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Optimal investment with bounded VaR for
power utility functions ⋆

Bénamar Chouaf and Serguei Pergamenchtchikov

Abstract We consider the optimal investment problem for Black-Scholes type fi-
nancial market with bounded VaR measure on the whole investment interval[0,T].
The explicit form for the optimal strategies is found.

Key words: Portfolio optimization, Stochastic optimal control, Riskconstraints,
Value-at-Risk

Mathematical Subject Classification (2000)91B28, 93E20

1 Introduction

We consider an investment problem aiming at optimal terminal wealth at maturity
T. The classical approach to this problem goes back to Merton [12] and involves
utility functions, more precisely, the expected utility serves as the functional which
has to be optimized.

We adapt this classical utility maximization approach to nowadays industry prac-
tice: investment firms customarily impose limits on the riskof trading portfolios.
These limits are specified in terms of downside Value-at-Risk (VaR) risk measures.

As Jorion [5], p. 379 points out, VaR creates a common denominator for the
comparison of different risk activities. Traditionally, position limits of traders are
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set in terms of notional exposure, which may not be directly comparable across
treasuries with different maturities. In contrast, VaR provides a common denomina-
tor to compare various asset classes and business units. Thepopularity of VaR as a
risk measure has been endorsed by regulators, in particular, the Basel Committee on
Banking Supervision, which resulted in mandatory regulations worldwide.

Our approach combines the classical utility maximization with risk limits in
terms of VaR. This leads to control problems under restrictions on uniform versions
of VaR, where the risk bound is supposed to be intact throughout the duration of
the investment. To our knowledge such problems have only been considered in dy-
namic settings, which reduce intrinsically to static problems. Emmer, Klüppelberg
and Korn [4] consider a dynamic market, but maximize only theexpected wealth
at maturity under a downside risk bound at maturity. Basak and Shapiro [2] solve
the utility optimization problem for complete markets withbounded VaR at matu-
rity. Gabih, Gretsch and Wunderlich [3] solve the utility optimization problem for
constant coefficients markets with bounded ES at maturity. Klüppelberg and Perga-
menshchikov [8]-[9] considered the optimisation problemswith bounded Var and
ES risk measure on the whole time interval in the class of the nonrandom finan-
cial stratedies. In this paper we consider the optimal investment problem with the
bounded VaR uniformly on whole time interval[0,T] for all admissible financial
strategies (nonrandom or random). It should be noted that itis immpossible to cal-
culate the explicit form of the VaR risk measure for the random financial strategies.
This is the main difficulty in such problems. In this paper we propose some method
to overcome this difficulty by applying optimisations methods in the Hilbert spaces.
We find the explicit form for the optimal strategies.

Our paper is organised as follows. In Section 2 we formulate the Black-Scholes
model for the price processes. In Section 3 all optimizationproblems and their so-
lutions are given. All proofs are summarized in Section 4 with the technical lemma
postponed to the Appendix 5.

2 The model

We consider a Black-Scholes type financial market consisting of oneriskless bond
and severalrisky stocks. Their respective prices(S0(t))t≥0 and (Si(t))t≥0 for i =
1, . . . ,d evolve according to the equations:





dS0(t) = rt S0(t)dt , S0(0) = 1,

dSi(t) = Si(t)µi(t)dt + Si(t) ∑d
j=1 σi j (t)dWj(t) , Si(0) = si > 0,

(2.1)

HereWt = (W1(t), . . . ,Wd(t))
′ is a standardd-dimensional Brownian motion;rt ∈R

is the riskless interest rate, µt = (µ1(t), . . . ,µd(t))
′ ∈ R

d is the vector ofstock-
appreciation ratesandσt = (σi j (t))1≤i, j≤d is the matrix ofstock-volatilities. We
assume that the coefficientsrt , µt and σt are deterministic functions, which are
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right continuous with left limits (càdlàg). We also assume that the matrixσt is non-
singular for Lebesgue-almost allt ≥ 0.

We denote byFt = σ{Ws,s≤ t}, t ≥ 0, the filtration generated by the Brownian
motion (augmented by the null sets). Furthermore,| · | denotes the Euclidean norm
for vectors and the corresponding matrix norm for matrices.

For t ≥ 0 let φt ∈ R denote the amount of investment into bond and

ϕt = (ϕ1(t), . . . ,ϕd(t))
′ ∈ R

d

the amount of investment into risky assets. We recall that atrading strategyis an
R

d+1-valued(Ft )t≥0-progressively measurable process(φt ,ϕt )t≥0 and that

Xt = φt S0(t) +
d

∑
j=1

ϕ j(t)Sj(t) , t ≥ 0,

is called thewealth process.
The trading strategy((φt ,ϕt))t≥0 is calledself-financing, if the wealth process

satisfies the following equation

Xt = x+
∫ t

0
φudS0(u) +

d

∑
j=1

∫ t

0
ϕ j(u)dSj(u) , t ≥ 0, (2.2)

wherex> 0 is the initial endowment.
In this paper we work with relative quantities, i.e., we define for j = 1, . . . ,d

π j(t) :=
ϕ j(t)Sj(t)

φt S0(t)+∑d
j=1 ϕi(t)Si(t)

, t ≥ 0.

Thenπt = (π1(t), . . . ,πd(t))
′, t ≥ 0, is called theportfolio processand we assume

throughout that it is(Ft )t≥0-progressively measurable. We assume that for the fixed
investment horizonT > 0

‖π‖2
T :=

∫ T

0
|πt |

2dt < ∞ a.s. .

We also define with1= (1, . . . ,1)′ ∈ R
d the quantities

yt = σ ′
t πt and θt = σ−1

t (µt − rt 1) , t ≥ 0, (2.3)

where it suffices that these quantities are defined for Lebesgue-almost allt ≥ 0.
Taking these definitions into account we rewrite equation (2.2) for Xt as

dXt = Xt (rt + y′t θt)dt + Xt y′t dWt , X0 = x> 0. (2.4)

This implies in particular that any optimal investment strategy is equal to
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π∗
t = σ ′−1

t y∗t ,

wherey∗t is the optimal control process for equation (2.4). We also require for the
investment horizonT > 0

‖θ‖2
T =

∫ T

0
|θt |

2dt < ∞ . (2.5)

We assume that(yt)0≤t≤T is any(Ft )0≤t≤T - adapted a.s. square integrated process,
i.e.

‖y‖2
T =

∫ T

0
|yt |

2dt < ∞ a.s.,

such that the stochastic equation (2.4) has a unique strong solution. We denote by
Y the class of all such processesy= (yt)0≤t≤T . Note that for everyy∈ Y , through
Itô’s formula, we represent the equation (2.4) in the following form (to emphasize
that the wealth process corresponds to some control processy we writeXy)

Xy
t = xeRt+(y,θ)t Et(y) , (2.6)

whereRt =
∫ t

0 rudu, (y,θ )t =
∫ t

0 y′u θudu and the process(Et(y))0≤t≤T is the stochas-
tic exponent fory, i.e.

Et(y) = exp
(∫ t

0
y′udWu−

1
2

∫ t

0
|yu|

2du
)
.

Therefore, for everyy∈ Y the process(Xy
t )t≥0 is a.s. positive and continuous.

For initial endowmentx> 0 and a control processy= (yt)t≥0 in Y , we introduce
thecost function

J(x,y) := Ex

(
Xy

T

)γ
, (2.7)

whereEx is the expectation operator conditional onXy
0 = x.

For 0< γ < 1 the utility functionU(z) = zγ is concave and is called a power
(or HARA) utility function. We include the case ofγ = 1, which corresponds to
simply optimizing expected consumption and terminal wealth. In combination with
a downside risk bound this allows us in principle to dispersewith the utility function,
where in practise one has to choose the parameterγ.

3 Optimisation problems

3.1 The Unconstrained Problem

We consider two regimes with cost functions (2.7) for 0< γ < 1 and forγ = 1.
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max
y∈Y

J(x,y) . (3.1)

First we consider Problem 3.1 for 0< γ < 1. The following result can be found in
Example 6.7 on page 106 in Karatzas and Shreve [7]; it’s proofthere is based by the
martingale method.

Theorem 1.Consider Problem 3.1 for0 < γ < 1. The optimal value of J(x,y) is
given by

J∗(x) = max
y∈Y

J(x,y) = J(x,y∗) = xγ exp{γRT +
γ

2(1− γ)
‖θ‖2

T} ,

where the optimal control y∗ = (y∗t )0≤t≤T is for all 0≤ t ≤ T of the form

y∗t =
θt

1− γ

(
π∗

t =
(σtσ ′

t )
−1(µt − rt1)
1− γ

)
. (3.2)

The optimal wealth process(X∗
t )0≤t≤T is given by

dX∗
t = X∗

t

(
rt +

|θt |
2

1− γ

)
dt+X∗

t

θ ′
t

1− γ
dWt , X∗

0 = x. (3.3)

Let nowγ = 1.

Theorem 2. [8] Consider the problem 3.1 withγ = 1. Assume a riskless interest
rate rt ≥ 0 for all t ∈ [0,T]. If ‖θ‖T > 0 then

max
y∈Y

J(x,y) = ∞ .

If ‖θ‖T = 0 then a solution exists and the optimal value of J(x,y) is given by

max
y∈Y

J(x,y) = J(x,y∗) = xeRT ,

corresponding to arbitrary deterministic square integrable function(y∗t )0≤t≤T . In
this case the optimal wealth process(X∗

t )0≤t≤T satisfies the following equation

dX∗
t = X∗

t rtdt + X∗
t y∗t

′dWt , X∗
0 = x. (3.4)

3.2 The Constrained Problem

As risk measures we use modifications of the Value-at-Risk asintroduced in Emmer,
Klüppelberg and Korn [4]. They can be summarized under the notion of Capital-at-
Risk as they reflect the required capital reserve. To avoid non-relevant cases we
consider only 0< α < 1/2. We use here the definition as in [8]-[9].
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Definition 1. [Value-at-Risk (VaR)]
Define for initial endowmentx > 0, a control processy ∈ Y and 0< α ≤ 1/2 the
Value-at-Risk (VaR)by

VaRt(x,y,α) := xeRt −Qt , t ≥ 0,

whereQt = Qt(x,y,α) is the(F y
t ) = σ{ys,0≤ s≤ t} measurable random variable

such that

α quantile of the ratio X̂y
t =

Xy
t

Qt
is equal to 1 (3.5)

i.e.
inf{z≥ 0 : P(X̂y

t ≤ z)≥ α}= 1.

Remark 1.Note that for the nonrandom financial strategies(yt)0≤t≤T the processQt
is the usualα- quantile for the processXy

t . To define the “random“ quantile for the

processXy
t we consider the ratio procesŝXy

t for which theα- quantile is equal to 1.

Corollary 1. For every y∈ Y with ‖y‖t > 0 the process Qt defined in Definition 1,
is given by

Qt = xexp

(
Rt +(y,θ )t −

1
2
‖y‖2

t + τt‖y‖t

)
, t ≥ 0,

whereτt = τt (α,y) is theα-quantile of the normalized stochastic integral

ξt(y) =
1

‖y‖t

∫ t

0
y′udWu ,

i.e.
τt = inf{z≥−∞ : P(ξt(y) ≤ z)≥ α} . (3.6)

It is clear that for any nonrandom function(yt)0≤t≤T the random variable

ξt ∼ N (0,1) ,

i.e. in this caseτt =−|zα |, wherezα is theα-quantile of the standard normal distri-
bution.

Indeed, to obtain the explicit form for the optimal solutions in this paper we work
with a upper bound for VaR risk measure, i.e. we consider the

VaR∗
t (x,y,α) := xeRt −Q∗

t , t ≥ 0, (3.7)

where

Q∗
t = xexp

(
Rt +(y,θ )t −

1
2
‖y‖2

t + τ∗t ‖y‖t

)
with τ∗t = min(zα ,τt ) .

Obviously,
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VaRt(x,y,α) ≤ VaR∗
t (x,y,α) .

We define thelevel risk functionfor some coefficient 0< ζ < 1 as

ζt(x) = ζ xeRt , t ∈ [0,T] . (3.8)

We consider only controlsy∈Y for which the Value-at-Risk is a.s. bounded by this
level function over the interval[0,T]; i.e. we require

sup
0≤t≤T

VaR∗
t (x,y,α)

ζt(x)
≤ 1 a.s.. (3.9)

The optimisation problem is

max
y∈Y

J(x,y) subject to sup
0≤t≤T

VaR∗
t (x,y,α)

ζt(x)
≤ 1 a.s.. (3.10)

To describe the optimal strategies we need the following function

g(a) :=
√

2a+ z̃2
α − z̃α (3.11)

with
z̃α = |zα |−‖θ‖T and 0≤ a≤ amax :=− ln(1− ζ ) .

Moreover, we set

a0 =
‖θ‖2

T

2(1− γ)2 + z̃α
‖θ‖T

1− γ
. (3.12)

Theorem 3.Consider the problem(3.10)for 0< γ < 1. Assume that|zα | ≥ 2‖θ‖T.
Then the optimal value for the cost function is given by

J(x,y∗) = xγ eγRT+γG(g∗) , (3.13)

where G(g) = g‖θ‖T +(1− γ)g2/2, g∗ = g(a∗) with

a∗ = min(a0,amax) , (3.14)

and the optimal control y∗ is for all 0≤ t ≤ T of the form

y∗t =
g∗

‖θ‖T
θt 1{‖θ‖T>0} . (3.15)

Moreover, if‖θ‖T > 0 then the optimal wealth process(X∗
t )0≤t≤T is given by

dX∗
t = X∗

t

(
rt +

g∗|θt |
2

‖θ‖T

)
dt +X∗

t

g∗

‖θ‖T
θ ′

t dWt with X∗
0 = x; (3.16)



8 Bénamar Chouaf and Serguei Pergamenchtchikov

and if‖θ‖T = 0 then X∗t = xeRt for 0≤ t ≤ T.

Theorem 4.Consider the problem(3.10)for γ = 1. Assume that|zα | ≥ 2‖θ‖T . Then
the optimal value for the cost function is given by

J(x,y∗) = xeRT+g(amax)‖θ‖T , (3.17)

where and the optimal control y∗ is for all 0≤ t ≤ T of the form

y∗t =
g(amax)

‖θ‖T
θt 1{‖θ‖T>0} . (3.18)

Moreover, if‖θ‖T > 0 then the optimal wealth process(X∗
t )0≤t≤T is given by

dX∗
t = X∗

t

(
rt +

g(amax)|θt |
2

‖θ‖T

)
dt +X∗

t

g(amax)

‖θ‖T
θ ′

t dWt with X∗
0 = x; (3.19)

and if‖θ‖T = 0 then X∗t = xeRt for 0≤ t ≤ T.

4 Proofs

4.1 Proof of Theorem 3

Let now 0< γ < 1. By (2.6) we represent theγ power of the wealth process as

(Xy
T)

γ = xγ eγRT+γFT(y) ET(γy) ,

where

FT(y) = (θ ,y)T −
1− γ

2
‖y‖2

T . (4.1)

Moreover, we introduce the measure (generally non probability) by the following
Radon-Nikodym density

dP̃
dP

= ET(γy) .

By denotingẼ the expectation with respect to this measure we get that

E(Xy
T)

γ = xγ eγRT ẼeγFT (y) . (4.2)

Note that, if‖θ‖T = 0 then

E(Xy
T)

γ = xγ eγRT Ẽe−
γ(1−γ)

2 ‖y‖2
T .
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Taking into account that for any processy from Y

EET(γy)≤ 1

we get for anyy∈ Y

E(Xy
T)

γ ≤ xγ eγRT

with the equality if and only ifyt = 0.
Therefore, in the sequel we assume that‖θ‖T > 0. Now we shall consider the

almost sure optimisation problem for the functionFT(·). First, we consider this con-
trained the last time momentt = T, i.e.

sup
y∈Y

FT(y) subject to
VaR∗

T(x,y,α)

ζT(x)
≤ 1 a.s.. (4.3)

This constraint is equivalent to

1
2
‖y‖2

T − τ∗T‖y‖T − (θ ,y)T ≤− ln(1− ζ ) =: amax.

By fixing the the quantile asτ∗T =−β for someβ ≥ |zα | and denoting

KT(y) =
1
2
‖y‖2

T +β‖y‖T − (θ ,y)T

we will consider more general problem than (4.3), i.e. we will find the optimal
solution in the Hilbert spaceL2[0,T], i.e.

sup
y∈L2[0,2]

FT(y) subject to KT(y)≤ amax.

To resolve this problem we have to resolve the following one

sup
y∈L2[0,T]

FT(y) subject to KT(y) = a (4.4)

for some parameter 0≤ a≤ amax. We use the Lagrange multiplicators method, i.e.
we pass to the Lagrange cost functionHλ (y) = FT(y)− λKT(y) and we have to
resolve the optimisation problem for this function, i.e.

max
y∈L2[0,T]

Hλ (y) . (4.5)

In this case

Hλ (y) =−
λ +1− γ

2
‖y‖2

T +(1+λ )(θ ,y)T −λ β‖y‖T ,

whereλ is Lagrange multiplicator. It is clear thatλ > γ −1. Since the problem (4.5)
has no finite solution forλ ≤ γ −1, i.e.
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max
y∈L2[0,T]

Hλ (y) = +∞ .

to this end we calculate the Gâteau derivative, i.e.

Dλ (y,h) = lim
δ→0

Hλ (y+ δh)−Hλ(y)
δ

.

It is easy to check directly that for any functiony from L2[0,T] with ‖y‖T > 0

Dλ (y,h) =
∫ T

0
h′t
(
(1+λ )θt − (1− γ +λ )yt −λ βyt

)
dt

with yt = yt/‖y‖T . Moreover, if‖y‖T = 0, then

Dλ (y,h) = (1+λ )
∫ T

0
h′tθtdt −λ β‖h‖T .

It is clear thatDλ (y,h) 6= 0 for ht =−sign(λ )θt . Therefore, to resolve the equation

Dλ (y,h) = 0 (4.6)

for all h∈ L2[0,T] we assume that‖y‖T > 0. This implies

(1+λ )θt − (1− γ +λ )yt −λ βyt = 0,

i.e.

yt =
(1+λ )‖y‖T

λ β +(1+λ − γ)‖y‖T
θt .

Therefore,

yλ
t =

ψ(λ )
‖θ‖T

θt with ψ(λ ) =
‖θ‖T +λ (‖θ‖T −β )

1− γ +λ
. (4.7)

The coefficientψ must be positive, i.e.

γ −1< λ <
‖θ‖T

(β −‖θ‖T)+
. (4.8)

Now we have to verify that the solution of the equation (4.6) gives the maximum
solution for the problem (4.5). To end this for any functiony from L2[0,T] with
‖y‖T > 0 we set

∆λ (y,h) = Hλ (y+h)−Hλ(y)−Dλ (y,h) .

Moreover, by putting

δ (y,h) = ‖y+h‖T −‖y‖T − (h,y)T , (4.9)



Optimal investment with bounded VAR 11

we obtain

∆λ (y,h) =−
λ +1− γ

2
‖h‖2

T −λ β δ (y,h) ,

Now Lemma 1 implies that the function∆(y,h) ≤ 0 for all h∈ L2[0,T]. Therefore
the solution of the equation (4.6) gives the solution for theproblem (4.5).

Now we chose the lagrange multiplicatorλ to satisfy the condition in (4.4), i.e.

KT(y
λ ) = a,

i.e.
ψ2(λ )+2ψ(λ )(β −‖θ‖T) = 2a,

i.e.

ψ̃(a) = ψ(λ (a)) =
√

2a+(β −‖θ‖T)
2− (β −‖θ‖T)

with

λ = λ (a) =
‖θ‖T +(1− γ)(β −‖θ‖T)√

2a+(β −‖θ‖T)
2

−1+ γ .

One can check directly that the functionλ (a) satisfies the condition (4.8) for any
a> 0. This means that the solution for the problem (4.4) is givenby the function

ỹa
t = yλ (a)

T =
ψ̃(a)
‖θ‖T

θt .

Now to chose the parameter 0< a≤ amax in (4.4) we have to maximize the function
(4.1), i.e.

max
0≤a≤amax

FT(ỹ
a) .

Note that

FT(ỹ
a) = G(ψ̃(a)) with G(ψ) = ψ‖θ‖T − (1− γ)

ψ2

2
.

Moreover, note that for anya> 0 andβ ≥ |zα |

ψ̃(a)≤ g(a) ,

where the functiong is defined in (3.11). Therefore,

max
0≤a≤amax

FT(ỹ
a) ≤ max

0≤a≤amax

G(g(a)) = G(g(a∗)) ,

wherea∗ is defined in (3.14). To obtain here the equality we take in (4.7) β = |zα |.
Thus, the function (3.15) is the solution of the problem (4.3). Now to pass to the
problem (3.10) we have to check the condition (3.9) for the function (3.15). To this
end note that

1
2
‖y∗‖2

t + |zα |‖y∗‖t − (θ ,y∗)t =
∫ t

0
ω(s)ds,
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where

ωs = |θs|
2
(

(g∗)2

2‖θ‖2
T

+
g∗(|zα |−2‖θ‖s)

2‖θ‖T‖θ‖s

)
.

taking into account here the condition|zα | ≥ ‖θ‖T we obtainωt ≥ 0, i.e.

1
2
‖y∗‖2

t + |zα |‖y∗‖t − (θ ,y∗)t

≤
1
2
‖y∗‖2

T + |zα |‖y∗‖T − (θ ,y∗)T

= a∗ ≤− ln(1− ζ ) .

This implies immediately that the function (3.15) is a solution of the problem (3.10).
�

4.2 Proof of Theorem 4

Let nowγ = 1. Note that in this case we can obtain the following upper bound:

EXy
T ≤ xeRT Ee‖θ‖T‖y‖T ET(y) .

Obviously, that if‖θ‖T = 0 than we obtain here equality if and only ify = 0. Let
now‖θ‖T > 0. Note that the condition

KT(y)≤ amax (4.10)

implies‖y‖T ≤ g(amax). Thus, for any function(yt)0≤t≤T satisfying the condition
we have

EXy
T ≤ xeRT+g(amax)‖θ‖T .

Moreover, the function (3.18) transforms this inequality in the equality. By the same
way as in the proof of Theorem 4 we check that the function (3.18) satisfies the
condition (3.9).

�
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5 Appendix

A.1 Properties of the function (4.9)

Lemma 1. Assume that y∈ L2[0,T] with ‖y‖T > 0. Then for every h∈ L2[0,T] the
function(4.9) is positive, i.e.δ (y,h)≥ 0.

Proof. Obviously, ifh≡ayfor somea∈R, thenδ (y,h)= (|1+a|−1−a)‖y‖T ≥ 0.
Let now the functionsh andy be linearly independent. Then

δ (y,h) =
2(y, h)T + ‖h‖2

T

‖y+h‖T + ‖y‖T
− (y,h)T =

‖h‖2
T − (y,h)T((y,h)T + δ (y,h))

‖y+h‖T + ‖y‖T
.

It is clear that for allh

‖y+h‖T + ‖y‖T +(y,h)T ≥ 0

with equality if and only ifh≡ ay for somea≤−1.
Therefore, if the functionsh andy are linearly independent, then

δ (y,h) =
‖h‖2

T − (y, h)2
T

‖y+h‖T + ‖y‖T +(y,h)T
≥ 0.

�
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