (generally the central one) and to incre-
mentally fill the disocclusion areas using the quads from the side views. In order to select
preferably quads which are both large (to reduce coding cost) and reliable (to enhance
rendering quality), the selection operates in two rounds. In a first step, small quads are
discarded from the initial representation and selection. Then, during a second step, small
quads are considered as candidates for selection to fill remaining disocclusions and to com-
plete the foreground information if necessary. This second step is performed from outside
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viewpoints to reference viewpoint in order to prevent the emergence of small quads over
other quads that induce ghosting artifacts.

The goal of the 2 step procedure is to exclude small quads from the final representation,
as they are both costly and unreliable. Note that large quads selected during the first
selection step are not the same as the ones that would be obtained by using a larger
threshold during quad-tree extraction. As the polygons approximate the geometry of the
surface, if larger quads are extracted, then a coarser approximation of the depth map is
obtained, whereas in the selection step, only large quad adequately modeling the depth
map are selected.

V3

V1

V2

V3

V1

V2

V3

V1

V2

Figure 5. Unreliable Quads : considering 3 viewpoints (top), small quads are situated
near depth boundaries in each view (middle), redundancy reduction selects preferably
large quads, which are free of matting effects and represent the 3D surface with good
resolution. Small quads are used only if necessary (bottom).
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The proposed two step process also allows to avoid disturbing artifacts such as corona
artifacts. This process is close to the one presented in [8] for building the LDV repre-
sentation. However, the first difference is that the omitted quads are not only in the
background but also in the foreground regions. The second difference is that the rep-
resentation is built incrementally such that any view that has already been processed
contributes to the representation before the next view is processed. Finally, the last dif-
ference is that the data is not projected and stored into the reference frame : the texture
of the quad is represented as a square block in its original view, thus avoiding texture
degradation due to resampling occurring with such projection.

2.3.1. Large quads selection

In this step, every quad of size smaller than Ts is omitted, i.e. only large quads are
considered as candidates. Let Ω be the final set of selected quads after large quads
selection, and QV be the set of quads from quadtree decomposition of view V . The idea
is to initialize Ω with the large quads from a reference view Vref and iteratively complete
and modify Ω by selecting some quads in QVi

, i = 1 to N , i 6= ref . Let i be the current
iteration, and Ωi−1 the set of already selected quads from previous iterations. Ωi−1 is first
projected onto view Vi. The resulting image contains disocclusion areas which correspond
to information from view Vi which

is not present Ωi−1. Quads from QVi
containing disoccluded pixels are thus added to

Ωi−1.
More precisely, the initial set is given by

Ω0 = {q ∈ QVref
, size(q) > Ts}

and the set is updated at iteration i by

Ωi = Ωi−1 ∪ {q ∈ QVi
, size(q) > Ts and ∃p ∈ q|p /∈ Pi(Ωi−1)}

where Pi(Ωi−1) denotes projection of the current set of selected quads Ωi−1 onto view Vi.
The views are iteratively processed from the furthest to the reference view, to the the

closest. This scanning order aims to reduce the overall number of quads : for instance
an area which is progressively disoccluded will be represented by one large quad from the
furthest view, rather than a succession of smaller quads, one from each view.

2.3.2. Small quads selection

The previous step gives a set of polygons (polygon soup) containing medium to big size
quads, without ghosting artifacts. Even if large disocclusion areas have been filled, some
background and foreground areas are still missing. Therefore, the second step consists in
iteratively adding the omitted small quads only if necessary.

Selection of small quads in the background

Small quads are first added in the background for each view, using the same process as
before. From Ω obtained previously, views are iteratively processed from the furthest to
the reference view, to the the closest, and finally the reference view is processed.

This step completes Ω by filling the background of the scene : no blank area remains
when Ω is projected onto any of the original views. Background areas have been added
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using large quads if available, and small quads only if necessary, thus drastically reducing
ghosting artifacts.

Selection of small quads in the foreground

The last process consists in completing the foreground by adding small quads. Here
again, the views are iteratively processed from the furthest to the reference view, to the
closest, and finally the reference view is processed. Let i be the current iteration. Ω is
projected onto view Vi, then for each quad in Vi a depth test is performed to check if the
quad is in front of the scene. If so, then the quad is added to Ω. This last process enables
to add small quads on foreground object edges.

Note that doing the selection of small quads in two sub-steps allows to limit ghosting
artifacts. In the first sub-step, pixels related to a foreground object, but having depth
information related to the background can be rejected. Indeed the area where they occur
may be already predicted by larger quads of side viewpoints. In second sub-step, a pixel
related to a background object, but having depth information related to foreground, can
be rejected. This is typically done by performing a photo consistency check: if already
proposed reconstruction is of same color information that proposed new small quads, then
this means that proposed new small quads has wrong depth information and should be
in background.

At the end of the process, the final representation Ω is a set of polygons (polygon soup),
defined as the subset of selected quads in each view.

2.4. Adaptive blending for view rendering

The reconstruction of a synthesized view needs to do some merging of the contributions
from different viewpoints. Since a soup of polygon is used a direct technique would be
to let the 3D rendering engine deal with multiple view contribution thanks to z-buffering
technique. However several problems occur:

• colors of different input views may not be homogeneous,

• depth information across views may not be coherent,

• the local color of an object may vary depending on observation direction due to
specular properties of materials.

The first point can be avoided by performing color equalization among view. To this extent
we first perform a color equalization by fitting a parametric transfer function to reflect
global illumination changes across views. That is we search for each color component c:

arg min
θ

∑

p∈Vref

||f(θ,Pi→ref(Vi[c][p]) − Vref [c][p]|| (1)

where f(θ, .) is a fitting function (typically a continuous piecewise linear function) param-
eterized by θ, and Vi[c][p] denotes the value of color component c at position p in view
Vi.

Considering second point z-buffer rendering leads to some kind of ”‘depth fighting”’
across polygons that induce some discontinuities in the rendering. Third point also leads
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to artificial boundaries in uniform areas. To limit such artifacts a typical technique is to
perform blending of different views prediction. In [17] a blending is proposed by generating
for each view a synthesized prediction and then average these prediction to obtain the
final synthesized view. Unstructured lumigraph [18] allows to do local adaptive weighting
of view contribution by attributing weighting factors associated to confidence measures
in the respective view contributions (using relative distance information, relative angle
observation distance, resolution based criterion, ...). We proposed here a simple technique
based on adaptive averaging of view contributions.

• First we compute for each input view the proposed synthesized view and associated
depth map projected on intermediate view: Ri and Di,

• we then combine these predictions by local averaging:

R(p) =

∑

i wi(p)Ri(p)
∑

i wi(p)
(2)

where wi(p) are local weights used to perform local adaptive blending of view contribution.
They are defined as follows:

• first for each pixel p, we search for minimum depth value: Dmin = mini Di,

• then wi(p) is derived as follows

wi(p) =

{

f(dist(curr, i) if(Di(p) < Dmin(p) + δ)
0 otherwise

(3)

where δ is used to robustly reject contribution that are occluded by other contributions,
f(dist(curr, i)) is a decreasing function of the distance between current viewpoint and
viewpoint associated to view i. In our experiment we used f(dist(curr, i)) = 1

dist(curr,i)
.

3. DEPTH DATA CODING

In this section we consider the coding of the extracted polygon soup representation for
one temporal frame.

As presented in section 2.2 polygon soup is established from a quadtree-based splitting
technique. Thus an encoding of the polygon soup can benefits from this quadtree struc-
ture. First recursively coding splitting information (i.e. using a flag leaf flag) of the nodes
of the quadtree allows defining the set of quads considered with their respective size. For
a quadtree node 0 is coded to indicate that a node is split, 1 to indicate that a node is a
leaf.

When a leaf node is encountered no further signaling for its children nodes is neces-
sary. When considering deactivation of quads to reduce redundancy across views (see
section 2.3) an additional flag active flag is coded to signal whether current node con-
tains some active quads or not. Note that since many quads can be deactivated we could
have a non-leaf node that signals a non-active set of quads and thus effectively prune the
information related to its child nodes.
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Once the structure of the quadtree is defined depth information is coded for active
leaf nodes of the quadtree. A quad is defined by the depth value of its 4 corners (i.e.
no assumption is made on the fact that the quad is of constant depth or connected
to its neighbor). Since depth values of quads are highly correlated to depth values of
surrounding quads, a predictive coding of depth value is performed. That is for a quad
located at (x, y) position, following predictions are established:

• ẑtl = zMap[x, y] : depth value of top-left corner is predicted from interpolated depth
values established by already coded quads,

• ẑtr = ẑbl = z̄tl: depth value of top-right and bottom-left corners is predicted from
previously coded corners of current quad,

• ẑbr = z̄tr + z̄bl − z̄tl: depth value of bottom-right corner is predicted using affine
prediction from the three other previously coded corners of current quad.

where zMap[x, y] corresponds to the depth map values interpolated from the quads
already coded, indexes behind z values reflect corner position (t/b: top/bottom, r/l:
right/left position), ẑ corresponds to a prediction value, z̄ corresponds to a decoded depth
value (i.e. taking into account residue added to prediction).

A prediction residue is then defined to be added to these predictions. Due to high
correlation of depth values these residues are often 0. A flag is then introduced to signal
0 value for these residues. If not zero, then ExGolomb code is used to code the residue.

All informations are coded using Context Adaptive Binary Arithmetic Coding (as pro-
posed in [19]). Contexts are established depending on the level of a node in the quadtree
to take into account statistical variations among quads size.

When considering deactivation of quads depth value of neighbor nodes may be not
defined if neighbor are deactivated. In order to still get a valid prediction in those cases,
when a node is deactivated virtual depth values are defined using previously defined
predictions and setting residues to 0. This indeed corresponds to do padding of depth
information.

4. RESULTS

Tests were performed on MVD sequences Breakdancer and Ballet. They were captured
with 8 cameras (resolution 1024 × 768) placed on a horizontal arc spanning about 30◦.
The depth maps were estimated with a stereo algorithm [4]. 2

The following experiments were tested with a configuration of 3 views (V1, V3, V5) where
the central one is considered as the reference V3 = Vref .

4.1. Polygons extraction

Polygon extraction was performed with empirical thresholds Td = 10 pixels for the
discontinuity criterion, and Tg = 5 pixels for the geometry criterion. Figure 6 shows the
quadtree decomposition for view V3 = Vref . Each depth map has a resolution of 1024×768
pixels. The average number of quads per view is 26520 for Breakdancer and 29876 for

2Thanks to the Interactive Visual Media Group of Microsoft Research for providing the data sets
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Ballet. Using these quadrilaterals and corresponding textures, original and intermediate
views have been synthesized.

Figure 6. Quadtree decomposition of depth map for view V3 of Breakdancers.

4.2. Redundancy reduction

Redundancy reduction was performed with empirical threshold Ts = 4 (large blocks are
at least 4 × 4 pixel block).

Large quads selection

Figure 7 shows the original views where small quads (of size < Ts) have been removed.
As expected, small quads appear mostly on object boundaries.

(a) V5 (b) V3 (c) V1

Figure 7. Views 1,3,5 without small quads

Figure 8 shows the large quads selection process for the first iteration. Ω has been
initialized with large quads from view Vref = V3, and thus it contains all quads in image
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7(b). Ω is projected on view V1 (Figure 8(a)). The disocclusion areas can be seen in
white. Selected large quads from view V1 are shown on figure (Figure 8(b)). Figure 8(c)
shows the resulting representation Ω, projected onto view V1, where many white areas
have been filled.

The large white regions in Figure 8(b) show that many redundancies have been elimi-
nated.

(a) (b) (c)

Figure 8. Quad selection for V1 : Ω projected into V1 (a); selected quads from V1 (b);
resulting representation Ω projected into V1 (c).

Adding the small quads and ghosting removal

Figure 9 shows the successive steps of quad selection on a zoomed area from Ω projected
on view V3. As expected, large quads leave some blanks areas 9(a), which are filled by
small quads added in the background 9(b). After the last step, the useful small quads
added to the foreground areas (dancer cap) 9(c).

(a) (b) (c)

Figure 9. Successive steps of quad selection: Ω projected into V3 : after large quad
selection (a), after adding small quads in the background (b), after adding small quads
in the foreground (c).
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Figures 10 and 11 show the final obtained representation, i.e. the final set of selected
quads in each view. As expected, most of the quads come from the reference view, and
quads from the side views provide information on disoccluded areas.

(a) V5 (b) V3 (c) V1

(d) V5 (e) V3 (f) V1

Figure 10. Result of quads selection for Breakdancers: final set of selected quads in each
view with texture (a) (b) (c) and without texture (d) (e) (f).

Finally, from this reduced set of quads, views V5, V3 and V1 can be synthesized (Figure
12).

The effect of the proposed three step selection process is shown in Figure 13. Picture
(a) shows the projection of the final set Ω with a one step process, i.e. without first
removing the small quads. The ghosting artifacts clearly appear on the left side of each
character. Corresponding quads are shown in (b). Grey quads and black quads come
from different views and overlap in the reconstructed view. Pictures (c) and (d) show
the result when using the three step proposed method. As expected, ghosting artifact is
drastically reduced and many small quads have been suppressed.

Figure 14 shows similar results for the Breakdancers data, zoomed on the dancer’s hand
in front of the wall.

4.3. Rendering techniques

4.3.1. Blending

Figure 15 illustrates results of intermediate viewpoint generation. As can be observed
on sub-figure (d) weights considered for various views contribution vary around depth dis-
continuities. Thanks to adaptive blending transitions between multiple views prediction
is smoother and details are better preserved.
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(a) V5 (b) V3 (c) V1

(d) V5 (e) V3 (f) V1

Figure 11. Result of quads selection for Ballet: final set of selected quads in each view
with texture (a) (b) (c) and without texture (d) (e) (f).

4.3.2. Inpainting

White plots observed in Figure 15 (e) and (f) correspond to non predicted pixels, i.e.
pixels that do not appear in any of the views V1, V3 and V5. These pixels can be easily
reconstructed using some inpainting techniques such as [16]. The inpainting method used
in this article is the Navier-Stokes one, implemented in openCV. Figure 16, illustrates the
results of inpainting the white pixels situated around the right arm of the breakdancer.

4.3.3. Edge filtering

As explained in [5], in the original views, object boundary samples are a color mixture
of foreground and background objects due to initial sampling and filtering during im-
age capturing. However, when rendering intermediate views, the foreground-background
boundaries are changed, resulting in unnaturally sharp edges. Therefore, as in [5], fore-
ground objects are low-pass filtered along the edges to provide a natural appearance. This
filtering also helps to reduce remaining artifacts along depth discontinuities. An example
of a rendering result before and after edge filtering is shown in Figure 16. The cap and the
T-shirt of the dancer look unnaturally sharp in front of the background. After filtering,
the appearance is more natural and the irregularities along the leg are less visible.

4.4. Coding

Table 1 gives a comparison of the number of quads before and after the redundancy
reduction (first and second rows) and the number of quads for the reference view Vref

(third row). More than 60% of the quads have been removed compared with the full set
of 3 views. Compared to a single view there is an increase of 10% to 24% of the number
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(a) V5 (b) V3

(c) V1

Figure 12. Result of quads selection: reconstructed views with final representation.
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(a) (b)

(c) (d)

Figure 13. Effect of three step quad selection. (a)Synthesized view V5 without redun-
dancy reduction. (b) Corresponding quad representation. (c) Synthesized view V5 with
redundancy reduction. (d) Corresponding quad representation.
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(a) (b)

Figure 14. Elimination of ghosting effect, using three step process eliminating small quads.

of quads.

BreakDancer Ballet

V1,V2,V3 84921 88866
↓ from -60 to -64%

V1,V2,V3 reduced 30644 35171

↑ from +10 a +24%
1 view 27837 28291

Table 1
Number of quads before and after the reduction.

Figure 17 illustrates the rate-distortion performance of coding the quadtree for the con-
sidered views; results are reported for reduced quadtree and full quadtree for sequences
BreakDancer and Ballet. 56% bit rate reduction is achieved for reference view of Break-
Dancer sequence (46% for Ballet) while around 25% bit rate saving is obtained for side
views. Higher bit-rate saving is observed on reference view thanks to lower number of
small quads in this view. Resulting global rate-distortion is illustrated on figure 18.
Around 30% bit rate savings is achieved with respect to coding 3 full quadtrees. Bit rate
saving is lower than reduction in number of quads since signaling which quads are active
is an additional cost here and that prediction coding of depth values is less efficient for
reduced set of quads than for full set of quads.

4.5. Comparison with an existing MVD approach

The proposed representation and coding scheme is now compared with another existing
approach.

Description of the experiments

The goal is to evaluate the rate-distortion performances of synthesized intermediate
views and identify the rendering artifacts caused by the coding and rendering steps. The
test data and conditions of experiment were set as follows:

• The depth information of views V1, V3, V5 of the BreakDancer sequence was coded.
The first 25 frames were used.
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(a) View 1 contribution (b) View 3 contribution

(c) View 5 contribution (d) Weighting factors

(e) Rendering with blending (f) Rendering with z-buffer

Figure 15. Rendering using adaptive blending for the synthesis intermediate viewpoint V2.
Contributions of other views are illustrated on sub-figures (a),(b) and (c). Sub-figure (d)
illustrates relative weighting used for each view (Red component is the weight associated
with V1, Green component is associated with V3 and Blue component is associated with
v5). Sub-figure (e) illustrates rendering result with adaptive blending while (f) illustrates
z-buffer rendering.
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(a) Before inpainting (b) After inpainting, before edge filtering

(c) After edge filtering

Figure 16. Illustration of the inpainting and edge filtering method used to fill white
pixels and to provide a more natural appearance. Contrast has been enhanced for better
visualization.
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Figure 17. Rate distortion performance of reduced quadtree with respect to full quadtree
for views 1, 3 and 5.
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Figure 18. Rate distortion performance of reduced quadtree with respect to full quadtree.
Rates are cumulated over views, PSNR is averaging over views.
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• Corresponding texture images were not coded.

• Intermediate views V2 and V4 were synthesized and compared with the original ones.

The existing approach that was used for comparison is based on the ITU-T H.264 Multi
View Coding amendment (aka MVC) [20] for depth coding and the Nagoya university
view synthesis software (VSRS) [21] currently studied in the MPEG-3DV group. This
group has proposed a similar approach for encoding video plus depth data sets, which is
denoted ”MVD” in the group contributions. We will follow this denomination and denote
the algorithm using MVC-intra+VSRS as ”MVD” in the following text and figures. The
coding and rendering parameters were set as follows:

• For the MVD approach, only inter-view prediction was performed with the MVC
coder (i.e. only INTRA coding) because our proposed coding scheme does not take
the temporal dimension into consideration at the moment. The central view V3
was coded as I picture, and the two lateral views V1, V5 were coded as P-pictures
with central view as prediction (i.e. PIP inter-view coding structure). Four different
bitrates and qualities have been tested by changing the quantization parameter to
typical values: QP = 22, 26, 31, 37. In the VSRS software, the main settings were
activated like half-pel precision; bi-linear filtering; boundary noise removal and view
blending and inpainting.

• For the quad-based approach, the coding method described in section 3 was used.
Two different levels of complexity of the quadTree were tested. It is controlled by
a threshold QSmax fixing the maximum size of the quads. Figure 19 shows the
quad representation obtained with QSmax = 8 fig.(a) and QSmax = 16 fig.(b). In
the quad representation, the number of quads of size 1 pixel is about 30% of the
total number of quads whereas the surface covered by these quads in the image is
very small. In order to reduce the bitrate, two different coding settings were tested:
in the first one, all the quads of the representation were coded (QSmin = 1), and
in the second one, the quads of size 1 pixel were not coded at all (QSmin = 2).
This was done by deactivating the quads of size 1 pixel using the flag active flag
defined in section 3. Then at the rendering step, the lack of these small quads is
compensated by the inpainting and edge filtering process (section 4.3.2 and 4.3.3).

The evaluation of the results was performed as follows:

• The quality of the coded/decoded depth information was evaluated with the PSNR
objective measure. For the quad-based approach, since each view is reduced and
contains only a subset of the quads defining the final representation, the PSNR was
computed for the selected quads only. Hence, the empty regions of each view are
not taken into account in the PSNR computation.

• The quality of the virtual views was evaluated with both PSNR and spatial PSPNR
(S PSPNR) objective measures. The S PSPNR measure was computed using the
PSPNR tool used in the MPEG-3DV group [22]. The concept of Peak Signal-to-
Perceptible-Noise Ratio (PSPNR) was first proposed in 1995 [23,24] in order to
obtain a measurement closer to subjective evaluation.
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(a) QSmax = 8 (b) QSmax = 16

Figure 19. Final representation with two different levels of complexity of the quadTree.

• The PSNR and S PSPNR were computed with respect to the original depth maps,and
not with respect to the depth map modeled by the final non-compressed quad rep-
resentation,as was done in section 4.4 for redundancy reduction evaluation.

Results

Figure 20 shows the depth compression results in terms of rate-distortion performance.
Note that the range of obtained PSNR values is lower than in figures 17 and 18 because the
reference depth is the original depth map and not the one modeled by the non-compressed
quad representation. The figure shows that when the quads of size 1 pixel are not coded
(QSMin = 2) then a bitrate reduction of 40% is obtained compared with coding these
small quads (QSMin = 1). The figure also shows that the settings (QSMax = 8,
QSMin = 2) outperforms MVC for medium and high bitrates (from 0.042 bpp). At
most, a gain of 4dB is obtained at bitrate 0.08 bpp. For low bitrates, MVC outperforms
the quad-based representation. This figure clearly shows that better performances are
obtained when quads of size 1 pixel are not coded. Moreover, it indicates that for low
bitrates the quadTree stucture must be adapted to a coarser approximation. Indeed, the
setting QSMax = 16 shows that increasing the maximum size of the quads could provide
better results at low bitrates.

Figure 21 shows the PSNR results and figure 22 shows the S PSPNR results of inter-
mediate view synthesis with coded depth data. Similarly to the results for the coded
depth on figure 20, the quad-based approach gives higher PSNR and S PSPNR results
at medium and high bitrates. At most, a PSNR gain of 0.33dB and a S PSPNR gain of
2dB are obtained at 0.08bpp with the settings (QSMax = 8, QSMin = 2). Comparing
QSMin = 1 with QSMin = 2 the two figures show that the objective quality has not
decreased although 40% of the bitrate has been reduced.

Figures 23 and 24 show detail examples of intermediate view V2 at frames number 13
and 17 respectively. Corresponding videos can be watched at this adress 3. These views

3http://www.irisa.fr/temics/staff/colleu/
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Figure 20. Rate distortion performance for multiview depth compression with MVC and
coded multiview quad-based representation. Average bitrate VS average PSNR for 3
views and 25 frames of ”Breakdancer” sequence.
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Figure 22. Rate distortion performance for view synthesis using MVD and quad-based
approaches. Average bitrate VS average S PSPNR for 2 intermediate views (V2 and V4)
and 25 frames of ”Breakdancer” sequence.

were synthesized with MVD approach at bitrate 0.041 bpp and quad-based approach at
bitrate 0.047 bpp (QSMax = 8, QSMin = 2). The original image is also shown in
order to compare artifacts induced by the coding and rendering steps. In both figures,
the MVD approach exhibits ghosting artifacts around the dancer. On the contrary, the
quad based example does not contain such artifacts. In figure 24, the red square in the
MVD approach shows a region that has been inpainted during view synthesis using VSRS
software. Note that brown color of the background should appear instead of the blurred
white color of the dancer’s cloth. On the other hand, in the quad-based approach, this
region does not contain any artifact. In the quad-based example of figure 24, the dancer’s
boundaries appear more altered than the MVD approach and original image.

We now give the interpretations of the previous observations:

• The ghosting artifact observed with the MVD approach comes from the fact that
MVC is not designed to preserve depth discontinuities, and therefore typical ring-
ing artifacts appear in the depth maps and finally create ghosting artifacts in the
intermediate view. On the contrary, the quad based example does not contain such
artifacts because the quadTree structure allows to code foreground and background
regions separately.

• The quad-based approach does not contain the inpainting artifact like the one ob-
served with the MVD approach because this region has been filled by the information
of view V5 on the contrary to the MVD approach that used only V3 and V1 for the
view synthesis. Using 3 views instead of 2 helps to reduce the size of unknown areas
in the intermediate views.
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• The dancer’s boundaries in figure 24(b) is a bit deformed because of the coding
process.

These results show that the proposed quad-based representation enables to reconstruct
good quality virtual views. It clearly outperforms the MVD approach at medium and high
bitrates in terms of objective quality measures. Although small distortions may appear
at the edges, it provides equivalent overall visual quality, with no ghosting artifacts.

(a) MVD (b) Quad-based

(c) Original

Figure 23. Detail example of the view synthesis result between MVD approach at 0.041
bpp and quad-based approach at 0.047 bpp.

4.6. Processing costs

The method has not been implemented with processing costs in mind : thus the repre-
sentation construction and encoding are offline processes. However decoding and rendering
may be achieved in realtime thanks to the graphic pipeline as the representation is a set
of 3D textured polygons. Post processing like blending and inpainting may be discarded
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(a) MVD (b) Quad-based

(c) Original

Figure 24. Detail example of the view synthesis result between MVD approach at 0.041
bpp and quad-based approach at 0.047 bpp.
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if fast rendering is mandatory. At the moment, rendering (with blending and inpainting)
is achieved at 4FPS, using openGL commands executed on the CPU.

5. CONCLUSION

This paper presents a polygon soup representation for multiview coding. In a unified
manner, it takes into account issues identified in the literature such as data compactness,
depth maps compression, and intermediate view synthesis. For each temporal frame, a set
of quads is first extracted with a quadtree decomposition of the depth maps. Inter-view
redundancies are then reduced based on a selective elimination of quads. The results show
that the proposed representation provides a good trade-off between rendering quality and
data compactness.

Moreover, the proposed methodology for extracting the representation allows to reduce
ghosting artifacts. Finally, an adapted compression technique is proposed that limits
coding artifacts. Results on the Breakdancer and Ballet sequences show that this repre-
sentation for multiview data outperforms a MVD-based approach for medium and high
bitrates (above 0.04 bpp), in terms of PSNR, S PSPNR and visual quality.

The proposed method still suffers from several limitations. One limitation of the rep-
resentation is that the number of quads depends on the geometry of the scene. Indeed,
more quads are needed for a complex scene containing many geometric details than for a
simple scene containing many planar surfaces. Therefore, the compression rate decreases
as the geometric complexity increases. As shown by the results, our method fails to pro-
vide efficient compression for low bitrates: it is then necessary to adapt the precision
of the tree-structure according to the bitrate. Specific view-dependent visual effects like
reflection due to specular objects are not well modeled in the proposed representation,
as only depth cues are used for quad selection. Adding photoconsistency check during
quad selection would allow to model view-dependant features. Finally, as in most MVD
coding schemes, the quality of the input depth maps directly influences the final rendering
quality. Indeed, inconsistencies in the depth maps are not corrected nor detected in our
representation, as a result some texture misalignment may appear if the depth maps are
not consistent.

Future work will include a study of adaptation of the number of quads. Trade-off be-
tween compression efficiency and quality rendering will be specifically investigated (e.g.
by adapting Td and Tg thresholds according to the targeted bit rates). Moreover, the con-
struction of the representation can be improved to better manage depth and texture errors
or inconsistencies across views. Lastly, the temporal dimension of the video sequence will
be considered to improve performance and to ensure temporal coherence of the proposed
representation. More precisely, we plan to predict a polygon soup at time t+1 thanks to
the polygon soup at time t. As for classical video compression, prediction vectors could
be applied on each quad of the representation. Since quads are 3 dimensional, then 3D
prediction vectors would be considered.
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