
HAL Id: hal-00457323
https://hal.science/hal-00457323

Preprint submitted on 17 Feb 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sharing resources for performance and energy
optimization of concurrent streaming applications

Anne Benoit, Paul Renaud-Goud, Yves Robert

To cite this version:
Anne Benoit, Paul Renaud-Goud, Yves Robert. Sharing resources for performance and energy opti-
mization of concurrent streaming applications. 2010. �hal-00457323�

https://hal.science/hal-00457323
https://hal.archives-ouvertes.fr

Sharing resources for performance and energy optimization

of concurrent streaming applications

Anne Benoit, Paul Renaud-Goud and Yves Robert

LIP, ENS Lyon, 46 Allée d’Italie, 69364 Lyon Cedex 07, France

UMR 5668 - CNRS - ENS Lyon - UCB Lyon - INRIA

{Anne.Benoit|Paul.Renaud-Goud|Yves.Robert}@ens-lyon.fr

February 16, 2010

LIP Research Report RR-2010-05

Abstract

We aim at finding optimal mappings for concurrent streaming applications. Each appli-
cation consists of a linear chain with several stages, and processes successive data sets in
pipeline mode. The objective is to minimize the energy consumption of the whole platform,
while satisfying given performance-related bounds on the period and latency of each appli-
cation. The problem is to decide which processors to enroll, at which speed (or mode) to
use them, and which stages they should execute. Processors can be identical (with the same
modes) or heterogeneous. We also distinguish two mapping categories, interval mappings,
and general mappings. For interval mappings, a processor is assigned a set of consecutive
stages of the same application, so there is no resource sharing across applications. On the
contrary, the assignment is fully arbitrary for general mappings, hence a processor can be
reused for several applications. On the theoretical side, we establish complexity results for
this tri-criteria mapping problem (energy, period, latency), classifying polynomial versus
NP-complete instances. Furthermore, we derive an integer linear program that provides the
optimal solution in the most general case. On the experimental side, we design polynomial-
time heuristics, and assess their absolute performance thanks to the linear program. One
main goal is to assess the impact of processor sharing on the quality of the solution.

Key words: mapping, concurrent streaming applications, heterogeneous platforms, re-
source sharing, energy, latency, period.

1

Contents

1 Introduction 3

2 Framework 5
2.1 Applicative framework . 5
2.2 Target platform . 5
2.3 Mapping strategies . 6
2.4 Energy model . 7
2.5 Problem definition . 8

3 Complexity study 8
3.1 Interval mappings without reuse . 8

3.1.1 With one application . 8
3.1.2 With many applications . 9

3.2 General mappings with reuse . 9

4 Experiments 10
4.1 Integer linear program . 10

4.1.1 Parameters . 10
4.1.2 Variables . 11
4.1.3 Objective function . 11
4.1.4 Constraints . 11
4.1.5 Additional constraints for interval mappings with no reuse 12

4.2 Heuristics . 12
4.3 Experimental results . 16

4.3.1 Experimental setup . 17
4.3.2 Comparison with the optimal solution . 18
4.3.3 Impact of reuse . 19
4.3.4 Scalability . 21

5 Conclusion 22

2

1 Introduction

In this paper, we aim at optimizing the parallel execution of several pipelined applications on
a given platform. Such streaming applications are ubiquitous in streaming environments, as for
instance video and audio encoding and decoding, DSP applications, image processing, and so
on ([6, 15, 9, 16, 17]). For each application, a sequence of data sets enters the input stage and
progresses from stage to stage at a fixed rate until the final result is computed. Each stage
has its own communication and computation requirements: it reads an input from the previous
stage, processes the data and outputs a result to the next stage. Each data set is input to the
first stage, and final results are output from the last stage. A new data set enters the system
each application period, and results are output at the same periodic interval.

The objective is to minimize the energy consumption of the whole platform, while satisfying
given performance-related bounds on the period and latency of each application. This multi-
criteria approach targets a trade-off between the users and the platform manager. The formers
have specific requirements for their application, while the latter has crucial economical and en-
vironmental constraints. Indeed, the energy saving problem is becoming increasingly important,
not only because of the sole cost of energy, but also because of the cost of cooling systems and
related infrastructures. To help reduce energy costs, modern computing centers provide multi-
modal processors: every processor has a discrete number of predefined speeds (or modes), which
correspond to different voltages the processor can be subjected to. The power consumption is
the sum of a static part (the cost for a processor to be turned on) and a dynamic part. This
dynamic part is a strictly convex function of the processor speed, so that the execution of a
given amount of work costs more energy if a processor runs in a higher mode [11]. On the one
side, faster modes allow for fulfilling the performance criteria, and on the other side, they lead
to a higher energy consumption, hence the above mentioned trade-off to be found.

The main performance-oriented criteria for pipelined applications are period and latency.
The period of an application is the inverse of the throughput, i.e., it corresponds to the time
interval between the arrival of two consecutive data sets. The period is fixed by the applicative
setting, and we must ensure that data sets are processed fast enough so that there is no accumu-
lation of data sets in the pipeline. The latency of an application is the time elapsed between the
beginning and the end of the execution of a given data set, hence it measures the response time
of the system to process the data set entirely. These two criteria alone already are antagonistic.
The smallest latency is obtained when no communication is paid, i.e., when the same processor
executes all the stages of an application. However, such a mapping may well exceed the bound
on the period, since the same processor must process an entire application. Adding energy
consumption as a third criterion renders everything even more complex. Obviously, energy is
minimized by enrolling a single processor for all applications, namely the one with the smallest
mode available among all platform resources; but again, such a mapping would most certainly
exceed period and latency bounds.

This work is a follow-on of [3], where we have provided a comprehensive analysis of various
instances of the previous multi-criteria optimization problem. However, the mapping rules and
performance models used in this paper are different. In a nutshell, a comprehensive assessment
of one-to-one and interval mappings is given in [3]. Such mappings restrict the assignment of
stages to processors: each enrolled resource can execute only a single stage (one-to-one mapping)
or a set of consecutive stages (interval mapping) of a given application. Therefore no inter-
application reuse of resources is authorized. While prohibiting such a reuse may make good
sense in some situations (e.g., for security reasons), it is also very likely to waste resources and
to increase energy consumption. Indeed, without reuse, more processors are enrolled, hence the
static energy gets higher, and these processors cannot benefit from a good load balancing of

3

computation costs across applications, hence a worse resource utilization. From the platform
manager point of view, resource sharing among (non critical) applications is a key ingredient to
efficiently servicing several users.

In this paper, we investigate the impact of resource sharing on the quality of the solution
with respect to the three optimization criteria (energy, period and latency). We thus deal with
general mappings where application stages can arbitrarily be assigned to processors. Unfortu-
nately, general mappings come with a price, that of intricate scheduling problems for period and
latency: even when the mapping is given, scheduling the execution is a problem of combinatorial
nature [1]. With general mappings, a processor typically has several incoming and/or outgoing
communications, and it is difficult to orchestrate these operations so as to minimize conflicting
objectives such as period and latency. Therefore, we focus in this paper on the problem in which
bounds on period and latency are fixed by the application designer, and we relax the definition
of the latency using the approach of Hary and Ozguner [9]. Instead of computing the longest
path, we approximate the latency L as L = (2m− 1)P , where P is the period, i.e., the rate at
which data sets enter the system, and m is the number of processor changes in the mapping. A
processor change occurs each time when a stage and its successor are not mapped onto the same
processor. The intuition is that the whole application is executed synchronously, and each data
set progresses concurrently within a period. With m processors and m − 1 processor changes,
hence m− 1 communications to orchestrate, each data set traverses the platform within 2m− 1
periods. We adopt the model of [9] throughout the paper, and refer to Section 2 for further
details on mapping rules and objectives. The problem can then be defined as follows: given a
period Pa and a bound on the latency La for each application a, find a mapping which consumes
the minimum amount of energy, while satisfying the performance constraints: application a is
processed at a period Pa, and its latency is not greater than La; in other words, the number ma

of processor changes in the mapping of application a does not exceed ⌊La/Pa+1
2 ⌋.

A first contribution of this paper is to provide complexity results for the tri-criteria opti-
mization problem under the new model. We restrict to homogeneous platforms whose processors
have identical modes and static energy; otherwise the problem with a single application mapped
onto homogeneous and uni-modal processors, paying no communication cost, is NP-complete
(straightforward reduction from 2-partition [8], with no bound on the latency and a tight
bound on the period such that there is a solution if and only if the period can be respected:
it is equivalent to a period minimization problem). We show that the problem is polynomial
for interval mappings on homogeneous platforms with Hary and Ozguner’s model, while it was
NP-complete with the longest path model [3], thereby demonstrating the impact of the model
for the latency. We also show that the tri-criteria problem becomes NP-complete for general
mappings on homogeneous platforms.

Another contribution of the paper is to evaluate the impact of resource sharing, by com-
paring the quality of interval mappings and of general mappings. To this end, we design a set
of polynomial-time heuristics, with and without reuse, and we experimentally compare their
performance on a large set of experiments. We also evaluate the absolute performance of the
heuristics on small problem instances, through the solution of an integer linear program.

The paper is organized as follows. We start by describing the framework in Section 2, with the
description of the applications, the platform, the different mapping strategies and the energy
model. Then we provide complexity results for different mapping strategies on homogeneous
platforms in Section 3. In Section 4, we first describe an integer linear program, which allows
us to solve the NP-complete problem in the general case; then we design several heuristics to
provide polynomial-time solutions to the tri-criteria problem; and finally we study their relative
performance, and their absolute performance with respect to the integer linear program. We
conclude in Section 5.

4

2 Framework

2.1 Applicative framework

Figure 1: Notations

We consider A application workflows (A ≥ 1) to be executed concurrently; each application
operates on a collection of data sets that are executed in a pipeline fashion. For 1 ≤ a ≤ A,
application a consists in na stages, and for 1 ≤ k ≤ na, we denote by Sk

a the k-th stage of
application a. Stage Sk

a receives an input data of size δk−1
a , performs wk

a computations, and
finally outputs a data of size δk

a . A new data set enters the system every Pa time-units; Pa is
the period of application a. The total number of stages is N =

∑A
a=1 na.

The first stage of each application S1
a , a ∈ {1, . . . , A}, receives an input of size δ0

a from the
outside world, while the last stage of each application Sna

a returns the result, of size δna
a , to the

outside world. This application model is illustrated on Figure 1.

2.2 Target platform

The platform is composed of p processors, which are fully interconnected; there is a bidirec-
tional link linku,v : Pu ↔ Pv between any processor pair Pu and Pv, of bandwidth bu,v. For
simplification, we assume that 2A additional processors Pin1

, . . . ,PinA
and Pout1 , . . . ,PoutA

are
devoted to input/output operations of the applications (in fact these additional processors are
virtual processes that may well be shared by the same physical resource). Initially, for each
a ∈ {1, . . . , A}, the input data for each task of the application a resides on Pina , while all results
must be returned to and stored on Pouta . These special processors are all connected to the p
processors of the target platform.

We use a linear cost model for communications; hence it takes X/bu,v time-units for Pu to
send (resp. receive) a message of size X to (resp. from) Pv. Note that there is no need to have a
physical link between all processor pairs. We may have a switch, or a path composed of several
physical links, instead, to interconnect Pu and Pv; in the latter case, bu,v is the bandwidth of
the slowest link in the path. In addition to link bandwidths, we have processor network cards

5

that bound the total communication capacity of each computing resource. We denote by Bin
u

(resp. Bout
u) the capacity of the input (resp. output) network card of processor Pu. In other

words, Pu cannot receive more than Bin
u data items per time-unit, and it cannot send more than

Bout
u data items per time-unit. In this paper, we mainly target communication-homogeneous

platforms, with identical communication devices for each processor: all link bandwidths are
identical (bu,v = b for 1 ≤ u, v ≤ p), and all network cards are identical (Bin

u = Bin , Bout
u = Bout

for all 1 ≤ u ≤ p). However, the linear program of Section 4.1 applies to heterogeneous platforms
as well.

As stated above, processors are multi-modal. Each processor Pu is associated with a set Su of
speeds, or modes: Su = {su,1, . . . , su,mu}. To ease notations, we add a special mode 0 in which
the processor is inactive, and thus su,0 = 0. Processor-homogeneous platforms are platforms
whose processors have identical static energy and speeds, i.e., share a common speed set (Su = S

for 1 ≤ u ≤ p). We assume that processor-homogeneous platforms are also communication-
homogeneous, so that they represent typical parallel machines. processor-heterogeneous plat-
forms also are communication-homogeneous, but they have different-speed processors (Su 6= Sv).
They correspond to networks of workstations with plain TCP/IP interconnects or other LANs.

Finally, the communication model is the bounded multi-port model with overlap [10]. In
the bounded multi-port model, the total communication volume outgoing from a given node is
bounded (by the capacity of its network card), but several communications along different links
can take place simultaneously (provided that the link bandwidths are not exceeded either). In
addition, independent communications and computations can overlap. It has been pointed out
that recent multi-threaded communication libraries such as MPICH2 [13] now allow for initiating
multiple concurrent send and receive operations, thereby providing practical realizations of the
multi-port model [2].

2.3 Mapping strategies

The mapping is an allocation function, which associates a processor number to each stage num-
ber, as well as a speed at which each processor is running.

For general mappings with processor reuse, there are no constraints on the allocation function.
We must carefully decide how the speed of each processor is shared among all stages it is
assigned to. Similarly, a communication link or processor network card may be involved in
several communications, which implies to sharing bandwidths and card capacities too. Hence
the question is the following: given the mapping, and given a period Pa and threshold latency La

for each application a ∈ {1, . . . , A}, is it possible to determine which fraction of computing and
communicating resources to assign to each operation so that all application periods are realized
and all latency thresholds are met?

Recall that we consider the latency model described in [9], in which one period is accounted
for each computation of an interval of stages and for each inter-processor communication. We
observe that given the mapping, we know ma, the number of intervals, or processor changes,
for each application a. We can thus check immediately whether the bounds on the latency are
respected, i.e., (2ma − 1)Pa ≤ La for a ∈ {1, . . . , A}.

Now for the periods, the key idea is to distribute platform resources parsimoniously, and
allocate only the needed CPU fraction to each computation, and the needed bandwidth fraction
to each communication, so that the period constraint is fulfilled. The mapping is valid if neither
processor speeds, nor link bandwidths, nor network card capacities are exceeded. First we merge
consecutive stages [Si

a, . . . ,S
j
a] of application a mapped onto a same processor as one single

coalesced stage Ŝk
a , with computing cost ŵk

a =
∑j

k′=i w
k′

a , and output communication δ̂k
a = δj

a.

The transformed application now has exactly ma stages. In the following, stage Ŝk
a corresponds

6

to the k-th stage of the transformed application a, for 1 ≤ k ≤ ma.
As for computations, consider a processor Pu and an application a. We define Ku

a such that

k ∈ Ku
a if and only if Ŝk

a is processed by processor Pu; Ku
a is the set of stages of (transformed)

application a processed by Pu. Then, for all a and u, and for each k ∈ Ku
a , we allocate the speed

fraction sk
a,u = ŵk

a/Pa for Pu to execute Ŝk
a .

Similarly for communications, we define Ku,v
a such that k ∈ Ku,v

a if and only if Ŝk
a is processed

by Pu and ˆSk+1
a is processed by Pv, i.e., there is a communication to pay between Pu and Pv.

Note that u 6= v, otherwise stages Ŝk
a and ˆSk+1

a would have been merged as a single stage.
Formally, k ∈ Ku,v

a ⇔ k ∈ Ku
a and k + 1 ∈ Kv

a. Then we allocate the bandwidth fraction

bk
a,u,v = δ̂k

a/Pa to the communication.
The period of each application can be respected if and only if all the following inequalities

are satisfied. There might be some spare speed and bandwidth if these are strict inequalities,
and resources are fully utilized in case of equalities.

• ∀1 ≤ u ≤ p,
∑A

a=1

∑

k∈Ku
a

sk
a,u ≤ su,

• ∀1 ≤ u, v ≤ p, u 6= v,
∑A

a=1

(
∑

k∈Ku,v
a

bk
a,u,v +

∑

k∈Kv,u
a

bk
a,v,u

)

≤ bu,v,

• ∀1 ≤ u ≤ p,
∑p

v=1

∑A
a=1

∑

k∈Ku,v
a

bk
a,u,v ≤ Bout

u ,

• ∀1 ≤ u ≤ p,
∑p

v=1

∑A
a=1

∑

k∈Kv,u
a

bk
a,v,u ≤ Bin

u .

We also consider interval mappings without reuse, which partition the stages of each (original)
application into intervals, and map each interval onto a different processor. More precisely, if

we transform each application a as explained above, the allocation function of stages Ŝk
a (for

1 ≤ a ≤ A and 1 ≤ k ≤ ma) is a one-to-one function: each coalesced stage is allocated onto a
distinct processor. It becomes then much easier to check the validity of the mapping, since each
processor is only handling one single stage, receiving input data from one single other processor,
and sending output data to one single other processor. In other words, previous inequalities
become much simpler.

2.4 Energy model

The energy consumption of the platform is defined as the sum of the energy E(u, ℓ) consumed
by each processor Pu enrolled in the mapping in mode ℓ. We assume that E(u, ℓ) consists of
a static part and of a dynamic part. The static part Estat(u) is the static cost for a processor
to be in service, and does not depend on the speed su,ℓ at which the processor is running.
However, the static energy is consumed only in mode ℓ 6= 0 (otherwise, the processor is inactive,
and not enrolled in the mapping). On the contrary, the dynamic part Edyn(u, ℓ) is of the
form Edyn(u, ℓ) = sα

u,ℓ, where α > 1 is an arbitrary rational number. It is sometimes assumed
that α = 2 [12], but all our results hold for any value of α. Finally, for ℓ 6= 0, we have
E(u, ℓ) = Estat(u) + Edyn(u, ℓ), while E(u, 0) = 0.

The energy E(u, ℓ) is an energy consumed per time unit, so we could also speak of dissipated
power. Note that it is mandatory to minimize energy consumption per time unit, because the
execution of streaming applications with arbitrarily many data sets may last for an unbounded
amount of time.

7

2.5 Problem definition

We consider the problem in which the applications and their characteristics (stage weights,
communication costs, periods) are provided, as well as a target execution platform and its
characteristics (multi-modal processor speeds, network card capacities and link bandwidths).
Then, given a bound on the latency for each application, we aim at minimizing the power
consumption while matching the period and latency constraints. Therefore, we formally define
the problem as follows:

Definition (TriCriteria(E[Pa, La])). Given A applications, p multi-modal processors,
one array of periods [Pa] and one array of latencies [La], both of length A, what is the minimum
power consumption of the platform, so that for each a ∈ {1, . . . , A}, application a is processed
at a period Pa, and its latency does not exceed La?

3 Complexity study

We first provide results for interval mappings without reuse, exhibiting dynamic programming
algorithms for fully homogeneous platforms, even with several concurrent applications (and
the problem was known to be NP-complete on processor-heterogeneous platforms). Then, we
establish the NP-completeness of the tri-criteria problem for general mappings with reuse, even
on homogeneous platforms.

3.1 Interval mappings without reuse

3.1.1 With one application

Theorem 1. TriCriteria(E[Pa, La]) is polynomial for interval mappings on processor-homogeneous
platforms with one single application.

Proof. Let n be the number of stages of the single application, Pgiv be the given period, and
Lgiv be the given latency. First of all, note that the latency is given by L = (2m − 1) × Pgiv,
where m is the number of intervals. Therefore, we can compute a priori the maximum possible
number of intervals in the mapping. Let mmax be this number; note that it cannot exceed n,
the total number of stages, nor p, the number of processors: mmax = min(n, p, ⌊(

Lgiv

Pgiv
+ 1)/2⌋).

If we use more intervals, the bound on the latency will be exceeded. Otherwise, we just have to
check if the period constraint is fulfilled.

We exhibit a dynamic programming algorithm that returns the optimal energy consumption.
We compute recursively the value E(i, j, q), which is the optimal energy consumption that can
be achieved by any interval-based mapping of stages Si to Sj using exactly q processors. The
goal is to determine minm∈{1,...,mmax} E(1, n,m). The recurrence relation can be expressed as:

E(i, j, q) = min
i≤ℓ≤j−1

(E(i, ℓ, q − 1) + E(ℓ + 1, j, 1)) ,

with the initialization:

• E(i, i, q) = +∞ if q > 1 (we cannot run one stage with many processors);

• E(i, j, 1) =

{

minF i,j if F i,j 6= ∅

+∞ otherwise,

where F i,j =

{

Edyn(s) + Estat , max

(

δi−1

b ,
Pj

k=i
wk

s , δj

b

)

≤ Pgiv, s ∈ S

}

.

8

Since the platform is homogeneous, we denote by Estat the static energy of all processors,
and by Edyn(s) the dynamic energy consumed at speed s (s ∈ S). Then, the recurrence is easy
to justify: to compute E(i, j, q), we create an interval from stages Sℓ+1 to Sj that is assigned to
one single processor, and we use the q − 1 remaining processors to process stages Si to Sℓ. The
initialization states that one single stage cannot be run on exactly more than one processor, and
it returns the energy consumed by the processor in charge of interval [i, j] so that the bound on
the period is satisfied.

3.1.2 With many applications

Theorem 2. TriCriteria(E[Pa, La]) is polynomial for interval mappings on processor-homogeneous
platforms.

Proof. For a ∈ {1, . . . , A} and q ∈ {0, . . . , p}, let Eq
a the minimum energy consumed by q

processors on the application a, computed by one the previous dynamic programming algorithms.
If the period constraint cannot be fulfilled, or if the latency constraint cannot be fulfilled (q >
kmax

a), we set Eq
a = +∞.

We recursively compute the value E(a, q), which is the minimum energy consumed by exactly
q processors on applications 1, . . . , a. The goal is thus to compute min1≤q≤p E(A, q). The
recurrence relation can be expressed as:

E(a, q) = min
1≤r≤q−1

(E(a− 1, q − r) + Er
a) ,

with the initialization:
E(1, q) = Eq

1 ,∀1 ≤ q ≤ p.

Indeed, when there is only one application left, the result is known from the previous dynamic
programming algorithm. For several applications, we try to assign r processors to application a,
and find the value of r which returns the lowest energy consumption.

Remark. On processor-heterogeneous platforms, the problem of finding an interval mapping
which minimizes the power consumption for a given period and a given latency by application
is NP-complete. Indeed, the problem of finding an interval mapping which minimizes the period
of one single application for processor-heterogeneous platforms without communication cost
already is NP-complete [4].

3.2 General mappings with reuse

Theorem 3. TriCriteria(E[Pa, La]) is NP-complete on processor-homogeneous platforms for
general mappings with reuse.

Proof. We consider the associated decision problem: given periods Pa, latencies La (1 ≤ a ≤
A) and an energy E, does there exist a general mapping such that, for all a ∈ {1, . . . , A},
application a is processed at period Pa, its latency is not larger than La, and the total energy
does not exceed E?

• The problem is obviously in NP: given periods, latencies, an energy and a mapping, it is
easy to check in polynomial time that the mapping is valid.

• To establish the completeness, we use a reduction from 2-partition [8]. We consider an
instance I1 of 2-partition: given n strictly positive integers x1, x2, . . . , xn, does there
exists a subset I of {1, . . . , n} such that

∑

i∈I xi =
∑

i/∈I xi? Let S =
∑n

i=1 xi.

9

We build an instance I2 of our problem with 2 identical processors, each with a single
possible speed s = S/2, and we consider that the cost of static energy is null. We have
then n single-stage applications, whose stage weights are xa, 1 ≤ a ≤ n. We ask whether
it is possible to achieve an energy Eo = 2 × (S/2)α, with periods of 1, and latencies not
exceeding 1. Clearly, the size of I2 is polynomial in the size of I1.

We now prove that I1 has a solution if and only if I2 does. Assume first that I1 has a
solution. For each a ∈ I, the stage of application a is executed by the first processor.
Other stages are executed by the second processor. The mapping consumes an energy
2 × (S/2)α, and all applications have a period and latency equal to 1. Now assume that
I2 has a solution. Since

∑n
i=1 xi = S = S/2 + S/2, all the periods must be 1, and each

processor must run an amount of work of size exactly S/2; in other words, I1 has a solution.

4 Experiments

In this section, we first propose an integer linear program which allows us to solve the tri-criteria
problem with or without processor reuse, even on fully heterogeneous platforms. However,
this program has a prohibitive execution time for large platforms (it may run in exponential
time). Therefore, we propose some polynomial-time heuristics in Section 4.2. For small problem
instances, we evaluate the absolute performance of the heuristics with respect to the optimal
solution returned by the integer linear program, while for large problem instances we have to
restrict to a relative comparison of their performances (see Section 4.3).

4.1 Integer linear program

This section provides an integer linear program which gives the exact solution to TriCrite-

ria(E[Pa, La]). Although we expect its cost to restrict its use to small problem instances, this
program allows us to assess the absolute performance of the heuristics introduced in Section 4.2
on these instances. The optimization problem includes parameters to describe the applications
and the platform, and constraints, as for instance those on the periods. The linear program as-
signs variables so that they fulfill all constraints, and so that the objective function (the energy)
is minimized. We observe that for a given application we can compute the maximum possible
number of intervals, given the latency threshold of this application, before calling the linear
program.

4.1.1 Parameters

Applications: For all a ∈ {1, . . . , A}, we note n(a) the number of stages in the application a,
P (a) its period and m(a) its maximum number of intervals. We add 2A fictitious stages

S0
1 , . . . ,S0

A, S
n(1)+1
1 , . . . ,S

n(A)+1
A , respectively assigned to processors Pin1

, . . . ,PinA
, and

Pout1 , . . . ,PoutA
.

Stages: For all a ∈ {1, . . . , A} and k ∈ {0, . . . , n(a) + 1}, let w(a, k) be the weight of stage Sk
a ,

and, if k 6= n(a) + 1, let δ(a, k) be the output data of stage Sk
a .

Processors: We denote by IO the index set of input and output processors (hence IO =
{in1, . . . , inA}∪{out1, . . . , outA}), and by NIO the index set of the other processors (with
|NIO| = p). We also assume that there is an order on NIO∪IO. Each processor Pu, for
u ∈ NIO, has an input (resp. output) network card capacity of Bin(u) (resp. Bout(u)),

10

and a static energy Estat(u). It can be in m(u) + 1 different modes. Its speed in mode ℓ,
where ℓ ∈ {0, . . . ,m(u)}, is s(u, ℓ); mode 0 corresponds to the inactivity of the processor
(and thus s(u, 0) = 0); therefore, for ℓ ∈ {1, . . . ,m(u)}, the power consumption of Pu in
this mode is E(u, ℓ) = Estat(u)+ s(u, ℓ)α, while E(u, 0) = 0 (no energy consumption when
inactive). The link bandwidth between processors Pu and Pv, with (u, v) ∈ NIO2 and
u 6= v, is denoted by b(min(u, v), max(u, v)).

4.1.2 Variables

• For a ∈ {1, . . . , A}, k ∈ {0, . . . , n(a) + 1} and u ∈ NIO ∪ IO, xa,k,u is a boolean variable
equal to 1 if stage Sk

a is assigned to processor Pu; we have xa,0,ina = xa,n(a)+1,outa
= 1,

and xa,k,ina
= xa,k,outa = 0 for a ∈ {1, . . . , A} and 1 ≤ k ≤ n(a). We also have xa,k,ina′

=
xa,k,outa′

= 0 for a ∈ {1, . . . , A} , 0 ≤ k ≤ n(a) + 1 and a′ 6= a.
• For a ∈ {1, . . . , A}, k ∈ {0, . . . , n(a)}, (u, v) ∈ (NIO ∪IO)2, ya,k,u,v is a boolean variable

equal to 1 if stage Sk
a is assigned to Pu and stage Sk+1

a is assigned to Pv. For all u ∈
NIO∪IO and a ∈ {1, . . . , A}, if k 6= 0 then ya,k,ina,u = 0 and if k 6= n(a) then yk,u,outa = 0.

• For u ∈ NIO and ℓ ∈ {0, . . . ,m(u)}, zu,ℓ is a boolean variable equal to 1 if processor Pu

is in the mode ℓ and 0 otherwise.
• For u ∈ NIO, a ∈ {1, . . . , A} and k ∈ {1, . . . , n(a)}, sa,k,u is the computing power given

by processor Pu to compute stage Sk
a .

• For (u, v) ∈ (NIO ∪ IO)2, a ∈ {1, . . . , A} and k ∈ {0, . . . , n(a)}, ba,k,u,v is the allocated
part of the link bandwidth between Pu and Pv so that Pu will send the output data of the
stage Sk

a to Pv.

4.1.3 Objective function

We aim at minimizing E =

p
∑

u=1

m(u)
∑

ℓ=0

zu,ℓ × E(u, ℓ).

4.1.4 Constraints

• Each processor runs in one and only one mode: ∀u ∈ NIO,

m(u)
∑

ℓ=0

zu,ℓ = 1.

• Each stage is assigned to a processor:

∀a ∈ {1, . . . , A},∀k ∈ {0, . . . , n(a) + 1},
∑

u∈NIO∪IO

xa,k,u = 1,

∀a ∈ {1, . . . , A},∀k ∈ {0, . . . , n(a)},
∑

(u,v)∈(NIO∪IO)2

ya,k,u,v = 1.

• By construction:
∀a ∈ {1, . . . , A},∀k ∈ {0, . . . , n(a)},∀(u, v) ∈ (NIO∪IO)2, xa,k,u +xa,k+1,v ≤ 1+ya,k,u,v.

• Each processor does not exceed its computing speed:

∀u ∈ NIO,
A

∑

a=1

n(a)
∑

k=1

sa,k,u ≤

m(u)
∑

ℓ=0

zu,ℓ × s(u, ℓ).

• Each processor does not exceed its maximum outgoing and ingoing total communication

11

volume:

∀u ∈ NIO,
A

∑

a=1

n(a)
∑

k=1

∑

v ∈ NIO ∪ IO
v 6= u

ba,k,u,v ≤ Bout(u),

∀u ∈ NIO,
A

∑

a=1

n(a)−1
∑

k=0

∑

v ∈ NIO ∪ IO
v 6= u

ba,k,v,u ≤ Bin(u).

• The link capacity is not exceeded between two processors:

∀u ∈ NIO ∪ IO,∀v > u,
A

∑

a=1

n(a)
∑

k=0

(ba,k,u,v + ba,k,v,u) ≤ b(u, v).

• Computation time fits in the period (no constraint if stage Sk
a is not assigned to proces-

sor Pu): ∀a ∈ {1, . . . , A},∀k ∈ {1, . . . , n(a)},∀u ∈ NIO, xa,k,u × w(a, k) ≤ P (a)× sa,k,u.

• Communication time fits in the period:
∀a ∈ {1, . . . , A},∀k ∈ {0, . . . , n(a)},∀u ∈ NIO ∪ IO,∀v 6= u,
ya,k,u,v × δ(a, k) ≤ P (a)× ba,k,u,v.

• The maximum number of intervals is not exceeded:

∀a ∈ {1, . . . , A},
∑

(u,v)∈NIO2, u 6=v

n(a)
∑

k=1

ya,k,u,v ≤ m(a)− 1.

4.1.5 Additional constraints for interval mappings with no reuse

The previous constraints correspond to the problem of general mappings with processor reuse.
We can obtain the optimal solution for interval mappings with no reuse, adding two more
constraints:
• A processor cannot process two stages of two different applications:

∀a ∈ {1, . . . , A},∀a′ ∈ {1, . . . , A} \ {a},∀k ∈ {0, . . . , n(a)},∀k′ ∈ {0, . . . , n(a′)},

∀u ∈ NIO, xa,k,u + xa′,k′,u ≤ 1.

• A processor cannot process two different intervals of the same application:

∀a ∈ {1, . . . , A},∀k ∈ {0, . . . , n(a)},∀k′ ∈ {k + 1, . . . , n(a)},∀u ∈ NIO,

∀v ∈ NIO \ {u},∀v′ ∈ NIO \ {u}, ya,k,u,v + ya,k′,v′,u ≤ 1.

4.2 Heuristics

In this section, we present several heuristics for mapping streaming applications onto commu-
nication homogeneous platforms. The code of these heuristics is available at http://graal.

ens-lyon.fr/~prenaud/Codes/tri-crit.tar.
We design three main heuristics, each of them including some variants. The first heuristic

H1 is a greedy random heuristic, which will serve as a basis for comparison. The second one, H2,
tries to assign each application entirely to a processor, and its variant H2-split starts either with
the solution of H2 (if H2 has a solution) or assigns all applications to one processor, and then
iteratively improves the current solution by splitting applications into several intervals. The last

12

heuristic H3 changes iteratively the mode distribution until it can find a feasible mapping; the
way to change the speeds comes in three variants and the way to choose the mapping comes in
two variants: H3 is thus available in six variants.

Except for H2, which does not use the possibility of sharing the processors (one application
onto one processor), each of the heuristic variants has two versions, either with or without
processor reuse, which will allow us to observe the impact of resource sharing.

In most of the heuristics, for each processor Pu, we keep its possible modes (su,ℓ), for ℓ ∈
{0, . . . ,mu}, the index ℓu of its current mode, and the minimum speed at which the processor
must run in order to be able to process all stages that it is currently assigned to without
exceeding the bound on the period, sneeded

u . When a stage of weight w of application a is
assigned to processor Pu, we add w/Pa to sneeded

u . When a stage is de-assigned, we perform a
subtraction instead of the addition. Finally, the power consumption of the platform is computed
from the speeds su,ℓu

, where su,ℓu
≥ sneeded(u) for all processors.

H1: random. At the start, each application a consists of a single interval composed of all its
stages. Then we randomly draw mmax

a − 1 stages of application a, where mmax
a is the maximum

possible number of intervals of application a such that the latency constraint is respected. Each
time we draw a new stage, say Sk

a , we create a new interval by splitting the interval containing Sk
a

just after Sk
a , thus generating one new interval. If a stage is drawn more than once, no new

interval is created, so that the final number of intervals will lie between 1 and mmax
a , and the

latency will never be exceeded. Then we assign each interval to a random processor, without
any consideration on the modes of the processors. In the “no-reuse” version of H1, a processor is
assigned at most one interval, whereas in the “reuse” version, a processor can be assigned several
intervals.

Finally, we decide which modes are used: for each processor we choose its first mode large
enough to handle with the needed speed, if such a mode exists; if it does not, the heuristic fails.
More formally, for each processor Pu, ℓu is the lowest index such that su,ℓu

≥ sneeded
u if it exists;

otherwise, the heuristic fails.

H2: one-to-one. This heuristic assigns each application to one single processor. This problem
corresponds to the well-known assignment problem, and we implement the Hungarian algorithm
(see [14, 7]) to solve it. The rows represent the processors, and the columns the applications.
We do not have to take care of the latency constraint, because one interval by application is
the best assignment from the latency perspective. For the processor Pu and the application a,
the corresponding element of the matrix (row numbered u, column numbered a) is the smallest
energy which allows the processor to run the application, if possible, and +∞ otherwise.

H2-split: one-to-one with split. We first try to assign each application to one processor by
calling H2. If H2 is successful, each application is assigned to one processor, and H2 finds which
application to assign to which processor. We perform this assignment. The processors that are
not assigned to any application are set in their mode 0. If H2 fails, we assign all application
stages to the first processor of the list. If it has enough speed to execute all applications within
the period bound, then ℓu is the smallest mode such that su,ℓu

≥ sneeded
u . Otherwise, we set

ℓu = mu, but the period is not satisfied in this case.
Therefore, at this point, all the stages are assigned (and we can consider, if the applications

are concatenated, that each processor is assigned an “interval”), but this mapping may not be
valid: there might be a processor Pu such that su,ℓu

< sneeded
u .

The main idea of this heuristic is then to try to split each “interval” at any place, and to
keep the best split. More precisely, a split consists in:

13

1. de-assigning one part of the concerned “interval”;

2. assigning it to another processor Pu′ ;

3. updating the two concerned modes ℓu and ℓu′ as mentioned previously, thanks to the new
values sneeded

u and sneeded
u′ .

Then we have to define a way to sort the different resulting mappings in order to choose the
best one. The first thing we expect from a mapping is that it respects the period and latency
bounds; once we have valid mappings with respect to these performance criteria, the best one is
the one whose power consumption is the lowest. Finally, when two mappings lead to the same
power consumption, we choose the one in which we are likely to spare the most energy giving the
less speed to the new processor during the next split. This is why we finally sort the mappings
by:

1. increasing
∑p

u=1 max(sneeded
u − su,ℓu

, 0): the mapping is valid if and only if this value is
equal to 0;

2. increasing energy of the platform, that is increasing E =
∑

u∈{1,...,p} E(u, ℓu);

3. decreasing

max

{

E(u, ℓu)− E(u, ℓu − 1)

sneeded
u − su,ℓu−1

|u ∈ {1, . . . , p}, ℓu 6= 0

}

.

While we find a better mapping, we try another split. More formally, the heuristic is detailed
in Algorithm 1. In the “no-reuse” version, the processor added in a split cannot be assigned
another non-adjacent interval, whereas there is no constraint in the “reuse” version.

Algorithm 1: H2-split(PI)

/* PI represents a problem instance, i.e. a platform/applications pair */

Run H2 on PI

PIBest ← PI

repeat
PI ← PIBest

PIBU ← PIBest

forall application in PI do
if the latency authorizes a split then

forall interval in the application do
foreach processor p that is not assigned the interval do

foreach stage s in the interval do
Assign s to p
if PI is better than PIBest then

PIBest ← PI

PI ← PIBU

until PIBest is better than PI

return PIBest

14

H3: increasing speeds. We start with all processors in their smallest mode. Then we map
applications onto the current platform (Algorithm 2), and check whether the mapping is valid
or not. If the algorithm returns true, then we are done. Otherwise, we repeatedly change the
distribution of the modes and call Algorithm 2 until we find a valid mapping. There are different
ways to change the distribution of the modes, thus leading to different variants of the heuristic
(see below for variants speed, energy and upDown).

We briefly explain Algorithm 2: the mapping procedure is quite different from that of previ-
ous heuristics. Indeed, we never assign a stage to a processor if it has not enough speed to run
it while not exceeding the bound on the period. In other words, H3 never allows su,ℓu

< sneeded
u .

In the previous heuristics, we first decided for the mapping, and then we chose the modes. In
H3, we first choose the mode of each processor, and then we try to find an assignment which is
valid with these modes, which may either success or fail.

Algorithm 2: H3-mapping

for a← 1 to A do
ha ←

∑na

i=1 wi
a/kmax

a

Sort the applications by decreasing ha in L

forall application a in L do
k ← kmax

a

Sort the processors by decreasing remaining speed
while all stages are not assigned and k > 0 and the processors list is not empty do

Assign the longest interval from the first unassigned stage to the first processor
Remove the first processor from the list
k ← k − 1

if all stages are assigned then
De-assign the last interval and assign it to the last possible processor

else
return false

return true

H3-sort: application sorting. This heuristic proposes a modification in the H3-mapping
procedure, in which we re-sort the applications after each interval assignment. In H3, we first
sort all the applications, and, application by application, we choose a processor and assign it
the longest possible interval. If all stages are not assigned, we choose another processor and try
to assign the next stages, until the whole application is assigned. In H3-sort (see Algorithm 3),
after the first interval assignment, we find the new place of the application in the sorted list,
considering this application as if the assigned stages would not exist and if there would be one
less possible interval in the application (for the latency constraint). Then we iterate.

This heuristic also comes with variants in the way of changing the distribution of modes.

H3-speed/energy/upDown. We detail now the three variants, which are used for both H3
and H3-sort:

• speed: the processors are sorted by increasing speed of the current mode (and if there is
a tie by increasing speed gain between the current mode and the next higher one). We
check whether function H3 finds a solution; if yes, we stop, and if not, we upgrade the first
processor (taken in the previous order) and repeat.

15

Algorithm 3: H3-sort-mapping

for a← 1 to A do

ha ←
na
∑

i = 1
Si

a is unassigned

wi
a

kmax
a

Sort the applications by decreasing ha in L

while L is not empty do
Pick and remove the first application a in L

kmax
a ← kmax

a − 1
Sort the processors by decreasing remaining speed
Assign the longest interval from the first unassigned stage to the first processor
if all stages are assigned then

De-assign the last interval and assign it to the last possible processor
else

if kmax
a = 0 then
return false

else
Update ha and place the application a in L

return true

• energy: the processors are sorted by increasing energy spent (which is different from an
ordering based on modes because of static energy). Again, if there is a tie, we refine the
sort according to increasing speed gain between the current mode and the next higher one.
We stop when, after upgrading, function H3 returns true.

• upDown: We use the same ordering of processors as in the “energy” variant, but we
improve the upgrade. The main idea is that if processor modes are distant from each
other, the total available speed increases a lot at each upgrade. In this variant we ensure
that the total available speed is increasing at each step, but try to increase it slowly. To
do that, before every upgrade, we downgrade the mode of the last upgraded processor, if
the total available speed is still increasing.

Summary of heuristics. Each heuristic is denoted by its heuristic number, followed by vari-
ants. For instance, H3-sort-speed is the H3-sort heuristic with the speed variant. Also, we add
“-n” at the end of the heuristic name for the “without reuse” version of the heuristic, and “-r” for
the “with reuse” version. Thus, H2-split-n is the H2-split heuristic with no reuse.

Finally we consider another heuristic, called the “best” heuristic, which simply takes the
minimum energy returned by all the heuristics. Of course this value is achieved by different
heuristics over all experiments, but it helps quantify what can be achieved in polynomial time
vs. the linear program.

4.3 Experimental results

We have performed a comprehensive set of experiments in order to: (i) assess the absolute
performance of the heuristics, (ii) analyze the impact of reusing resources (interval vs. general
mappings), and (iii) study the scalability of the heuristics. We run two experiments for each of
these goals.

16

In the first two experiments, we compare the heuristics with the linear program that finds
the optimal general mapping (denoted as cplex-r), whereas in the following two ones, we use the
linear program in its “without reuse” version (cplex-n). In both cases, since the integer linear
program runs in exponential time and can be very time consuming, we restrict the experiments
to a small set of small platforms. On the contrary, we do not launch the linear program for the
last two experiments, which allows us to deal with larger applications and platforms.

4.3.1 Experimental setup

We first present the experimental setup for the first four experiments, in which we run the linear
program, and finally we describe the last two ones, in which we run only the heuristics.

With the linear program
In each experiment, we generate a set of 30 random platforms and applications. In Exper-

iment 1, we explore the behavior of the heuristics when the number of possible intervals is
increasing, while in Experiment 2, we increase the number of processors, in order to confirm
that the (best) heuristics stay close to the optimal solution. In Experiments 3 and 4, we respec-
tively vary the maximum static energy and the average gap between two consecutive modes in
order to observe the impact of resource sharing.

For each platform, and each value of the parameter that we vary, we run all heuristics, and
compute the solution of the linear program using the CPLEX software [5]. Then, for each value
of the parameter, and for each heuristic, we sum up (over the platforms) the inverse of the
consumed energy returned by the heuristic. If the heuristic fails, we add zero. We plot on a
graph the latter sum as a function to the changing parameter. So the higher the curve, the
better the heuristic. Finally, we normalize each plot by the optimal solution returned by the
linear program. In other words, we show the gap that separates each heuristic from the optimal
solution.

Platform sizes are chosen so that the optimal solution can be found in reasonable time (each
graph has been obtained within a week, and the execution time of each heuristic was under 1
second per trial). Unless mentioned otherwise, we use those following settings in the experiments.
We have 3 applications, each composed of 5 to 11 stages, whose weights vary from 5 to 9. The
communication costs between stages are also ranging from 5 to 9. The latency threshold is such
that 3 intervals are allowed within each application. The platform consists in 6 to 8 processors,
and each of these processors has between 2 and 8 different modes. The distribution of the modes
is a Gaussian law centered in 5, and the speeds are chosen between 0 and 50. The static energy
of each processor is randomly drawn between 0 and 200.

In Experiment 2, we have only 2 applications with 9 to 15 stages each, and the speeds
are drawn between 0 and 90, so that one processor can compute all stages. In Experiment 3,
only 4 to 6 processors are available, because the problem becomes untractable starting from 7
processors. Processor speeds are drawn between 0 and 80. In these experiments, we do not
represent the “sort” variant of H3, because it leads to negligible variations compared to H3.

Without the linear program
In each of these large-scale experiments, we generate a set of 5000 random platforms, since

the running time of the heuristics is negligible. Experiment 5 illustrates the global behavior of
the heuristics when the number of applications and processors increases, whereas Experiment 6
studies more precisely their characteristics for some large instances.

In Experiment 5, each application is composed of 15 stages, whose characteristics are the
same as previously, 3 intervals are authorized within an application, and the processors have 8

17

modes distributed between 0 and 80. The applications of Experiment 6 are defined similarly,
but this time, the processors have 10 modes, distributed between 0 and 100. For each trial, we
draw between 8 and 13 applications, and between 30 and 40 processors.

4.3.2 Comparison with the optimal solution

 0

 0.2

 0.4

 0.6

 0.8

 1

 3 4 5 6 7 8 9 10 11 12

1/
E

ne
rg

y

nbInter

cplex-r
H1-r

H2
H2-split-r

H3-upDown-r
H3-speed-r

H3-energy-r
best

Figure 2: Experiment 1

Experiment 1: Latency
In this first experiment, we vary the latency of the applications: at the beginning, the latency

constraint imposes that each application is mapped as a single interval, while it can go up to
four in the end. All the heuristics are run in their “with reuse” variants. This experiment gives
us a first idea of the ordering of the heuristics: the “upDown” is the best variant of the heuristic
H3, before “energy” and “speed”. The “speed” variant is the only one which is not better with
fewer intervals by application, because it does not choose the processors whose static energy is
low.

Heuristic H2-split is the best heuristic on average, but for some platforms, H3-upDown is
better. The best heuristic is always at 0.9 of the optimal solution. As expected, H2 finds the
optimal solution when one single interval is authorized in each application. Then its perfor-
mance decreases as soon as two intervals are allowed in each application. Finally, it remains
approximately constant at 0.7 of the optimum. Without much surprise, heuristic H1 is worse
than the others, therefore demonstrating that a random approach does not provide satisfying
results.

Experiment 2: Processor number
In this second experiment, we increase the number of processors for a given application. H2

does not reuse processors, thus it does not find the solution with one processor. Then, with
more than two processors, its efficiency decreases when the number of processors increases. As
in the first experiment, H3-upDown-r and H2-split-r return the best results, depending upon the
platform. Moreover H2-split-r is the best in average if and only if the processor number is not
greater than 6. However, the “energy” and “speed” variants of H3 are always worse than H2-
split-r in average. The “speed” variant becomes very bad, because when the number of available

18

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7

1/
E

ne
rg

y

nbProcs

cplex-r
H1-r

H2
H2-split-r

H3-upDown-r
H3-speed-r

H3-energy-r
best

Figure 3: Experiment 2

processors is increasing, these processors are used in their lowest mode, and the static part of
the energy becomes crucial. Finally, the “best” heuristic is quite good, never below 0.92 of the
optimal.

4.3.3 Impact of reuse

In this second set of experiments, we compare the heuristics to the optimal solution without
reuse, in order to assess the impact of reuse on the mapping.

Experiment 3: Static energy
In this third experiment, we vary the maximum static energy, that can be drawn from 0

to 2400. When the static energy is becoming high, it is advantageous to use fewer processors.
For variants “without reuse”, this leads to one processor per application. That is why H2 and
H2-split-n seem to tend to the optimal solution without reuse, when the maximum static energy
is increasing.

Processor reuse becomes interesting as soon as the maximum static energy exceeds 400, since
the heuristics with reuse perform better than the optimal solution with no reuse. H2-split-r and
H3-upDown-r are becoming more and more efficient when the static energy increases, and H2-
split-r ultimately reaches 1.15 of the optimal solution without reuse for a static energy of 2400.
Processor reuse allows the heuristics to use fewer processors than applications, and thus to spare
some static energy cost.

Experiment 4: Mode distribution
In this fourth experiment, we vary the average gap between two modes from 5 to 40. When

the modes are not close together, the first mode is high, and the best solution for the “without
reuse” variants is reached with one processor per application. As before, H2 and H2-split-n
tend to the optimal solution without reuse. This time, as the processors are not very different,
H3-upDown-n also gets very close to the optimal solution without reuse.

19

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 500 1000 1500 2000

1/
E

ne
rg

y

max Estat

cplex-n
H1-n

H1-r
H2

H2-split-n
H2-split-r

H3-upDown-n
H3-upDown-r

Figure 4: Experiment 3

 0

 0.5

 1

 1.5

 2

 2.5

 3

 10 20 30 40 50 60 70 80

1/
E

ne
rg

y

mi+1 - mi

cplex-n
H1-n

H1-r
H2

H2-split-n
H2-split-r

H3-upDown-n
H3-upDown-r

Figure 5: Experiment 4

20

The heuristics with reuse obtain much better results, in particular when the difference be-
tween modes is large. H3-upDown-r is constantly increasing and it is 2.6 times better than the
optimal solution without reuse at the end. When the modes are very close, H3-upDown-r is not
as competitive as the optimal solution without reuse, but it is still at 0.95. H2-split-r is almost
as efficient as H3-upDown-r, and remains better than the optimal solution without reuse when
the modes become closer.

More generally, resource sharing becomes interesting when the modes are not close to each
other: the reuse allows us to fill up the high modes with stages of different applications.

4.3.4 Scalability

In this last set of experiments, we study the heuristics when the instances are bigger. For such
real-life instances of the problem, the integer linear program cannot be used any more, due to
its high complexity.

Experiment 5: Global increase
In the fifth experiment, we increase the number of processors with the number of applications,

such that there are four times more processors than applications. This time, we represent the
energy on the y-axis instead of its inverse, since we cannot normalize the plots with the optimal
solution anymore. Therefore, the lower the plot the better the heuristic.

H2-split-r is the best on all platforms when there are many applications, before H3-upDown-r
and H3-energy-r, which almost have the same efficiency, and H3-speed-r. The more applications,
the better H2-split-r, compared to the other heuristics. But for 20 applications, all heuristics
execute in less than 1 second, against 3 minutes for H2-split-r.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 2 4 6 8 10 12 14 16 18 20

E
ne

rg
y

nbApp

H1-r
H2

H2-split-r
H3-upDown-r

H3-speed-r
H3-energy-r

best

Figure 6: Experiment 5

Experiment 6: Complete comparison
In this last experiment, we study all heuristics for some large problem instances. The main

characteristics of the heuristics are shown in Table 1. We report the number of failures in the
first column, and how many times the concerned heuristic has been the best one in the second

21

column. For the last four columns, we normalize the power consumption found by each heuristic
by the power consumption found by the best one and analyze the table of normalized power. The
average is computed with the platforms for which the heuristic found a solution. The column
“max” represents the worst case for each heuristic, this is why there is no numeric value for the
heuristics which failed.

Fail/Best average min max

H1-r 114/0 2.625483 1.541424 FAIL

H1-n 286/0 2.570121 1.511875 FAIL

H2 0/0 1.558267 1.257960 1.954439

H2-split-r 0/3710 1.008385 1 1.226330

H2-split-n 0/514 1.022594 1 1.226330

H3-upDown-r 0/164 1.100380 1 1.338159

H3-upDown-n 0/98 1.113033 1 1.504697

H3-speed-r 0/4 1.228998 1 1.974289

H3-speed-n 0/3 1.244661 1 2.180104

H3-energy-r 0/58 1.114920 1 1.374722

H3-energy-n 0/37 1.126718 1 1.504697

H3-sort-upDown-r 0/712 1.056324 1 1.251331

H3-sort-upDown-n 0/62 1.118340 1 1.453929

H3-sort-speed-r 0/37 1.170503 1 1.902925

H3-sort-speed-n 0/5 1.210323 1 2.017221

H3-sort-energy-r 0/239 1.071706 1 1.271649

H3-sort-energy-n 0/25 1.128880 1 1.470972

Table 1: Experiment 6

The random heuristics are the only ones which fail on some drawn platforms, and, as ex-
pected, they have the largest variability. H2-split-r is clearly the best heuristic: it finds about
four times out of five a better solution than the other heuristics, and when it does not, it is not
so bad, because it is on average at 0.8% of the best solution.

The variants “sort” of H3 are significantly better than the regular ones. H3-sort-upDown-r
finds the best solution more often than H2-split-n, but it is worse on average. Because they
do not evaluate the static energy of the processors, the variants of H3-speed do not avoid the
processors with high static energy, thus they have a bigger variability and a worse average than
the other variants of H3.

5 Conclusion

In this paper, we have studied the following scheduling problem: given several pipelined appli-
cations with period and latency thresholds, determine the mapping on a platform composed of
multi-modal processors (and the speed at which each processor should run), in order to minimize
the total energy consumed by the platform.

We first established the complexity of this problem for different mapping strategies (inter-
val mappings without reuse and general mappings with reuse), and different platform types
(processor-homogeneous and processor-heterogeneous platforms). Thanks to a combination of
two dynamic programming algorithms, we showed that finding an optimal interval mapping
without reuse on processor-homogeneous platforms can be done in polynomial time. On the
contrary, finding an optimal general mapping on any platform type, or finding any optimal

22

mapping on speed heterogeneous platforms, are NP-complete problems.
We have also been interested in providing polynomial-time solutions for speed heterogeneous

platforms. We wrote an integer linear program to compute the optimal solution (either interval-
based or general) in possibly exponential time. Then we have designed several heuristics, which
we compared to each other, and to the optimal solution found by the linear program on small
instances. At least on those small instances, the best heuristic always achieves at least 90% of
the best solution. The comparison of heuristics with and without processor sharing does confirm
that sharing is more useful when (i) the modes are not close to each other, and (ii) the static
energy is high.

As for future directions, we would like to search for approximation algorithms, or to derive
inapproximability results. Indeed, even though the performance of the heuristics was experi-
mentally shown pretty good, we have no theoretical guarantee. With the tri-criteria approach
of this paper, with thresholds on performance-related criteria, we could formulate the problem
as follows: given three parameters αP , αL and αE , does there exist a polynomial algorithm A
such that the energy found by A on the problem TriCriteria(E[αP Pa, αLLa]) is less than αE

times the optimal energy consumption of the problem TriCriteria(E[Pa, La])? Finding such
approximation algorithms for some values of αP , αL and αE seems quite a challenging problem.

References

[1] K. Agrawal, A. Benoit, L. Magnan, and Y. Robert. Scheduling algorithms for workflow
optimization. Research Report 2009-22, LIP, ENS Lyon, France, July 2009. Available at
http://graal.ens-lyon.fr/~yrobert/. To appear in IPDPS’2010.

[2] K. Agrawal, A. Benoit, and Y. Robert. Mapping linear workflows with computa-
tion/communic ation overlap. In ICPADS’2008, the 14th IEEE International Confer ence
on Parallel and Distributed Systems, pages 195–202. IEEE CS Press, 2008.

[3] A. Benoit, P. Renaud-Goud, and Y. Robert. Performance and energy optimization of con-
current pipelined applications. In International Parallel and Distributed Processing Sympo-
sium IPDPS’2010. IEEE Computer Society Press, 2010.

[4] A. Benoit and Y. Robert. Mapping pipeline skeletons onto heterogeneous platforms. J.
Parallel and Distributed Computing, 68(6):790–808, 2008.

[5] Cplex. ILOG CPLEX: High-performance software for mathematical programming and op-
timization. http://www.ilog.com/products/cplex/.

[6] DataCutter. DataCutter Project: Middleware for Filtering Large Archival Sci-
entific Datasets in a Grid Environment. http://www.cs.umd.edu/projects/hpsl/

ResearchAreas/DataCutter.htm.

[7] I. S. Duff and J. Koster. On algorithms for permuting large entries to the diagonal of a
sparse matrix. SIAM Journal on Matrix Analysis and Applications, 22:973–996, 2001.

[8] M. R. Garey and D. S. Johnson. Computers and Intractability, a Guide to the Theory of
NP-Completeness. W.H. Freeman and Company, 1979.

[9] S. L. Hary and F. Ozguner. Precedence-constrained task allocation onto point-to-point
networks for pipelined execution. IEEE Trans. Parallel and Distributed Systems, 10(8):838–
851, 1999.

23

[10] B. Hong and V. Prasanna. Bandwidth-aware resource allocation for heterogeneous comput-
ing systems to maximize throughput. In Proceedings of the 32th International Conference
on Parallel Processing, 2003.

[11] Y. Hotta, M. Sato, H. Kimura, S. Matsuoka, T. Boku, and D. Takahashi. Profile-based
optimization of power performance by using dynamic voltage scaling on a PC cluster. In
International Parallel and Distributed Processing Symposium IPDPS’2006. IEEE Computer
Society Press, 2006.

[12] T. Ishihara and H. Yasuura. Voltage scheduling problem for dynamically variable voltage
processors. In International Symposium on Low Power Electronics and Design (ISLPED),
pages 197–202. ACM Press, 1998.

[13] N. Karonis, B. Toonen, and I. Foster. MPICH-G2: A grid-enabled implementation of the
message passing interface. J. Parallel and Distributed Computing, 63(5):551–563, 2003.

[14] H. W. Kuhn. The hungarian method for the assignment problem. Naval Research Logistics
Quarterly, 2:83–97, 1955.

[15] K. Taura and A. A. Chien. A heuristic algorithm for mapping communicating tasks on
heterogeneous resources. In Heterogeneous Computing Workshop, pages 102–115. IEEE
Computer Society Press, 2000.

[16] Q. Wu, J. Gao, M. Zhu, N. Rao, J. Huang, and S. Iyengar. On optimal resource utilization
for distributed remote visualization. IEEE Trans. Computers, 57(1):55–68, 2008.

[17] Q. Wu and Y. Gu. Supporting distributed application workflows in heterogeneous comput-
ing environments. In 14th International Conference on Parallel and Distributed Systems
(ICPADS). IEEE Computer Society Press, 2008.

24

