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Abstract—This article presents two methods for open-loop
river flow control, based on a classical hydraulic model (the
Hayami model, a partial differential equation resulting from
a simplification of the Saint-Venant equations). The proposed
method shows the equivalence of differential flatness and a
frequency approach to design a controller, by expressing the
upstream flows as a function of the downstream flow (model
inversion). The controller is represented as an infinite series
and a statement about the convergence of this series is made.
A comparison is made with controllers for thermal systems from
a similar problem available in the literature. The numerical
simulations show the application of the open-loop controller for
irrigation canals modeled by the full Saint-Venant equations.

I. INTRODUCTION

The rarefaction of global water resources is a motivation for
research on automation of management of water distribution
systems. Large amounts of fresh water are lost due to poor
management of open-channel systems. This article focuses on
the management of such canals which are used to convey water
from the resource (generally a dam located upstream) to a
specific downstream location. Due to the fluctuations of water
needs, water demand will change with time. This change in
demand calls for the efficient operation of the open-channel
systems to avoid overflows and to supply desired flow rates at
pre-specified time instants.

Automation techniques based on optimization and control
provide more efficient management strategies than manual
techniques. They rely on flow models, in particular the Saint-
Venant equations [1] or simplified versions of these equations
to describe one-dimensional hydraulic systems. Level regula-
tion and control of the water flow are among the methods
used to improve the efficiency of irrigation systems. These
techniques allow engineers to regulate the flow in hydraulic
canals and therefore to irrigate large areas according to pre-
dicted consumption.

In this article, the specific problem of controlling down-
stream flow in a one-dimensional hydraulic canal by upstream
discharges is investigated. Several approaches to this problem
have already been described in the literature. The majority of
these approaches use linear controllers to control the nonlinear

dynamics of the canal system. Such methods include trans-
fer function analysis for Saint-Venant equations [14] which
enables the use of classical control techniques for feedback
control. Rieman invariants for hyperbolic conservation laws as
in [4] can be used to construct Lyapunov functions, used for
stabilization purposes. Adjoint methods [21] have been used
for estimation and control, via sensitivity analysis. Open-loop
control methods have been developed either by computing the
solutions of the flow equations backwards using discritization
and finite difference methods [3], [2], or using a finite di-
mensional approximation in the frequency domain [13]. Our
approach is to design an open-loop controller that expresses
the upstream discharges explicitly as a function of the desired
downstream flow at a given location. It can be shown using
Lyapunov stability method that the open-loop system is stable
by [9], and [22], which provides another justification for
open-loop control of the considered system. We will use two
approaches: a differential flatness approach based on Cauchy-
Kovalevskaya series and a frequency approach based on the
Laplace transform.

In the context of partial differential equations, differential
flatness was used to investigate the related problem of heavy
chains motion planning [18], as well as the Burgers equation in
[17] or the telegraph equation in [7]. The theory of differential
flatness, which was first developed in [6], consists in a
parametrization of the trajectories of a system by one of its
output which suits our problem. Using the Laplace frequency
domain to derive the control was introduced by [20]. In this
article, problems previously tackled by differential flatness like
the heavy chains problem, and the telegraph equation [20] are
solved by the frequency approach.

Starting from the classical Saint-Venant equations widely
used to model unsteady flows in rivers [1], we present a model
simplification and a linearization which lead to the Hayami
partial differential equation as shown in [16]. The practicality
of using the Hayami equation lies in the need of only two
numerical parameters to characterize flow conditions: celerity
and diffusivity. The original Saint-Venant equation requires
the knowledge of the full geometry of the canal and of the
roughness coefficient, which make it impractical for long rivers



where these parameters are difficult to estimate.

The problem of controlling the Hayami equation was al-
ready investigated in [8] and [14] with transfer function
analysis, and in [11] for parameter estimation. The Hayami
equation is closely linked to the diffusive wave equation with
quadratic source terms, which have been studied in [5] and
[15]. The difference between our problem and the afore-
mentioned problem is the nature of the boundary conditions:
indeed, contrary to the heat equation case, one cannot impose
a value for the downstream discharge. In river flow, there
are hydraulic structures such as weirs which impose a static
relation between water elevation and the flow. In fact, we show
that the solution of our problem is a composite of the solution
in [15] and an additional term which captures the boundary
condition set by the hydraulic structure.

The article is structured as follows: a description of the
physical problem and the system of equations to be solved is
introduced first (section II). Then, in section III, a solution of
these equations is devised using differential flatness and trans-
fer function analysis. The equivalence of the two approaches
is shown analytically. A statement of convergence is made
about the controller infinite series. A numerical assessment
of the open-loop controller is finally presented and discussed
in section IV. In particular, the difference with controllers
synthesized in the context of heat transfer is illustrated through
numerical simulation. Applications of the controller on the
fully nonlinear Saint-Venant model are presented.

II. PHYSICAL PROBLEM

The system of interest is a hydraulic canal of length L
with a prismatic or rectangular cross-section. In this section
we present the equations that govern the system, the Saint-
Venant equations. We then derive the Hayami model which is
a simplification of these equations.

A. Saint-Venant Equations

The Saint-Venant equations [1] are generally used to de-
scribe unsteady flows in rivers or canals [16]. These equations
are written as follows:

2
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with A(x,t) the wetted cross-sectional area (m?), Q(z,t)
the discharge (m?3/s) across section A(z,t), Y (z,t) the water
depth (m), Sy (z,t) the friction slope, Sy the bed slope, and
g the gravitational acceleration (m?/s). These variables are
linked by the following relations: A(z,t) = Y (x,t)B(z,t),
Z(x,t) =Y (x,t) + Sp(L — ) and Q(x,t) = V(x,t)A(x,t)
where Z(z,t) is the absolute water elevation (m), V (x,t) is
the mean water velocity across section A(zx,t), and B(z,t)
is the bed width. Equation (1) is referred to as the mass

conservation equation, and equation (2) is called the momen-
tum conservation equation. We assume that there is a cross-
structure, at the right end of the canal, which means that there
is an analytical function W(-) that relates ) and Z at x = L,
ie:

Q(Lvt) = W(Z(Lvt)) (3)

For a weir structure, this relation can be assumed to be
Q(L,t) = Cy (Z(L,t) — Zw)g/2 where Z,, is the weir eleva-
tion, and C,, a positive constant depending on the physical
characteristics of the weir. The Saint-Venant equations are
linearized to derive the Hayami model.

B. Hayami Model

Depending on the characteristics of the river, some terms in
the momentum equation (2) can be neglected, which allows
us to simplify the two equations and to assemble them into a
single partial differential equation. As shown in [14], assuming
that the inertia terms (); + (%2
respect to gAY, will lead to the diffusive wave model:

can be neglected with

BYi+Q, = 0 )
Zy = =5 &)

The two equations can be combined and will lead to the
diffusive wave equation:

where Q(z,t) is the flow (m3/s), C(Q,Z(z,t),z) and
D(Q, Z(x,t),x) usually known as the celerity and the diffu-
sivity are non-linear functions of the flow, depth, and location
[6]. Linearizing equation (4) around a reference discharge (g
(i.e. Q(z,t) = Qo + q(z, 1)) leads to the Hayami equation:

qt + COQI - Doqazx =0

where ¢(x,t) is the deviation from the nominal flow Qy,
Co(Qo) and Dy(Qo) are the nominal celerity and diffusivity.
We call Z; and Bj the reference elevation and width, and
also assume that Z(z,t) = Zy + z(x,t), and B(x,t) ~ By,
therefore equation (4) can be linearized as follows:

Boz + g, =0

where we have substituted Y; by (Z — Sy(L —z)), = Z,
before linearizing. The right boundary condition (3) is also
linearized and becomes:

q(L,t) = bz(L,t)

where b is the linearization constant. The value of this
constant depends on the weir geometry: length, height, and
discharge coefficient.
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Fig. 1. Schematic representation of the canal with weir structure.

C. Open-Loop Control Problem

The control problem illustrated in Figure 1, consists in
determining the control u(t) = ¢(0,t), i.e. the flow of
the upstream discharge, that yields the desired downstream
discharge y(t) = q(L,t), where y(t) is a user-defined profile
of flow over time at the end of the canal.

We therefore have to solve a problem whose dynamics are
modeled by the following equations:

Vz € [OvL] vt e [07T] Dquz - Cqu; =q (7)
Vee[0,L]Vte[0,T] Bozm+qe =0 )
wel0T]  qLi)  =bLt) O

And a boundary condition is imposed at x = L by equation
(10):

vt €[0,T] q(L,t) = y() (10)

The appropriate control u(-) which will generate the y(t)
defined by (10) is defined by equation (11):

vt € 0,7] (0,1) = u(t) an

III. COMPUTATION OF THE OPEN LOOP CONTROL INPUT
FOR THE HAYAMI MODEL

In this section we solve the control problem given by
equations (7-10) and try to parametrize the flow ¢(z,t) in
terms of the discharge ¢(L,t) or y(t). We will produce a
solution to this problem using two approaches:

1) An approach based on Cauchy-Kovalevskaya decompo-

sition

2) A frequency approach based on Laplace transform.

We define the following intermediate variables: o = CO
2

/6 =
2
#, k= Boa, o and the function f(t) = e Wthh

v\ﬁ simplify our calculations. The transfer function approach
does not make the assumption that the considered functions
are expandable in the Cauchy-Kovelevskaya form, therefore
is a priori more general. In the present case as will be shown
below, the result for the algebraic expression obtained shows
equivalence of the two methods (a posteriori assessment).

A. Cauchy-Kovalevskaya Form Approach
As shown in [19], equation (7) can be transformed into the
heat equation. Let us consider the following transformation:

Q(x’t) = h(x,t)p(x,t) (12)

where

( [92 t+o¢(£ L))

h(z,t) = (13)

We have:
2t a(z—L a?
(7t m0te-0) (qﬁﬁzq)

Pt =
Pz = e(%t_a(w_L)) (qz — aq)
Pzz = e(g%t_a(z_]:)) (q:r:z —2aq; + a2q> .

Substituting in equation (7), p(z,t) will satisfy:

1

The problem (7) - (10) can now be reformulated as follows:

Vz €[0,L)Vt€[0,T] pr = %pm (15)
Vx € [0,L] Vt € [0,T] Boz, = —h(z,t) (ps + ap) (16)
vt € [0, T)p(L, t)= be(gét)z(L,t) (17)
Vvt € [0, T)p(L, t)= e(g%oy(t) (18)

The Cauchy-Kovalevskaya form [10] consists of expressing
the solution of the PDE as a function of p(L,t) (resp. z(L, t))
and all its derivatives. We assume the following form for p

and z:
+o00o (JC _
t) = sz‘(t)
i=0
+oo

Zzi(t)ﬂ

7!
i=0

z(x,t) =

where p;(t) and z;(¢) are smooth functions. We have:
+o00 ;

. (z—L)
>t

1!

i=0
(@=L
ST
i=0 ’
After substitution in equation (15), we obtain:

sz x_ ﬂz szJrZ (E_

Equating the coefficients of (I;i,L)Z

Pt =

Pzz =

gives for all 7 € N:

pira(t) = B2pi(t) (19)

Additionally, we have pg = p(L,t) and zg = z(L,t). We still
need a condition on p; to be able to express every p; as a
function of py. We combine equation (16) and equation (17)
to obtain a boundary condition on p at x = L. We have:

00 ;

. (x—=L)

n=d ot
=0 ’

So that Zyp = z(L,t), and equation (16), with = = L gives:



a2
Boio+e ' (py + apy) =0
In addition, equation (17) gives:

a2

po = bzpes?

2 2
. o —ast
<p0 - ﬁ2P0> e #?

so that:

S| =

20 =
and eventually:

By .
p1 = —7]00 + Kpo

Using the induction relation (19) and the expression of pg
and p;, we can compute separately the odd and even terms:

##p)
i (i) Bo i (i
nﬁQ’pé) - 7052 P(() )

P2i =
P2ivy1 =

Therefore, we can formally write p(z,t) as follows:

+o00 i
Z i (i) (@ — L)*
p(l’,t) = e /62 pg)) (22)'

+oo 2i+1
2i (i) & (i+1) (.23 — L)
+ Z Oﬁ (“po Ty Po ) (2 + 1)!

From equation (18), we deduce that po(t) = f(¢)y(t). The
final parametrization of the flow ¢(z, ) will have the form:

q(z,t) = h(x,t) <T1(:13,t) + kT(x,t) — BOTg(x,t)> (20)

b
where
S TN e Gt O
Tl(:v,t):;(fy) —a @1
too 2i 2i+1
_ @B (- L)
TQ(x7t> - ;(fy) (2Z 4 1)| ) (22)
and
too 2i 2i+1
_ (i 1)5 (x—1L)
Tg(z,t)—;(fy) Ve @

Equation (20) relates the discharge variation g(z,t) as a
function of the desired output y(¢) which corresponds to the
discharge ¢(L,t) at the downstream end of the canal. This
solution is formal, and the convergence of the infinite series
needs to be assessed. Before we investigate this issue, we solve
the problem in the frequency domain, to prove the equivalence
of the two approaches.

B. Feed-forward Controller Design using the Frequency Ap-
proach Based on Laplace Transform

The frequency approach uses the Laplace transform of the
equations of section II-C, and provides algebraic expressions
instead of partial differential equations by converting deriva-
tives w.r.t time ¢ into multiplications by the frequency s. After
finding the algebraic expression of the solution in the Laplace
domain, we can carry out an inverse Laplace transform to
find the parametrization of ¢(x,t) in terms of the desired
output flow y(¢). For Laplace notations, we define for any
function I(z,t), t > 0, the temporal Laplace transform, noted

o0

L(I(z,1)), or I(z, 5) to be: I(z,5) = [ e *!I(z,t)dt. We start
0
with the frequency representation of the Hayami model which

is the Laplace formulation of the system (7)-(9), derived in
appendix A.

G(z,s) = F(z, s)u(s) (24)
with Ple.s)
F(z,s) = o) (25)

where P(z,s) and Q(s) are defined in appendix A.

Equation (25) relates the flow in the Laplace domain at any
point z, §(x,s), to the input flow prescribed by the control
input 4(s). We want to derive an algebraic expression that
relates §(x,s) to the desired output ¢(s). We proceed by
evaluating equation (24) at x = L to obtain:

9(s) = F(L, s)a(s)

Dividing equation (24) by equation (26) leads to the fol-
lowing expression:

(26)

i(r,5) _ Pla,s) on

g(s)  P(L;s)
Developing the hyperbolic functions of P(x, s), in terms of
their power series, we obtain:

2i41
P(z,s) = 2)

+o0
T ((B()S + ab) Z (7([’ —

2 @it )

+o0o L—x 21
S O W)) )
=0

We substitute equation (28) into equation (27) and express
G(z, s) in terms of the constants defined in section III.

X o +oo a2 iﬂZi(I B L)Qi

=0

Sz 263
(5”(2_?;,“) 7(s)

We carry out the inverse Laplace transform and express
q(z,t) in terms of y(¢) in the time domain. Using the inverse

(28)

(29)



Laplace transformation rules: £7(g(s + a)) = g(t)e~* and
L71(sg(s)) = g(t) +g(0) where g(t) is any time function and
a is a constant, we can use the following identity:

L7 (s +a)'g(s)) = (g(t)e™)®

where we have assumed zero initial conditions. Applying
equation (30) with a = gz and g(s) = g(s) to equation (29),
we obtain:

(30)

q(z,t) = h(x,t) (Tl(x,t) + kT (x,t) — B;[)Tg,(x,t)) (31)

where T} (z,t), Ta(x,t), T5(x,t) are defined in equations
(21), (22), and (23), and h(z,t) is defined in equation (13).

The algebraic solution obtained with the frequency approach
is indeed identical to the solution obtained with the Cauchy-
Kovalevskaya approach.

C. Convergence of the Infinite Series

We now give the formal proof of convergence of the series
in equation (31) or (20). We assume that the flat output y(¢)
is a Gevrey function of order o > 0, i.e.:

e
’y(”)(t)‘ < m(%)
2 (32)
ft) = e5%" is Gevrey of order 0, and therefore is Gevrey of
order a. The product of two Gevrey functions of same order
is a Gevrey function of the same order, as a consequence,
Ff@)y(t) is Gevrey of order « > 0. We will use the Cauchy-
Hadamard theorem [5] which states that the radius of conver-

+oo

: n _ 1
gence, 1, of the Taylor series Y a,z™ tober = Tmsplan

=0 n—-+oo

The radius of convergence for T3(x,t) is given by:

N RICIA S
p ol (2i+1)!

dm,le R Ja>0V¥neN sup
te[0,T)

where p is the radius of convergence around L. We can find
an upper bound to % by inducing the property of bounds on
a Gevrey function of order o > 0 from equation (32).
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where in . equation (33) we have u§ed the fact that
(((+H™T ~ b and ((2i4+ 1)) ~ 2L g5 an
1mmed1ate consequence of the Stirling formula Also we have
used MIFT ~ 1, /821+1 ~ (3 and [35T ~ V1. This will
ensure an infinite radius of convergence for o < 2. Similar
calculations can be held for 7} (z,t) and Tx(z,t) leading to
the following conclusions:

« Equation (31) or (20) converges with an infinite radius of
convergence for the choice of a Gevrey function y(t) of
order @ < 2.

e For &« = 2, We will have a sufficient condition on
the convergence of the series if = € [O,Lf %ﬂ] U

L+ 2\/ ) yet there could be convergence if = €

L- \f L+ 24 }
o We can draw no Conclusions on the convergence of the
series when a > 2.

IV. NUMERICAL ASSESSMENT OF THE PERFORMANCE OF
THE FEED-FORWARD CONTROLLER

In this section, we compute the control command u(t) by
evaluating equation (20) or (31) at x = 0. We subsequently
simulate the controller numerically on the Hayami model
equations (7) - (9) in order to evaluate their behavior before
testing them on the Saint-Venant equations. This section
successively investigates numerical simulations for the Hayami
and the Saint-Venant models.

A. Hayami Model Simulation

From section I1I-C, the infinite series convergence is ensured
by choosing y(t) to be a Gevrey function of order a < 2. To
meet this convergence condition following [10], we introduce
the bump function ¢, (t) : R — R defined as

0 t<0
t)T
[ exp(=1/((r(1=7))")dr
Po(t) = o 0<t<T

[ exp(~1/((r(1-7))")dr

0

1 t>T

where ¢ > 1, T" > 0. The Gevrey order of the bump
function is 1 4+ 1/0. The function ¢, (¢) is used in [5], [6],
[10], [15], [20], it is strictly increasing from 0 at ¢ = 0 to
1 at t = T with zero derivatives at ¢t = 0 and ¢ = 7. The
larger the o parameter is, the faster is the transition. Setting
y(t) = q1¢(t) will allow us to have a transition from zero
discharge flow for ¢ < 0 to a discharge flow equal to ¢; for
t > T, where ¢ is a constant.

The upstream discharges or the control input u(t) can be
computed by substituting = 0 in equation (20) or (31). We
obtain:

u(t) = h(0,1) (Tl((),t) + kT5(0,t) — %TB(O t)> (34)
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Fig. 2. Results of the numerical simulation of feed-forward control of the
Hayami equation. The desired downstream discharge is y(t), the upstream
discharge is u(t) , and the downstream discharge computed by solving the
Hayami model is g(L, t).

For the Hayami model simulation, we will consider the
transition from a downstream discharge of 0 m?/s to 1 m?/s
in 1 hour (T = 3600 seconds). We will take ¢ = 2
which will imply y(¢) to be a Gevrey-function of order 1.5
thus satisfying the convergence condition in section III-C.
The model parameters are L = 1000 m, Cy = 20 m/s,
Dy = 1800 m?/s, By = 7m, and b = 1 m?/s. The infinite
series of the control input u(t) is approximated using 80 terms
of the infinite series, and equations (7), (8), (9), and (11) are
solved using the Crank-Nicholson scheme. The solution of
the numerical scheme at * = L or ¢(L,t) is compared to
y(t), the desired downstream discharge flow. The results of
this simulation are shown in figure 2.

The discharge at the downstream follows the desired dis-
charge perfectly which validates our control input. Now we
will compare our result to other problems from the literature.

In [10], an explicit open loop controller was derived for the
heat equation with zero gradient boundary conditions. With
some simple transformations in time and space we can relate
the results [10] to our problem. The transformed version of
[10] has the following form:

Vo € [0,L] Vt € [0,T] Dogez — Coqe =aq:  (35)
Vie[0,T]  qu(L,t) =0  (36)
vt € 10, 7] q(L,t) y(t)
vt € [0, q(0,t) u(t)

The solution of the control input for this particular problem
is:

Uneat(t) = h(0,t) (T1(0,t) — aT»(0,1)) 37

We can vary the value of the variable b, and observe its
effect on u(t). This corresponds physically to changing the
height or the width of the weir located at the downstream end
of the canal. Figure 3 shows the effect of varying b on the
control input u(t).

Flow discharge q(mat‘s)

Time t (hours)

Fig. 3. Effect of varying b on the upstream discharge or control input ().
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Fig. 4. Consequence of neglecting the boundary conditions in calculating

the upstream discharge. The desired downstream discharge is y(t), and the
downstream discharge calculated by solving the Hayami model with b =
1m? /s and control input of equation (37) is q(L, t).

We can see that by increasing the value of b, the function of
u(t) for our problem tend to converge to uney(t) described by
equation (37). This can be seen directly by studying the limit
of equation (34) as b — oo which would result in equation

(37). Substituting k = % ﬁ—z —a into equation (34), we obtain:

u(t) = uheal(t) + Ub(t)

where

BO O[2
wlt) =005 (5100 -T0.0) 69
As b — oo, the boundary effect will be negligible, uy(t) — 0,
and equation (34) will tend to converge in the limit to equation
(37), u(t) — Unea(t).

If we were to use the controller in equation (37) to control
our problem with b = 1 m?/s, we would obtain the results
shown in figure 4.

The effect can be seen in the transition which takes ap-
proximately 1.6 hours instead of 1 hour. This shows the con-
siderable importance of boundary conditions on the transition
periods. It is therefore very important to take into account the



boundary conditions in the open-loop control design to ensure
a scheduled water distribution.

B. Saint-Venant Model Simulation

In many cases, controlling the Saint-Venant equations di-
rectly is impractical because of the need of all the geometry
of the canal and the Saint-Venant parameters defined in
section II-A. For this reason we have used a simplification
of the model to arrive to the Hayami equation which requires
only two parameters, Cy and Dy. In this section we show
numerically that a calibrated Hayami model would provide
us with an open-loop control law that steers the Saint-Venant
equation solution at x = L or the flow discharge at the weir to
the desired discharge fairly accurately. For the purpose of the
simulation we will use SIC, a computer program developed
by Cemagref [12] to simulate the upstream discharge and
the measurement discharge at the downstream. SIC solves the
full nonlinear Saint-Venant equations using a finite difference
scheme (Preissmann scheme).

1) Hayami Model Identification: The purpose of model
identification is to identify the parameters Cy, Dy and b
corresponding to the Hayami model and its boundary condition
that would best describe the real flow governed by the Saint-
Venant equations. This is done with an upstream discharge
in a form of step input, the flow discharges are monitored
at the upstream and downstream positions. The hydraulic
identification is done classically by finding the values of Cj,
Dy and b that minimize the error between the computed
downstream discharge by the solution of the Crank-Nicholson
scheme and the measured one. The steady flow calibration is
sufficient to obtain a good dynamic model of the canal. We
therefore have to solve the following optimization problem:

Tsim

. 2
cmin o | lasie(r) = aon(Co, Do, b, 7)["dr

0

where gsrc is the downstream flow generated by SIC,
and gcoy is the downstream flow generated by the Crank-
Nicholson scheme, T's7p/ is the simulation time usually larger
than the period needed to reach steady state. In our case,
the identification was performed for a steady flow regime
of 1.7 m3/s, canal of length L = 4232 m, and bed width
By = 2 m. This leads to the following calibrated parameters:
Co = 2.0160m/s, Dy = 1517.4m?/s, and b = 0.4303m?/s.

2) Saint-Venant Control: The experimental canal we would
like to simulate has the same properties as the one we
have used for identification in the previous section. We are
interested in raising the flow at the downstream from 2.5m3 /s
to 3.5 m>/s in 4 hours. Setting the variables in section IV-A
to g1 = 1m3/5, T = 14400 sec, and o = 2 will define the
downstream profile y(¢). The control input or the discharge at
the upstream can be calculated and the results are shown in
figure 5.

We notice that we have achieved the desired flow by solving
the full nonlinear Saint-Venant equations. This shows that the
Hayami model is practical for the design of open-loop control
when the corresponding parameters are identified.
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Fig. 5. Results of the implementation of our controller on the full nonlinear
Saint-Venant equations. The desired downstream discharge is Qdesidred (t) =
Qo + y(t), the downstream discharge calculated by solving the Saint-Venant
equations in SIC is Q(L,t) = Qo + q(L, t), and the upstream discharge of
the canal is Q(0,t) = Qo + u(t) where u(t) is calculated using the Hayami
model open-loop controller. The nominal flow in the canal is Qo = 2.5m3/s.

V. CONCLUSION

This article introduces a new method to design an open-loop
control for river flow control. The open loop control law is
derived in two ways leading to identical analytical expressions.

The controller is obtained as an infinite series in terms of the
desired downstream discharge flow. We have given sufficient
conditions on the downstream profiles to ensure convergence.
The effect of the boundary condition is also investigated and
compared to previous studied ones such as the heat equation.

The simulations show satisfactory results for controlling the
full Saint-Venant equation. Hydraulic engineers have shown
that Saint-Venant equations can accurately model large scale
open-channels. This means our methodology allows us to
design open-loop controllers for large-scale system that could
be cascaded and used to control a network of canals with
complicated geometry. This will enable us to implement our
method of open-loop controller design to Gignac Canal in
Montpellier, France and further validate our results, which
will be done in October 2008 with the seasonal opening of
the canal for experimental purposes.
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APPENDIX

Given a function I(z,t), t > 0, its temporal Laplace
transform, noted L(I(z,t)), or I(x,s) is given by: I(z,s) =

[ e st (x, t)dt.
0
Starting from equations (7)-(11), we relate ¢(x,s) the

Laplace transform of ¢(x,t) to §(0,s) the Laplace transform
of ¢(0,1).

We have L(q:(z,1)) = sq(z,s) — q(z,0), L(ga(,1))
Gz(x,8), and L(qgzz(x,t)) = Guu(x,s) with g(z,0) =
The property ¢(z,0) = 0 results from section II-B: ¢(z,
is defined to be the deviation from the nominal flow, and at
t = 0 the deviation should be 0, i.e. ¢(x,0) = 0.

Equation (7) becomes:

\‘:t.C’H

Doﬁm(fﬂ, 3) - CO(jw(xv S) = SQ(QJ, S)

This is an ordinary differential equation in the variable z,

whose characteristic equation is DoX2 — Coh — s = 0. The
solution §(z, s) is of the following form:
j(z,s) = Al(s)e’\l(s)“J + Ag(s)e’\Q(S)“; (39)

with Ai(s) = a —

~v(s), A2(s) = a+ 7(s) and o = 2%"0,
B = ﬁ, v(s) = By/s+ g—i as defined in sections IIT and
III-B.

Substituting equation (39) into equation (8) leads to:

i(x,8) = —

_ Ai(s)z A2 (s)z
s (A1(5)Ma ()€ + Ag(s)Aa ()07

Boundary conditions of equations (9) and (11) read as:

r=0 A1(s) + Az(s) = (s) (40)
r =L q(L, s) = b2(L, s) (41)
Equation (41) gives:
Ap(s)eMOL 4 Ay (s)er2 ()L b (Al(s))\l(s)exl(sm
B()S

—&-Ag(s))\g(s)e)‘z(s)L) (42)

which, using equation (40), leads to:

i(s) (1+ (0 +9(s) 35 ) W

Ai(s) = D(s)
and
u(s a—~(s))L—) ()L
e
where
D) = g ((@+ (DO — (@ = (s)e L)
4L _ o=v(s)L

Then, we obtain:

G(z,s) = F(z, s)i(s)

where P(z, 5)
F(z,s) = W,
P(xz,s) = e** ((Bgs + ab) sinh(v(s)(L — x))
V(S)bcosh( (s)(L = x))),

and Q(s) = (Bos + ab) sinh(y(s)L) + v(s)bcosh(~(s)L).



