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Abstract

We study the pricing of credit derivatives with asymmetric information. The
managers have complete information on the value process of the firm and on the
default threshold, while the investors on the market have only partial observations,
especially about the default threshold. Different information structures are distin-
guished using the framework of enlargement of filtrations. We specify risk neutral
probabilities and we evaluate default sensitive contingent claims in these cases.
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1 Introduction

The modelling of a default event is an important subject from both economic and financial
point of view. There exist a large literature on this issue and mainly two modelling
approaches: the structural one and the reduced-form one. In the structural approach,
where the original idea goes back to the pioneer paper of Merton [22], the default is
triggered when a fundamental process X of the firm passes below a threshold level L.
The fundamental process may represent the asset value or the total cash flow of the firm
where the debt value of the firm can also be taken into consideration. This provides
a convincing economic interpretation for this approach. The default threshold L is in
general supposed to be constant or deterministic. Its level is chosen by the managers of
the firm according to some criterions — maximizing the equity value for example as in
[21].

For an agent on the financial market, the vision on the default is quite different: on
one hand, he possesses merely a limited information of the basic data (the process X for
example) of the firm; on the other hand, to deal with financial products written on the
firm, he needs to update his estimations of the default probability in a dynamic manner.
This leads to the reduced-form approach for default modeling where the default arrives
in a more “surprising” way and the model parameters can be daily calibrated by using
the market data such as the CDS spreads.

The default time constructed in the classical structural approach is a stopping time
with respect to the filtration F generated by the fundamental process. The intensity of
such predictable stopping times does not exist. In the credit risk literature, it is also
interpreted by the fact that the default intensity (or the credit spread) tends to zero when
the time to maturity decreases to zero (we shall make precise the meanings of these two
intensities later on). The links between the structural and the intensity approaches have
been investigated in the literature. If the default threshold L is a random variable instead
of constant or deterministic, then the default time admits the intensity. One important
example is the well known Cox process model introduced in [20] where L is supposed to be
an exponentially distributed random variable independent with F (see also [9]). Another
class of models is the incomplete information models (e.g. [8, 6, 18, 5, 4]) where the
agent only has a partial observation of the fundamental process X and thus his available
information is represented by some subfiltration of F. The intensity can then be deduced
for the subfiltration.

In this paper, we are interested in the impact of information accessibility of an agent on
the pricing of credit derivatives. In particular, we aim to study the information concerning
the default threshold L in addition to the partial observation of the process X . This case
has been studied in [11] where investors anticipate the distribution of L (following for
example the Beta distribution) whose parameters are calibrated through market data. Our
approach is different and is related to the insider’s information problems. Indeed, when
the managers make decisions on whether the firm will default or not, he has supplementary
information on the default threshold L compared to an ordinary investor on the market.
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Facing the financial crisis, this study is also motivated by some recent “technical default
events”, where the bankruptcy occurs although the firm is still capable to repay its debts.

We present our model in the standard setting. Let (Ω,A,P) be a probability space
which represents the financial market. We consider a firm and model its default time as
the first time that a continuous time process (Xt)t≥0 reaches some default barrier L, i.e.,

(1.1) τ = inf{t : Xt ≤ L} where X0 > L

with the convention that inf ∅ = +∞. Denote by F = (Ft)t≥0 the filtration generated by
the process X , i.e., Ft = σ(Xs, s ≤ t)∨N satisfying the usual conditions where N denotes
the P null sets. Such construction of a default time adapts to both the structural approach
and the reduced form approach of the default modelling, according to the specification of
the process X and the threshold L.

In the structural approach models, L is a constant or a deterministic function L(t),
then τ defined in (1.1) is an F-stopping time as in the classical first passage models. In the
reduced-form approach, the default barrier L is unknown and is described as a random
variable in A. We introduce the decreasing process X∗ defined as

X∗
t = inf{Xs, s ≤ t}.

Then (1.1) can be rewritten as

(1.2) τ = inf{t : X∗
t = L}.

This formulation gives a general reduced-form model of default (see [9]). In particular,
when the barrier L is supposed to be independent of F∞, then

P(τ > t|F∞) = P(X∗
t > L|F∞) = FL(X

∗
t ),

where FL denotes the distribution function of L. Note that the (H)-hypothesis is satisfied
in this case, that is, P(τ > t|F∞) = P(τ > t|Ft). We may also recover the Cox-process
model using a similar construction.

In most papers concerning the information-based credit models, the process X is
partially observed, making an impact on the conditional default probabilities and on the
credit spreads. In this paper, we let L to be a random variable and take into consideration
the information on L. Such information modelling is closely related to the enlargement of
filtrations theory. Generally speaking, the information of a manager is represented by the
initial enlargement of the filtration (Ft)t≥0 and the information of an investor is modelled
by the progressive enlargement of (Ft)t≥0 or of some of its subfiltration. We shall also
consider the case of an insider who may have some extra knowledge on L compared to an
investor and whose knowledge is however perturbed compared to the manager.

The rest of this paper is organized as follows. In Section 2, we introduce the pricing
problem and the different information structures for various agents on the market, notably
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the information on the default barrier L. We shall distinguish the role of the manager,
the investor and the insider, who have different level of information on L. In successively
Sections 3, 4 and 5, we make precise the mathematical hypothesis for these cases, using
the languages of enlargement of filtrations. We also discuss the risk-neutral probabilities
in each case for further pricing purposes. In order to distinguish the impact of the different
filtrations from the impact of the different pricing probabilities, we first give the price of a
contingent claim under the historical probability measure P for each information in Section
3, 4, 5, the calculus under the corresponding pricing (or ”risk-neutral”) probability being
done in the last section. Finally, we end the last section with numerical illustrations.

2 Pricing framework and information structures

On the financial market, the available information for each agent is various. There ex-
ists in general information asymmetry between different market investors, and moreover
between the managers of a firm and the investors. In particular, the managers may have
information on whether the firm will default or not, or when the default may happen.
The pricing of credit-sensitive derivative depends strongly on the information flow of the
agent. We begin by introducing the general pricing principle and then we precise different
information.

2.1 General pricing principle

We fix in the sequel a probability space (Ω,A,P) and a filtration F = (Ft)t≥0 of A,
representing the default-free information. Let τ be a strictly positive and finite random
time on (Ω,A,P), modelling the default time. The information flow of the agent is
described by a filtration H = (Ht)t≥0 such that τ is an H-stopping time, that is, all agents
observe at time t whether the default has occurred or not. Without loss of generality,
we assume that all the filtrations we consider satisfy the usual conditions of completeness
and right-continuity.

We describe a general credit-sensitive derivative claim of maturity T as in [2], by a
triplet (C,G, Z) where C is an FT -measurable random variable representing the payment
at the maturity T if no default occurs before the maturity, G is an F-adapted, continuous
process of finite variation with G0 = 0 and represents the dividend payment, Z is an
F-predictable process and represents the recovery payment at the default time τ .

The triplet for a CDS, viewed by a protection buyer, satisfy C = 0, Gt = −κt and
Z = 1 − α where κ is the spread of CDS and α is the recovery rate of the underlying
name. The triplet for a defaultable zero-coupon satisfy C = 1, G = 0 and Z = 1− α.

The value process of the claim at time t < τ ∧ T is given by

(2.1) Vt = RtEQ

[
CR−1

T 11{τ>T} +

∫ T

t

11{τ>u}R
−1
u dGu + Zτ11{τ≤T}R

−1
τ

∣∣∣Ht

]
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where Q denotes the pricing probability measure which we shall precise later, and R is
the discount factor process. We note that both the filtration and the pricing probability
depend on the information level of the agent.

In the credit risk analysis, one often tries to establish a relationship between the market
filtration and the default-free one. The main advantage is that the default-free filtration is
often supposed to have nice regularity conditions, while the global market filtration which
contains the default information is often difficult to work with directly. Indeed, due to
the default information, the processes adapted to the global filtration have in general a
jump at the default time (except in the structural approach) and this makes it difficult
to propose explicit models in this filtration. In our model with insider’s information, we
need to make precise the filtration H = (Ht)t≥0 in (2.1) for different types of agents. Our
objective, similar as mentioned above, is to establish a pricing formula with respect to
the default-free filtration in each case.

2.2 Information structures

We now describe the different information flows and the corresponding filtration H for
different agents on the market. Recall that the default time is modelled by

τ = inf{t : X∗
t = L},

where L is a random variable and X∗ is the infimum process of an F-adapted process
X . We assume that L is chosen by the managers of the firm who hence have the total
knowledge on L. The information of X∗

t is contained in the σ-algebra Ft. However, the
process X∗ can not give us full information on Ft.

• Manager’s information.
The manager has complete information on X and on L. The filtration of the manager’s
information, denoted by GM = (GM

t )t≥0, is then

GM
t := Ft ∨ σ(L).

Note that GM is in fact the initial enlargement of the filtration F with respect to L and
we call it the full information on L. It is obvious that τ is a GM -stopping time. We shall
precise some technical hypothesis in the next section.

• Investor’s information.
In the credit risk literature, the accessible information on the market is often modelled
by the progressive enlargement G = (Gt)t≥0 of F. More precisely, let D = (Dt)t≥0 be the
minimal filtration which makes τ a D-stopping time, i.e. Dt = D0

t+ with D0
t = σ(τ ∧ t),

then
Gt = Ft ∨ Dt.

In our model (1.2), this is interpreted as Gt = Ft ∨ σ({L ≤ X∗
t }) and we call this infor-

mation the progressive (enlargement) information on L. Together with the information
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flow of the filtration (Ft)t≥0, an investor who observes the filtration (Gt)t≥0 knows at time
t whether or not the default has occurred up to t and the default time τ once it occurs.
We see that the manager’s information GM

t is larger than Gt.

• Investor’s incomplete information.
In many incomplete information credit risk models, the process X driving the default
risk is not totally observable for the investors. In this paper, we will only consider the
example of a delayed information on X : the information of such an investor is described
by a progressive enlargement GD = (GD

t )t≥0 of a delayed filtration of F, where

GD
t := Ft−δ(t) ∨ Dt,

and δ(t) being a function valued in [0, t] such that t − δ(t) is increasing. The above
formulation covers the constant delay time model where δ(t) = δ (see [6], [13]) and the

discrete observation model where δ(t) = t − t
(m)
i and t

(m)
i ≤ t < t

(m)
i+1, 0 = t

(m)
0 < t

(m)
1 <

· · · < t
(m)
m = T being the discrete dates on which the (Ft)t≥0 information may be renewed

(for example, the release dates of the accounting reports of the firm, see [8], [18]).

• Insider’s information.
Finally, we shall consider the insiders who have as supplementary information a partial
observation on L compared to the investor’s information Gt. Namely, the agent has the
knowledge on a noisy default threshold: (Lt)t≥0, Ls = f(L, ǫs) with ǫ being an indepen-
dent noise perturbing the information on L. The corresponding information flow is then
modelled by GI = (GI

t )t≥0 where

GI
t := Ft ∨ σ(Ls, s ≤ t) ∨ Dt.

Notice that GI
t = Gt ∨ σ(Ls, s ≤ t). We call this information the “noisy full information”

on L. It is a successive enlargement of Ft, firstly by the noised information of the default
threshold and then by the default occurrence information.

For the different types of information described above, we observe that the following
relations hold:

GM ⊃ GI ⊃ G ⊃ GD.

They correspond to the pricing filtration H in (2.1) for different agents on the market.
We shall concentrate on the pricing problem with the above filtrations and we begin by
making precise the mathematical hypothesis on these types of information on L, with
which we introduce the risk-neutral probabilities Q in each case.

3 Full information

In this section, we work with the manager information flow GM = F ∨ σ(L), which is an
initial enlargement of the filtration F. Recall that the default barrier is fixed at date 0 by
the manager as the realization of a random variable L. We assume in addition that the
filtration F is generated by a Brownian motion B.

6



3.1 Initial enlargement of filtration

In the theory of initial enlargement of filtration, it is standard to work under the following
density hypothesis due to Jacod [16, 17].

Assumption 3.1 We assume that L is an A-measurable random variable with values in
R, which satisfies the assumption :

P(L ∈ ·|Ft)(ω) ∼ P(L ∈ ·), ∀t ≥ 0, P− a.s..

Remark: Jacod has shown that, if Assumption 3.1 is fulfilled, then any F-local martingale
is a GM -semimartingale.

We denote by PL
t (ω, dx) a regular version of the conditional law of L given Ft and by

PL the law of L (under the probability P). According to [17], there exists a measurable
version of the conditional density

(3.1) pt(x)(ω) =
dPL

t

dPL
(ω, x)

which is an (F,P)-martingale and hence can be written as

pt(x) = p0(x) +

∫ t

0

βs(x)dBs, ∀x ∈ R

for some F-predictable process (βt(x))t≥0. Moreover, the fact that PL
t is equivalent to PL

implies that P-almost surely pt(L) > 0. Let us introduce the F-predictable process ρM

where ρMt (x) = βt(x)/pt(x), the density process pt(L) satisfies the following stochastic
differential equation

dpt(L) = pt(L)ρ
M
t (L)dBt.

Note that (B̃M
t := Bt −

∫ t

0
ρMs (L)ds, t ≥ 0) is a (GM ,P)-Brownian motion.

It is proved in [12] that Assumption 3.1 is satisfied if and only if there exists a proba-
bility measure equivalent to P and under which F∞ := ∪t≥0Ft and σ(L) are independent.
The probability PL defined by the density process

EPL

[ dP

dPL

∣∣GM
t

]
= pt(L)

is the only one that is identical to P on F∞.

We introduce the process Y M by

(3.2) Y M = E
(
−

∫ ·

0

ρMs (L)dB̃M
s

)
,

where E denotes the Doléans-Dade exponential. We assume in addition that Y M is a
(GM ,P) martingale. A straightforward computation yields d((Y M

t )−1) = (Y M
t )−1ρMt (L)dBt.
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Thus, Y M
t = 1

pt(L)
, that is, Y M

t is the Radon-Nikodym density of the change of probability

PL with respect to P on GM
t . The process Y M is important in the study of risk-neutral

probabilities on GM . Indeed, let φ be the price process of a default-free financial in-
strument. It is an F-adapted process which is an F-local martingale under certain F

risk-neutral probability Q (which is equivalent to P). In general φ is not an (GM ,Q)-local
martingale. However, if we define a new probability measure QM by

dQM = Y M
t dQ on GM

t ,

then any (F,Q)-local martingale is an (GM ,QM)-local martingale. In particular, B is
a (GM ,QM)-Brownian motion. Moreover, one has the following martingale represen-
tation property by [1]: if A is a (GM ,QM )-local martingale, then there exists ψ ∈
L1
loc(B,G

M ,QM) such that

At = A0 +

∫ t

0

ψsdBs.

This shows that the market is complete for the manager.

3.2 Pricing with full information

We consider now the pricing problem with the manager’s information flow H = GM and
we assume Assumption 3.1. In order to distinguish the impact of different filtrations and
the impact of different pricing measures, we first assume that the pricing probability is
P for all agents. The result under QM , the risk-neutral probability for the manager, is
computed in Section 6 by a change of probability measure.

Our objective is to establish the pricing formula for the manager with respect to the
default-free filtration F. We begin by giving the following useful result.

Proposition 3.1 For any θ ≥ t and any positive Fθ ⊗ B(R)-measurable function φθ(·),
one has

(3.3) EP[φθ(L)11{τ>θ} | GM
t ] =

1

pt(L)
EP[φθ(x)pθ(x)11{X∗

θ
>x} | Ft]x=L

where pt(x) is defined in (3.1).

Proof: Let PL be the equivalent probability measure of P of density pt(L)
−1 on GM

t . By
using the facts that Fθ and σ(L) are independent under PL and that PL is identical to P

on F∞, we have

EP[φθ(L)11{τ>θ} | GM
t ] = EP[φθ(L)11{X∗

θ
>L} | Ft ∨ σ(L)]

= pt(L)
−1EPL[φθ(L)pθ(L)11{X∗

θ
>L}|Ft ∨ σ(L)]

= pt(L)
−1EPL[φθ(x)pθ(x)11{X∗

θ
>x}|Ft]x=L

= pt(L)
−1EP[φθ(x)pθ(x)11{X∗

θ
>x}|Ft]x=L.

(3.4)
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2

Remark: If Fθ and σ(L) are independent under P, then pt(x) ≡ 1, we obtain the simpler
formula

EP[φθ(L)11{τ>θ} | GM
t ] = EP[φθ(x)11{X∗

θ
>x}|Ft]x=L.

Proposition 3.2 We keep the notation of Section 2 and define FM
t (x) := pt(x)11{X∗

t
>x}.

The value process of the contingent claim (C,G, Z) given the full information (GM
t )t≥0 is

(3.5) V M
t = 11{τ>t}

Ṽ M
t (L)

pt(L)

where

(3.6) Ṽ M
t (L) = RtEP

[
CR−1

T FM
T (x) +

∫ T

t

FM
s (x)R−1

s dGs −
∫ T

t

ZsR
−1
s dFM

s (x)

∣∣∣∣Ft

]

x=L

.

Proof: Using Proposition 3.1, the first part of (2.1) is given by

RtEP

[
C11{τ>T}R

−1
T |GM

t

]
=

Rt

pt(L)
EP

[
CR−1

T pT (x)11{X∗

T
>x}|Ft

]
x=L

.

Let’s see the third term
RtEP

[
ZτR

−1
τ 11{t<τ≤T}|GM

t

]
.

We begin by assuming that Z is a stepwise F-predictable process as in [2], that is Zu =∑n

i=0 Zi11ti<u≤ti+1
for t < u ≤ T where t0 = t < · · · < tn+1 = T and Zi is Fti-measurable

for i = 0, · · · , n. We have

EP

[
Zτ11{t<τ≤T}|GM

t

]

=

n∑

i=0

(
1

pt(L)
EPL

[
Zipti(L)11{ti<τ}|GM

t

]
− 1

pt(L)
EPL

[
Zipti+1

(L)11{ti+1<τ}|GM
t

])

=
n∑

i=0

1

pt(L)

(
EP

[
Zipti(x)11{X∗

ti
>x}|Ft

]
− EP

[
Zipti+1

(x)11{X∗

ti+1
>x}|Ft

])
x=L

=
1

pt(L)
EP

[
n∑

i=0

Zi

(
pti(x)11{X∗

ti
>x} − pti+1

(x)11{X∗

ti+1
>x}

)
|Ft

]

x=L

.

We define FM
t (x) = pt(x)11{X∗

t
>x}. For x fixed, 11{X∗

t
>x} is decreasing and right continuous,

and according to [17], (ps(x))s≥0 is an (F,P)-martingale. Thus (FM
t (x))t≥0 is a nonnegative

(F,P)-supermartingale, and we may deal with its right-continuous modification with finite
left-hand limits. Therefore

EP

[
Zτ11{t<τ≤T}|GM

t

]
= − 1

pt(L)
EP

[
n∑

i=0

Zi(F
M
ti+1

(x)− FM
ti
(x))|Ft

]

x=L

= − 1

pt(L)
EP

[∫ T

t

ZudF
M
u (x)|Ft

]

x=L

.
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Finally, we get the third term of (2.1) by approximating (ZuR
−1
u )u by a suitable sequence

of stepwise F-predictable processes :

RtEP

[
ZτR

−1
τ 11{t<τ≤T}|GM

t

]
= − Rt

pt(L)
EP

[ ∫ T

t

ZuR
−1
u dFM

u (x)|Ft

]
x=L

.

The second term of (2.1) can be decomposed in two parts as follows

RtEP

[ ∫ T

t

11{τ>u}R
−1
u dGu| GM

t

]

= RtEP

[
11{τ>T}

∫ T

t

R−1
u dGu + 11{t<τ≤T}

∫ τ

t

R−1
u dGu| GM

t

]

=
Rt

pt(L)
EP

[
pT (x)11{X∗

T
>x}

∫ T

t

R−1
u dGu −

∫ T

t

∫ u

t

R−1
s dGsdF

M
u (x)|Ft

]
x=L

.

Putting the three terms all together leads to

V M
t =

Rt

pt(L)
EP

[
FM
T (x)

(
CR−1

T +

∫ T

t

R−1
u dGu

)
−
∫ T

t

(
ZsR

−1
s +

∫ s

t

R−1
u dGu

)
dFM

s (x)

∣∣∣∣Ft

]

x=L

.

The equality (3.5) then follows by an integration by part. 2

4 Progressive information

4.1 Pricing with progressive enlargement of filtration

The progressive information on L corresponds to the standard information modelling in
the credit risk literature where an investor observes the default event when it occurs.
Recall that

G = (Gt)t≥0 with Gt = Ft ∨ Dt,

where Dt = D0
t+, D0

t = σ(τ ∧ t). The pricing formula (2.1) when Ht is Gt is well known.
We recall it briefly below and we refer to [2, 3] for a proof.

Recall that the G-compensator of τ (under the probability P) is the G-predictable
increasing process ΛG such that the process (11{τ≤t} − ΛG

t , t ≥ 0) is a (G,P)-martingale.
The process ΛG coincides on the set {t ≤ τ} with an F-predictable process ΛF, called the
F-compensator of τ . We define St := P(τ > t | Ft) = P(X∗

t > L | Ft), which is the Azéma
supermartingale of τ . The following result is classical (see [19, 2, 10]).

Proposition 4.1 For any θ ≥ t and any Fθ-measurable random variable φθ, one has

(4.1) EP[φθ11{τ>θ} | Gt] = 11{τ>t}
EP[φθSθ | Ft]

St

.
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where St := P(τ > t | Ft). The value process for an investors given the progressive infor-
mation flow G is

(4.2) Vt = 11{τ>t}
Rt

St

EP

[
R−1

T STC +

∫ T

t

R−1
u SudGu −

∫ T

t

R−1
u ZudSu

∣∣∣∣Ft

]
.

Remark 4.1 It is interesting to note the similitude between the case of manager (Propo-
sition 3.2) and the case of investor (Proposition 4.1). Comparing the pricing formulas
(3.5),(3.6) and (4.2), we observe that FM plays a similar role in the full information case
as S does in the progressive information case.

The pricing formula for delayed information flow is similar since GD is the progressive
enlargement of FD with respect to τ and FD is a sub-filtration of F. The only difference
is that St and Rt are not FD

t -measurable.

Proposition 4.2 For any θ ≥ t and any Fθ-measurable random variable φθ, one has

(4.3) EP[φθ11{τ>θ} | GD
t ] = 11{τ>t}

EP[φθSθ|FD
t ]

EP[St|FD
t ]

The value process for a delay-informed investors is

(4.4) V D
t =

11{τ>t}

E[St|FD
t ]

EP

[
Rt

RT

STC +

∫ T

t

Rt

Ru

SudGu −
∫ T

t

Rt

Ru

ZudSu

∣∣∣∣FD
t

]
.

4.2 Intensity hypothesis

In the reduced-form approach of credit risk modelling, the standard hypothesis is the
existence of the intensity of default time τ . We say that τ has an F-intensity if its
F-compensator ΛF is absolutely continuous with respect to the Lebesgue measure, that
is, there exists an F-adapted process λF (called the F-intensity of τ under P) such that
(11{τ≤t} −

∫ t∧τ

0
λFsds, t ≥ 0) is a (G,P)-martingale. The intensity hypothesis implies that τ

avoids the F-predictable stopping times and that τ is G totally inaccessible.

Under the intensity hypothesis, the Doob-Meyer decomposition of the supermartingale
S has the explicit form: the process (St+

∫ t

0
Suλ

F
udu, t ≥ 0) is an F-martingale. The pricing

formulae (4.2) and (4.4) can be written as

Vt =
11{τ>t}Rt

St

EP

[
R−1

T STC +

∫ T

t

R−1
u SudGu +

∫ T

t

R−1
u ZuSuλ

F
udu

∣∣∣∣Ft

]
,(4.5)

V D
t =

11{τ>t}

E[St|FD
t ]

EP

[
Rt

RT

STC +

∫ T

t

Rt

Ru

SudGu +

∫ T

t

Rt

Ru

ZuSuλ
F
udu

∣∣∣∣FD
t

]
.(4.6)

Note that the intensity does not always exist. For example, in the structural model
where L is deterministic, τ is a F predictable stopping time. Hence its intensity does

11



not exist. It is in general a difficult problem to determine the existence of the intensity
process (see [13], [14] for a detailed discussion).

In contrast to the notion of intensity as above, the default intensity in the credit
analysis is often referred as the instantaneous probability of default at time t conditioned
on some filtration (Ht)t≥0:

λt = lim
∆t→0

1

∆t
P(t < τ ≤ t+∆t|Ht) a.s.

Under Aven’s conditions (see [13], [14]), the two intensities coincide. But this is not true
in general. For example, in the classical structural model, the default intensity equals
to zero. However, the intensity process does not exist in this case. The default intensity
when Ht = FD

t has been studied in many papers such as [8, 6, 18, 13], the default intensity
is strictly positive in the delayed information case. We note that in the full information
case where Ht = GM

t , we encounter the same situation as in the structural model: the
default intensity equals to zero since L is GM

t -measurable.

5 Noisy full information

In this section, we consider the insider’s information flow. Recall that the insider has a
perturbed information on the barrier L which changes through time. We assume that
the perturbation is given by an independent noise, and is getting clearer as time evolves.
To be more precise, the noised barrier is modeled by a process (Lt = f(L, ǫt))t≥0, where
f : R2 → R is a given Borel measurable function, and ǫ is a process independent of F∞.
The information flow GI = (GI

t )t≥0 of the insider is then given by

GI
t := Ft ∨ σ(Ls, s ≤ t) ∨ Dt.

5.1 Perturbed initial enlargement of filtration

We firstly make precise the mathematical assumptions in this case. We introduce an
auxiliary filtration FI = (F I

t )t≥0 defined as

F I
t := Ft ∨ σ(Ls, s ≤ t).

Note that GI is a progressive enlargement of FI by the information on the default. The
filtration FI has been studied in [7] under Assumption 3.1. It has nice properties similarly
to the filtration GM . With the notation of Section 3.1, assume that ρIt := EP[ρ

M
t (L)|F I

t ]

satisfies
∫∞

0
|ρIt |dt < +∞ P-a.s. Then the process B̃I defined as B̃I

t := Bt −
∫ t

0
ρIsds is an

(FI ,P)-Brownian motion. Moreover, the Doléans-Dade integral

Y I
· = E(−

∫ ·

0

ρIsdB̃
I
s )

12



is a positive (FI ,P)-local martingale. We assume that Y I is an (FI ,P)-martingale and
define the probability measure QI by

dQI = Y I
t dQ on F I

t

where Q is an equivalent probability of P. Then any (F,Q)-local martingale is an (FI ,QI)-
local martingale. In particular, B is an (FI ,PI)-Brownian motion.

5.2 Pricing with noisy information

We now consider the pricing problem for the insider information flow GI . We shall focus
on the particular but useful case:

Lt = L+ ǫt,

where ǫ is a continuous process independent of F∞∨σ(L) and is of backwardly independent
increments whose marginal has a density with respect to the Lebesgue measure (example
in [7] and [15]). We say that a process ǫ has backwardly independent increments if for all
0 ≤ s ≤ t ≤ θ, the random variable ǫs − ǫt is independent to ǫθ. For example, if one takes
ǫt = Wg(T−t) with W an Brownian motion, and g : [0, T ] → [0,+∞) a strictly increasing
bounded function with g(0) = 0, then ǫ is a process on [0, T ] which has backwardly
independent increments. Another example with infinite horizon is ǫt = Wg( 1

t+1
), where

g : [0, 1] → [0,+∞) a strictly increasing bounded function with g(0) = 0.

To compute the pricing formula (2.1) for the insider where Ht = GI
t , our strategy is

to combine the results in the two previous sections using the auxiliary filtration FI . More
precisely, we present firstly in Proposition 5.1 a result for the filtration FI which is similar
to the one in Proposition 3.1 for the filtration GM . We then use it to obtain the pricing
formula in Theorem 5.1. In fact, since GI is the progressive enlargement of FI , applying
(4.2) leads to the value process for insiders:

(5.1) V I
t =

11{τ>t}Rt

SI
t

EP

[
R−1

T SI
TC +

∫ T

t

R−1
u SI

udGu −
∫ T

t

R−1
u ZudS

I
u

∣∣∣∣F I
t

]

where SI
t := EP[11{τ>t}|F I

t ]. In the rest of the section, we aim to give a reformulation
of (5.1) as a conditional expectation with respect to the default-free filtration F. It is
interesting to remark that although the formula (5.2) in Proposition 5.1 seems to be
complicated, the final result (5.6) is given in a simple and coherent form similarly as for
the full and progressive information.

We assume Assumption 3.1 in the sequel, that is, the conditional probability law of L
given Ft has a density pt(·) with respect to the unconditioned probability law of L.

Proposition 5.1 We assume Assumption 3.1. Let ǫ be a continuous process, independent
of F∞∨σ(L), and with backwardly independent increments such that the probability law of
ǫt has a density qt(·) with respect to the Lebesgue measure. For any t ≥ 0, let Lt = L+ ǫt

13



and F I
t = Ft ∨ σ(Ls, s ≤ t). Then, for any θ ≥ t and any positive Fθ ⊗ B(R)-measurable

function φθ(·), one has

(5.2) EP[φθ(Lθ)11{τ>θ}|FI
t ] =

∫∫
EP[φθ(u+ y)pθ(l)11{X∗

θ
>l}|Ft]u=Lt

qt(Lt − l)µt,θ(dy)P
L(dl)

∫
R
pt(l)qt(Lt − l)PL(dl)

where PL is the probability law of L, µt,θ is the probability law of ǫθ − ǫt. For any
Fθ-measurable φθ, one has

EP[φθ11{τ>θ}|F I
t ] =

∫
EP[φθpθ(l)11{X∗

θ
>l}|Ft]qt(Lt − l)PL(dl)∫

R
pt(l)qt(Lt − l)PL(dl)

.

Proof: Since ǫ has backwardly independent increment and is independent of Fθ ∨ σ(L),
one has

EP[φθ(Lθ)11{τ>θ}|F I
t ] = EP[φθ(L+ ǫθ)11{X∗

θ
>L}|F ∨ σ(Lt) ∨ σ(ǫs − ǫt, s ≤ t)]

= EP[φθ(L+ ǫθ)11{X∗

θ
>L}|F ∨ σ(Lt)].

(5.3)

By the independence of Fθ ∨ σ(L) and ǫ, we obtain

EP

[
φθ(Lθ)11{τ>θ}|Ft ∨ σ(Lt) ∨ σ(L)

]

= EP

[
φθ(Lθ)11{X∗

θ
>L}|Ft ∨ σ(ǫt) ∨ σ(L)

]

=

∫

R

EP[φθ(Lt + y)11{X∗

θ
>L}|Ft ∨ σ(ǫt) ∨ σ(L)]µt,θ(dy)

=

∫

R

EP

[
φθ(L+ z + y)11{X∗

θ
>L}|Ft ∨ σ(L)

]
z=ǫt

µt,θ(dy)

= pt(L)
−1

∫

R

EP[φθ(x+ y + z)pθ(x)11{X∗

θ
>x} | Ft]x=L

z=ǫt
µt,θ(dy),

where the last equality comes from Proposition 3.1. In the rest of the proof, we denote
by

Ht(L, Lt) := pt(L)
−1

∫

R

EP[φθ(u+ y)pθ(x)11{X∗

θ
>x} | Ft] x=L

u=Lt

µt,θ(dy).

By definition and similar argument as for (5.3), one has

EP[φθ(Lθ)11{τ>θ}|F I
t ] = EP[Ht(L, Lt)|Ft ∨ σ(Lt) ∨ σ((ǫt − ǫs), s ≤ t)]

= E [Ht(L, Lt)|Ft ∨ σ(Lt)] .

Let PL
t (dl) be the regular conditional probability of L given Ft. Then for U ∈ B(R2),

P ((L, Lt) ∈ U |Ft) =

∫

R2

11U(l, x)qt(x− l)PL
t (dl)dx

Therefore

(5.4) E
[
Ht(L, Lt)|F I

t

]
=

∫
R
Ht(l, Lt)qt(Lt − l)PL

t (dl)∫
R
qt(Lt − l)PL

t (dl)
.
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By the equality PL
t (dl) = pt(l)P

L(dl), we obtain the desired result. The second equality
is obtained in a similar way. 2

As a consequence of Proposition 5.1, the conditional expectation EP[11{τ>t}|F I
t ] can be

written as SI
t (Lt), where S

I
t (·) is the Ft ⊗ B(R)-measurable function defined as

(5.5) SI
t (x) =

∫
R
11{X∗

t
>l}pt(l)qt(x− l)PL(dl)∫

R
pt(l)qt(x− l)PL(dl)

.

In the following result, we compute (5.1) as F-conditional expectations.

Theorem 5.1 We keep the notations and assumptions of Proposition 5.1 and recall that
GI
t = F I

t ∨ Dt. Then the value process for the noisy full information flow GI is given by

(5.6) V I
t =

11{τ>t}∫
R
FM
t (l)qt(Lt − l)PL(dl)

∫
Ṽ M
t (l)qt(Lt − l)PL(dl)

where Ṽ M and FM are defined in Proposition 3.2.

Proof: To obtain results with respect to Ft, we shall calculate respectively the three
terms of (5.1) using Proposition 5.1. Let Nt(x) :=

∫
R
11{X∗

t
>l}pt(l)qt(x − l)PL(dl) =∫

R
FM
t (l)qt(x− l)PL(dl). Firstly,

EP[
C

RT

11{τ>T}|GI
t ] = 11{τ>t}

EP[
C
RT

11{τ>T}|F I
t ]

EP[11{τ>t}|F I
t ]

=
11{τ>t}

Nt(Lt)

∫
EP

[ C
RT

FM
T (l)|Ft

]
qt(Lt−l)PL(dl)

where the second equality comes from Proposition 5.1. Secondly, using the same argu-
ment,

EP[

∫ T

t

11{τ>θ}
dGθ

Rθ

|GI
t ] =

∫ T

t

EP[11{τ>θ}
dGθ

Rθ

|GI
t ]

=
11{τ>t}

Nt(Lt)

∫ ∫ T

t

EP[F
M
θ (l)

dGθ

Rθ

|Ft]qt(Lt − l)PL(dl)

Thirdly, similar as in the proof of Proposition 3.2, we assume Zu =
∑n

i=0 Zi11ti<u≤ti+1
for

t < u ≤ T where t0 = t < · · · < tn+1 = T and Zi is Fti-measurable for i = 0, · · · , n. We
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have

EP

[
Zτ11{t<τ≤T}|GI

t

]

=
11{τ>t}

SI
t

n∑

i=0

EP

[
Zi11{ti<τ} − Zi11{ti+1<τ}|F I

t

]

=
11{τ>t}

Nt(Lt)

∫ n∑

i=0

(
EP

[
Zipti(x)11{X∗

ti
>x}|Ft

]
−EP

[
Zipti+1

(x)11{X∗

ti+1
>x}|Ft

])
qt(Lt − l)PL(dl)

=
11{τ>t}

Nt(Lt)

n∑

i=0

∫
EP

[
n∑

i=0

Zi

(
FM
ti
(l)− FM

ti+1
(l)

)
|Ft

]
qt(Lt − l)PL(dl)

= − 11{τ>t}

Nt(Lt)

∫
EP

[∫ T

t

ZudF
M
u (l)|Ft

]
qt(Lt − l)PL(dl)

We get the third term by approximating (ZuR
−1
u )u by a suitable sequence of stepwise

F-predictable processes :

EP

[
ZτR

−1
τ 11{t<τ≤T}|GI

t

]
= − 11{τ>t}

Nt(Lt)

∫
EP

[ ∫ T

t

Zu

Ru

dFM
u (l)|Ft

]
qt(Lt − l)PL(dl).

We combine the three terms to complete the proof. 2

6 Risk-neutral pricing and numerical illustrations

6.1 Pricing under different probabilities

To evaluate a credit derivative, both the pricing filtration and the choice of risk-neutral
probability measures depend on the information level of the market agent. In the previous
sections, we have computed the pricing formula (2.1) for different information filtration
under the same historical probability measure. In the following, our objective is to take
into account the pricing probabilities for each type of information.

We have made precise different pricing probabilities. First of all, we assume that a
pricing probability Q is given with respect to the filtration F of the fundamental process
X . Usually, we choose Q such that X is an (F,Q) local martingale. Since we shall
focus on the change of probability measures due to the different sources of informations
and on its impact on the pricing of credit derivatives, we may assume, without loss of
generality, the historical probability P to be the benchmark pricing probability Q on F.
For the same reason, we will consider the same pricing probability for the filtration F

and its progressive enlargement G.1 Given the pricing probability Q on F (and thus on

1In general, a (F,Q) local martingale is not necessarily a (G,Q) local martingale except under (H)
hypothesis. However, since all the filtrations we consider contains the progressive enlargement, we prefer
to concentrate on the change of probabilities due to different sources of information and we keep the same
pricing probability for F and G.
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G), the pricing probability for the manager is QM where dQM

dQ
= Y M(L) with Y M(L) =

E(−
∫ .

0
ρMs (L)(dBs − ρMs (L)ds)) (see Subsection 3.1) and for the noisy full information is

QI where dQI

dQ
= Y I with Y I = E(−

∫ .

0
ρIs(dBs − ρIsds)) (see Subsection 5.1). We also take

Q as the pricing probability for the delayed information because the delayed information
case is more complicated : indeed, the notion of a FD Brownian motion is a widely
open question that we do not want to investigate here and we assume that the pricing
probability for the delayed case is the same as for the progressive information.

The following proposition gives the price of a credit derivative for the full and the
noisy information if we take into account not only the enlargement of filtration but also
the change of pricing probability due to this insiders’ information. Since we take P as
the pricing measure, note that for the investors with progressive or delayed information,
there is no change of pricing probability, so the results of Propositions 4.1 and 4.2 still
hold.

Proposition 6.1 We assume Assumption 3.1.

1) Define FQM

t (l) = 11{X∗

t
>l}. Then the value process of a credit sensitive claim (C,G, Z)

for the manager’s full information under the risk neutral probability measure QM is given
by

V QM

t = RtEP

[
CR−1

T FQM

T (x) +

∫ T

t

FQM

s (x)R−1
s dGs −

∫ T

t

ZsR
−1
s dFQM

s (x) |Ft

]
x=L

.

2) Let ǫ be a continuous process with backwardly independent increments such that the
probability law of ǫt has a density qt(·) w.r.t. the Lebesgue measure. Then the value
process for the insider’s noisy full information under QI is given by

(6.1) V QI

t =
11{τ>t}∫

R
FM
t (l)qt(Lt − l)PL(dl)

∫
Ṽ QI

t (l)qt(Lt − l)PL(dl)

where

Ṽ QI

t (l) = RtEP

[
CR−1

T F I
t,T (u, l) +

∫ T

t

F I
t,θ(u, l)R

−1
θ dGθ −

∫ T

t

R−1
θ ZθdF

I
t,θ(u, l)|Ft

]
u=Lt

,

F I
t,θ(u, l) = E

(∫ θ

t

∫
ρIθ(u+ y)µt,θ(dy)dBu

)−1

FM
θ (l).

To prove the second assertion of the above proposition, we need the following lemma
which is an extension of Proposition 5.1. We give the proof of Proposition 6.1 afterwards.

Lemma 6.1 We keep the notations and assumptions of Proposition 5.1. Then, for any
θ ≥ t and any Fθ-measurable φθ, one has

EP[Y
I
θ φθ11{τ>θ}|F I

t ] = Y I
t

∫
EP[φθF

I
t,θ(u, l) | Ft]u=Lt

qt(Lt − l)PL(dl)∫
R
pt(l)qt(Lt − l)PL(dl)

,

where PL is the probability law of L, µt,θ is the probability law of ǫθ − ǫt and F
I
t,θ(u, l) is

defined in Proposition 6.1.
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Proof: First, let us recall, that Y I
T = E(

∫ T

0
ρIudBu)

−1 and ρIt = E(ρMt (L)|F I
t ) =

∫
ρM
t

(l)qt(Lt−l)PL
t
(dl)∫

qt(Lt−l)PL
t
(dl)

= ρIt (Lt). (Y I
t )t≥0 is an (FI ,P) martingale. Since ǫ has backwardly

independent increment and is independent of Fθ ∨ σ(L), one has

EP[φθY
I
θ 11{τ>θ}|F I

t ] = Y I
t EP[φθE(

∫ θ

t

ρIu(Lu)dBu)
−111{X∗

θ
>L}|F ∨ σ(Lt) ∨ σ(ǫs − ǫt, s ≤ t)]

= Y I
t EP[φθE(

∫ θ

t

ρIu(L+ ǫu)dBu)
−111{X∗

θ
>L}|F ∨ σ(Lt)].

By the independence of Fθ ∨ σ(L) and ǫ, we obtain

EP

[
φθE(

∫ θ

t

ρIu(L+ ǫu)dBu)
−111{τ>θ}|Ft ∨ σ(Lt) ∨ σ(L)

]

= EP

[
φθE(

∫ θ

t

ρIu(L+ ǫu)dBu)
−111{X∗

θ
>L}|Ft ∨ σ(ǫt) ∨ σ(L)

]

=

∫

R

EP[φθE(
∫ θ

t

∫
ρIu(Lt + y)µt,θ(dy)dBu)

−111{X∗

θ
>L}|Ft ∨ σ(ǫt) ∨ σ(L)]

=

∫

R

EP

[
φθE(

∫ θ

t

∫
ρIu(L+ z + y)µt,θ(dy)dBu)

−111{X∗

θ
>L}|Ft ∨ σ(L)

]

z=ǫt

= pt(L)
−1

∫

R

EP[φθpθ(x)E(
∫ θ

t

∫
ρIu(L+ z + y)µt,θ(dy)dBu)

−111{X∗

θ
>x} | Ft]x=L

z=ǫt
,

where the last equality comes from Proposition 3.1. The rest of the proof is similar to the
one of Proposition 5.1 , with

Ht(L, Lt) := pt(L)
−1

∫

R

EP[φθpθ(x)E(
∫ θ

t

∫
ρIu(u+ y)µt,θ(dy)dBu)

−111{X∗

θ
>x} | Ft] x=L

u=Lt

.

2

Proof: 1) For the full manager, the proof is similar as the one of Proposition 3.2 : by
noting that Q is chosen to be P, the probability measure QM coincides with PL defined in

Section 3.1. Thus, the end of the proof of Proposition 3.2 still holds, using FQM

t = 11{X∗

t
>l}

instead of FM
t .

2) For the noisy information, dQI

dP
= Y I

T with Y I
T = E(

∫ T

0
ρIudBu)

−1 and ρIt = ρIt (Lt).
Let Nt(x) =

∫
R
11{X∗

t
>l}pt(l)qt(x − l)PL(dl) =

∫
R
FM
t (l)qt(Lt − l)PL(dl) and F I

t,θ(u, l) =

E(
∫ θ

t

∫
ρIθ(u + y)µt,θ(dy)dBu)

−1pθ(l)11{X∗

θ
>l}. For T , l and u fixed, (F I

t,T (u, l))0≤t≤T is a
nonnegative (F,P)-supermartingale, and we may deal with its right-continuous modifica-
tion with finite left-hand limits. Firstly,

EQI [
C

RT

11{τ>T}|GI
t ] = 11{τ>t}

EQI [ C
RT

11{τ>T}|F I
t ]

QI [τ > t|F I
t ]

= 11{τ>t}

EP[
C
RT

Y I
T 11{τ>T}|F I

t ]

EP[11{τ>t}Y
I
t |F I

t ]
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because on the event {τ > t}, dQI

dP
|GI

t
= dQI

dP
|FI

t
= Y I

t . Thus

EQI [
C

RT

11{τ>T}|GI
t ] =

11{τ>t}

Nt(Lt)

∫
EP

[ C
RT

F I
t,T (u, l)|Ft

]
u=Lt

qt(Lt − l)PL(dl)

where the second equality comes from Lemma 6.1. Secondly, using the same argument,

EQI [

∫ T

t

11{τ>θ}
dGθ

Rθ

|GI
t ] = 11{τ>t}

∫ T

t

EQI [11{τ>θ}
dGθ

Rθ

|F I
t ]

QI [τ > t|F I
t ]

= 11{τ>t}

∫ T

t

EP[Y
I
θ 11{τ>θ}

dGθ

Rθ

|F I
t ]

EP[Y
I
t 11{τ>θ}|F I

t ]

=
11{τ>t}

Nt(Lt)

∫
EP

[ ∫ T

t

F I
t,θ(u, l)

dGθ

Rθ

|Ft

]
u=Lt

qt(Lt − l)PL(dl)

Thirdly, we assume Zu =
∑n

i=0 Zi11ti<u≤ti+1
for t < u ≤ T where t0 = t < · · · < tn+1 = T

and Zi is Fti-measurable for i = 0, · · · , n. We have

EQI

[
Zτ11{t<τ≤T}|GI

t

]

11{τ>t}

EQI

[
Zτ11{t<τ≤T}|F I

t

]

QI [τ > t|F I
t ]

=
11{τ>t}

Nt(Lt)

∫ n∑

i=0

(
EP

[
ZiY

I
ti
11{X∗

ti
>x}|Ft

]
−EP

[
ZiY

I
ti+1

11{X∗

ti+1
>x}|Ft

])

u=Lt

qt(Lt − l)PL(dl)

=
11{τ>t}

Nt(Lt)

n∑

i=0

∫
EP

[
n∑

i=0

Zi

(
F I
ti,T

(u, l)− F I
ti+1,T

(u, l)
)
|Ft

]

u=Lt

qt(Lt − l)PL(dl)

= − 11{τ>t}

Nt(Lt)

∫
EP

[∫ T

t

ZsdF
I
s,T (u, l)|Ft

]

u=Lt

qt(Lt − l)PL(dl)

We conclude in the same way as in Proposition 3.2.

6.2 Numerical examples

We present numerical examples to illustrate the pricing formulas obtained previously. We
shall consider the following binomial model for the default barrier L.

Example 6.2 (Binomial Model)
Let L be a random variable taking two values li, ls ∈ R, li ≤ ls such that

P(L = li) = α, P(L = ls) = 1− α (0 < α < 1).

Note that L is independent of (Ft)t≥0.
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We suppose that the asset values process X satisfies the Black Scholes model :

dXt

Xt

= µdt+ σdBt, t ≥ 0.

It is classical in this model to calculate conditional probabilities ([2, Cor3.1.2]). In fact,
for t ≥ 0 and h, l > 0,

EP(11{X∗

t
>l} − 11{X∗

t+h
>l}|Ft) = 11{X∗

t
>l}

(
Φ
(−Y l

t − νh

σ
√
h

)
+ e2νσ

−2YtΦ
(−Y l

t + νh

σ
√
h

))

where Φ is the standard Gaussian cumulative distribution function and

Y l
t = νt + σBt + ln

X0

l
, with ν = µ− 1

2
σ2.

This formula will allow us to obtain explicit pricing results in the binomial default barrier
model.

We give numerical comparisons of the value process of a defaultable bond for different
information, in Example 6.2 with the numerical values: li = 1, ls = 3, α = 1

2
. We have

fixed a very small constant delayed time, which makes the pricing results for the delayed
information very close to the ones for the progressive information. We present in each
figure two graphs, one being the dynamic price of a defaultable bond with zero recovery
rate in the scenario of the firm value presented in the second graph.

In the scenario of Figure 1, the manager has fixed the lower value for the default thresh-
old. So he estimates smaller default probability and thus higher price for the defaultable
bond, compared to the ones estimated by other agents on the market. We observe in ad-
dition that insider with noisy information has a better estimation of the price compared
to the investors with progressive or delayed information.
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Figure 1: L = li
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We observe similar phenomena in Figure 2: the manager has fixed the upper value for
the default threshold and thus estimates higher probability of default and smaller price
of the defaultable bond. Note that in the particular case where L is constant (li = ls),
the price of the defaultable bond are the same, whatever the information we consider.
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Figure 2: L = ls

7 Conclusion

We have modelled the different levels of default information by several types of enlarge-
ment of filtrations, leading also to different pricing probability measures. We have taken
into account these two aspects in the pricing of credit derivatives and obtained in all the
cases coherent formulas given with respect to the “default-free” reference filtration. We
have compared finally the pricing results by numerical illustrations.
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