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This article presents two methods for open-loop river flow control, based on a classical hydraulic model (the Hayami model, a partial differential equation resulting from a simplification of the Saint-Venant equations). The proposed method shows the equivalence of differential flatness and a frequency approach to design a controller, by expressing the upstream flows as a function of the downstream flow (model inversion). The controller is represented as an infinite series and a statement about the convergence of this series is made. A comparison is made with controllers for thermal systems from a similar problem available in the literature. The numerical simulations show the application of the open-loop controller for irrigation canals modeled by the full Saint-Venant equations.

I. INTRODUCTION

The rarefaction of global water resources is a motivation for research on automation of management of water distribution systems. Large amounts of fresh water are lost due to poor management of open-channel systems. This article focuses on the management of such canals which are used to convey water from the resource (generally a dam located upstream) to a specific downstream location. Due to the fluctuations of water needs, water demand will change with time. This change in demand calls for the efficient operation of the open-channel systems to avoid overflows and to supply desired flow rates at pre-specified time instants.

Automation techniques based on optimization and control provide more efficient management strategies than manual techniques. They rely on flow models, in particular the Saint-Venant equations [START_REF] Barré De Saint-Venant | Théorie du mouvement non-permanent des eaux avec application aux crues des rivières à l'introduction des marées dans leur lit[END_REF] or simplified versions of these equations to describe one-dimensional hydraulic systems. Level regulation and control of the water flow are among the methods used to improve the efficiency of irrigation systems. These techniques allow engineers to regulate the flow in hydraulic canals and therefore to irrigate large areas according to predicted consumption.

In this article, the specific problem of controlling downstream flow in a one-dimensional hydraulic canal by upstream discharges is investigated. Several approaches to this problem have already been described in the literature. The majority of these approaches use linear controllers to control the nonlinear dynamics of the canal system. Such methods include transfer function analysis for Saint-Venant equations [START_REF] Litrico | Robust continuous-time and discrete-time flow control of a dam-river system: (I) modelling[END_REF] which enables the use of classical control techniques for feedback control. Rieman invariants for hyperbolic conservation laws as in [START_REF] Coron | A Lyapunov approach to control irrigation canals modeled by Saint-Venant equations[END_REF] can be used to construct Lyapunov functions, used for stabilization purposes. Adjoint methods [START_REF] Sanders | Adjoint sensitivity analysis for shallow-water wave control[END_REF] have been used for estimation and control, via sensitivity analysis. Open-loop control methods have been developed either by computing the solutions of the flow equations backwards using discritization and finite difference methods [START_REF] Bautista | Comparison of Numerical Procedures for Gate Stroking[END_REF], [START_REF] Bautista | Response of ASCE Task Committee Test Cases to Open-Loop Control Measures[END_REF], or using a finite dimensional approximation in the frequency domain [START_REF] Litrico | Robust feedforward boundary control of hyperbolic conservation laws[END_REF]. Our approach is to design an open-loop controller that expresses the upstream discharges explicitly as a function of the desired downstream flow at a given location. It can be shown using Lyapunov stability method that the open-loop system is stable by [9], and [START_REF] Smyshlyaev | Lyapunov Adaptive Boundary Control for Parabolic PDEs with Spatially Varying Coefficients[END_REF], which provides another justification for open-loop control of the considered system. We will use two approaches: a differential flatness approach based on Cauchy-Kovalevskaya series and a frequency approach based on the Laplace transform.

In the context of partial differential equations, differential flatness was used to investigate the related problem of heavy chains motion planning [START_REF] Petit | Flatness of Heavy Chain Systems[END_REF], as well as the Burgers equation in [START_REF] Petit | Motion planning for two classes of nonlinear systems with delays depending on the control[END_REF] or the telegraph equation in [START_REF] Fliess | Active signal restoration for the telegraph equation[END_REF]. The theory of differential flatness, which was first developed in [START_REF] Fliess | Flatness and defect of non-linear systems: introductory theory and examples[END_REF], consists in a parametrization of the trajectories of a system by one of its output which suits our problem. Using the Laplace frequency domain to derive the control was introduced by [START_REF] Rudolph | Planning trajectories for a class of linear partial differential equations: An introduction[END_REF]. In this article, problems previously tackled by differential flatness like the heavy chains problem, and the telegraph equation [START_REF] Rudolph | Planning trajectories for a class of linear partial differential equations: An introduction[END_REF] are solved by the frequency approach.

Starting from the classical Saint-Venant equations widely used to model unsteady flows in rivers [START_REF] Barré De Saint-Venant | Théorie du mouvement non-permanent des eaux avec application aux crues des rivières à l'introduction des marées dans leur lit[END_REF], we present a model simplification and a linearization which lead to the Hayami partial differential equation as shown in [START_REF] Moussa | Criteria for the choice of flood-routing methods in natural channels[END_REF]. The practicality of using the Hayami equation lies in the need of only two numerical parameters to characterize flow conditions: celerity and diffusivity. The original Saint-Venant equation requires the knowledge of the full geometry of the canal and of the roughness coefficient, which make it impractical for long rivers where these parameters are difficult to estimate.

The problem of controlling the Hayami equation was already investigated in [START_REF] Hayami | On the propagation of flood waves[END_REF] and [START_REF] Litrico | Robust continuous-time and discrete-time flow control of a dam-river system: (I) modelling[END_REF] with transfer function analysis, and in [START_REF] Litrico | Nonlinear Diffusive Wave Modeling and Identification of Open Channels[END_REF] for parameter estimation. The Hayami equation is closely linked to the diffusive wave equation with quadratic source terms, which have been studied in [START_REF] Dunbar | Motion planning for a nonlinear stefan problem[END_REF] and [START_REF] Lynch | Flatness-based boundary control of a nonlinear parabolic equation modelling a tubular reactor. Nonlinear control in the year[END_REF]. The difference between our problem and the aforementioned problem is the nature of the boundary conditions: indeed, contrary to the heat equation case, one cannot impose a value for the downstream discharge. In river flow, there are hydraulic structures such as weirs which impose a static relation between water elevation and the flow. In fact, we show that the solution of our problem is a composite of the solution in [START_REF] Lynch | Flatness-based boundary control of a nonlinear parabolic equation modelling a tubular reactor. Nonlinear control in the year[END_REF] and an additional term which captures the boundary condition set by the hydraulic structure.

The article is structured as follows: a description of the physical problem and the system of equations to be solved is introduced first (section II). Then, in section III, a solution of these equations is devised using differential flatness and transfer function analysis. The equivalence of the two approaches is shown analytically. A statement of convergence is made about the controller infinite series. A numerical assessment of the open-loop controller is finally presented and discussed in section IV. In particular, the difference with controllers synthesized in the context of heat transfer is illustrated through numerical simulation. Applications of the controller on the fully nonlinear Saint-Venant model are presented.

II. PHYSICAL PROBLEM

The system of interest is a hydraulic canal of length L with a prismatic or rectangular cross-section. In this section we present the equations that govern the system, the Saint-Venant equations. We then derive the Hayami model which is a simplification of these equations.

A. Saint-Venant Equations

The Saint-Venant equations [START_REF] Barré De Saint-Venant | Théorie du mouvement non-permanent des eaux avec application aux crues des rivières à l'introduction des marées dans leur lit[END_REF] are generally used to describe unsteady flows in rivers or canals [START_REF] Moussa | Criteria for the choice of flood-routing methods in natural channels[END_REF]. These equations are written as follows:

A t + Q x = 0 (1) 
Q t + Q 2 A x + gAY x = gA(S b -S f ) (2) 
with A(x, t) the wetted cross-sectional area (m 2 ), Q(x, t) the discharge (m 3 /s) across section A(x, t), Y (x, t) the water depth (m), S f (x, t) the friction slope, S b the bed slope, and g the gravitational acceleration (m 2 /s). These variables are linked by the following relations: A(x, t) = Y (x, t)B(x, t), Z(x, t) = Y (x, t) + S b (L -x) and Q(x, t) = V (x, t)A(x, t) where Z(x, t) is the absolute water elevation (m), V (x, t) is the mean water velocity across section A(x, t), and B(x, t) is the bed width. Equation ( 1) is referred to as the mass conservation equation, and equation ( 2) is called the momentum conservation equation. We assume that there is a crossstructure, at the right end of the canal, which means that there is an analytical function W (•) that relates Q and Z at x = L, i.e:

Q(L, t) = W (Z(L, t)) (3) 
For a weir structure, this relation can be assumed to be

Q(L, t) = C w (Z(L, t) -Z w ) 3/2
where Z w is the weir elevation, and C w a positive constant depending on the physical characteristics of the weir. The Saint-Venant equations are linearized to derive the Hayami model.

B. Hayami Model

Depending on the characteristics of the river, some terms in the momentum equation ( 2) can be neglected, which allows us to simplify the two equations and to assemble them into a single partial differential equation. As shown in [START_REF] Litrico | Robust continuous-time and discrete-time flow control of a dam-river system: (I) modelling[END_REF], assuming that the inertia terms

Q t + Q 2 A x
can be neglected with respect to gAY x will lead to the diffusive wave model:

BY t + Q x = 0 (4) Z x = -S f (5) 
The two equations can be combined and will lead to the diffusive wave equation:

Q t + CQ x -DQ xx = 0 (6) 
where Q(x, t) is the flow (m 3 /s), C(Q, Z(x, t), x) and D(Q, Z(x, t), x) usually known as the celerity and the diffusivity are non-linear functions of the flow, depth, and location [START_REF] Fliess | Flatness and defect of non-linear systems: introductory theory and examples[END_REF]. Linearizing equation ( 4) around a reference discharge Q 0 (i.e. Q(x, t) = Q 0 + q(x, t)) leads to the Hayami equation:

q t + C 0 q x -D 0 q xx = 0
where q(x, t) is the deviation from the nominal flow Q 0 , C 0 (Q 0 ) and D 0 (Q 0 ) are the nominal celerity and diffusivity. We call Z 0 and B 0 the reference elevation and width, and also assume that Z(x, t) = Z 0 + z(x, t), and B(x, t) ∼ B 0 , therefore equation ( 4) can be linearized as follows:

B 0 z t + q x = 0
where we have substituted Y t by (Z -S b (L -x)) t = Z t before linearizing. The right boundary condition (3) is also linearized and becomes:

q(L, t) = bz(L, t)
where b is the linearization constant. The value of this constant depends on the weir geometry: length, height, and discharge coefficient. 

C. Open-Loop Control Problem

The control problem illustrated in Figure 1, consists in determining the control u(t) = q(0, t), i.e. the flow of the upstream discharge, that yields the desired downstream discharge y(t) = q(L, t), where y(t) is a user-defined profile of flow over time at the end of the canal.

We therefore have to solve a problem whose dynamics are modeled by the following equations:

∀x ∈ [0, L] ∀t ∈ [0, T ] D 0 q xx -C 0 q x = q t (7) ∀x ∈ [0, L] ∀t ∈ [0, T ] B 0 z t + q x = 0 (8) ∀t ∈ [0, T ] q(L, t) = bz(L, t) (9)
And a boundary condition is imposed at x = L by equation [START_REF] Laroche | Motion planning for a class of partial differential equations with boundary control[END_REF]:

∀t ∈ [0, T ] q(L, t) = y(t) (10) 
The appropriate control u(•) which will generate the y(t) defined by ( 10) is defined by equation [START_REF] Litrico | Nonlinear Diffusive Wave Modeling and Identification of Open Channels[END_REF]:

∀t ∈ [0, T ] q(0, t) = u(t) (11) 

III. COMPUTATION OF THE OPEN LOOP CONTROL INPUT

FOR THE HAYAMI MODEL In this section we solve the control problem given by equations (7-10) and try to parametrize the flow q(x, t) in terms of the discharge q(L, t) or y(t). We will produce a solution to this problem using two approaches:

1) An approach based on Cauchy-Kovalevskaya decomposition 2) A frequency approach based on Laplace transform. We define the following intermediate variables:

α = C0 2D0 , β = 1 √ D0 , κ = B0 b α 2 β 2 -α, and the function f (t) = e α 2
β 2 t which will simplify our calculations. The transfer function approach does not make the assumption that the considered functions are expandable in the Cauchy-Kovelevskaya form, therefore is a priori more general. In the present case as will be shown below, the result for the algebraic expression obtained shows equivalence of the two methods (a posteriori assessment).

A. Cauchy-Kovalevskaya Form Approach

As shown in [START_REF] Polyanin | Handbook of Linear Partial Differential Equations for Engineers and Scientists[END_REF], equation ( 7) can be transformed into the heat equation. Let us consider the following transformation:

q(x, t) = h(x, t)p(x, t) (12) 
where h(x, t) = e

-α 2 β 2 t+α(x-L) . ( 13 
)
We have:

p t = e α 2 β 2 t-α(x-L) q t + α 2 β 2 q p x = e α 2 β 2 t-α(x-L) (q x -αq) p xx = e α 2 β 2 t-α(x-L) q xx -2αq x + α 2 q .
Substituting in equation ( 7), p(x, t) will satisfy:

p t = 1 β 2 p xx ( 14 
)
The problem ( 7) -( 10) can now be reformulated as follows:

∀x ∈ [0, L] ∀t ∈ [0, T ] p t = 1 β 2 p xx (15) ∀x ∈ [0, L] ∀t ∈ [0, T ] B 0 z t = -h(x, t) (p x + αp) (16) ∀t ∈ [0, T ]p(L, t)= be α 2 β 2 t z(L, t) (17) ∀t ∈ [0, T ]p(L, t)= e α 2 β 2 t y(t) (18) 
The Cauchy-Kovalevskaya form [START_REF] Laroche | Motion planning for a class of partial differential equations with boundary control[END_REF] consists of expressing the solution of the PDE as a function of p(L, t) (resp. z(L, t)) and all its derivatives. We assume the following form for p and z:

p(x, t) = +∞ i=0 p i (t) (x -L) i i! z(x, t) = +∞ i=0 z i (t) (x -L) i i!
where p i (t) and z i (t) are smooth functions. We have:

p t = +∞ i=0 ṗi (x -L) i i! p xx = +∞ i=0 p i+2 (x -L) i i!
After substitution in equation [START_REF] Lynch | Flatness-based boundary control of a nonlinear parabolic equation modelling a tubular reactor. Nonlinear control in the year[END_REF], we obtain:

+∞ i=0 ṗi (x -L) i i! = 1 β 2 +∞ i=0 p i+2 (x -L) i i! Equating the coefficients of (x-L) i i!
gives for all i ∈ N:

p i+2 (t) = β 2 ṗi (t) (19) 
Additionally, we have p 0 = p(L, t) and z 0 = z(L, t). We still need a condition on p 1 to be able to express every p i as a function of p 0 . We combine equation [START_REF] Moussa | Criteria for the choice of flood-routing methods in natural channels[END_REF] and equation [START_REF] Petit | Motion planning for two classes of nonlinear systems with delays depending on the control[END_REF] to obtain a boundary condition on p at x = L. We have:

z t = +∞ i=0 żi (x -L) i i!
So that ż0 = z t (L, t), and equation ( 16), with x = L gives:

B 0 ż0 + e -α 2 β 2 t (p 1 + αp 0 ) = 0
In addition, equation [START_REF] Petit | Motion planning for two classes of nonlinear systems with delays depending on the control[END_REF] gives:

p 0 = bz 0 e α 2 β 2 t
so that:

ż0 = 1 b ṗ0 - α 2 β 2 p 0 e -α 2 β 2 t
and eventually:

p 1 = - B 0 b ṗ0 + κp 0
Using the induction relation [START_REF] Polyanin | Handbook of Linear Partial Differential Equations for Engineers and Scientists[END_REF] and the expression of p 0 and p 1 , we can compute separately the odd and even terms:

p 2i = β 2i p (i) 0 p 2i+1 = κβ 2i p (i) 0 - B 0 b β 2i p (i+1) 0
Therefore, we can formally write p(x, t) as follows:

p(x, t) = +∞ i=0 β 2i p (i) 0 (x -L) 2i (2i)! + +∞ i=0 β 2i κp (i) 0 - B 0 b p (i+1) 0 (x -L) 2i+1 (2i + 1)!
From equation [START_REF] Petit | Flatness of Heavy Chain Systems[END_REF], we deduce that p 0 (t) = f (t)y(t). The final parametrization of the flow q(x, t) will have the form:

q(x, t) = h(x, t) T 1 (x, t) + κT 2 (x, t) - B 0 b T 3 (x, t) (20) 
where

T 1 (x, t) = +∞ i=0 (f y) (i) β 2i (x -L) 2i (2i)! , (21) 
T 2 (x, t) = +∞ i=0 (f y) (i) β 2i (x -L) 2i+1 (2i + 1)! , (22) 
and

T 3 (x, t) = +∞ i=0 (f y) (i+1) β 2i (x -L) 2i+1 (2i + 1)! . ( 23 
)
Equation [START_REF] Rudolph | Planning trajectories for a class of linear partial differential equations: An introduction[END_REF] relates the discharge variation q(x, t) as a function of the desired output y(t) which corresponds to the discharge q(L, t) at the downstream end of the canal. This solution is formal, and the convergence of the infinite series needs to be assessed. Before we investigate this issue, we solve the problem in the frequency domain, to prove the equivalence of the two approaches.

B. Feed-forward Controller Design using the Frequency Approach Based on Laplace Transform

The frequency approach uses the Laplace transform of the equations of section II-C, and provides algebraic expressions instead of partial differential equations by converting derivatives w.r.t time t into multiplications by the frequency s. After finding the algebraic expression of the solution in the Laplace domain, we can carry out an inverse Laplace transform to find the parametrization of q(x, t) in terms of the desired output flow y(t). For Laplace notations, we define for any function l(x, t), t ≥ 0, the temporal Laplace transform, noted L(l(x, t)), or l(x, s) to be: l(x, s) = ∞ 0 e -st l(x, t)dt. We start with the frequency representation of the Hayami model which is the Laplace formulation of the system ( 7)-( 9), derived in appendix A.

q(x, s) = F (x, s)û(s)

with

F (x, s) = P (x, s) Q(s) (25) 
where P (x, s) and Q(s) are defined in appendix A. Equation (25) relates the flow in the Laplace domain at any point x, q(x, s), to the input flow prescribed by the control input û(s). We want to derive an algebraic expression that relates q(x, s) to the desired output ŷ(s). We proceed by evaluating equation ( 24) at x = L to obtain:

ŷ(s) = F (L, s)û(s) (26) 
Dividing equation (24) by equation ( 26) leads to the following expression:

q(x, s) ŷ(s) = P (x, s) P (L, s) (27) 
Developing the hyperbolic functions of P (x, s), in terms of their power series, we obtain:

P (x, s) = e αx (B 0 s + αb) +∞ i=0 (γ(L -x)) 2i+1 (2i + 1)! +γb +∞ i=0 (γ(L -x)) 2i (2i)! (28) 
We substitute equation (28) into equation ( 27) and express q(x, s) in terms of the constants defined in section III.

q(x, s) = e α(x-L) +∞ i=0 s + α 2 β 2 i β 2i (x -L) 2i (2i)! + +∞ i=0 β 2i κ s + α 2 β 2 i - B 0 b s + α 2 β 2 i+1 (x -L) 2i+1 (2i + 1)! ŷ(s) (29) 
We carry out the inverse Laplace transform and express q(x, t) in terms of y(t) in the time domain. Using the inverse Laplace transformation rules: L -1 (ĝ(s + a)) = g(t)e -at and L -1 (sĝ(s)) = ġ(t)+g(0) where g(t) is any time function and a is a constant, we can use the following identity:

L -1 ((s + a) i ĝ(s)) = (g(t)e at ) (i) (30) 
where we have assumed zero initial conditions. Applying equation (30) with a = α 2 β 2 and ĝ(s) = ŷ(s) to equation (29), we obtain:

q(x, t) = h(x, t) T 1 (x, t) + κT 2 (x, t) - B 0 b T 3 (x, t) (31) 
where T 1 (x, t), T 2 (x, t), T 3 (x, t) are defined in equations ( 21), [START_REF] Smyshlyaev | Lyapunov Adaptive Boundary Control for Parabolic PDEs with Spatially Varying Coefficients[END_REF], and (23), and h(x, t) is defined in equation [START_REF] Litrico | Robust feedforward boundary control of hyperbolic conservation laws[END_REF].

The algebraic solution obtained with the frequency approach is indeed identical to the solution obtained with the Cauchy-Kovalevskaya approach.

C. Convergence of the Infinite Series

We now give the formal proof of convergence of the series in equation ( 31) or [START_REF] Rudolph | Planning trajectories for a class of linear partial differential equations: An introduction[END_REF]. We assume that the flat output y(t) is a Gevrey function of order α > 0, i.e.:

∃ m, l ∈ R ∃ α > 0 ∀n ∈ N sup t∈[0,T ] y (n) (t) < m (n!) α l n (32) f (t) = e α 2
β 2 t is Gevrey of order 0, and therefore is Gevrey of order α. The product of two Gevrey functions of same order is a Gevrey function of the same order, as a consequence, f (t)y(t) is Gevrey of order α > 0. We will use the Cauchy-Hadamard theorem [START_REF] Dunbar | Motion planning for a nonlinear stefan problem[END_REF] which states that the radius of convergence, r, of the Taylor series +∞ i=0 a n x n to be r =

1 lim sup n→+∞ |an| 1/n .
The radius of convergence for T 3 (x, t) is given by:

1 ρ = lim sup i→+∞ β 2i (f y) (i+1) (t) (2i + 1)! 1 2i+1
where ρ is the radius of convergence around L. We can find an upper bound to 1 ρ by inducing the property of bounds on a Gevrey function of order α > 0 from equation (32).

1 ρ ≤ lim sup i→+∞ β 2i m ((i+1)!) α l i+1 (2i + 1)! 1 2i+1 ≤ lim sup i→+∞ β 2i 2i+1 m 1 2i+1 l i+1 2i+1 ((i + 1)!) α (2i + 1)! 1 2i+1 ∼ lim sup i→+∞ β √ l i + 1 2i + 1 i + 1 e (α-2)i+(α-1) 2i+1 (33) ∼        +∞ α > 2 β 2 √ l α = 2 0 α < 2
where in equation ( 33) we have used the fact that ((i + 1)!)

1 i+1
∼ i+1 e , and ((2i + 1)!)

1 2i+1
∼ 2i+1 e as an immediate consequence of the Stirling formula. Also we have used m

1 2i+1 ∼ 1, β 2i 2i+1 ∼ β and l i+1 2i+1 ∼ √
l. This will ensure an infinite radius of convergence for α < 2. Similar calculations can be held for T 1 (x, t) and T 2 (x, t) leading to the following conclusions:

• Equation ( 31) or [START_REF] Rudolph | Planning trajectories for a class of linear partial differential equations: An introduction[END_REF] converges with an infinite radius of convergence for the choice of a Gevrey function y(t) of order α < 2.

• For α = 2, We will have a sufficient condition on the convergence of the series if x ∈ 0, L -2

√ l β ∪ L + 2 √ l β , +∞ , yet there could be convergence if x ∈ L -2 √ l β , L + 2 √ l β .
• We can draw no conclusions on the convergence of the series when α > 2.

IV. NUMERICAL ASSESSMENT OF THE PERFORMANCE OF THE FEED-FORWARD CONTROLLER

In this section, we compute the control command u(t) by evaluating equation ( 20) or (31) at x = 0. We subsequently simulate the controller numerically on the Hayami model equations ( 7) -( 9) in order to evaluate their behavior before testing them on the Saint-Venant equations. This section successively investigates numerical simulations for the Hayami and the Saint-Venant models.

A. Hayami Model Simulation

From section III-C, the infinite series convergence is ensured by choosing y(t) to be a Gevrey function of order α < 2. To meet this convergence condition following [START_REF] Laroche | Motion planning for a class of partial differential equations with boundary control[END_REF], we introduce the bump function φ σ (t) : R → R defined as

φ σ (t) =                  0 t < 0 t/T 0 exp(-1/((τ (1-τ )) σ )dτ 1 0 exp(-1/((τ (1-τ )) σ )dτ 0 ≤ t ≤ T 1 t > T
where σ > 1, T > 0. The Gevrey order of the bump function is 1 + 1/σ. The function φ σ (t) is used in [START_REF] Dunbar | Motion planning for a nonlinear stefan problem[END_REF], [START_REF] Fliess | Flatness and defect of non-linear systems: introductory theory and examples[END_REF], [START_REF] Laroche | Motion planning for a class of partial differential equations with boundary control[END_REF], [START_REF] Lynch | Flatness-based boundary control of a nonlinear parabolic equation modelling a tubular reactor. Nonlinear control in the year[END_REF], [START_REF] Rudolph | Planning trajectories for a class of linear partial differential equations: An introduction[END_REF], it is strictly increasing from 0 at t = 0 to 1 at t = T with zero derivatives at t = 0 and t = T . The larger the σ parameter is, the faster is the transition. Setting y(t) = q 1 φ σ (t) will allow us to have a transition from zero discharge flow for t ≤ 0 to a discharge flow equal to q 1 for t ≥ T , where q 1 is a constant.

The upstream discharges or the control input u(t) can be computed by substituting x = 0 in equation ( 20) or (31). We obtain: For the Hayami model simulation, we will consider the transition from a downstream discharge of 0 m 3 /s to 1 m 3 /s in 1 hour (T = 3600 seconds). We will take σ = 2 which will imply y(t) to be a Gevrey-function of order 1.5 thus satisfying the convergence condition in section III-C. The model parameters are L = 1000 m, C 0 = 20 m/s, D 0 = 1800 m 2 /s, B 0 = 7 m, and b = 1 m 2 /s. The infinite series of the control input u(t) is approximated using 80 terms of the infinite series, and equations ( 7), ( 8), (9), and (11) are solved using the Crank-Nicholson scheme. The solution of the numerical scheme at x = L or q(L, t) is compared to y(t), the desired downstream discharge flow. The results of this simulation are shown in figure 2.

u(t) = h(0, t) T 1 (0, t) + κT 2 (0, t) - B 0 b T 3 (0, t) (34) 
The discharge at the downstream follows the desired discharge perfectly which validates our control input. Now we will compare our result to other problems from the literature.

In [START_REF] Laroche | Motion planning for a class of partial differential equations with boundary control[END_REF], an explicit open loop controller was derived for the heat equation with zero gradient boundary conditions. With some simple transformations in time and space we can relate the results [START_REF] Laroche | Motion planning for a class of partial differential equations with boundary control[END_REF] to our problem. The transformed version of [START_REF] Laroche | Motion planning for a class of partial differential equations with boundary control[END_REF] has the following form:

∀x ∈ [0, L] ∀t ∈ [0, T ] D 0 q xx -C 0 q x = q t (35) ∀t ∈ [0, T ] q x (L, t) = 0 (36) ∀t ∈ [0, T ] q(L, t) = y(t) ∀t ∈ [0, T ] q(0, t) = u(t)
The solution of the control input for this particular problem is:

u heat (t) = h(0, t) (T 1 (0, t) -αT 2 (0, t)) (37) 
We can vary the value of the variable b, and observe its effect on u(t). This corresponds physically to changing the height or the width of the weir located at the downstream end of the canal. Figure 3 shows the effect of varying b on the control input u(t). We can see that by increasing the value of b, the function of u(t) for our problem tend to converge to u heat (t) described by equation (37). This can be seen directly by studying the limit of equation ( 34 

u(t) = u heat (t) + u b (t)
where

u b (t) = h(0, t) B 0 b α 2 β 2 T 2 (0, t) -T 3 (0, t) (38) 
As b → ∞, the boundary effect will be negligible, u b (t) → 0, and equation (34) will tend to converge in the limit to equation (37), u(t) → u heat (t).

If we were to use the controller in equation (37) to control our problem with b = 1 m 2 /s, we would obtain the results shown in figure 4.

The effect can be seen in the transition which takes approximately 1.6 hours instead of 1 hour. This shows the considerable importance of boundary conditions on the transition periods. It is therefore very important to take into account the boundary conditions in the open-loop control design to ensure a scheduled water distribution.

B. Saint-Venant Model Simulation

In many cases, controlling the Saint-Venant equations directly is impractical because of the need of all the geometry of the canal and the Saint-Venant parameters defined in section II-A. For this reason we have used a simplification of the model to arrive to the Hayami equation which requires only two parameters, C 0 and D 0 . In this section we show numerically that a calibrated Hayami model would provide us with an open-loop control law that steers the Saint-Venant equation solution at x = L or the flow discharge at the weir to the desired discharge fairly accurately. For the purpose of the simulation we will use SIC, a computer program developed by Cemagref [START_REF] Litrico | Experimental validation of a methodology to control irrigation canals based on Saint-Venant equations[END_REF] to simulate the upstream discharge and the measurement discharge at the downstream. SIC solves the full nonlinear Saint-Venant equations using a finite difference scheme (Preissmann scheme).

1) Hayami Model Identification: The purpose of model identification is to identify the parameters C 0 , D 0 and b corresponding to the Hayami model and its boundary condition that would best describe the real flow governed by the Saint-Venant equations. This is done with an upstream discharge in a form of step input, the flow discharges are monitored at the upstream and downstream positions. The hydraulic identification is done classically by finding the values of C 0 , D 0 and b that minimize the error between the computed downstream discharge by the solution of the Crank-Nicholson scheme and the measured one. The steady flow calibration is sufficient to obtain a good dynamic model of the canal. We therefore have to solve the following optimization problem:

min C0,D0,b>0 T SIM 0 |q SIC (τ ) -q CN (C 0 , D 0 , b, τ )| 2 dτ
where q SIC is the downstream flow generated by SIC, and q CN is the downstream flow generated by the Crank-Nicholson scheme, T SIM is the simulation time usually larger than the period needed to reach steady state. In our case, the identification was performed for a steady flow regime of 1.7 m 3 /s, canal of length L = 4232 m, and bed width B 0 = 2 m. This leads to the following calibrated parameters: C 0 = 2.0160 m/s, D 0 = 1517.4 m 2 /s, and b = 0.4303 m 2 /s.

2) Saint-Venant Control: The experimental canal we would like to simulate has the same properties as the one we have used for identification in the previous section. We are interested in raising the flow at the downstream from 2.5m 3 /s to 3.5 m 3 /s in 4 hours. Setting the variables in section IV-A to q 1 = 1 m 3 /s, T = 14400 sec, and σ = 2 will define the downstream profile y(t). The control input or the discharge at the upstream can be calculated and the results are shown in figure 5.

We notice that we have achieved the desired flow by solving the full nonlinear Saint-Venant equations. This shows that the Hayami model is practical for the design of open-loop control when the corresponding parameters are identified. The controller is obtained as an infinite series in terms of the desired downstream discharge flow. We have given sufficient conditions on the downstream profiles to ensure convergence. The effect of the boundary condition is also investigated and compared to previous studied ones such as the heat equation.

The simulations show satisfactory results for controlling the full Saint-Venant equation. Hydraulic engineers have shown that Saint-Venant equations can accurately model large scale open-channels. This means our methodology allows us to design open-loop controllers for large-scale system that could be cascaded and used to control a network of canals with complicated geometry. This will enable us to implement our method of open-loop controller design to Gignac Canal in Montpellier, France and further validate our results, which will be done in October 2008 with the seasonal opening of the canal for experimental purposes.
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 1 Fig. 1. Schematic representation of the canal with weir structure.

Fig. 2 .

 2 Fig. 2. Results of the numerical simulation of feed-forward control of the Hayami equation. The desired downstream discharge is y(t), the upstream discharge is u(t) , and the downstream discharge computed by solving the Hayami model is q(L, t).

Fig. 3 .

 3 Fig. 3. Effect of varying b on the upstream discharge or control input u(t).

Fig. 4 .

 4 Fig. 4. Consequence of neglecting the boundary conditions in calculating the upstream discharge. The desired downstream discharge is y(t), and the downstream discharge calculated by solving the Hayami model with b = 1 m 2 /s and control input of equation (37) is q(L, t).

2 β 2

 22 ) as b → ∞ which would result in equation (37). Substituting κ = B0 b α -α into equation (34), we obtain:

Fig. 5 .

 5 Fig.5. Results of the implementation of our controller on the full nonlinear Saint-Venant equations. The desired downstream discharge is Q desidred (t) = Q 0 + y(t), the downstream discharge calculated by solving the Saint-Venant equations in SIC is Q(L, t) = Q 0 + q(L, t), and the upstream discharge of the canal is Q(0, t) = Q 0 + u(t) where u(t) is calculated using the Hayami model open-loop controller. The nominal flow in the canal is Q 0 = 2.5m 3 /s.
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APPENDIX

Given a function l(x, t), t ≥ 0, its temporal Laplace transform, noted L(l(x, t)), or l(x, s) is given by: l(x, s) = ∞ 0 e -st l(x, t)dt.

Starting from equations ( 7)- [START_REF] Litrico | Nonlinear Diffusive Wave Modeling and Identification of Open Channels[END_REF], we relate q(x, s) the Laplace transform of q(x, t) to q(0, s) the Laplace transform of q(0, t).

We have L(q t (x, t)) = sq(x, s) -q(x, 0), L(q x (x, t)) = qx (x, s), and L(q xx (x, t)) = qxx (x, s) with q(x, 0) = 0. The property q(x, 0) = 0 results from section II-B: q(x, t) is defined to be the deviation from the nominal flow, and at t = 0 the deviation should be 0, i.e. q(x, 0) = 0. Equation ( 7) becomes:

This is an ordinary differential equation in the variable x, whose characteristic equation is D 0 λ 2 -C 0 λ -s = 0. The solution q(x, s) is of the following form:

β 2 as defined in sections III and III-B.

Substituting equation (39) into equation ( 8) leads to:

Boundary conditions of equations ( 9) and ( 11) read as:

Equation (41) gives:

which, using equation (40), leads to:

B0s e γ(s)L D(s) and

B0s e γ(s)L D(s) where

Then, we obtain: