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ABSTRACT

Diffuse imaging in the gamma-ray energy range is a challenging problem, since faint radiation is usually mixed with strong instrumental
background components. This situation results in data sets that are not very informative, so they lead to non robust image reconstruction. In
this paper, we used a Bayesian approach to produce sky-maps with high resolution features. This method is then compared with the standard
Richardson-Lucy algorithm on the basis of mock data sets that were generated from the SPI/INTEGRAL in-flight model.
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1. Introduction

Diffuse gamma-ray emission is usually hard to detect since
extended sources are faint and mixed with strong instrumen-
tal background components. This situation results in data sets
that are not very informative, so they lead to non robust im-
age reconstruction. In such a context, precise diffuse imaging
is a challenging problem that may benefit from advanced im-
age reconstruction techniques. In this paper, this question is
addressed through Bayesian inference, which is a flexible way
to account for both the random fluctuations in the data and the
prior constraints required for a robust and meaningful recon-
struction. More precisely, pertinent prior models are considered
for the purpose of diffuse emission reconstruction, and the sky-
map is provided through a computationally attractive convex
optimisation program.

Performance of the method is tested on mock data and com-
pared to the Richardson-Lucy algorithm (Lucy 1974) that re-
mains the gold standard in diffuse emission analysis. Our study
is based on the SPI/INTEGRAL spectrometer (Vedrenne et al.
2003), a coded-mask telescope that has been optimised for
studying 511 keV radiation (Knödlseder & Vedrenne 2001). In
order to assess how SPI can address the important question of
morphology determination of the positron annihilation radia-
tion in the centre of the Galaxy, simulations of mono-energetic
511 keV extended emissions are considered. Though SPI ben-
efits from high spectral resolution, the intrinsic spatial resolu-
tion is rather poor (≈2.5◦). However, it should be noted that
the final angular resolution on the sky-map strongly depends
on prior knowledge introduced into the problem formulation.

For instance, the angular resolution for resolving point sources
is dramatically improved by the Iterative Removal of Sources
(IROS) method, see Dubath et al. (2004) and references therein.
For diffuse emission, the problem is somewhat more difficult.
However, this paper shows that a pertinent prior knowledge can
lead to high-resolution reconstruction of extended structures,
i.e., emission maps with relevant details beyond the intrinsic
resolution of the instrument.

2. Poissonian observation model

Let x ∈ R
N
+ be the unknown gamma-ray emission map dis-

cretized into N pixels with non-negative emission rates. The
measurements (or data) obtained from the instrument are gath-
ered in the vector y = {ym ∈ N}, where m indicates a spe-
cific combination (detector, pointing, energy). The first step to-
ward successful image reconstruction is to build an observation
model which describes the statistics of the measurements.

Poissonian statistics is a standard model used to describe
the random fluctuation of a counting process. Hereafter, y is

the realisation of a random vector Y, with mean ȳ
def
= Hx + b

that depends on a component for background noise b ∈ R
M

and on the map x convolved through the instrument response
H ∈ R

M×N (coded mask, detectors efficiency, etc.). Assuming
statistical independence of the measurements, the probability
that a specific value Y = y occurs is then

Pr(Y = y|x, b) =
M∏

m=1

(ȳm)ym

ym!
e−ȳm (1)
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with ȳm the mth component of ȳ. This model can be applied to
the SPI observations, since:

(a) dead times in the electronic devices are moderate (�3%)
and so produce negligible distortion of the Poissonian
statistic (Knoll 1989, p. 125);

(b) the independence property assumed in (1) is valid even with
multi-detector interactions, provided that pseudo-detectors
are used for multiple events (Kandel 1998).

Finally, the instrument response H was computed using Monte
Carlo methods, and ground/in flight calibration was performed
to validate the simulations (Sturner et al. 2003).

The observation model Pr(Y = y|x, b) is the starting point
for several methods of estimating the emission map since it is
the likelihood function. In practice, the neg-Log likelihood is
often more convenient to handle and reads (up to an additive
constant):

L(x; b, y) =
M∑

m=1

ȳm − ym log ȳm. (2)

Minimising this expression leads to the maximum likeli-
hood (ML) solution which, if it exists, is usually over-noisy.
However, interesting results can be obtained by minimising a
criterion related to Eq. (2); see Sect. 3.

As a final remark, let us note that image or spectral recon-
struction techniques sometimes resort to the following “ad hoc”
quadratic approximation to L

χ̂2(x; b, y)
def
= ||Ŵ(y − ȳ)||2 (3)

with Ŵ
def
= diag{y−1/2

m }, see e.g., Skinner & Connell (2003)
and Bouchet (1995). Provided that the number of expected
counts {ȳm} is greater than a few dozen (Bouman & Sauer
1996), this approximation is accurate and attractive, since it al-
lows more efficient algorithmic schemes. However, for the pur-
pose of diffuse emission imaging, this approximation is found
to be too coarse, and the exact likelihood L will be considered
in the following.

3. Imaging gamma-ray diffuse emissions
with coded aperture

Designing systems with optimal transfer functions has a long
history in coded aperture imaging. In this respect, the uniformly
redundant arrays (URA) introduced by Fenimore & Cannon
(1978) are of prime interest, because they retain the good spa-
tial resolution of a finite pin-hole with a high open fraction (i.e.,
high flux transmission). Moreover, if the coding system is per-
fectly cyclic, the reconstruction problem is trivial: H is a full
rank square matrix, and a simple cross-correlation provides the
inverse matrix that reads (Skinner & Ponman 1995)

H� = αHt − βU (4)

where α and β depend on the mask open fraction, U is a matrix
filled with one, and ·t is the matrix transpose operator. Even for
non-cyclic systems, a basic cross-correlation (4) (or one of its
refinements) often provides a reliable reconstruction technique.
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Fig. 1. Unstable behaviour of the ML estimate: a) a 1.7 Ms observation
of a � = 20◦ circular bulge (mono-energetic 511 keV emission with
10−3 ph s−1 cm−2 integrated flux) is generated based on the SPI model
described in Sturner et al. (2003); b) the ML estimate produced by
minimising (2).

This is the case, for instance, for the IBIS camera that has
“nearly” optimal coding properties; see Goldwurm et al. (2003)
for details. For SPI, however, the coding system is far from pro-
ducing an orthogonal coding of the emission map. Hence, H is
no longer close to an orthogonal matrix and correlation tech-
niques generally produce strong artefacts.

As correlation is a linear procedure, it does not take into ac-
count the Poissonian nature of the measurements arising when
imaging diffuse gamma-ray emission. This central problem can
(and should) be addressed with statistical inference tools to
provide consistent reconstruction. In this respect, the ML is
a common choice, since this estimator has good asymptotical
properties1 and it has been used with success by Skinner &
Nottingham (1993). However, ML is also known to be very
sensitive to noise when the signal-to-noise ratio (SNR) is low
and/or the unknown and measurements are of comparable size.
For instance, minimising Eq. (2) for a mock data set produced
by an emission map with a disk morphology (cf. Fig. 1) leads
to a useless solution. Roughly speaking, this is a direct conse-
quence of the “low pass” property of the instrument: i.e., the
ML is almost identical to an “inverse” filter and it produces
an unacceptable magnification of the high frequency compo-
nents of the noise. This is a common problem known as ill-
conditioning: the data do not contain sufficient information to
determine a robust (or even unique) solution to the image re-
construction problem (Demoment 1989).

3.1. Bayesian framework for data inversion

In general, use of prior information introduces some additional
constraints that stabilise the inversion at the expense of a cer-
tain bias in the solution. Hence, without any additional data,
decreasing the variance of the estimation can only be achieved
through introduction of prior knowledge about the foreseen so-
lution. The Bayesian framework is a flexible means to intro-
duce prior knowledge into the problem. The cornerstone of

1 For an infinite amount of measurements, the ML is an unbiased
estimator with minimal variance (Kay 1993, Chap. 7).
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Bayesian inference is the posterior distribution that gathers our
knowledge concerning the image x and the observation model.
From the Bayes’ rule, we get

p(x|y, b) =
Pr(Y = y|x, b)p(x)

Pr(Y = y)
(5)

where the prior information is incorporated in the analysis via
the prior distribution p(x). Note that the denominator in Eq. (5)
is just the normalisation factor for the posterior distribution and
can often be cancelled-out in computations. Several distinct es-
timators for x can be drawn from this posterior distribution.
The best choice from the computation point of view is certainly
the Maximum a posteriori estimator that reads in our context

x̂ = arg min
x∈RN

+

J(x; b, y)

with J(x; b, y)
def
= L(x; b, y) − log p(x). (6)

This solution results in a compromise between information con-
tained in the data and in the prior distribution. Through the
prior distribution p(x), the investigator is required to provide
relevant prior information about x. Physical constraints like
positivity, or previous results produced by other instruments,
can improve the estimation, but a satisfactory treatment of the
problem often relies on more restrictive constraints. A clas-
sic (and drastic) approach consists in reducing the emission
morphology to a parsimonious parametric model, e.g., disk,
Gaussian, etc. This leads to model-fitting procedures used, for
instance, in diffuse imaging (Knödlseder et al. 2003), or in
point-source imaging within an “iterative” framework, as in
the iterative removal of sources (IROS) paradigm (Skinner &
Connell 2003).

Specifying the morphology produces very robust, but
sometimes very biased solutions, so that there is evident in-
terest in using less restrictive constraints. Since physical sys-
tems are always spatially band-limited, a very popular choice
is to consider only solutions x with a limited frequency sup-
port. Whereas Wiener filtering2 or Truncated Singular Value
Decomposition3 readily fall in this category, it is now well-
established that stopping the Richardson-Lucy (Lucy 1974)
(RL) algorithm before convergence enforces the same kind of
constraint implicity (Fessler 1994). The solution being band-
limited, all these techniques lead to low-resolution maps. The
final resolution depends both on the noise level and the in-
strument bandwidth, so there is a potential loss in interesting
details, like sharp transitions between media. This is a critical
issue for SPI, since it has a rather poor intrinsic angular res-
olution of ≈2.5◦. However, we introduce an appropriate prior
distribution to the following, which leads to preserving high
resolution details in the map.

3.2. Regularising with Markov random fields

In this study, p(x) was chosen in order to favour local diffuse
emission. This leads us to use Markov Random Fields (MRF),

2 See Hunt (1973) for the pioneering contribution and Rideout &
Skinner (1996) for its application to a coded aperture telescope.

3 See Hansen (1992) for the mathematical foundation of the method
and Milne et al. (2002) for its application to γ-ray diffuse imaging.
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Fig. 2. For any pixel xn in the map,Vn is the neighbourhood gathering
the nearest eight pixels (left). In order to favour diffuse emission maps,
this neighbourhood is decomposed into pair-wise pixel interactions to
compute a numerical approximation of the gradient in the map (right).

since they are a flexible means to adjust local correlation in the
map. In a MRF, the conditional probability density function
(pdf) in an arbitrary pixel xn only depends on the values of its
neighbours, i.e., (Besag 1974)

p(xn | xl, l ∈ S) = p(xn | xl, l ∈ Vn) (7)

where S = {1, · · · ,N} is the set of the pixel sites in the map,
and Vn is the neighbourhood for pixel xn. The choice of Vn

determines the range of interaction between pixels in the prior
distribution. Small neighbourhoods usually provide a sufficient
description of the local interactions, and a typical choice in
image inversion is the “nearest eight pixels” neighbourhood
shown in Fig. 2-(left). Under a positivity constraint fulfilled in
practice, the Gibbs formulation is convenient for specifying the
full pdf of the MRF defined by Eq. (7)

p(x) ∝ exp
[−α∑c∈C φ(δc)

]
(8)

with α ∈ R+ a free parameter which adjusts the correlation
strength in the prior distribution; see Sect. 4. The scalar penalty
function φ measures the spatial roughness in the map, in order
to favour diffuse emission (some typical choices are presented
below), and δc is the numerical gradient

δc =
∆c

dc
(9)

where ∆c and dc, respectively, denote the difference of the val-
ues and the distance of two pixels in a pair c of adjacent pixels.
These pair-wise interactions result in a decomposition of the
nearest eight pixel neighbourhood as depicted in Fig. 2-(right).
With our choice of interactions, dc can only take two distinct
values: d1 for a vertical or horizontal pair of pixels, and

√
2d1

for a diagonal pair. Note finally that δc also reads as the cth
element of the matrix-vector product Dx, where D is a 1st or-
der finite difference matrix – i.e., assuming a lexicographical
column ordering of the pixels, D is a straightforward generali-
sation of the band diagonal matrix

1
d1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 −1

1 −1
©

© . . .
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (10)

that computes pair-wise differences along the vertical direction
in the map; see for instance (Vogel 2002, p. 85) for details.
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Fig. 3. Standard choices for potential function φ; see text for details.

3.3. Choosing a penalty functional φ

According to Eqs. (8) and (6), the emission map is defined by

x̂α = arg min
x∈RN

+

J(x; b, y)

with J(x; b, y) = L(x; b, y) + αP(x) (11)

with P(x) =
∑

c φ(δc). In Eq. (11), the notation x̂α was adopted
to make the solution dependency in the (regularisation) param-
eter α clear. The penalty function φ has a decisive impact both
on the reconstruction quality and on the algorithm complex-
ity. Entropy penalties are often used in astronomy to enforce
positivity on the sky-map pixels. However, such penalties are
not suited for finite differences between pixels, since they are
usually not defined for negative values. Hence, it is natural that
only symmetric and pair penalties in the literature are consid-
ered for our problem. As depicted in Fig. 3, these penalties
fall basically into three main groups of increasing complex-
ity: quadratic, convex, and non-convex. These three choices are
now discussed.

A) The quadratic choice leads to a Gaussian prior distribu-
tion. Hence, the reconstruction (6) is a constrained Wiener fil-
tering which extends the work of Rideout & Skinner (1996)
to the Poissonian statistic. This choice is attractive, since it
usually produces faster algorithmic forms. However, Gaussian
prior distributions cannot restore high resolution components
of the emission since they produce a spatially band-limited re-
construction.

B) The convex choice gathers penalties that increase at in-
finity at a slower rate than the quadratic. This feature leads
to mono-modal distributions allowing both reduction in the
noise and sharp transitions in the emission map. Several convex
penalties exist in the literature. Most of them are “�2�1” penal-
ties, since they are quadratic (�2) toward zero and linear (�1) for
large values; cf. Fig. 3B. A typical example is the “hyperbolic”
function introduced by Charbonnier et al. (1997)

φ(u; t) =

√(u
t

)2
+ 1 (12)

with t > 0 a scaling factor that determines the transition be-
tween the quadratic and linear behaviour. It is worth noting
that φ(u) ∝ |u| for small values of t. This is important since
φ(u) = |u| produces segmented emission maps (Belge et al.
2000), a property illustrated in Sect. 5.1.

C) The non-convex choice gathers functions with finite
asymptotes at infinity (Fig. 3C). This feature produces a

clustering of the emission levels in the map (Idier &
Blanc-Féraud 2001, Sect. 6.3.2). However, non-convex penal-
ties lead to multi-modal criteria J. Minimising such criteria is
a hard task since local optimisation techniques (e.g., gradient
descent) may be trapped by local minima. Global optimisation
is possible, e.g., with simulated-annealing (Geman & Geman
1984), but these techniques put to many demands on the com-
puter for SPI image reconstruction.

4. Computing the emission map

Computing the emission map from Eq. (11) leads to non-trivial
problems that are addressed in this section.

4.1. Numerical optimisation stage

The computation of the emission map is far from being a triv-
ial task in general. Even if J has many “good” properties4,
no explicit solution for the minimisation problem (11) ex-
ists. Moreover, numerical optimisation algorithms (e.g. quasi-
Newton) are not easy to implement, since more than 104 pa-
rameters (and as many data points) are usually involved in the
problem. In such a context, the structural properties of J should
be taken into account in order to design an efficient algorithm
with a reduced cost of implementation. A Bayesian version
of the RL algorithm is interesting in this respect since a very
simple update ensures global convergence with a fair asymp-
totic speed. A full description of the algorithm can be found in
Appendix A.

4.2. Background handling

Criterion J cannot be used directly, since the mean com-
ponent b of the background is usually unknown. For
SPI/INTEGRAL, the background component estimation re-
lies on “templates” built from various tracers of the back-
ground activity (e.g., empty fields, saturated events in the
anti-coincidence system or in the detectors, etc.); see for in-
stance Jean et al. (2003). Constructing appropriate templates
is a rather sensitive question that depends on the astrophys-
ical problem in hand. Estimating the background is a major
question when producing gamma-ray emission maps, so here
we regard b as known. Actually, this assumption is not a seri-
ous drawback, as our purpose is to compare our diffuse imag-
ing technique with standard algorithms on mock data sets.
Moreover, we established in Sect. 5.1.D that our method is
robust with respect to unavoidable errors in the background
estimation.

4.3. Tuning parameters α and t

From Eq. (6), computing the emission map requires tuning the
regularisation parameter α that balances the prior information

4 Under the standard requirement that Ht H+ Dt D is a positive def-
inite matrix, J is strictly convex, coercive, and continuously differ-
entiable ensuring that one, and only one, minimiser exists and that
gradient-based algorithms are well-defined.
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Fig. 4. A selection of the regularisation parameter α by means of the L-curve for φ(u) = u2 (case A). The original emission morphology is a
centred circular bulge (diameter � = 20◦) with a 511 keV mono-energetic emission and a 1.5 × 10−2 ph s−1 cm−2 integrated flux. Mock data
were generated according to the exposure map shown in Fig. 5.

in the solution. In practice, the results are quite sensitive to this
tuning and a key problem is to choose this parameter in an “ob-
jective” framework. The Baysesian approach provides a for-
mal framework for estimating these parameters from the data
(Archer & Titterington 1995). Nonetheless, the resulting algo-
rithms have two major drawbacks: first, they rely on stochastic
sampling, which is very time-consuming; second, there is no
consensus as to their efficiency (Descombes & Goussard 2001).

Non-stochastic methods exist, however, in the linear case
i.e., when both φ and L are quadratic5. Some of them rely on
theoretical foundations and often provide a good estimate, if
not perfect, of the “best” tuning. There is a major difficulty,
however, in defining what we mean by “best” tuning even in
this case. One school of thought holds that one should aim for
a reconstructed image that is consistent with the data, as far as
the data accuracy allows, but not further. Motivated by the fact
that in the asymptotic limit Eq. (2) has a χ2 distribution with M
degree-of-freedom, a common expression of this philosophy is
to adjust α so that the data agreement (3) reaches the expected
value of this distribution or a closely related one (Thompson
et al. 1991). This is a simple trick to get “on the map”, but
this tuning often lacks robustness in practice, even in the linear
case.

Another school of thought insists that image quality instead
depends on what information the user wants to extract. In this
respect, the tuning should depend not only on the statistic of
the data agreement term (e.g., the χ2 method), but also on the
penalty term, since it reflects a trade-off between data and prior
information fidelity. A simple way to visualise such a trade-off
is by the mean of the L-Curve, a parametric plot of the prior
knowledge fidelity P(̂xα) versus the data agreement L(̂xα; b);
see Fig. 4 for a typical example. Intuitively, the best regulari-
sation parameter should lie near the corner (i.e., the maximum

5 For instance, if one uses a quadratic penalty and the quadratic
approximation χ̂2 given by Eq. (3) instead of L.

bending) of the L-curve, since this value realises the best trade-
off (Hansen 1992). In the linear case, this choice is supported
by various studies and is often efficient; however, some caveats
exist – see (Hansen 2001, Sect. 8) for a recent review and a
cautionary note. In the non-linear case (i.e., when L and/or φ
are no longer quadratic), the effectiveness of the L-curve crite-
rion instead depends on the application. There is empirical ev-
idence, however, that this method still works for image recon-
struction with a Poissonian statistic; see for instance Kaufman
& Neumaier (1996) for a related example in medical imaging.
As demonstrated by the test on mock data depicted in Fig. 4,
this is also the case for the SPI imaging problem, and the L-
curve will be used in this study.

Finally, let us recall that a threshold parameter t has to be
tuned if a convex �2�1 function like (12) is used. This parameter
should be adjusted to separate noise from the gamma emission
in the solution. Even if this additional parameter complicates
the tuning of the method, finding a proper value for t is not a
very difficult task (see Sect. 5.1).

5. Simulated data and reconstruction results

Imaging diffuse emission often involves large scale structures
with faint flux and high background level. For some insight
into the properties of the method described in Sect. 3.3, a first
step is to perform reconstruction in realistic conditions (i.e.,
low signal flux and high background level) from mock data. As
explained in the introduction, we based our study on analysis of
the 511 keV emission morphology in the centre of the Galaxy.
This radiation was detected as being extended in previous stud-
ies; see Knödlseder et al. (2005) and references therein.

The SPI/INTEGRAL in-flight model presented in Sturner
et al. (2003) was used to generate mock data sets on the basis
of the observations of the core program for the Galactic plane
scan through INTEGRAL orbital revolutions 19-92. In the in-
terval |l| < 55 and |b| < 25 of Galactic longitude and latitude,
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Table 1. Observation context used for the generation of mock data
sets. S =

∑
m[Hx�]m is the mean number of events from the signal

and B =
∑

m bm is the mean number of events from the background.

Morphology Integrated flux SNR
[ph s−1 cm−2 ] S/

√
B [σ]

Circular
bulge

F1 = 1.5 × 10−3 41
3.0 × 10−3 82
7.5 × 10−3 205
1.5 × 10−2 410

Bulge
+

Disk

F2 = 2.9 × 10−3 46
5.8 × 10−3 92

1.45 × 10−2 230
2.9 × 10−2 460

respectively, the exposure is concentrated along the Galactic
plane (see Fig. 5). The data set consists of 7.8 × 104 measure-
ments with a total exposure time of 2.9 × 106 s. Two emis-
sion profiles will be considered in the following: a uniform,
extended emission within a circular bulge and a more realistic
“bulge+disk” emission. The integrated emission flux is F1 =

1.5 × 10−3 ph s−1 cm−2 for the circular bulge (F2 = 2.9 × 10−3

for the bulge+disk emission) and is consistent with previous
experimental determination of the 511 keV emission flux in
the centre of the Galaxy (Milne et al. 2002). Emission with 2, 5
and 10× F1 (2, 5 and 10× F2) were also considered in order to
assess how the morphology determination can progress as the
SNR grows. Finally, a strong background component following
the background model presented in Knödlseder et al. (2005)
was added to the mean of the Poissonian model (1) leading to
mock data that is as realistic as possible. The key elements of
the observation are gathered in Table 1.

5.1. Reconstruction results: the circular bulge

The first test was based on uniform emission in a centred cir-
cular bulge with diameter � = 20◦; see Fig. 1. This mor-
phology allows a simple evaluation of the performance of
the method and makes the high resolution potential of a con-
vex �2�1 penalty clear. Only single events in the data within 509
to 513 keV were selected to produce reconstruction within
|l| < 40◦and |b| < 20◦at a pixel size of 0.5◦ × 0.5◦. The mean
number of background events in the selected area of the sky
amounts to approximately B = 5.81 × 106 counts.
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Fig. 6. RL iterations for the reconstruction of the disk with 1.5 ×
10−2 ph s−1 cm−2: iteration number 3 a) and 13 b).

A) Richardson-Lucy vs. Bayesian estimate: in this study, the
RL algorithm serves as a comparative tool. More precisely, the
accelerated form ML-LINB-1 proposed by Kaufman (1987)
was used, since the original non-accelerated form requires hun-
dreds of iterations to produce significant progress. Using the
RL algorithm requires definition of a stopping rule, in order to
stop the iterations before the ML is reached. With the true emis-
sion map at hand, a simple means to select the right iteration is
to compute the minimum of the relative quadratic error6

d(x�, x(k))
def
= ||x� − x(k)||1/2/||x�|| (13)

between the true map x� and the kth RL map x(k). The re-
sults obtained for the various fluxes are shown in Fig. 7. As
expected, the morphology is better estimated as the flux in-
creases. However, there is a clear distortion of the morphol-
ogy along the North-South axis; further investigations indi-
cate that this comes from concentrating the exposure along the
Galactic plane; see Fig. 5. Though strong in the early itera-
tions, this effect is less present as the algorithm gets closer to
the noisy ML solution; see Fig. 6 for an illustration. Hence,
the stopping rule is a compromise between a smooth and
strongly biased map (early iteration) and a map contaminated
by high-frequency noise with no significant bias (late iter-
ations). Another serious problem when using iterative algo-
rithms with stopping rules is that different features in the im-
age converge at different rates. This leads to an objet-dependent
resolution and to noise characteristics that are hard to predict.
In contrast, the Bayesian method (see Sect. 3.3) does not suffer
from this problem, since the solution minimises the penalised
criterion (11).

B) Tuning the method: for the quadratic penalty, Figs. 8
and 4 show the estimated maps for increasing values of flux.
Compared to the RL algorithm, the Bayesian method provides
a better estimate of the emission morphology in each case.
The maximum bending of the L-curve allows one to select a

6 Knowledge of the true emission map in (13) gives a clear advan-
tage to the RL over the Bayesian methods since tuning by means of
the L-curve only relies on the data.
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Fig. 7. Reconstruction of the centred disk shown in Fig. 1 from the RL algorithm for various integrated flux: (top) longitudinal profile b = 0◦

[in ph s−1 cm−2 ], and (bottom) emission map.
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Fig. 8. Reconstruction of the centred disk shown in Fig. 1 with F1 = 1.5 × 10−3 ph s−1 cm−2 (left column), 2 × F1 (centre column), and 5 × F1

(right column) produced by the Bayesian method with φ(u) = u2 (case A): (upper row) L-curve, (centre row) longitude profile b = 0 [in
ph s−1 cm−2] and (lower row) emission map.

regularisation parameter α, which produces a map close to the
initial disk.

If the emission morphology gets clearer as the flux
increases, the quadratic penalty cannot restore the high-
resolution components, because the reconstructions are spa-
tially band-limited resulting in blurred edges which reduce the
resolution of the estimate. High resolution can be reached,
however, with a convex �2�1 penalty (12). Provided a correct
adjustment of the parameters α and t, sharp transitions are re-
stored by this method, see Figs. 9 and 10.

These results suggest that the maximum bending of the
L-curve depends on the initial flux and the penalty. Decreasing
the flux and/or using a non-quadratic penalty seems to produce

“flatter” L-curves. However, even for the �2�1 penalty and the
lowest flux, the bending remains sufficient to select the appro-
priate regularisation parameter α.

The parameter t is easily adjusted in order to allow de-
tection of “significant” gamma emission, i.e., in order to
separate gamma emission from statistical fluctuations in the
reconstruction. Figure 9 gives insight into the impact of this
tuning on the solution. For large t, the dynamic range in the
map is lower than the “threshold”, and the penalty behaves
like a quadratic function leading to blurred reconstruction (up-
per map). Decreasing t allows us to release the quadratic
constraint on pixels that are consistent with strong emission
(centre map). Finally, the penalty produces a segmentation



1182 M. Allain and J.-P. Roques: Imaging techniques for gamma-ray diffuse emission

F1 = 1.5 × 10−3ph s−1 cm−2

3.2378•105 3.2380•105 3.2382•105
104

105

106

   1.0E−04

   2.0E−04

   5.0E−04

   1.0E−03
   2.0E−03

L(̂xα; b) [arbitrary]

P(̂
x α

)
[a

rb
itr

ar
y]

α = 10−3

−30 −20 −10 0 10 20 30

15

10

−5

0

5

10

15

−30 −20 −10 0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

.2
x 10

−6t = 8 × 10−8

−30 −20 −10 0 10 20 30

15

10

−5

0

5

10

15

−30 −20 −10 0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

.2
x 10

−6t = 2 × 10−8

Longitude [deg.]

L
at

itu
de

[d
eg

.]

−30 −20 −10 0 10 20 30

15

10

−5

0

5

10

15

Longitude [deg.]

Fl
ux

−30 −20 −10 0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

.2
x 10

−6t = 8 × 10−9

Fig. 9. Reconstruction of the centred disk with flux F1 by the Bayesian method with φ given by (12) [i.e., case B]: (left) L-curve for t =
2× 10−8 ph s−1 cm−2, (centre and right) emission maps and long. profile [in ph s−1 cm−2 ] for three distinct values of parameter t (with the ratio
α/t held constant).
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Fig. 10. Reconstruction by the Bayesian method with φ given by (12) [i.e., case B] of a centred disk with integrated flux (left column) 2 × F1,
(center column) 5 × F1, and (right column) 10 × F1: (top) L-curve, (center) longitude profile b = 0 [in ph s−1 cm−2 ] and (bottom) emission
map.

of the emission levels as t decreases, leading to detection
of features that may be statistical fluctuations. A useful re-
sult is usually reached with a rather small value, say, lower
than one order of magnitude of the foreseen flux in the pix-
els in the solution. However, the question of the statisti-
cal significance of detected features is legitimate and should

be answered by a variance analysis of the intensity in each
pixel.

C) Bias and variance issues: since the computed emission
map depends on a data set y, the computed map x̂α is also
arealisation of a random vector X̂α. Assuming that the second
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Fig. 11. Estimation of both the standard deviation (left) and the bias (right) in each pixel for the reconstruction of the circular bulge with
integrated flux 2 × F1 with a quadratic penalty (upper row) or a �2�1 penalty (lower row); see text for details.

order moments for X̂α are well-defined, both the bias and co-
variance are common indicators of the quality of this estimator
(Kay 1993)

bias
def
= E{X̂α} − x� (14a)

Var = E{X̂αX̂
t
α} − E{X̂α}E{X̂α}t (14b)

where E{·} denotes the expectation operator. Our purpose is to
study the bias and the covariance properties of the proposed
reconstruction methods.

The bias reflects the systematic errors introduced by the re-
construction method. Provided the statistical model (1) is cor-
rect, these errors are mainly introduced into the solution by the
regularisation needed to deal with the ill-conditioned nature of
the imaging problem. From a practical point view of point, a
closed-form expression for Eq. (14a) is not available in general,
and the following approximation is usually sufficiently accurate
(Wilson et al. 1994)

E{X̂α} ≈ x̂�α ⇒ bias ≈ x̂�α − x� (15)

where x̂�α is the solution of the reconstruction problem (11) for
the (noise-free) mean data set y = ȳ, cf. Sect. 2. Figure 11
shows7 x̂�α for the circular bulge with a moderate SNR (2×F1)
for both the quadratic and the �2�1 penalty. For this kind of
morphology, the latter penalty produces a significantly lower
bias. Clearly, the quadratic penalty provides a band-limited ver-
sion of the original map (its frequency content is implicitly ad-
justed for a given signal-to-noise ratio by the L-Curve crite-
rion) that leads to a poor reconstruction of the edges and an
under-estimation of the magnitude in the final map. This is no
longer the case for the �2�1 penalty since it allows high fre-
quency contents to be restored. This penalty enforces solutions
that are piecewise continuous emission morphologies. For the
circular bulge, this property leads to a low bias estimate when
compared to the quadratic penalty reconstruction. In general,
one should note that there is no formal guarantee that the �2�1
penalty always produces lower bias results. However, the bias
tells only one part of the story, and the analysis performed on a

7 In both cases, the parameter α (and t) corresponds to the value
selected in Sect. 5.1.B.

realistic morphology (see Sect. 5.2) suggests that a better bias-
variance trade-off is achieved in practice by the �2�1 penalty.

The quality of the reconstruction also depends on the abil-
ity of the reconstruction process to be robust with respect to the
noise in the (real) data set. The covariance matrix Var gives
a partial, yet useful, characterisation of the statistical fluctua-
tions in the reconstructed map. Most of the time, one is primar-
ily interested in the variance factors gathered in the diagonal8

of (14b), since they measure the discrepancy of the pixels to the
mean emission map E{X̂α}. Here again, there is no closed-form
for the covariance matrix in general. Moreover, a computation-
ally attractive approximation is not available, so we relied on
Monte Carlo simulations for this study. More precisely, emis-
sion maps x̂[1]

α , · · · , x̂[P]
α were performed on the basis of P inde-

pendent data sets in order to construct the following variance
estimator

s
def
=

1
P

P∑
p=1

(̂
x[p]
α − x̂�α

)2
, (16)

deduced from both the standard empirical estimator (Press et al.
1986, Chap. 14) and Eq. (15). The standard deviation map (i.e.,√

sn) estimated from a set of P = 30 reconstruction of the cir-
cular bulge (2 × F1) is shown in Fig. 11.

For the quadratic penalty, standard deviations are higher in
the low exposure areas of the map, which is rather intuitive.
However, high values also appear in the centre of the map,
where the flux is high. This phenomenon was previously no-
ticed in the context of the RL estimates (Wilson et al. 1994).
Intuitively, this is a consequence of the Poissonian model de-
scribing the counting process (1): the mean and the variance
being equal for this distribution, the variance in the measure-
ments increases as the flux increases.

The standard deviations for the �2�1 penalty are found to be
high at the edge of the disk, whereas lower standard deviation
values are distributed in a similar way to the quadratic case.
This result is clearly consistent with the segmentation property
of the estimator when a small value of the parameter t is used.

8 Off-diagonal terms are correlation factors that measure how two
arbitrary pixels in the map are statistically related.
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Fig. 12. Artefacts in the reconstruction of a circular bulge (2×F1) produced by errors in the background component for the RL algorithm (left),
the quadratic penalty (centre) and the �2�1 penalty (right); see text for details.

Detection of the pixels with significant flux is sometimes jeop-
ardized by statistical fluctuations in the data. Obviously, detec-
tion of the border is rather sensitive to this problem, leading to a
high standard deviation near the border. The bright area is fairly
thin in Fig. 11, however, which indicates that the detection of
the border is robust for moderate SNR.

D) Background error robustness: in practice, the mean back-
ground component b has to be estimated in order to perform
the reconstruction process. As a result, the robustness of the re-
constructed map with respect to the errors in this component is
an important issue. Our experience indicates that the Bayesian
estimate proposed in this paper is not more sensitive to back-
ground errors than the standard RL estimate. For instance, the
various reconstructions of the circular bulge (2 × F1) shown
in Fig. 12 were performed with a random perturbation (2% in
relative magnitude) added to the background; both this flux and
this perturbation magnitude are realistic in practice. In compar-
ison with the original emission maps (see Figs. 7, 8, and 10),
one can notice some slight distortions for the three reconstruc-
tion methods. Actually, this result is rather intuitive, since all of
these techniques rely on identical assumptions concerning the
background.

5.2. Extended and smooth emission

A second test is based on a smooth and large-scale emission
corresponding to a “bulge+disk” profile; see Fig. 13. The initial
integrated flux for this structure F2 = 2.9 × 10−3 ph s−1 cm−2

is dominated by the bulge component since the bulge accounts
for 2.37 × 10−3 ph s−1 cm−2. Only single events were selected
in the data within 509 to 513 keV to produce reconstruction
within |l| < 55◦and |b| < 25◦with a pixel size of 1◦ × 1◦. The
mean number of background events in the selected area of the
sky approximately amounts to B = 6.32 × 106 counts.

The results obtained for various fluxes (i.e., exposure times)
are shown in Fig. 14. As in Sec. 5.1, the L-curve criterion was
used to select an appropriate parameter α for the Bayesian re-
construction, and the iteration for the RL algorithm was cho-
sen in order to minimise Eq. (13). For a given reconstruction x̂,
the relative Euclidian distances d(x�, x̂) are shown in Table 2.
According to this distance, the Bayesian methods can improve
estimation of the initial morphology. All three methods provide
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Fig. 13. “Bulge+disk” emission map (bottom) and its longitude b = 0
profile [in ph s−1 cm−2 ] (top).

a better estimate of the bulge geometry as the flux increases,
but none of them can give the regular profile of the initial disk
component. For the lowest SNR (flux F2) the morphology of
the emission is only weakly constrained; in particular, statis-
tical fluctuations can shift the centroid of the bulge from the
Galactic centre by several degrees.

Here again, the RL reconstruction is both corrupted by
noise and biased by the exposure map. Morphology distor-
tions are, however, less pronounced since the flux is mainly
distributed in an area with small exposure variations. In com-
parison, the Bayesian method with a quadratic penalty leads
to smoother maps without any significant bias from the expo-
sure. At a low flux, both methods are “conservative”: they can
only restore the lowest components in the emission morphol-
ogy leading to a systematic underestimation [overestimation]
of the bulge flux [width]. As the flux increases, however, higher
frequency components can be restored and, the bulge flux [or
width] is better estimated.

Finally, the segmented capability of the �2�1 penalty (12)
can be used to extract some interesting morphological informa-
tion. This is readily demonstrated by the reconstruction shown
in Fig. 14c: a segmentation of the emission levels (provided by
a small “threshold” t) allows the bulge width and flux to be bet-
ter estimated. However, this segmentation behaviour will trun-
cate the “spicky” part of the map. This Bayesian method with
an �2�1 penalty provides the best global morphology estimation
with respect to the relative Euclidian distance; cf. Table 2.
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Fig. 14. Reconstruction of the “bulge+disk” emission for various fluxes (see Table 1) by the RL (Col. a)) and the Bayesian method with a
quadratic (Col. b)) or �2�1 (Col. c)) penalty.

6. Conclusion

In this paper, gamma-ray diffuse imaging is addressed within
the Bayesian inference framework, combining both informa-
tion coming from data and prior constraints. In particular,
MRF-based constraints can be used to reconstruct either band-
limited or segmented emission maps. In both cases, the reg-
ularisation parameter is adjusted with the heuristic, yet effi-
cient, L-curve criterion. Reconstruction from mock data sets

generated by the in-flight model of the SPI/INTEGRAL tele-
scope served to test the capabilities of the proposed algorithms.
Compared to the standard RL algorithms, these algorithms
do not show significant bias from the exposure map, and of-
ten bring a somewhat clearer description of the morphology
of the emission. However, a satisfactory treatment of diffuse
imaging requires various additional questions to be addressed.
Basically, these questions fall into an analysis of either bias or
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Table 2. Relative Euclidian distance to the “bulge+disk” emission
provided by RL or Bayesian methods (see Fig. 14).

Relative Euclidian distance

Flux: F2 2 × F2 5 × F2 10 × F2

M
et

ho
d RL 1.40 0.51 0.48 0.41

φ = u2 0.51 0.51 0.42 0.30

φ is �2�1 0.36 0.36 0.19 0.16

variance, two major cornerstones needed to be able to assign a
“level of belief” to reconstructed features on the map.

Variance reflects the statistical fluctuations in each pixel
that are inherent to the random nature of the measurements.
Computing variance in each pixel is not a trivial task for non-
linear estimators. However, some accurate and low-cost ap-
proximations are being tested at present and should be used
in subsequent works.

Bias from the prior model originates from inconsistencies
between the true emission morphology and the structural prop-
erties enforced by the prior distribution. A somewhat limited
bias is often unavoidable in order to treat the ill-conditioned
nature of the reconstruction problem, i.e., to provide a robust
and meaningful map. However, strongly biased results can also
originate from prior distributions that enforce inadequate struc-
tural properties. For instance, the MRF model presented in this
paper are clearly not appropriate for point-wise or mixed (i.e.,
point-wise plus diffuse) emission, and there is interest in de-
signing appropriate models in such contexts. Such models are
not difficult to build, and we are presently testing efficient tech-
niques for the reconstruction of point-wise or mixed emissions.

Systematic inconsistencies in the observation model also
introduce bias in the solution. For the Poissonian model se-
lected in this study, the bias is mainly introduced with the back-
ground estimation needed to perform real data inversion. As a
result, accurate diffuse imaging requires an accurate estimation
of this (strong) background component. At present, modifica-
tions to the proposed Bayesian algorithm are tested in order to
simultaneously estimate of both the map and the background
component.
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Appendix A: Numerical optimisation stage

The goal of this appendix is to address important implementa-
tion issues of the Bayesian algorithm described in this paper.
Hereafter, we adopt the following notations: an = [a]n is the
nth element of vector a, and [A]•,n and am,n = [A]m,n are, re-
spectively, the nth column and the element (line m, column n)
of a matrix A.

� Initialisation: k = 1 and θ ∈ (1, 2)
Give an initial guess x(1) (e.g., uniform map)
Give a convergence threshold ε
Calculate J(x(1)) and ȳ(1) according to (11) and (A.3)

� Iteration k: update pixel n = k modulo N
(a) Calculate µ(k)

n according to (A.2)
(b) Update pixel n according to (A.1)
(c) Calculate J(x(k)) according to (11)

� Prepare next iteration
(a) Update ȳ: ȳ(k+1) = ȳ(k) + µ(k)

n [H]•,n
(b) Update δ: δ(k+1) = δ(k) + µ(k)

n [D]•,n
(c) Update lc,c with (A.4) for every pair c

including pixel n
� Iterate: k ← k + 1 until J(x(k)) − J(x(k+1)) < ε

Fig. A.1. Description of the algorithm for Bayesian reconstruction.

The optimiser presented below belongs to the family of the
relaxation algorithms where the pixels in the image are updated
in a cyclic manner: let µn be the “correction” for pixel xn, we
get for iteration k + 1

x(k+1)
n = max

{
0, x(k)

n + θ µ
(k)
n

}
(A.1)

where θ ∈ (1, 2) is a relaxation parameter tuned to speed-up
convergence (i.e., this tuning does not change the final solu-
tion). The correction is defined by

µ(k)
n =

[Ht r(k)]n − 2α[Dt L(k)δ(k)]n

[Ht M(k)H]n,n + 2α[Dt L(k) D]n,n
, (A.2)

with δ(k) = Dx(k) and where r(k) is defined by

r(k)
m = ym/ȳ

(k)
m − 1, with

ȳ(k) def
= Hx(k) + b, (A.3)

and M(k) and L(k) are diagonal matrices with entries

m(k)
m,m =

ym/ȳ
(k)
m

ȳ(k)
m − hm,nx(k)

n

, l(k)
c,c =

φ′(δ(k)
c )

2δ(k)
c

· (A.4)

A detailed description of the algorithm is given in Fig. A.1.
This iterative scheme is closely connected to iterative coordi-
nate descent (ICD) proposed by Zheng et al. (2000). However,
it has a significantly simpler structure since it requires neither
line search nor root extraction. Global convergence for this al-
gorithm is readily obtained via a straightforward adaptation of
the proof presented in the previous reference. From an imple-
mentation standpoint, the reader should notice that D does not
need to be stored; in fact, the number of operations needed to
calculate the penalty term in (A.2) is small since it is of or-
der of the number of pixels in Vn. The computer burden for
one update is dominated by the calculation of [Ht r(k)]n and
[Ht M(k)H]n,n requiring of order Nnz operations, Nnz being the
number of non-zero entries in [H]•,n. If the fully coded field-of-
view of the instrument is smaller than the reconstructed field,
H has a sparse structure and Nnz can be significantly smaller
than N. In this case, a sparse storage format for H (Press et al.
1986, 2.7) leads to a dramatic decrease in the computation load.
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