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Abstract

In this paper we present a novel apparatus aimed at measuring very small birefringences and

anisotropies, based on frequency metrology and not on polarimetry as usual. In our experiment, a

very high finesse resonant cavity is used to convert the phase difference into a resonance frequency

difference, which can then be measured with very high accuracy. We describe the set-up and

present the results of experimental tests which exhibited a sensitivity δn ≃ 2 × 10−18, allowing

for the measurement of long-predicted magneto-electro-optical effects in gases. Since the shot-

noise limited sensitivity of our apparatus lies well below the state-of-the-art sensitivity, frequency

metrology appears as a promising technique for small birefringence measurements.
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I. INTRODUCTION

High finesse optical cavities play an important role in modern physics, especially in preci-

sion experiments: one famous example concerns the gravitational wave searches [1–5] where

relative sensitivities range from γrel ∼ 10−21/
√
Hz to γrel ∼ 2 × 10−23/

√
Hz, but many

other experiments include high finesse cavities, such as optomechanics measurements [6]

achieving γrel ∼ 2 × 10−17/
√
Hz or tests of the isotropy of light propagation [7] where

γrel ∼ 1× 10−17/
√
Hz.

Since the first electro- and magneto-optical effects have been discovered, about 150 years

ago, the sensitivity of the experiments has improved by more than 10 orders of magnitude. In

particular, the insertion of an optical cavity – resonant or multipass – between the polarizer

and the analyzer, first suggested by E. Zavattini as early as 1979 [8], brought the sensitivity

down by several orders of magnitude thanks to the accumulation of the birefringence effect

on a longer optical path. This approach has been widely used for the past 20 years, leading

in particular to several measurements of Kerr [9–12] and Cotton-Mouton [13–16] effects in

gases.

Table I presents an overview of the most recent experimental results. We use two quan-

tities to compare the achieved sensitivities: the sensitivity γn, i.e. the noise equivalent

birefringence at the relevant detection frequency, and the value δn of the smallest birefrin-

gence actually measured, as inferred from the published data. The former is very useful

to compare the sensitivity of each experiment to the shot-noise limit, but since the mea-

surement times range from a few tens of ms [18] to several tens of ks [19, 20], it cannot

be used to directly compare the actual sensitivities of different experimental set-ups. The

relevant parameter for this purpose is the smallest measured birefringence: it ranges from

1× 10−13 to 1× 10−17 for the experiments using the Pound-Drever-Hall frequency stabiliza-

tion scheme, which is to be compared with the shot-noise limited birefringence 2 × 10−15

measured without any cavity at Tokyo University [20]. The present smallest value 4×10−19

was measured with an original locking scheme using optical feedback [12]; note that it is

less than one order of magnitude above the shot-noise limit. All these results were obtained

after several years of development.

In 2000, an alternative approach was proposed by J.L. Hall and coworkers [21], who sug-

gested converting birefringence effects into frequency effects. This can be done by measuring
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Year Group Effect Technique γn (1/
√
Hz) δn

2000 Tel-Aviv [10] Kerr Resonant cavity ellipsometer 3× 10−15 1× 10−13

2005 BMV [11] Kerr Resonant cavity ellipsometer 2× 10−15 1× 10−15

2009 PVLAS [15, 19] Cotton-Mouton Resonant cavity ellipsometer 5× 10−17 1× 10−17

2009 Q & A [16] Cotton-Mouton Resonant cavity ellipsometer 1× 10−15 1× 10−15

2009 BMV [17, 18] Cotton-Mouton Resonant cavity ellipsometer 2× 10−18 2× 10−15

2009 LASIM/LSP [12] Kerr Resonant cavity ellipsometer 8× 10−19 4× 10−19

2003 Tokyo [20] Cotton-Mouton Single pass ellipsometer 3× 10−13 2× 10−15

2000 JILA [21] Sensitivity test Frequency measurement 2× 10−15 1× 10−17

2009 This work Sensitivity test Frequency measurement 1× 10−16 2× 10−18

TABLE I: Review of recent experimental results concerning small birefringence measurements in

gases. The reported γn is the noise equivalent birefringence at the detection frequency, while δn

corresponds to the smallest measured birefringence value inferred from the published data.

the resonance frequency of a Fabry-Perot cavity. Indeed, this approach takes advantage of

the recent progress in frequency metrology and should result in an unsurpassed sensitivity

along with an impressive dynamic range. The tests performed by J.L. Hall and coworkers

lead to an equivalent sensitivity δn = δν/ν ≃ 1 × 10−17 (see Table I), which appeared to

be limited by various experimental effects, including vibrations, perfectible optical isolation

and birefringence noise of the cavity mirrors.

In fact, J.L. Hall’s proposal is similar to the method used in large active ring lasers

aimed at precisely measuring the Earth rotation rate [22, 23] thanks to the Sagnac effect.

These rings have areas of tens to hundreds of square meters, and exhibit a relative frequency

sensitivity on the order of 10−18 − 10−20/
√
Hz.

In this paper, we present promising sensitivity tests performed on an apparatus which is

based on the same idea but aims at measuring small directional anisotropies of the propaga-

tion medium. Indeed, we have built a ring cavity, so that one can distinguish two propagation

directions. A laser light beam is frequency-stabilized to the clockwise cavity resonance, and

injected into the cavity both clockwise and counterclockwise. The counterclockwise error

signal yields the value of the directional anisotropy.

Our first goal is to measure the magneto-electric directional anisotropy of light which
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occurs in any medium in the presence of crossed transverse electric and magnetic fields.

This anisotropy has indeed been predicted in the 70’s [24] and has only been detected

recently on light absorption by a crystal [25].

II. OPTICAL SET-UP

The light source is a commercial NPRO Nd:YAG laser (Lightwave Electronics, now JDSU,

NPRO-126) emitting 130 mW of cw light at λ = 1064 nm. It is tunable thanks to a Peltier

cell controlling the crystal temperature and to a piezo-electric actuator that constrains the

crystal.

The core of the experimental set-up consists of a plane square optical cavity (see Fig. 1)

made with 4 identical commercial mirrors from Layertec GmbH. These spherical mirrors with

a 500 mm radius of curvature are arranged on a square with an arm length L0 = 400 mm,

so that the beam waist on the mirrors is w = 0.7 mm. Due to non-normal incidence

on the mirrors, a square cavity is strongly birefringent, so that in our case the resonance

frequencies of the two polarization eigenmodes are well separated. We can thus adjust the

incident polarization to be orthogonal to the cavity plane (s-polarization), so that only the

high finesse mode is fed. The value of this finesse is F = ∆νFSR/∆νc ≃ 50000, corresponding

to a photon lifetime in the cavity τ = 42 µs (see Fig. 2). Here ∆νFSR = 188 MHz is the free

spectral range and ∆νc is the cavity linewidth.

The laser beam is matched to the cavity transverse mode TEM 00 by two pairs of cylin-

drical lenses, in order to take into account the astigmatism of the laser and that of the cavity.

The position of the 4 lenses is adjusted by sweeping the laser frequency and minimizing the

amplitude of higher order transverse modes. About 99% of the intracavity power resonates

in the TEM 00 mode. Light is injected into the cavity both clockwise (cw) and counter-

clockwise (ccw), and 4 large area homemade photodetectors monitor the light transmitted

and reflected by the cavity in each direction.

At this stage of the development, the cavity is not yet in a vacuum chamber but in an air-

tight plexiglas box. A second wooden box backed with an acoustic isolating foam surrounds

the first one to provide passive thermal insulation and airborne acoustic noise reduction. As

far as solidborne noise is concerned, the whole experiment takes place on a Newport RS4000

optical table sustained by 4 PL2000 pneumatic isolators.
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III. LASER STABILIZATION

The laser is frequency stabilized on the cavity resonance for the clockwise laser beam,

following the well-known Pound-Drever-Hall scheme [26, 27].

The laser beam is frequency-shifted with an AOM mounted in a cat’s eye retroreflector to

circumvent the angular dependence of the diffracted beam on the RF frequency. Then it is

injected clockwise (cw) into the square cavity. The reflected beam provides the measurement

of the beam detuning with respect to the cavity, thanks to the rEOM phase modulation at

frequency Ω = 10 MHz (see Fig. 1). The modulation depth is set to β ≃ 1, so that the

optical power P0 is essentially concentrated in the carrier of power Pc = J2

0
(β)P0 and in the

two first order sidebands Ps = J2

1
(β)P0. The reflected power is monitored with the PRcw

photodetector and its spectrum is shifted towards null frequency with a RF-phase sensitive

demodulator which phase ϕcw is adjusted so as to maximize the signal amplitude accross a

resonance.

This demodulated signal is null at resonance and linear for laser-cavity detunings smaller

than the cavity linewidth, with a slope D = 4
√
PcPs/∆νc. It constitutes the frequency

error signal which is fed to the frequency actuators through the servo-loop filters: a fast

and fine feedback is provided by the AOM, while the laser piezo-transducer (PZT) and

thermo-electric cooler (TEC) actuators account for slower and coarser corrections. The fast

controller consists of 3 Proportional Integral (PI) stages with respective corner frequencies

30 kHz, 5 kHz and 3 kHz. The loop gain is adjusted to have a resonance of about 10 dB at

the loop resonance frequency fr ≃ 180 kHz. Since the unity gain frequency is 2 to 3 times

smaller for a gain margin between 6 and 10 dB, we can estimate the servo-loop bandwidth

to 60-90 kHz. The fast controller output is sent on the one hand to the AOM driver, and

on the other hand to the medium speed PZT-controller, which consists of a Proportional

Integral Differential (PID) stage with an integrator (resp. differentiator) corner frequency

100 Hz (resp. 1 kHz). The proportional gain is set to damp smoothly the AOM command

signal towards zero. A similar approach is adopted for the slow TEC-controller, with an

integrator (resp. differentiator) corner frequency 15 mHz (resp. 150 mHz) nulling the mean

value of the PZT command signal.

To characterize the performance of the frequency stabilization, we intercept the signal

immediately before demodulation via a 20 dB coupler. We present on Fig. 3 the power
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spectral density of this signal, obtained with a 3251 spectrum analyzer from Aeroflex. In our

present experimental conditions, this spectrum represents fairly well the frequency detuning

noise of the laser beam to the cavity. The smallest noise density is obtained at frequencies

on the order of a few hundred Hz. The shot-noise limit can be evaluated from the average

reflected power; it is situated about 15 dB below the lowest noise density.

We will see in the next section that the anisotropy signal appears as a disturbance of the

laser frequency, hence the better noise suppression, the smaller anisotropy detected.

IV. SENSITIVITY MEASUREMENTS

In this section, we describe the experimental tests we have performed in order to evaluate

the sensitivity of our apparatus. Since its present configuration aims at measuring frequency

differences between the two propagation directions, we mimicked such an anisotropy with a

broadband electro-optic modulator (bEOM, not shown on Fig. 1) placed on the clockwise

beampath just before the cavity. The bEOM is fed with a sinusoidal signal of amplitude

VFM at frequency fFM, giving birth to a phase modulation of amplitude β̃VFM at frequency

fFM, hence a frequency modulation of amplitude δνFM = β̃VFMfFM at the same frequency

fFM. Here β̃ = 0.85 mrad/V is the bEOM modulation depth, which has been accurately

measured at this wavelength in a separate experiment with a Michelson interferometer.

The laser frequency modulation acts as a perturbation and is corrected as such by the

servo-loop placed on the cw propagation direction, provided its frequency is within the loop

bandwidth. This is definitely the case since the modulation frequency is in the 100-Hz

range while the servo-loop bandwidth is in the 100-kHz range. By contrast, the efficient

suppression of the frequency modulation on the cw beam creates a discrepancy between the

laser and the cavity resonance on the ccw direction, which is detectable by analyzing the

ccw error signal at frequency fFM. Using a lock-in amplifier we extract the fFM-spectral

component δV on the error signal. We present on Fig. 4 the results of our measurements for

different frequency modulation amplitudes and two modulation frequencies fFM of 217 and

276 Hz, situated in the region where the noise spectral density is at its lowest (see Fig. 3).

The experimental points fit nicely on a line over more than 6 orders of magnitude. The

frequency sensitivity is 500 µHz after a measurement time τ ≃ 1000 s, which is equivalent

to a birefringence sensitivity δn ≃ 2× 10−18. Assuming that the noise is white in the region
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of interest, this yields a noise equivalent birefringence γn = δn×
√
4τ ≃ 1× 10−16 /

√
Hz.

V. OUTLOOKS AND CONCLUSION

Let us now evaluate how far we are from the ultimate shot-noise limited sensitivity of

our present apparatus: for an ideal optical coupling, the mean power impinging onto the

reflection photodiode PRcw at resonance writes

PRcw = 2Ps +
Pc

4
,

where Pc is the optical power in the carrier and Ps that in each sideband at frequency

ν ± Ω/2π. This generates a statistical white noise with a power spectral density γsnP =
√
2hνPRcw, which is converted into frequency noise by the frequency regulation. The fre-

quency noise spectral density γsn ν is simply obtained by dividing γsnP by the discriminator

D, which yields

γsn ν =

√
hν

2
√
2

∆νFSR
F

√

Pc/4 + 2Ps

PcPs

.

One thus sees that the shot-noise limited sensitivity is inversely proportional to the cavity

finesse F and roughly inversely proportional to the square root of the coupling efficiency,

which is represented by Pc in the above equation. For our present values Pc = 10 mW, Ps =

3 mW, ∆νc ≃ 4 kHz, one finally obtains a shot-noise limited sensitivity γsn ν ≃ 10 µHz/
√
Hz.

Converted into birefringence sensitivity, one obtains γsnn ≃ 1× 10−19 /
√
Hz.

The sensitivity of our apparatus presently lies 3 orders of magnitude above this value.

This estimation is not fully consistent with the spectrum analysis measurements (see Section

III) which exhibit a noise spectral density only 15 dB above the shot-noise limit. This

discrepancy is mainly due to an imperfect optical coupling, 3 to 10 times smaller than the

ideal one, and to a finesse of 15000 instead of 50000 at the time of our measurements, due

to mirror pollution and cavity misalignment. Indeed, both defects contribute to degrade

the signal since the discriminator D is proportional to the coupling efficiency and to the

finesse. Another noise source originates from the weakness of the voltages corresponding to

the smallest frequency modulations we measured, in the mV range, hence very sensitive to

environmental noise sources.
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The achieved sensitivity is a very encouraging result, and we have already identified

several ways to improve it. Let us cite a few improvements that are planned for the near

future: first we will optimize the mode matching and cavity alignment, which should allow

us to improve our results by at least one order of magnitude. Second, we will place the

cavity in a vacuum chamber in order to improve the thermo-acoustic insulation and to

decrease the disturbances in the 100-Hz frequency range, where the detection takes place.

We also plan to extend the servo-loop bandwidth by a factor 4 to 5 by replacing the Acousto-

Optic Modulator by a broadband Electro-Optic Modulator, thus suppressing the delay which

severly limits the servo-loop bandwidth. This should in turn increase the servo-loop gain

at low frequencies by at least the same factor, provided it is not limited by the operational

amplifiers maximum gain. All these developments should allow us to overcome the present

state-of-the art by about one order of magnitude [12] with our present apparatus.

Ultimately, we can reasonably gain 1 to 2 more orders of magnitude on the sensitivity by

increasing the cavity finesse and the optical power. Of course, thermal effects on the mirror

coatings usually limit the intracavity power. We can ultimately increase it somewhat more

by using automatic alignment servos as is done on gravitational waves interferometers [1–5].

Now that our apparatus is functional, we will use it to perform some novel measurements.

Indeed, it has definitely the required sensitivity to achieve the unprecedented detection of

several magneto-electro-optic effects in gases. In addition to the directional anisotropy we

have already mentioned, our apparatus also allows us to measure for the first time the Jones

magneto-electric birefringence in gases [28, 29].
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L. Pinard, O. Portugall, G. Trénec, J.-M. Mackowski, G.L.J.A. Rikken, J. Vigué and C. Rizzo,
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FIG. 1: Experimental set-up (color online). The beampath is represented in red, the frequency

stabilization system in blue and the measurement signal generation in green. The green blocks on

each cavity arm represent magnetic and/or electric fields zones that can be inserted in order to

measure magneto-electro-optic effects in gases. An optical isolator (OI) prevents feedback noise; the

laser beam frequency is then frequency-shifted with an acousto-optic modulator (AOM) in a cat’s

eye retroreflector. A resonant electro-optic modulator (rEOM) provides the phase modulation

at frequency Ω for the Pound-Drever-Hall frequency stabilization. The servo actuators are the

laser thermo-electric cooler (TEC), the laser piezo-electric transducer (PZT) and the AOM. The

light polarization is controlled all along the beampath by halfwave (λ/2) and quarterwave (λ/4)

retardation plates, and by polarizers (P). Light is injected into the cavity both in the clockwise (cw)

and counterclockwise (ccw) directions; the PRcw and PRccw (resp. PTcw and PTccw) photodiodes

monitor the reflected (resp. transmitted) power in both directions.
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FIG. 3: Spectrum analysis of the reflected signal before demodulation. In our present experimental

conditions, it represents fairly well the frequency detuning noise. The frequency resolution is limited

by our spectrum analyzer 1 Hz resolution bandwidth. The shot-noise limit represented as a dashed

line on the figure is evaluated from the average power impinging on the photodiode PRcw. It is

situated about 15 dB under the noise spectral density in the region of interest. The bounce at

resonance frequency fr is clearly visible. The two values of fFM used in our experiment are chosen

so that the noise spectral density is at its lowest.
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FIG. 4: Sensitivity range of our present apparatus. A laser frequency modulation of amplitude

δνFM at frequency fFM is created by a sinusoidal voltage applied to an EOM placed on the clockwise

beampath. Since this modulation is corrected by the frequency servo-loop, it generates an out-of-

phase mismatch of the laser frequency to the cavity resonance on the counterclockwise beam. This

mismatch thus appears as a spectral component at fFM on the counterclockwise error signal. Its

amplitude δV , measured with a lock-in amplifier, is proportional to the frequency excursion δνFM.

The linearity between δV and δνFM is excellent over more than 6 orders of magnitude, and the

sensitivity is 500 µHz, achieved with a measurement time of 1000 s.
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