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ABSTRACT

The paper describes a robotic application in which some fuzzy techniques have been used to
analyze motion problems in a mobile robot. The reboet is equipped with ultrasound sensors used
for obstaele detcction, but, in some cascs, small obstacles are out of the range of the sensors and
can be dragged by the robot without being detected. The cffect of the cxternal obstacle on the
robot motion variables can be stablished by means of linguistic rules, making the use of fuzzy
techniques. Using other variables such as measured velocity, undershoots of that velocity, or the
derivative of the battery vollage, a fuzzy system is able to diagnose on robot motion problems.

KEYWORDS: Mobilc Robot, Anomalous Motion Problems, Diagnosis, Fuzzy System.

I. INTRODUCTION

It is widely admitted that autonomous robots, independently of their application, must have
cfficicnt locomaotion systems (low power consumption subsystems, highly precise sensors, and
large autonomy battcrics are the essential key points), reliable navigation and opcrational
systemss, and be able to work safcly in their environment. Thus, the technology required to realize
robust, reliable and safc robots is given considerable aftention worldwide. As a consequence, the
use of autonomous or scmi-autonomous robots in real applications is only possible when those
robots exhibit a certain level of intelligenee, being able of fulfilling the previous requirements,
The most common approach integrating soft computing technigues in robotics is that of applying
it for navigation [1] and control {2}. Somc other approaches have considered these techniques at
the level of processing sensor information (ultrasounds, vision, ...) applied to localization [3],
path following (corridors, walls} or obstacle aveidance [4]). The use of fuzzy techniques in
diagnosis problems has been previously considered [ST but mostly in the ficld of automation,
without considering autonomous robots. It is also possible to find similar problems in the
automobile industry, where somc fuzzy approaches have been applied [6]. Only a few
applications have been proposed considering modcl based diagnosis, mostly using artificial ncural
nctworks, and centered on the diagnosis of actuator problems. [n order to focus on this problem, a
general architceture for integrating fault diagnosis and recovery modules into autonomous robots
is being developed in the framework of the Enropean rescarch project ADVOCATE 1 [7].

2. PROBLEM ANALYSIS
The aim of this section is to provide a bricf description of the AGV anomalous motion
problems due to obsiacle collisions, and justify the need for deploying indclligent techniques for
diagnesis and recovery action issuing. The intcraction between the vehicle and the colliding
obstaclc is of particular importance in order to appropriatcly identify and characterize the
different variables involved in the process, and the cxpected global behavior of the system.
Diagnosis on motion problems should be performed based on the observation of commanded and
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measured variables such as vehicle linear and angular velocitics, battery vollage, ete. Two main
interactions between the robot and the cnvironment have been identified: obstacle collisions and
uphiil-downhill slopes. Either of them can be represenled by an external torque denoted by Twy,
that is apptied Lo the vehicle whenever an obstacle ¢ollision or a change in slope oceur. Mcasured
lincar velocitics vary gradually with slope changes, as the derivative of the slope is a quasi
continuous function in practice, and thus, it docs not yicld abrupt Tw,, inputs to the robot, On the
contrary, coltiding obstacles preduce step torquc inputs to the robot at the time the collision takes
place. It incvitably causcs a sudden variation of vchicle lincar velecity that is rapidly
compensated lor by the low level vetocity controller producing a short but deep undershoot in the
value of velocity (vi), as depicied in figure L.a. This situation is clearly distinguishable from that
causcd by a change of slope {figurc 1.b), indicating that the robot has collided against an obstacle
on its way and that the obstacle is being dragged by the robot as long as its Hncar velocity has
attaincd the commanded valuc.
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Figure I.Variation of linear velocity. a) Due to a dragging obstacle. b) Due to a change of slope.

The dynamics of vehicle velocity, as a function of the cxternal torque Twe, can be described by
the simplificd expression provided in equation | as the relation between Twy and the angular
velocity of one wheel pait .

Wel(8) / Twi(s) = (Ra+Las) / (ko ke (STt 1)) (1)

where R, and L, represent the internal electrical resistance and inductance components in the
motor armature, kt is the motor torque constant, kg stands for the motor voltage constant, and T,
stands+ for the mechanical time constant of the motor-load systen1. Accordingly, the duration of
the undershoot is more or lcss proportional to T, Likewise, T, is a function of I, the system
inertia, which depends on the obstacle weight among other paramcters. This means that the
heavier the obstacle, the higher the value of 1, and, conscquently, the wider the duration of the
undershoot. This simple reasoning could be vused for diagnosis purposcs in order to detect the
collision and, possibly, to make the difference between a heavy and a non heavy obstacle. On the
other hand, a similar rcasoning can be followed so as to find a relation between the maximum
velocity undershoot Av and the system parameters upon obstacle collision, This relationship can
be demonstrated to be the cxpression provided in cquation 2 (an elastic conscrvative collision is
assumed for simplicity).

AVv=vi—v; =V, (Mope/ (M + Mgps } ) (2)
where m and mye, represent the mass of the vehicle and the obstacle, respectively, v; stands for the
initial velocity of the vehicle (before the collision), and vy is the final velocity of the system

composed by the vehicle and the obstacle afier the collision. Two main conclusions can be
derived from equation 2: on one hand, the heavier the cbstacle the higher the amplitude of Av,
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i.¢., the higher the amplitude of the undershoot. On the other hand, the higher the initial velocity
of the vehicle the higher also the undershoot. Although these are simple approximate statements,
as no assumptions about the friction cocfficient have been made, they can serve as a basic support
for linguistic reasoning providing uscful information in order to construct an intclligent diagnosis
module. Due to the existence of non linearity in the system, which are ditficult to mode] and
identify, and considering the previous statements concerning the linguistic relation between the
velocity undershoot amplitude and duration and the occurrence of a collision, the use of a fuzzy
logic based diagnosis module becomes apparent and convenicnt.

3. FUZZY SYSTEM DESIGN
To deal with complex problems such as robot motion, expert knowledge is of prime
importance to provide the main influential variables.

3.1 Expert Knowledge

The first step is then to define the number and nature of variables that are involved in the
diagnosis process according to the domain expert cxpericnee. Considering the problem of
detecting abnormal dynamics due to obstacles dragging or cven stalling the nexi 7 input variables
ar¢ proposed.

»  Mecasured_lincar velocity,

e Commanded_tincar_vclocity.

o Undershoot_depth and Undershoot_width : a fast but decp undershoet in vehicle velocity
takes place upon collision with an obstacle, until the velocity controller regaing the
commandcd reference. This constitutes the key hint to properly provide a diagnosis on it.

o Diffcrence_of_battery_voltage. It provides a differentiatb measurcment of the deercasc in
the battery voltage when colliding against an obstacle. This decrement is dircetly linked
to the vehicle energy consumption, that should increase upon collision,

» A ring of 16 uitrasound sensors is used to provide range measurcenients around the robot.
Range_mcasurcments and its derivative, Derivative_of_range_measurcments, are useful
to provide infonmation concemning robot movement with respect to jts cnvironment,

Let's constder the usc or range mcasurcments to get information about a possible situation of
robot stalled. The valog of variable Range measurements is different from null (somcthing is
detected within the detection range) and its derivative is different from zere. It could mean that
the robot is moving in a static cnvironment, that the robot is moving in a dynamic environment,
ot that the robot is not moving but the environment is dynamically changing. The valuc of
variable Range _mcasurements is null. In this case there is no information at all about the
cnvironment, and thus, no diagnosis could be cither issued. The valuc of variable
Range measurcments is different from null (something is detected within the detection range)
and its derivative is zero. This means that the vehicle is not moving. According to the three
previous possibilitics an cxpert rule could be constructed by following the next reasening. IT
rangc measurements arc different from null and their derivative is zere then the enviranment
surrounding the robot is not changing. If under these circumstances the vehicle odometry system
measurcs a velocity different from zero, it can be deduced that the vehicle is stalled and its
wheels are slipping, The rule can be formalized as follows:

IF Range_mcasurcments is not(pull) AND
Derivative _of range_mcasurcments is zero AND
Mcasured lincar_velocity is not{zcro)

THEN} Vehicle stalled is truc
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Another example of expert rulc can be produced for the collision and drag case. The rule is
provided as follows:

IF Undcrshoot_depth is medium AND
Mecasured_lincar_velocity is low AND
Differcnce_of_battey_voltage  is negative_small

THEN Vchicle_drags_obstacle is trug

This rule is complemented by a sct of rules analyzing other combinations of tcrms relating
difterent values of the 7 input variables, as well as by induced rules as described bellow.

3.2 Induced Knowledge

In order to induce complementary picces of knowledge, some real experiments have been
performed so as to collect data conceming the vehicle battery voltage and lincar velocity. In a
first trial a small but heavy obstacle was deliberatcly tntroduced in the cnvironment in order to
interrupt the vehicle trajectory during autonomous operation. Dug to its small size, the obstacle
can not be detected by the ubtrasound-bascd obstacle detection module onboard the vehiele. This
causcs the vchicle to drag the obstacle along ils way by increasing the battery current
consumption, and conscquently, the battery voliage goes slightly down. Let us concentrate on this
example to illustrate the knowledge cxtraction process, including its cooperation with cxpert
knowledge. The experiment was carried out for two different commanded lincar veiocities. Upon
collision, the undershoot had a depth of 25% of command velocity, for v=25 cm/s, while it had a
depth of 44% for v=11 cim/s. We now usc the results of a sct of experiments producing this kind
of preprocessed data, to define variable highly interpretable fuzey partitions. The mcthod we
used, called hicrarchical fuzzy partitioning (HFP), is described in [8]. Its originality relics in that
it does not yicld a single partition, but a hicrarchy including partitions with various resolution
levels. For cach varable, the initial partition is made up of fuzzy scts centered about the input
values, if there are a few of them only, If the input values are too numerous, they arc first
clustered into so called unique valucs. Instead of a descending procedure, an ascending technique
has been applied. [ consists of merging two adjacent fuzzy sets al cach step, the oncs which best
satisfy a merging critcrion, The critcrion preserves the previous step structure by considering a
special sum of distances over the training data set. These distances are conceived to reflect the
fuzzy partitioning under design. Figures 2.2 and 2.b show fuzzy partitions with diffcrent
granulanty that have bcen derived by using these two partitioning methods which arc
tmplemented in an open source software called FisPro [9).

Figure 2. g) Fuzzy partitions using k-means. b) Fuzzy partitions using HFP. ¢ Selected partition,
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Let us note that all the fuzzy scts of all these partitions can be assigned a scmantic label.
Analyzing the fuzzy partitions, we have determined that the best suited result is that obtained by
HFP with four fuzzy scts, but adding a fifth term, corresponding to the label el to include the
casc of no collision that was not represented in the experimental data. The final partition sclected
by the cxpert is shown in figure 2.c. As expected, the partition is highly intcrpretable while being
designed according to the data. The five fuzzy sets correspond to the linguistee lerms null, small,
medium, large, very_large. The five anchor points in the partition arc located at 0, 15, 22, 32, 73
cn's. Basced on knowledge extraction autematic rulcs arc gencrated using these fuzzy partitions.

4. RESULTS AND CONCLUSIONS

For performance analysis of our system, scveral motion trials using BART (Basic Agent for
Robotic Tasks) protolype have been carricd out in the way previously expiained. The comparison
of the diagnoses given by the fuzzy system and the expert shows that the luzzy diagnosis was
comrect in most of the trials. Next, we arc going to present a trial example for illustrating the
overall process. In this case, the robot (whose mass is 12 kg) is moving straight ahcad with a
lincar velocity of 150 mm/s. The robot collides with a heavy obstacle dcliberately introduccd in
its trajectory and then the vehicle drags the obstacle. The preprocessed variables involved in this
cxperiment are depicted in figures 3.3 and 3.b.

Figure 3. Vehicle variables upon heavy vbstacle collision. a) Vehicle velocitv. b) Battery voltage.

The valucs of the variables to be considered arc:  Undershoot_depth = 67 com,
Measured_lincar_velocity = 143 em/s. Difference_of_battery vollage = -0.28 volts. These values
will activate at different levels four rules of the system, where the highest activation (0.85) will be
for the rule;

IF Undershoot_depth is very large AND
Measured_lincar_velocity is high AND
Difference_of battey_voltage s negative_big

THEN Vchicle_drags obstacle is truc

Accordingly, and indcpendently of the characteristics of the inference process (for any
aggregation operators and defuzzification method) the situation will be classified as a clear
problem of dragged obstacle. As conclusion, some ground robot motion problems arc considered
in this paper and cspecially the detcetion, using robot motion paramcters, of non visible obstacles
using the usual scnsorial capacitics onboard the robol. The system is able to provide diagnosis as
well as recovery actions upen these circumstances, As the obstacle characteristics are, obviously,
unknown, thc global system, i.c. robot and obstacle, cannot be accuratcly modeled from a
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quantitative point of vicw and only qualitative (or approximate) rcasoning can be applied. As
demonstrated throughout the paper, some linguistic relationships can be cstablished between the
obslacle characteristics and their influchee in the robot motion variables upon collision. The two
kinds of knowledge, cxpert knowledge and data, convey complementary information,
Nonetheless, the cooperation of cxpert knowledge and data in system design remains an open
problem, especially when the goal is 1o get a system which is both accurate and interpretable. In
this paper this cooperation is restricted to variable partitioning. The distribution of data is uscd to
design strong fuzzy partitions for cach scparatc variable under cxpert control. This type of
partitioning cnsurcs cach [uzzy sct can be attached a linguistic label. The final scmantic
agreement is given by the cxpert: the fuzzy sct centers must correspond to possible prototypes of
the corresponding labels. Then, rules defined by these linguistic labels can be written by the
cxpert. Preliminary results show that the approach is appropriate but further analysis is required.

5. ACKNOWLEDGEMENTS

We would like to acknowledge the partners of the ADVOCATE 11 project. The consortium
consists of the following partners: University of Alcald, GETRONICS DECAN, Universidad
Politécnica de Madrid, ATLAS Electronik, [fremer, HUGIN Expert A/S, INNOVA Sp A, and E-
MOTIVE. The Europcan Commission (1ST-2001-34508) supporis this work.

6. REFERENCES
[1} F. Gomez-Bravo, F. Cucsta, and A. Ollero, “Parallel and diagenal parking in nonholonomic
autonomous vehicles”. Engincering Applications of Artificial intelligence, vol. 14, no. 4, pp. 419-
434, August 2001,
[2] T. Fraichard and P, Garnicr, “Fuzzy control to drive car-like vchicles”, Robotics and
Autonomeus Systems, vol. 34, no. 1, pp. t-22, January 2001,
[3] K. Demirli and 1. B. Tirksen, “Sonar bascd mobile robot locatization by using fuzzy
triangulation”, Robotics and autonemous Systems, vol. 2-3, no. 33, pp. 109-123, November 2000.
[4] H. Maarcf and C.Barret, “Sensor-based fuzzy navigation of an autonomous mobiie robot in an
indoor environment”, Control Engincering Practice, vol. 8, no. 7, pp. 757-768, July 2000.
5] R. Iscrmann, “On fuzzy logic applications for automatic control, supervision, and fault
diagnosis”, IEEE Transactions on Systems, Man and Cybemnctics. Part A: Systems and Humans,
vol. 28, no. 2, pp. 221-235, March 1998,
[6] A. Jocntgen, L. Mikenina, R. Wcber, A. Zeugner, and H. ). Zimmtermann, “Automatic fault
detection in pearboxes by dynamic fuzzy data analysis™, Fuzzy Sets and Systems, vol. 105, no. 1,
pp. 123-132, 1999,
[71 M. A. Sotclo, L. M. Bergasa, R. Flores, M. Ocaiia, M. Doussin, L. Magdalena, W. Homfcld,
M. Perricr, A. L, Madsen, A. Furlani, and D, Roland, “ADVOCATE [I: ADVanced On-board
diagnosis and Control of Autonomous sysTEms [17, in Ninth Intcrnational Conference on
Computer Aided Systems Theory, Las Palmas de Gran Canaria, Spain, February 2003.
[8] S. Guillaume, “Designing fuzzy inference systems from data: an interpretability-oriented
review”, |[EEE Transaclions on Fuzzy Systems, vol. 9(3), pp. 426-443, Junc 2001.
[91 S. Guillaume, B. Charmnomordic, and J. Labléc. "FisPro: An open source portable software for
fuzzy inference systems”, htp://www inra. fi/yia/M/fispro, 2002,

50



