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Optimal investment with bounded VaR for
power utility functions *

Bénamar Chouaf and Serguei Pergamenchtchikov

Abstract We consider the optimal investment problem for Black-Sekdype fi-
nancial market with bounded VaR measure on the whole invarstinterval[O, T].
The explicit form for the optimal strategies is found.

Key words: Portfolio optimization, Stochastic optimal control, Risknstraints,
Value-at-Risk
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1 Introduction

We consider an investment problem aiming at optimal terinirgalth at maturity
T. The classical approach to this problem goes back to Meha[nd involves
utility functions, more precisely, the expected utilitynges as the functional which
has to be optimized.

We adapt this classical utility maximization approach tavadays industry prac-
tice: investment firms customarily impose limits on the rigkrading portfolios.
These limits are specified in terms of downside Value-akRiaR) risk measures.

As Jorion [$], p. 379 points out, VaR creates a common denatoirfor the
comparison of different risk activities. Traditionallypgition limits of traders are
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set in terms of notional exposure, which may not be directisnparable across
treasuries with different maturities. In contrast, VaRyides a common denomina-
tor to compare various asset classes and business unitpoplarity of VaR as a

risk measure has been endorsed by regulators, in partitidaBasel Committee on
Banking Supervision, which resulted in mandatory regateiworldwide.

Our approach combines the classical utility maximizatiathwisk limits in
terms of VaR. This leads to control problems under restrition uniform versions
of VaR, where the risk bound is supposed to be intact througti® duration of
the investment. To our knowledge such problems have onlyg bersidered in dy-
namic settings, which reduce intrinsically to static pesbhs. Emmer, Kluppelberg
and Korn ﬂl] consider a dynamic market, but maximize only éRpected wealth
at maturity under a downside risk bound at maturity. Basak Simapiro [] solve
the utility optimization problem for complete markets wishunded VaR at matu-
rity. Gabih, Gretsch and Wunderlicﬂ [3] solve the utilitytimpization problem for
constant coefficients markets with bounded ES at maturityppelberg and Perga-
menshchikovl]]8]ﬂ]9] considered the optimisation problemith bounded Var and
ES risk measure on the whole time interval in the class of treandom finan-
cial stratedies. In this paper we consider the optimal iimaeat problem with the
bounded VaR uniformly on whole time intervi, T] for all admissible financial
strategies (nonrandom or random). It should be noted tligiritmpossible to cal-
culate the explicit form of the VaR risk measure for the randmancial strategies.
This is the main difficulty in such problems. In this paper wegmse some method
to overcome this difficulty by applying optimisations medisan the Hilbert spaces.
We find the explicit form for the optimal strategies.

Our paper is organised as follows. In Sectﬂ)n 2 we formulaeBlack-Scholes
model for the price processes. In Sectﬂ)n 3 all optimizagimblems and their so-
lutions are given. All proofs are summarized in Secﬁlon hlite technical lemma
postponed to the Appendjk 5.

2 The model

We consider a Black-Scholes type financial market congisifroneriskless bond
and severatisky stocks Their respective price€)(t));~o and (§(t));>o for i =
1,...,d evolve according to the equations:

dS(t) = ryS(t)dt, $(0) =1,
(2.1)

d§(t) = SO d + (1) 35, 6 () dW(1), §(0) =5 >0,

HereW, = (W, (t),...,Wy(t))" is a standard-dimensional Brownian motiom; € R
is the riskless interest ratep, = (i (t), ..., Uy(t))’ € RY is the vector ofstock-
appreciation ratesand g; = (j; (t))1<j j<q iS the matrix ofstock-volatilities We
assume that the coefficients p; and g; are deterministic functions, which are
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right continuous with left limits (cadlag). We also assuthat the matrig; is non-
singular for Lebesgue-almost alk> 0.

We denote by# = 0{W,,s<t},t > 0, the filtration generated by the Brownian
motion (augmented by the null sets). Furthermorédenotes the Euclidean norm
for vectors and the corresponding matrix norm for matrices.

Fort > 0 let ¢ € R denote the amount of investment into bond and

¢t = (¢1(t)7 ceey ¢d(t)), S Rd

the amount of investment into risky assets. We recall thiasdding strategyis an
R L-valued(#, ), o-progressively measurable procegs ¢,),o and that

d

X=aSb+ ) ¢;1S(1), t=0,

=1

is called thewealth process
The trading strategy(@, ¢;));>o is calledself-financingif the wealth process
satisfies the following equation

Xtx+/tqbd$)(u)+%/tqb-(u)dS-(u) t>0 2.2)
0 & o " (AN :

wherex > 0 is the initial endowment.
In this paper we work with relative quantities, i.e., we defiar j =1,...,d

m(t) = ¢j(t()ij © , t>0.
@ S(t) + 371 $i()S(O)
Thenm = (1g(t),...,my(t))’, t > 0, is called theportfolio processand we assume

throughoutthat itig.7 ), o-progressively measurable. We assume that for the fixed
investment horizoi > 0

]
Imi? = [ Infd<e as.

We also define with = (1,...,1)’ € RY the quantities
Y=o/ and =0 ‘(i —rl), t>0, (2.3)

where it suffices that these quantities are defined for Lales¢most allt > 0.
Taking these definitions into account we rewrite equa)(fZ)rXt as

dX = X (e + Y, 6)dt + Xy dW, Xy =x>0. (2.4)

This implies in particular that any optimal investment &gy is equal to
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=0y,

wherey; is the optimal control process for equati(EkZA). We alspire for the
investment horizoi > 0

]
16]12 :/0 162t < eo. (2.5)

We assume thd; ) ot <1 IS any(# )o<t<7 - @dapted a.s. square integrated process,
i.e.

)
Iyl = /0 y2dt < o as.,

such that the stochastic equati2.4) has a unique staotiosn. We denote by
% the class of all such processes (y;)o<;<7- Note that for every € ¢/, through
Itd’s formula, we represent the equatign [2.4) in the follng form (to emphasize
that the wealth process corresponds to some control prgeessvrite XY)

X = xtr0Og(y), (2.6)

whereR, = [§r,du, (y,0); = [5Y, 6,duand the process; (y))o <7 is the stochas-
tic exponent fory, i.e.

s =exp( [ Vw3 [ wPew).

Therefore, for every € %' the procesgxY),- is a.s. positive and continuous.
For initial endowmenx > 0 and a control process= (;);>o in %/, we introduce
thecost function
Iy =E ()", (2.7)

whereE, is the expectation operator conditional)égﬁ: X.

For 0< y < 1 the utility functionU(z) = 2 is concave and is called a power
(or HARA) utility function. We include the case of = 1, which corresponds to
simply optimizing expected consumption and terminal wedit combination with
a downside risk bound this allows us in principle to dispevitk the utility function,
where in practise one has to choose the paranyeter

3 Optimisation problems

3.1 The Unconstrained Problem

We consider two regimes with cost functi02.7) for @ < 1 andfory=1.
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maxJ(x,y). (3.1)
ye&

First we consider Problefn 3.1 for®y < 1. The following result can be found in
Example 6.7 on page 106 in Karatzas and Shrﬂve [7]; it's gtaok is based by the
martingale method.

Theorem 1.Consider Problen] 31 fob < y < 1. The optimal value of (X,y) is
given by

209 = maxd(xy) = Ixy') =¥ explyRy + 57 V_y)neH%},
where the optimal control’y= (y; )o<i<7 is forall 0 <t < T of the form
Yf:liy (r{*_ oo/ 1(“;_“1))_ (3.2)
The optimal wealth proce$X*)o<t<T is given by
X = X <rt+|9‘|2> +xt1 yd\/\4 X5 =X, (3.3)

Letnowy=1.

Theorem 2.[B] Consider the problenf 3.1 witly = 1. Assume a riskless interest
rater, > Oforallt € [0, T]. If |0]|t > Othen

maxJ(x,y) = oo.
ye¥

If ||8]|+ = 0then a solution exists and the optimal value 0£.¥) is given by

maxJ(x,y) = J(xy") = €,
yew

corresponding to arbitrary deterministic square integi@unction (y; )o<t<7- In
this case the optimal wealth proces§*)o<i<T satisfies the following equation

dX = Xrdt + X7y AW, XS = X (3.4)

3.2 The Constrained Problem

As risk measures we use modifications of the Value-at-Rightesduced in Emmer,
Kluppelberg and Korn[}4]. They can be summarized under ti®n of Capital-at-
Risk as they reflect the required capital reserve. To avoitnetevant cases we
consider only 0< a < 1/2. We use here the definition as [h [§]-[9].
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Definition 1. [Value-at-Risk (VaR)]
Define for initial endowment > 0, a control procesg€ % and 0< a < 1/2 the
Value-at-Risk (VaR)y

VaR (x,y,a) :=x&¥ —Q,, t>0,

whereQ, = Q (x,y, ) is the(F)) = a{ys,0 < s <t} measurable random variable
such that
XY

t

o quantile of the ratio )?ty = isequalto 1 (3.5)

inf{z>0: P()A(ty <z>a}=1.

Remark 1Note that for the nonrandom financial stratedig$o--1 the proces€
is the usuabr- quantile for the proces¥. To define the “random*” quantile for the

process) we consider the ratio procegy for which thea- quantile is equal to 1.

Corollary 1. For every ye % with ||y|, > 0 the process Qdefined in Definitiofi]1,
is given by

1
Q =xexp(R+ (.6) ~ 3 IMF+ iyl ) . =0,

wheret, = 1;(a,Y) is thea-quantile of the normalized stochastic integral

1 t
- = [ yaw
Et(y) Hy”t A yu u»

T, =inf{z> -0 :P(&(y) < 2)>a}. (3.6)
Itis clear that for any nonrandom functi¢y ) o, the random variable
Et ~ JV(O, 1) 9

i.e. inthis casa; = —|z,|, wherez, is thea-quantile of the standard normal distri-
bution.

Indeed, to obtain the explicit form for the optimal solutsan this paper we work
with a upper bound for VaR risk measure, i.e. we consider the

VaR' (x,y,a) :=xe* —Qf, t>0, (3.7)
where
. 1 N . . .
Qt :Xexp(Rt+(yae)t_é|y||t2+Tt |y||t) with Tt = mln(zavrt)'

Obviously,
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VaR (x,y,a) < VaR'(x,y, ).

We define thdevel risk functiorfor some coefficient& { < 1 as
G(x) = ¢xd¥, te[oT]. (3.8)

We consider only controlge % for which the Value-at-Risk is a.s. bounded by this
level function over the intervdD, T]; i.e. we require

VaR' (x.y,a)
Oztung 74()() <1 as. (3.9)

The optimisation problem is

maxJ(x,y) subjectto  sup VaR (x.y,a)

<1 as.. 3.10
ye& ost<t  G(X) B (3.10)

To describe the optimal strategies we need the followingtion
g(a):=/2a+22 -7, (3.11)
with
Zy =2,/ Blly and 0<a<ap, :=-In1-7).

Moreover, we set
161

~ 116l
=y

T,

(3.12)

Theorem 3. Consider the probler3.1¢)for 0 < y < 1. Assume thalz, | > 2||6|+.
Then the optimal value for the cost function is given by

J(x,y*) = x/ eRr+ve(@) (3.13)
where Gg) = 9|61 + (1—y)g?/2, g* = g(a*) with
a" = min(ag, may) , (3.14)

and the optimal control*yis for all 0 <t < T of the form

g*
Y = H9||T911{H9HT>0}' (3.15)
Moreover, if||8]|1 > 0then the optimal wealth proce§X)o<i<T iS given by

* 2 *
X = X’ (rt + gh (laﬂ ) dt +XI*HS—HT QoW with X =x; (3.16)
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and if(|6]l; =0then X = xet forO<t<T.

Theorem 4. Consider the probler8.1¢)for y= 1. Assume thdtz, | > 2||8||;. Then
the optimal value for the cost function is given by

J(xy*) = x e +9(@max 1611+ , (3.17)
where and the optimal controfys for all 0 <t < T of the form

%= |(9|| g 1 {l161r>0} - (3.18)

Moreover, if||8]|1 > 0then the optimal wealth procegX*)o<i<T iS given by

2
X" = X (rt + (ah“gﬂed )dt+Xt* g|2"|‘|ax) gaw with X =x; (3.19)

and if 6|y =0then X' = xe¥ for0<t <T.

4 Proofs

4.1 Proof of Theorem[3

Letnow O< y < 1. By @) we represent thepower of the wealth process as
(X_I}_/)V — XVeVRT+VFT(y) éa_l_(yy) ,
where 1
-y
Fr(y) = (97Y)T—T|\y||$- (4.1)

Moreover, we introduce the measure (generally non proibgidily the following
Radon-Nikodym density
dP

By denotingE the expectation with respect to this measure we get that
E(XY)Y = xVeRr EeFT0) (4.2)
Note that, if||0]|; = 0 then

(1
E(XY) =xeRrEe "7 MW |2
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Taking into account that for any procesfom %
Eér(yy) <1

we get forany €

with the equality if and only if;, = 0.

Therefore, in the sequel we assume th@f; > 0. Now we shall consider the
almost sure optimisation problem for the functlgy(-). First, we consider this con-
trained the last time momeht&=T, i.e.

V.
supFr(y) subjectto VaR; (x.y, a)

<1 as. 4.3
ye¥ ZT(X) - &S ( )

This constraint is equivalent to

1 *
SIVF =7 lyllr = (8:9)7 < —IN(1—0) = g

By fixing the the quantile as; = — 3 for some > |z, | and denoting

1
Kr (y) = SIVIF + BVl — (6.%)r

we will consider more general problem thgn [4.3), i.e. wd fiild the optimal
solution in the Hilbert spack,[0,T], i.e.

sup Fr(y) subjectto Kr(y) < @ma.
yel,[0,2]

To resolve this problem we have to resolve the following one

sup F(y) subjectto Ki(y)=a 4.4)
yeL,[0,T]

for some parameter € a < a,,,,. We use the Lagrange multiplicators method, i.e.
we pass to the Lagrange cost functidr(y) = Fr(y) — AK;(y) and we have to
resolve the optimisation problem for this function, i.e.

H . 4.5
yerpz%fﬂ A(Y) (4.5)
In this case
A+l—y
HA(y)=—TIIVH%+(1+/\)(9,y)T—ABHy||T,

whereA is Lagrange multiplicator. It is clear that> y— 1. Since the problenf (4.5)
has no finite solution foh <y—1,i.e.
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max H = .
yeL,[0,T] )\(Y) e

to this end we calculate the Gateau derivative, i.e.

D, (y,h
A (yv ) 550 >

It is easy to check directly that for any functigfirom L, [0, T] with |ly|+ >0

DA<y,h>/()W((HA)@(lvH)y@th)dt

with y, = y;/|lyllt- Moreover, if|ly|| = 0, then

T
D, ()= (1+2) | "Wt AB|hijr.
Itis clear thaD, (y,h) # 0 for h, = —sign(A)6,. Therefore, to resolve the equation
D, (y;h)=0 (4.6)
forall h e L,[0,T] we assume thdly||x > 0. This implies

(1+2)8—(1—-y+A)y, —ABY, =0,

i.e.
@My
COABHLHA Y)Yl
Therefore,
Y) - 16llx +AI6lly —B)
= with A)= . 4.7
Y =16 & () p—— C)
The coefficienty must be positive, i.e.
y—1<A < __l8lr (4.8)

(B—16lr)y

Now we have to verify that the solution of the equatipn](4i6g the maximum
solution for the problem@.S). To end this for any functipifrom L,[0, T] with
IlyllT > 0 we set

Ay (y,h) =Hy (y+h) —H,(y) =D, (y,h).

Moreover, by putting

o(y;h) = lly+hilx = Iyll+ = (h,y)r, (4.9)
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we obtain o
+1-y
AA (yvh) = _T”hH% _Aﬁé(y7h)a

Now Lemma[]l implies that the functiah(y,h) < 0 for all h € L,[0,T]. Therefore
the solution of the equatimlEh.G) gives the solution forgihablem [4.5).
Now we chose the lagrange multiplicatoto satisfy the condition ir@A), i.e.

KT(y)\) =a,
i.e.
W A)+2¢(A)(B—6]1) = 2a,
i.e.
P(a)=y(A(a) =\/2a+(B—0r)>— (B—6lr)
with

3 Ay 1Ol @ VB— 10l
22+ (B [0lIr)?

One can check directly that the functidrfa) satisfies the conditio@B) for any
a > 0. This means that the solution for the probl(4.4) is gimgtthe function

V?=>/T\<a)=M9t-

1+y.

16ll+
Now to chose the parameter0a < a,,in (f.4) we have to maximize the function
@3y, ie.
max F .
omax (V)
Note that

2
Fr(f) =G(B(@) with G(y)=ylol; - (1-yL-.

Moreover, note that for ang > 0 andf > |z,|

P(a) <9(a),
where the functiory is defined in[(3.11). Therefore,

max Fr(¥?) < max G(g(a)) =G(g(a")),

0<a<amay - 0<a<an,,

wherea* is defined in [3.74). To obtain here the equality we tak¢ i)(8.= |z |.
Thus, the function|(3.15) is the solution of the problIAl\:Bow to pass to the
problem [3.1D) we have to check the conditipn](3.9) for thecfion (3.1F). To this
end note that

t
SIV I+ 2l Iy~ (8.3 = | (s,
Jo
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where

2 gz - 216]9
92<(g) L 97| s>_
“=18" 21612 * 216l T

taking into account here the conditigry | > ||0||+ we obtaingy > 0, i.e.

2112+ zal 1Y~ (6.5

< IV + 2l — (0.¥)r
=a*<-In(1-27).

This implies immediately that the functiop (3 15) is a simlntof the problem|(3.30).
O

4.2 Proof of Theoremf

Let nowy = 1. Note that in this case we can obtain the following uppemiou
EX_?_’ < Xé?T EeHGHTHYHT gT (y) .

Obviously, that if|| 8|l = 0 than we obtain here equality if and onlyyif= 0. Let
now ||8]|; > 0. Note that the condition

K7 (Y) < amax (4.10)

implies ||y||+ < g(@may- Thus, for any functiorfy; o Satisfying the condition
we have
EX_?_’ < X&T*Q(amaQHQHT .

Moreover, the functio8) transforms this inequalitytie equality. By the same
way as in the proof of Theoref) 4 we check that the functjongBshtisfies the

condition [3.).
(]
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5 Appendix

A.1 Propertiesof the function (#.9)
Lemma 1. Assume that ¥ L,[0, T] with ||y||+ > 0. Then for every k& L,[0,T] the
function(@.9)is positive, i.e5(y,h) > 0.

Proof. Obviously,ifh=ayforsomeac R, thend(y,h) = (|1+a|—1—a)|ly|; > 0.
Let now the function& andy be linearly independent. Then

12 = (3.h)7 (7, h)r + 3(y; h))
ly+hll+ +[lyll+

_ 2y, by +hIz
ly-+hllr + [yl

It is clear that for alh

6(ya h) (77 h)T =

ly+hllt +lyllt + (¥,h)r >0

with equality if and only ith = ayfor somea < —1.
Therefore, if the functionk andy are linearly independent, then

iy — NI =2
’ ly+hllt +llyllr + @ h) —
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