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Robust Independent Component Analysis by

Iterative Maximization of the Kurtosis

Contrast with Algebraic Optimal Step Size
Vicente Zarzoso,Member, IEEE, and Pierre Comon,Fellow, IEEE

Abstract

Independent component analysis (ICA) aims at decomposing an observed random vector into

statistically independent variables. Deflation-based implementations, such as the popular one-unit

FastICA algorithm and its variants, extract the independent components one after another. A novel

method for deflationary ICA, referred to as RobustICA, is putforward in this paper. This simple

technique consists of performing exact line search optimization of the kurtosis contrast function. The

step size leading to the global maximum of the contrast alongthe search direction is found among the

roots of a fourth-degree polynomial. This polynomial rooting can be performed algebraically, and thus

at low cost, at each iteration. Among other practical benefits, RobustICA can avoid prewhitening and

deals with real- and complex-valued mixtures of possibly non-circular sources alike. The absence

of prewhitening improves asymptotic performance. The algorithm is robust to local extrema and

shows a very high convergence speed in terms of the computational cost required to reach a given

source extraction quality, particularly for short data records. These features are demonstrated by a

comparative numerical analysis on synthetic data. RobustICA’s capabilities in processing real-world

data involving non-circular complex strongly super-Gaussian sources are illustrated by the biomedical

problem of atrial activity (AA) extraction in atrial fibrillation (AF) electrocardiograms (ECGs), where

it outperforms an alternative ICA-based technique.

Index Terms

Atrial fibrillation (AF), blind source separation (BSS), independent component analysis (ICA),

iterative optimization, kurtosis, optimal step size, performance analysis.
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I. INTRODUCTION

A. Blind Source Separation and Independent Component Analysis

Introduced over two decades ago [1], the problem of blind source separation (BSS) consists of

recovering a set of unobservable source signals from observed mixtures of the sources. Independent

component analysis (ICA) aims at decomposing an observed random vector into statistically inde-

pendent variables [2]. Among its numerous applications, ICA is the most natural tool for BSS in

instantaneous linear mixtures when the source signals are assumed to be independent. As opposed

to classical decomposition techniques such as principal component analysis (PCA), ICA can deal

with a general mixing structure, even if not made up of orthogonal columns. The plausibility of the

statistical independence assumption in a wide variety of fields, including telecommunications, finance

and biomedical engineering, helps explain the arousing interest in this research area witnessed over

the last two decades.

Mathematically, the observed random vectorx ∈ CL is assumed to be generated according to the

instantaneous linear mixing model:

x = Hs+ n (1)

where the source vectors = [s1, s2, . . . , sK ]T ∈ CK is made ofK ≤ L unknown mutually

independent components. The elements of mixing matrixH ∈ CL×K are also unknown, and so

are the noise vectorn and its probability distribution; the noise is only assumedto be independent of

the sources. Our focus is on batch or block implementations,which, contrary to common belief, are

not necessarily more costly than adaptive (recursive, on-line, sample-by-sample, or neural) algorithms,

and are able to use more effectively the information contained in the observed signal block [3]. Given

a sensor-output signal block composed ofT samples, ICA aims at estimating the correspondingT -

sample realization of the source vector.

B. Kurtosis as a Contrast Function

Since Comon’s seminal work [2], many contrast functions forICA have been proposed in the

literature, mainly based on information theoretical principles such as maximum likelihood, mutual

information, marginal entropy and negentropy, as well as related non-Gaussianity measures [4], [5],

[6]. Among them, the kurtosis (normalized fourth-order marginal cumulant) is arguably the most

common statistics used in ICA, even if skewness has also beenproposed [7]. The use of kurtosis

dates back to the work of Wiggins [8], Donoho [9] and Shalvi-Weinstein [10] on blind deconvolution

of seismic signals and blind equalization of single-input single-output (SISO) digital communication

channels, two problems that can be related to BSS/ICA. One ofthe main benefits of kurtosis lies

in the absence of spurious local extrema for infinite sample size when the noiseless observation



IEEE TRANSACTIONS ON NEURAL NETWORKS, 21(2):248-261, FEB.2010 3

model is fulfilled. This attractive feature leads toglobally convergentsource extraction algorithms,

from which full source separation can be performed by using some form of deflation procedure [11],

[12], [13], [14], even in the convolutive MIMO case [15]. Although the adequacy of kurtosis as a

contrast may be objected on the basis of statistical efficiency and robustness against outliers [16], its

widespread use is justified by mathematical tractability, computational convenience and robustness

to finite sample effects. Theoretical evidence for its finite-sample robustness have been gathered by

previous works. In [17], the sample kurtosis yields an estimate with less variance than the fourth-

order moment and the fourth-order cumulant for all distributions tested, including sub-Gaussian and

super-Gaussian densities. As an extension of these results, using the full expression of the fourth-

order cumulant instead of the simplified form employed, e.g., in the FastICA algorithm [12], [18]

is shown to improve extraction performance [19]. The computational convenience and finite sample

robustness of kurtosis can be further improved by the optimal step-size iterative search proposed in

the present paper. In the presence of outliers, the performance of the conventional kurtosis estimate

based on sample moments can be enhanced by means of more robust alternative estimates available

in the literature (see, e.g., [20, Ch. 5]).

C. The FastICA Algorithm

The FastICA algorithm [12], [16], [18], [21] is perhaps the most popular method for ICA, due

to its simplicity, convergence speed and satisfactory results in numerous applications. Indeed, the

one-unit algorithm with cubic non-linearity, related to the optimization of the kurtosis contrast under

prewhitening, offers cubic global convergence if the ICA model is fulfilled and the sample size

tends to infinity [12], [22]. In addition, the algorithm is asymptotically efficient if the non-linearity

is matched to the source probability density function [23].The cubic non-linearity associated with

kurtosis is particularly well adapted to sub-Gaussian distributions [16], [23]. Some of these desirable

properties are also shared by the symmetric version of the algorithm [24]. Originally put forward

in deflation mode, FastICA appeared after other kurtosis-based ICA methods such as CoM2 [2],

JADE [25], CoM1 [26], or the deflation methods by Tugnait [15]or Delfosse-Loubaton [11]. A first

comparison with earlier methods can be found in [27]. In the comparative study of [28], FastICA is

shown to fail for weak or highly spatially correlated sources. Its convergence slows down or even fails

in the presence of saddle points, particularly for short block sizes [23]. To surmount this difficulty, a

simple saddle-point check method is proposed in that reference. Such a method is based on estimated

component pairs and, as a result, is not applicable if only one independent component is required.

Further improvements of the symmetric implementation of the algorithm are developed in [29]. All

these results rely heavily on the assumption that the observed signals have been perfectly whitened

or sphered before further higher-order processing. As pointed out in [30], the use of prewhitening
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imposes a bound on separation performance and introduces anestimation bias due to residual source

correlations for short data sizes.

D. The Complex-Valued Scenario

The FastICA algorithm was originally developed for real-valued signals only. A first extension to

complex-valued sources is proposed in [31], and later shownto keep the cubic global convergence

property of its real counterpart [32]. Such an extension, however, is only valid for second-order

circular sources, a limitation that has motivated more recent efforts to extend the usefulness of the

algorithm to non-circular sources [33], [34], [35], [36]. Reference [36] derives gradient, fixed-point and

Newton-like algorithms based on the general definition of the fourth-order marginal cumulant valid for

non-circular sources. In [34] the whitened observation pseudo-covariance matrix is incorporated into

FastICA’s update rule to guarantee local stability at the separating solutions even in the presence

of non-circular sources. For the kurtosis-based non-linearity, the resulting algorithm bears close

resemblance to that derived in [33] through an ingenious approach sparing differentiation. Similar

algorithms are proposed in [35] through a negentropy-basedfamily of cost functions preserving phase

information and thus adapted to non-circular sources. Suchfunctions must be chosen in accordance

with the source distributions to assure stability. Again, all the above methods rely on prewhitening.

Interestingly, early methods for BSS in the complex case didnot require prewhitening and were also

applicable to non-circular sources [37], [38].

E. Summary and Contributions of the Paper

This contribution presents a novel method for deflationary ICA named RobustICA [39], [40],

[41]. The method is based on a general contrast function, thekurtosis, which is optimized by

a computationally efficient technique based on an optimal step size (adaption coefficient). Any

independent component with non-zero kurtosis can be extracted in this manner. No simplifying

assumptions concerning specific type of sources (real or complex, circular or non-circular, sub-

Gaussian or super-Gaussian) are involved in the derivationof the algorithm. The methodology behind

RobustICA is exact line search, well known in the field of numerical optimization (see, e.g., [42]).

However, classical line search techniques can only performiterative local optimization along the search

direction. By contrast, the optimal step-size technique used in RobustICA computesalgebraically

(i.e., without iterations) the step sizeglobally optimizing the kurtosis in the search direction at each

extracting vector update. When compared to other kurtosis-based algorithms such as the original

FastICA and its variants, the method presents a number of advantages with significant practical

impact:
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• As opposed to [18], [31], [32] and related works, the generality of the kurtosis contrast guarantees

that real- and complex-valued signals can be treated by exactly the same algorithm without any

modification. Both type of source signals can be present simultaneously in a given mixture, and

complex sources need not be circular. The mixing matrix coefficients may be real or complex,

regardless of the source type.

• Contrary to most ICA methods, prewhitening is not required,so that the performance limitations

it imposes [30] can be avoided. Sequential extraction (deflation) can be carried out, e.g., via

linear regression. This feature may prove especially beneficial in ill-conditioned scenarios, the

convolutive case and underdetermined mixtures.1

• The algorithm can target sub-Gaussian or super-Gaussian sources in the order specified by the

user. This feature enables the extraction of sources of interest when their Gaussianity character

is known in advance, thus sparing a full separation of the observed mixture as well as the

consequent increased complexity and estimation error.

• The optimal step-size technique provides some robustness to the presence of saddle points and

spurious local extrema in the contrast function.

• The method shows a very high convergence speed measured in terms of source extraction quality

versus number of operations. In the real-valued two-signalcase, the algorithm converges in a

single iteration, even without prewhitening.

RobustICA’s cost-efficiency and robustness are particularly remarkable for short sample length in

the absence of prewhitening. In addition to presenting the method and assessing its comparative

performance on synthetic data, the practical usefulness ofRobustICA is illustrated in a real-world

problem: the extraction of the atrial activity signal from surface electrocardiogram (ECG) recordings

of atrial fibrillation. This biomedical application demonstrates that the kurtosis contrast can also be

used with success in the extraction of strongly super-Gaussian sources, which, in addition, present

non-circular complex distributions in this particular context.

F. Related Work on Optimal Step-Size Iterative Methods

The convergence properties of iterative techniques are to alarge extent determined by the step size,

learning rate or adaption coefficient employed in their update equations. It is well known that the step-

size choice sets a difficult balance between convergence speed and final accuracy (misadjustment).

This trade-off has spurred the development of iterative techniques based on some form of step-size

optimization. To our knowledge, research into adaptive step-size optimization can be traced back to

1Other BSS methods avoiding prewhitening or dealing with non-circular complex sources have been proposed elsewhere

in the literature.
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the work of Kuzminskiy on the least mean squares (LMS) algorithm in nonstationary environments,

where recursive expressions for the step size are derived [43], [44]. More recent works on the LMS

algorithm such as [45], [46] seem closer to our approach, except that they aim at channel identification

and the optimal step-size is computed using a quadratic costfunction different from that minimized

via the stochastic LMS. Our rationale is essentially different, as we aim at direct source estimation and

globally optimize a non-quadratic contrast by iterating onthe same signal block under the assumption

of stationarity over the observation window (block or batchprocessing).

Amari [3], [47] puts forward adaptive rules for learning thestep size in neural algorithms for

BSS/ICA, more pertinent in the context of the present work. The idea is to make the step size depend

on the gradient norm, in order to obtain a fast evolution at the beginning of the iterations and then

a decreasing misadjustment as a stationary point is reached. These step-size learning rules, in turn,

include other learning coefficients which must be set appropriately. Although the resulting algorithms

are said to be robust to the choice of these coefficients, their optimal selection remains application

dependent. Other guidelines for choosing the step size in natural gradient algorithms are given in [48],

but are merely based on local stability conditions. In a non-linear mixing setup, Khor and co-workers

put forward a fuzzy logic approach to control the learning rate of a separation algorithm based on

the natural gradient [49].

In the context of batch algorithms, Regalia [50] finds boundsfor the step size guaranteeing mono-

tonic convergence of the normalized fourth-order moment ofthe extractor output. Such a functional

is only a contrast for real-valued sources under prewhitening, a similar limitation shared by the more

general class of functions considered in [51]. Determiningthese step-size bounds is a computational

intensive task, as it involves the eigenspectrum of a Hessian matrix on a convex subset containing

the unit sphere in theK-dimensional space. While still ensuring monotonic convergence, the optimal

step-size approach that we develop herein is valid for real-and complex-valued sources, does not

require prewhitening and is computationally very simple. This type of technique has already been

successfully applied by the authors to other higher order contrasts such as the constant modulus or the

constant power criteria in the problems of blind and semi-blind equalization of digital communication

channels [52], [53], [54], [55].

G. Organization of the Paper

The paper begins by critically reviewing the deflationary kurtosis-based FastICA algorithm and its

variants in Sec. II. Then, Sec. III presents the RobustICA technique. Its experimental comparative

assessment is carried out in Sec. IV. In particular, we aim atevaluating objectively the algorithms’

speed and efficiency by taking into account the cost per iteration in number of operations. A biomedical

application, the extraction of atrial activity from ECG recordings of atrial fibrillation, illustrates the
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method’s ability to deal with non-circular complex-valuedsuper-Gaussian sources, as reported in

Sec. V. The concluding remarks of Sec. VI bring the paper to anend.

II. FASTICA REVISITED

A. Kurtosis-Based Optimality Criteria

In the deflation approach to ICA, an extracting vectorw is sought so that the estimate

y
def
= wHx (2)

where(·)H denotes the conjugate-transpose operator, maximizes someoptimality criterion or contrast

function, and is hence expected to be a component independent from the others. A widely used

contrast is the kurtosis, which is defined as the normalized fourth-order marginal cumulant:

K(w) =
E{|y|4} − 2E2{|y|2} − |E{y2}|2

E2{|y|2}
(3)

whereE{·} denotes the mathematical expectation. This criterion is easily seen to be insensitive to

scale, i.e.,K(λw) = K(w), ∀λ 6= 0. Since this scale indeterminacy is typically unimportant,we

can impose, without loss of generality, the normalization‖w‖ = 1 for numerical convenience. The

kurtosis maximization (KM)criterion based on contrast (3) is quite general in that it does not require

the observations to be prewhitened and can be applied to real- or complex-valued sources without

any modification.

The KM criterion started to receive attention with the pioneering work of Wiggins [8], Donoho [9]

and Shalvi-Weinstein [10] on blind deconvolution, and was later employed for source separation [11],

even in the convolutive mixture scenario [15]. In the real-valued case, it was proved in [11] that the

maximization of criterion|K(w)| is a valid contrast for the extraction of any source with non-zero

kurtosis from model (1) after prewhitening. To avoid extracting the same source twice, the remaining

unitary mixing matrix is suitably parameterized as a function of angular parameters, and function (3)

iteratively maximized with respect to these angles. In the convolutive mixture scenario of [15], the

contrast is maximized without parameterization. Regression is used as an alternative method to avoid

extracting the same source more than once.

To simplify the source extraction, the kurtosis-based FastICA algorithm [12], [18], [21] first applies

a prewhitening operation, as in [11], resulting in transformed observations with an identity covariance

matrix, Rx
def
= E{xxH} = I. In the real-valued case, contrast (3) then becomes equivalent to the

fourth-order moment criterion:

M(w) = E{|y|4} (4)

which must be optimized under a constraint, e.g.,‖w‖ = 1, to avoid arbitrarily large values of

y. Under the same constraint, criteria (3) and (4) are also equivalent if the sources are complex-

valued but second-order circular, i.e., the non-circular second-moment (or pseudo-covariance) matrix
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Cs
def
= E{ssT} is null, where (·)T is the transpose operator without conjugation. Consequently,

contrast (4) is less general than criterion (3) in that it requires the observations to be prewhitened

and the sources to be real-valued, or complex-valued but circular.

B. Contrast Optimization

Under the constraint‖w‖ = 1, the stationary points ofM(w) are obtained as a collinearity

condition onE{yy∗2x}, where(·)∗ denotes complex conjugation:

E
{

|wHx|2xxH
}

w = λw (5)

in which λ is a Lagrangian multiplier. As opposed to the claims of [12],eqn. (5) is a fixed-point

equation only ifλ is known, which is not the case here;λ must be determined so as to satisfy the

constraint, and thus it depends onwopt, the optimal value ofw: λ =M(|wH
optx|

4}.

For the sake of simplicity,λ is arbitrarily set to a deterministic fixed value [12], [21],so that

FastICA becomes an approximate standard Newton algorithm,as eventually pointed out in [18]. In

the real-valued case, the Hessian matrix ofM(w) is approximated as

E{(wTxxTw)xxT} ≈ E{wTxxTw}E{xxT} = wTw = I (6)

As a result, the kurtosis-based FastICA iteration reduces to

w+ = w −
1

3
E{x(wTx)3}. (7)

Since∇M(w) = 4E{x(wTx)3}, eqn. (7) is essentially a gradient-descent update rule of the form

w+ = w − µ∇M(w)

with a fixed value for the step size,µ = 1/12. It follows that the kurtosis-based FastICA is a particular

instance, using prewhitening and assuming sub-Gaussian sources, of the family of gradient-based

algorithms proposed in [15]. Though fixed to a constant value, FastICA’s step-size choice is judicious

in that it leads to cubic convergence of the algorithm for infinite sample size [18]. For short sample

sizes, however, convergence may slow down and even get trapped in saddle areas and local extrema,

as has been noticed in [23] and will be further illustrated inSec. IV.

To prevent locking onto a previously extracted source, the so-called deflationary orthogonalization

can be performed after each FastICA update iteration. The extracting vector is constrained to lie

within the orthogonal subspace of the extracting vectors, stored in matrixWk = [w1,w2, . . . ,wk−1],

found for the previous(k − 1) sources:

w+ ← w+ −WkW
H
k w

+. (8)
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This procedure is tantamount to the Gram-Schmidt orthogonalization of w+ with respect to the

columns of Wk. The iteration concludes with a normalization step to guarantee the constraint

‖w+‖ = 1:

w+ ← w+/‖w+‖. (9)

The algorithm can be stopped when

∣

∣1− |wHw+|
∣

∣ < ǫ (10)

for a statistically significant small constantǫ, e.g.,ǫ = η/T with η < 1. The use of the transpose-

conjugate operator in eqns. (8) and (10) makes them also valid in the complex case.

C. The Complex Case

In the extension of the kurtosis-based FastICA algorithm tocomplex-valued scenarios [31], [32],

the update rule can be expressed as

w+ = w −
1

2
E{xy∗|y|2} (11)

with y given in (2). Let us define the gradient operator as∇w = ∇wr
+ j∇wi

, wherewr andwi

represent the real and imaginary parts, respectively, of vector w; this a scaled form of Brandwood’s

conjugate gradient [56]. Then, eqn. (11) is easily shown to be a gradient-descent algorithm on

contrast (4) with fixed step sizeµ = 1/8. The algorithm is only valid for second-order circular sources,

satisfyingCs = 0. Recent works aiming to avoid this limitation are all based on the prewhitening

assumption. Starting from the non-normalized fourth-order cumulant contrast, the KM fixed-point

(KM-F) algorithm of [36] assigns the current gradient to theextracting vector

w+ = E{|y|2y∗x} − 2E{|y|2}E{y∗x} − E{y∗2}E{yx} (12)

before the orthogonalization and normalization steps described by eqns. (8) and (9). A modification

of [31] is proposed in [34] leading to the so-called non-circular FastICA (nc-FastICA) algorithm. For

contrast (4), the modified update rule reads:

w+ = w −
1

2
E{|y|2y∗x}+

1

2
E{xxT}E{y∗2}w∗. (13)

By taking into account the whitened observation pseudo-covariance matrix in the last term, the nc-

FastICA algorithm becomes locally stable at the separationsolutions even in the presence of non-

circular sources. The complex fixed-point algorithm (CFPA)of [33] turns out to rely on a very similar

update rule, obtained through an alternative approach not based on differentiation.
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III. ROBUSTICA

A. Exact Line Search on the Kurtosis Contrast

Without simplifying assumptions, a simple quite natural alternative to FastICA consists of perform-

ing exact line search of the absolute kurtosis contrast (3):

µopt = argmax
µ
|K(w + µg)|. (14)

The search directiong is typically (but not necessarily) the gradient,g = ∇wK(w), which is given

by (cf. [13], [15]):

∇wK(w) =
4

E2{|y|2}

{

E{|y|2y∗x} − E{yx}E{y∗2} −

(

E{|y|4} − |E{y2}|2
)

E{y∗x}

E{|y|2}

}

.

Exact line search is in general computationally intensive and presents other limitations [42], which

explains why, despite being a well-known optimization method, it is very rarely used in practice.

Indeed, the one-dimensional optimization in eqn. (14) musttypically be performed by means of

numerical algorithms that are not guaranteed to find the global optimum along the search direction.

However, for criteria that can be expressed as polynomials or rational functions ofµ, such as the

kurtosis, the constant modulus [57], [55] and the constant power [58], [54] contrasts, theglobally

optimal step sizeµopt can easily be determinedalgebraically by finding the roots of a low-degree

polynomial. The RobustICA algorithm is derived from the application of this idea to the kurtosis

contrast, as detailed next. A freely available Matlab implementation can be found in [59].

At each iteration, RobustICA performs an optimal step-size(OS) based optimization comprising

the following steps:

S1) Compute the OS polynomial coefficients.

For the kurtosis contrast, the OS polynomial is given by:

p(µ) =

4
∑

k=0

akµ
k. (15)

The coefficients{ak}4k=0 can easily can be obtained at each iteration from the observed signal

block and the current values ofw andg. Their expressions are found in the Appendix. Numerical

conditioning in the determination ofµopt can be improved by normalizing the gradient vector

beforehand.

S2) Extract OS polynomial roots{µk}
4
k=1.

The roots of the 4th-degree polynomial (quartic) can be found at practically no cost using standard

algebraic procedures such as Ferrari’s formula, known since the 16th century [42]. Indeed, the

complexity of this step is negligible compared with the calculation of the statistics required in

the previous step. Details about computational cost are given in Sec. III-E.
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S3) Select the root leading to the absolute maximum of the contrast along the search direction:

µopt = argmax
k
|K(w + µkg)|. (16)

This can be done at a negligible cost from the coefficients computed in step S1, as detailed in

the Appendix.

S4) Updatew+ = w + µoptg.

S5) Normalize as in eqn. (9).

As in [15], the extracting vector normalization in step S5 isperformed to fix the ambiguity

introduced by the the scale invariance of contrast (3), and does not stem from prewhitening. The

same stopping criterion as in FastICA [cf. eqn. (10)] can also be employed to check the convergence

of the above algorithm. The generality of contrast (3) guarantees that RobustICA is able to separate

real and complex (possibly non-circular) sources without any modification. These features will be

illustrated in the experiments of Secs. IV–V.

B. Extraction of Sources with Known Kurtosis Sign

The method described above aims at maximizing the absolute kurtosis, and is thus able to extract

sources with positive or negative kurtosis. In many applications, some information may be known

in advance about the source(s) of interest. For example, theatrial activity time-domain signal in

atrial fibrillation electrocardiograms (Sec. V), and especially in atrial flutter episodes, typically lies

in the sub-Gaussian source subspace. The ventricular activity sources are usually impulsive and thus

super-Gaussian. If only a few of these sources are desired, separating the whole mixture would

incur an unnecessary computational cost and, in the case of sequential extraction, an increased

source estimation inaccuracy due to error accumulation through successive deflation stages. A wiser

alternative consists of extracting the desired type of sources exclusively.

RobustICA can easily be modified to deal with these situations by targeting a source with specific

kurtosis signε. After computing the roots of the step-size polynomial, onesimply needs to replace (16)

by

µopt = arg max
k

εK(w + µkg) (17)

as best root selection criterion. If no source exists with the required kurtosis sign, the algorithm

may converge to a non-extracting local extrema, but will tend to produce components with maximal

or minimal kurtosis from the remaining signal subspace whenε = 1 or ε = −1, respectively. The

algorithm can also be run by combining global line maximizations (17) and (16) for sources with

known and unknown kurtosis sign, respectively, in any desired order.



IEEE TRANSACTIONS ON NEURAL NETWORKS, 21(2):248-261, FEB.2010 12

C. Deflation

To extract more than one independent component, the Gram-Schmidt-type deflationary orthog-

onalization procedure proposed for FastICA [12], [18], [21] (see Sec. II-B) can also be used in

conjunction with RobustICA under prewhitening, even if prewhitening is not mandatory for this

method. After step S4, the updated extracting vector is constrained to lie in the orthogonal subspace

of the extracting vectors previously found [eqn. (8)]. In the linear regression approach to deflation [15],

after convergence of the search algorithm the contributionof the estimated sourcês to the observations

is computed via the minimum mean square error solution to thelinear regression problemx = ĥŝ.

The observations are then deflated asx← (x− ĥŝ) before re-initializing the algorithm in the search

for the next source. If prewhitening is not performed and themixture is not unitary, orthogonalization

is no longer an option and an alternative procedure like regression becomes compulsory.

D. A Quick Look at Convergence

The theoretical study of RobustICA’s convergence characteristics in the general case is beyond the

scope of the present paper. In the real-valued two-signal scenario, however, the algorithm converges

to the global optimum in a single iteration, even without prewhitening. The proof relies on the scale

invariance property of contrast (3) and follows straightforward geometrical arguments. Suppose that

the initial (non-zero) extracting vectorw0 has an orientation ofα1 rad with respect to one of the axis

vectors spanningR2. In polar coordinates, the gradient atw0 can be expressed as

g0 = ∇K(w0) =
∂K(w0)

r∂θ
uθ +

∂K(w0)

∂r
ur

whereuθ andur denote the unit vectors in the radial and ortho-radial directions, respectively. The

radial component can be computed as

∂K(w0)

∂r
= lim

α→0

K(w0 + αur)−K(w0)

α
= 0

sincew0 ∝ ur and the numerator is null for anyα by virtue of the contrast scale invariance. Vector

g0 is orthogonal tow0 and its orientation is thusα2 = α1 ± π/2 rad. Now, asµ varies in R,

the orientation of vectorw0 + µg0 spans aπ-rad interval, which corresponds to the full solution

space up to admissible sign and scale ambiguities in the two-signal case. Hence, the optimal step-

size technique described in Sec. III-A will find the global optimum of the absolute kurtosis contrast

in a single step. Although this result is not easily generalized to more than two signals, it gives a

glimpse of RobustICA’s speed of convergence measured in terms of iterations. By construction of

the algorithm, the OS procedure guarantees at least monotonic convergence of the kurtosis contrast

to a local extremum for any initial condition (cf. [50], [51]). Also by construction, consecutive

gradient vectors are orthogonal in the sense that IRe{gHg+} = 0, with g+ = ∇K(w+). This gradient

orthogonality may slow down convergence in high-dimensional extracting vector spaces.
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E. Computational Complexity

In the literature, complexity is commonly measured in termsof iterations. Such a measure is unfair

in that an algorithm requiring few iterations to converge may involve heavy computations at each

iteration. The average time taken by an algorithm to achievea solution, another complexity measure

used in some works [29], [36], does not take into account the fact that computation time depends on the

actual algorithmic implementation. For instance, when using the popular Matlab technical computing

environment, the execution time can be considerable reduced if loops are replaced by vector-wise

operations. These observations point out that the number ofreal-valued floating point operations (flops)

required for an algorithm to reach a solution arises as a moreobjective measure of complexity. A flop

is considered as a product followed by an addition and, in practical implementations, would naturally

correspond to a multiply-and-accumulate cycle in a digitalsignal processor. In the signal extraction

problem, the total cost of the extraction can be computed as the product of the number of iterations,

the cost per iteration per source and the number of extractedsources. The prewhitening stage, if

performed, adds around2K2T flops (8K2T in the complex case) to the total cost when computing

the economy singular value decomposition (SVD) of the data matrix [60]. The complexity per source

per sample is given by the total cost divided byKT .

Table I summarizes the main computations per iteration required by RobustICA and FastICA,

for both the real-valued and complex-valued scenarios; flopcount details can be found in [61].

Expectations are replaced by sample averages over the observed signal block. The sample sizeT

is assumed to be sufficiently large, so that only dominant terms (with a cost depending onT ) are

considered. For the sake of comparison, the complex extension of FastICA developed in [31], [32]

(only valid for second-order circular sources) is considered in the corresponding entry of Table I. The

CFPA [33] and nc-FastICA [34] algorithms [eqn. (13)] have essentially the same cost as FastICA in

the complex case; it suffices to add an initial burden ofL(2L + 1)T flops due to the computation

of the pseudo-covariance matrix. The KM-F algorithm [36] [eqn. (12)] takes as many operations

per iteration as RobustICA’s gradient computation save forthe termE{|y|4}, i.e., (14L+ 5)T flops.

RobustICA’s iterations are generally more expensive than FastICA’s and its variants. However, as

will be demonstrated in the next section, each RobustICA iteration is more effective in the search

of good extraction solutions, so that the overall complexity is actually lower than FastICA’s for the

same extraction accuracy. Furthermore, in some cases FastICA cannot reach RobustICA’s accuracy.

IV. EXPERIMENTAL ANALYSIS

The following experimental analysis evaluates RobustICA’s convergence characteristics, source

extraction quality and computational complexity in several simulation conditions involving synthetic
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data. In the real case (Secs. IV-A–IV-D), we use the originalFastICA algorithm with cubic non-

linearity [eqn. (7)] as a benchmark, as it offers the fastestconvergence speed among the previously

proposed kurtosis-based source extraction methods. In thecomplex case (Sec. IV-E), we compare

RobustICA to recent FastICA variants capable of dealing with non-circular sources. The processing

of real data is reported in Sec. V.

A. Robustness to Saddle Points

The first experiment tests the comparative convergence characteristics of RobustICA as well as its

robustness to saddle points degrading the performance of the FastICA algorithm for short sample

sizes [23]. Independent realizations of two uniformly distributed sources are mixed through Givens

rotations of random angleθ. The FastICA and RobustICA algorithms are run on the same mixed data

with a sufficiently small termination testη = 0.5× 10−6. As a natural measure of extraction quality,

we employ the average signal mean square error (SMSE), a contrast-independent criterion defined as

SMSE=
1

K

K
∑

k′=1

SMSEk′,ℓ′(k′) (18)

where SMSEk,ℓ = E{|sk−αℓŝℓ|
2}, with αℓ = E{skŝ

∗

ℓ}/E{|ŝℓ|
2}. Signal pairs(sk′ , ŝℓ′(k′)) are chosen

in increasing SMSE order as
(

k′, ℓ′(k′)
)

= argmin
k,ℓ

SMSEk,ℓ and, once selected, are no longer taken

into account in the pairing of the remaining sources. When the source estimation is good enough,

this ‘greedy’ algorithm allows an optimal permutation and scaling of the estimated sources{ŝk}Kk=1

before evaluating the performance index. In the current setting, the global matrixG = WTH is also

a Givens rotation of parameter∆θ = (θ − θ̂), whereθ̂ is the rotation angle implicitly estimated by

the separation methods.

For a particular signal realization, Fig. 1 plots the contrast functions of the respective algorithms

[kurtosis (3) for RobustICA and fourth-order moment (4) forFastICA] over the optimization interval.

The small sample size (here 50 samples) smears FastICA’s contrast function, whose local minima

tend to form saddle regions while moving away from the valid separation solutions∆θ = kπ/2 rad,

k ∈ Z. The negative impact of short data length is less manifest for the kurtosis contrast optimized

by RobustICA. For the particular initialization shown in Fig. 1(a), FastICA gets trapped inside a

saddle area between two separation solutions, yielding a final SMSE of−7.8 dB after 29 iterations.

Depending on the initialization, FastICA can also convergeto the other local minimum withSMSE =

−13.4 dB, taking up to 24 iterations [cf. Fig. 1(b)]. By contrast, RobustICA consistently converges to

the solutions near∆θ = ±π/2 rad with−22.2-dB SMSE in a single iteration for all initializations,

as expected from the theoretical analysis of Sec. III-D. Figure 2 shows the scatter plot of final SMSE

values for both methods over 1000 independent mixture realizations; Table II summarizes the average

performance parameters for different sample size values between 50 and 150.
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RobustICA provides a faster more robust performance, especially for short data sizes. The algo-

rithm’s robustness to initialization is also demonstratedin [39]. These results support the finite sample

analysis of [17], where the kurtosis is shown to present lower variance than the fourth-order moment.

Similarly, the full expression of the fourth-order cumulant yields improved extraction performance

compared with the fourth-order moment used in the FastICA algorithm [19]. The optimal step-size

technique used in RobustICA further enhances the finite-sample benefits of the kurtosis contrast.

B. Performance-Complexity Trade-off

A wireless telecommunications scenario is simulated by considering noiseless orthogonal random

mixtures ofK unit-power independent BPSK sources observed at the outputof an L = K element

array in signal blocks ofT samples. The search for each extracting vector is initialized with the

corresponding canonical basis vector, and is stopped at a fixed number of iterations. The SMSE

performance index (18) is averaged over 1000 independent random realizations of the sources and

the mixing matrix. Extraction solutions are computed directly from the observed unitary mixtures

(‘FastICA’ and ‘RobustICA’ legend labels) and after a prewhitening stage based on the SVD of the

observed data matrix (‘pw+FastICA’, ‘pw+RobustICA’).

Fig. 3 summarizes the performance-complexity variation obtained for T = 150 samples and

different values of the mixture sizeK. The best fastest performance is provided by RobustICA without

prewhitening: a given performance level is achieved with lower cost or, alternatively, an improved

extraction quality is reached with a given complexity. Although not shown in the plot, the method

gets below the−60-dB SMSE level forK = 5 sources in this experiment. The use of prewhitening

worsens RobustICA’s performance-complexity trade-off and, due to the finite sample size, imposes

the same SMSE bound for the two methods. Using prewhitening,FastICA improves considerably

and becomes slightly faster than RobustICA with prewhitening, especially when the mixture size

increases. Fig. 4 displays the quality-cost trade-off forK = 10 sources and different block length

values. Improved performance bounds can be achieved by RobustICA if avoiding prewhitening, even

for short data sizes.

C. Efficiency

We now evaluate the methods’ performance for a varying blocksample sizeT . Extractions are

obtained by limiting the number of iterations per source, asexplained above. To make the compar-

ison meaningful, the overall complexity is fixed at 400 flops/source/sample for all tested methods.

Accordingly, since RobustICA is more costly per iteration than FastICA, it performs fewer iterations

per source. Fig. 5 displays the average SMSE curves for different number of sourcesK. For moderate

K, RobustICA is considerably more efficient than the other methods, as shown by the steeper
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slope of its curve, achieving the same extraction performance with much smaller signal blocks.

Prewhitening smoothens FastICA’s and RobustICA’s performance trends, which become comparable.

As K increases, FastICA with prewhitening becomes more efficient.

D. Performance in the Presence of Noise

Figure 6 assesses the comparative performance of RobustICAin the presence of noise forK =

10 sources, different sample sizes and a fixed complexity of 400flops/source/sample. Isotropic additive

white Gaussian noise is added to the observations, with a signal-to-noise ratio (SNR) given by

SNR =
trace(HHH)

σ2
nL

=
1

σ2
n

whereσ2
n denotes the noise power at each sensor output. The minimum mean square error (MMSE)

receiver is shown as a performance bound for linear detection. RobustICA appears more robust to

additive noise, as it obtains an improved SMSE performance for the same noise level or, alternatively,

it tolerates more noise without sacrificing performance. Athigh SNR, RobustICA achieves a lower

performance flooring than FastICA and, for sufficient samplesize, it attains the MMSE bound,

employing three times fewer iterations than the other method in this experiment. Analogous results

involving noise data are reported in [40].

E. Complex-Valued Mixtures

To briefly test RobustICA’s performance on complex-valued synthetic mixtures of non-circular

sources, we repeat the experiment of Sec. IV-B but using random unitary mixing matrices. The

method is compared with the KM-F algorithm of [36] and the nc-FastICA algorithm of [34] with

kurtosis-based non-linearity, similar to the CFPA algorithm of [33] (Sec. II-C). The quality-cost

trade-off of the three algorithms for different block sizesis shown in Fig. 7. Once more, without the

performance limitations imposed by prewhitening, RobustICA proves superior to the other methods.

Performances become similar under prewhitening imposed toboth methods, as FastICA improves

whereas RobustICA degrades.

V. PROCESSINGREAL DATA WITH ROBUSTICA

Although good performance is obtained with sub-Gaussian sources [23] as in the above numerical

experiments, the use of kurtosis as a general contrast function has been discouraged on the basis of

poor asymptotic efficiency for super-Gaussian sources and lack of robustness to outliers [16], because

the analysis was restricted to FastICA only. This section reports a biomedical application involving

non-circular complex strongly super-Gaussian sources where the kurtosis contrast, optimized by the

RobustICA technique, shows satisfactory results.
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A. Atrial Activity Extraction in Atrial Fibrillation Episodes

Atrial fibrillation (AF) is the most common cardiac arrhythmia encountered in clinical practice,

affecting up to 10% of the population over 70 years of age [62]. The trouble is characterized by

an abnormal atrial electrical activation, whereby the organized wavefront propagation in normal

sinus rhythm is replaced by several wavelets wandering around the atria in a disorganized manner.

This disorderly electrical activation causes an inefficient atrial mechanical function and leads to an

increased risk of blood-clot formation and stroke. Despiteits incidence, prevalence and risks of serious

complications, the understanding of the generation and self-perpetuation mechanisms of this disease

is still unsatisfactory.

Over recent years, signal processing has helped cardiologists in shedding some light over AF, as

certain features of the atrial activity (AA) signal recorded in the surface ECG provide information

about the arrhythmia. The dominant frequency of the AA signal is shown to be related to the refractory

period of atrial myocardium cells, and thus to the degree of evolution of the disease and the probability

of spontaneous cardioversion (return to normal sinus rhythm) [63]. The analysis and characterization

of AA from the ECG requires the previous suppression of interference such as the QRST complex of

ventricular electrical activation (or ventricular activity, VA), artifacts and noise. Figure 8(top) shows

a 5-second segment of precordial lead V1 from an AF patient’sECG; its power spectral density,

estimated through Welch’s averaged periodogram method as in [64] (averaged 8192-point FFT of

4096-point Hamming-windowed segments with 50% overlap), is shown in Fig. 9(top). The mixture

of VA and AA can usually be perceived in this lead as one of its electrodes lies close to the atria.

A recent approach to AA extraction relies on the observationthat AA and VA can be considered

statistically independent phenomena [65]. Techniques forthe separation of independent signals such

as PCA and ICA can then be applied on the 12-lead ECG to search for the AA source, thus allowing

the reconstruction of AA in all leads free from VA and other interference. Prior information on the

atrial source, in particular its narrowband character and near-Gaussian behavior, can be exploited to

improve AA extraction performance. In [64], the kurtosis-based FastICA method is first applied to

extract impulsive interference, essentially the VA, from the ECG recording. The remaining sources

contain mixtures of AA and noise, which, through a kurtosis-based test, are selected and passed on

as inputs to the second-order blind identification (SOBI) method [66]. Through the joint approximate

diagonalization of the input correlation matrices at several time lags, SOBI is particularly suited to the

separation of narrowband sources. In this application, thecorrelation lags are chosen in accordance

with typical AF cycle length values [64].
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B. Application of RobustICA to AA Extraction

AA is a narrowband signal, so that its frequency-domain representation is sparse and can thus be

considered to stem from an impulsive distribution with highkurtosis value. Indeed, when mapping

certain signals from the time domain to the frequency or the wavelet domains, the statistics of the

sources tend to become less Gaussian, as observed in [67] in the context of another biomedical

problem. Relying on this simple observation, RobustICA canbe applied on the ECG recording after

transformation into the frequency domain. It is expected that the f -domain AA source be found

among the first extracted components (typically those with higher kurtosis values); its time course

can then be recovered by transforming back into the time domain.

This idea is tested on a database of 35 standard ECG segments recorded from 34 different AF

sufferers. Each segment represents an observation window of around 12 seconds sampled at 1 kHz.

Baseline wander and high-frequency interference are suppressed by zero-phase Chebyshev type-II

highpass and lowpass filters with cut-off frequencies of 0.5and 30 Hz, respectively. The filtered 12-

lead ECG data are then spatially prewhitened before being passed on to the FastICA-SOBI method

of [64], which performs all operations in the time domain. Concerning the RobustICA method, the

prewhitened filtered recordings are first transformed into the frequency domain by the zero-padded

16384-point FFT. The sources extracted in thef -domain are then transformed back to the time

domain via the inverse FFT and truncated to their original length for further analysis. The AA source

is automatically selected as the extracted component with dominant peak in the interval[3, 9] Hz, the

typical AF frequency band. The percentage of signal power around the dominant peak, or spectral

concentration (SC), has been shown to correlate with AA extraction quality [64], and is hence used as

a measure of performance. Power spectra are estimated by Welch’s method with the same parameters

as in [64]. The same initialization, maximum number of iterations per source and termination criterion

are used for FastICA and RobustICA.

Figure 8(middle)–(bottom) shows a 5-second segment of the AA reconstructed by the two methods

in lead V1 from the first patient of the AF ECG database. The corresponding frequency spectra,

together with the estimated dominant peak position and the associated SC values, are shown in

Fig. 9(middle)–(bottom). As can be seen in the intervals between successive heartbeats, RobustICA

obtains a more accurate estimate of the AA taking place in lead V1, as quantified by a higher SC

value, requiring a total of 698 iterations or around2721.8× 106 flops to separate the whole mixture

(53 iterations or206.7×106 flops if stopped at the AA source, found in the 3rd extracted component),

for 1178 iterations or391.1× 106 flops by FastICA (AA source in the 9th component). Performance

parameters averaged over the whole dataset are summarized in Table III. A cost of about3.5 × 106

flops due to prewhitening should be added to the complexity figures. If stopped at the AA source,
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RobustICA only requires an average of62 ± 41 iterations or241.3 ± 159.9 × 106 flops. Remark

that, according to Table I, RobustICA’s cost per iteration is about an order of magnitude greater

than FastICA’s in this particular setting. These results confirm that RobustICA achieves an improved

AA signal extraction quality with virtually identical dominant frequency estimate at a comparable

complexity relative to the alternative two-stage technique. As a measure of second-order circularity,

the ratio|E{s2}|/E{|s|2} averaged over allf -domain sources extracted by RobustICA is0.85±0.02.

Since the non-circular second-order momentE{s2} cannot be considered to be null, complex-valued

extensions of FastICA such as those proposed in [31], [32] would not be expected to perform well in

this context; more recent variants such as the KM-F and nc-FastICA algorithms [36], [34] (Sec. II-C)

should be more successful. More importantly, the average kurtosis of the frequency-domain sources

extracted by RobustICA in the frequency domain is231, whereas that of the AA sources equals731.

These are strongly super-Gaussian signals.

VI. CONCLUSIONS

Kurtosis has long been known to be a valid contrast for independent source extraction in instan-

taneous as well as convolutive linear mixtures, whether thesources are real or complex, circular or

non-circular, sub-Gaussian or super-Gaussian, and whether prewhitening is performed. The global

maximizer of this contrast across the search direction can be obtained algebraically at each extracting

filter update iteration, giving rise to the RobustICA methoddeveloped in this work. Among other

interesting features naturally inherited from the kurtosis contrast, RobustICA can process real- and

complex-valued (possibly non-circular) sources and does not require prewhitening. As a result, the

method is more tolerant than whitening-based techniques toresidual source correlations likely to

appear in short data records. In addition, the optimal step-size approach endows the method with an

increased robustness to initialization and saddle points,particularly in small observation windows.

The computational complexity required to reach a given source extraction quality has been put

forward as a natural objective measure of convergence speedfor BSS/ICA algorithms. Without

the performance limitations imposed by second-order preprocessing (whitening), RobustICA proves

computationally faster and more efficient than the popular kurtosis-based FastICA algorithm with

asymptotic cubic global convergence and some of its most recent variants. RobustICA’s ability

to process real-world non-circular complex strongly super-Gaussian signals has been successfully

illustrated by the extraction of atrial activity in atrial fibrillation ECG recordings. In conclusion,

the RobustICA method, although conceptually simple, presents a number of benefits that make it

particularly attractive in practical BSS/ICA settings. Extensions to convolutive scenarios such as blind

SISO and MIMO channel deconvolution are also possible with few modifications. An illustration of

the optimal step-size technique on the kurtosis contrast inthe SISO case is reported in [52]. The
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MIMO case calls essentially for the definition of appropriate deflation procedures along the lines of

[15], which should be the subject of fresh investigations. More robust cumulant estimates (see, e.g.,

[20, Ch. 5] and references therein) would increase the method’s ability to handle outliers, and would

be another interesting avenue for the continuation of this work.
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APPENDIX

DERIVATION OF THE OPTIMAL STEP-SIZE POLYNOMIAL

ContrastK evaluated atw+µg becomes a function ofµ only, and is given by the rational fraction

K(µ) =
E{|y+|4} − |E{(y+)2}|2

E2{|y+|2}
− 2 =

P (µ)

Q2(µ)
− 2 (19)

wherey+ = y + µg, y = wHx, g = gHx, P (µ) = P1(µ) − |P2(µ)|
2, P1(µ) = E{|y+|4}, P2(µ) =

E{(y+)2} andQ(µ) = E{|y+|2}. Let us denote

a = y2 b = g2 c = yg d = IRe(yg∗).

After some tedious but otherwise straightforward algebraic manipulations, the above polynomials turn

out to be:

P (µ) =

4
∑

k=0

hkµ
k Q(µ) =

2
∑

k=0

ikµ
k (20)

where

h0 = E{|a|2} − |E{a}|2, h1 = 4E{|a|d} − 4IRe(E{a}E{c∗})

h2 = 4E{d2}+ 2E{|a||b|} − 4|E{c}|2 − 2IRe(E{a}E{b∗})

h3 = 4E{|b|d} − 4IRe(E{b}E{c∗}), h4 = E{|b|2} − |E{b}|2

i0 = E{|a|}, i1 = 2E{d}, i2 = E{|b|}. (21)

Hence, the derivative ofK(w + µg) with respect toµ reads

K̇(µ) =
Ṗ (µ)Q(µ)− 2P (µ)Q̇(µ)

Q3(µ)
=

p(µ)

Q3(µ)
. (22)

Relating eqns. (20)–(22), polynomialp(µ) is given by eqn. (15) with

a0 = −2h0i1 + h1i0 a1 = −4h0i2 − h1i1 + 2h2i0

a2 = −3h1i2 + 3h3i0 a3 = −2h2i2 + h3i1 + 4h4i0

a4 = −h3i2 + 2h4i1.
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The real parts of the roots of this polynomial are the step-size candidates to be found in step S2 of the

algorithm (Sec. III-A). These candidates are then plugged back into eqns. (19)–(20) to check which

one provides the optimum value of|K(w + µg)|, or of εK(w + µg) if the alternative procedure of

Sec. III-B is employed; this is the optimal step-size soughtin step S3 of the algorithm.
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Tables

TABLE I

COMPUTATIONAL COMPLEXITY PER ITERATION IN TERMS OF NUMBER OFREAL-VALUED FLOPS PER ITERATION FOR

THE KURTOSIS-BASED FASTICA AND ROBUSTICA METHODS. SIGNAL BLOCKS ARE COMPOSED OFT SAMPLES

OBSERVED AT THE OUTPUT OFL SENSORS.

Method Real Case Complex Case

FastICA (2L+ 2)T (8L+ 4)T

RobustICA (5L+ 12)T (18L+ 22)T

TABLE II

AVERAGE PERFORMANCE PARAMETERS FOR THE EXPERIMENTS ON REAL-VALUED MIXTURES OF SEC. IV-A AND

FIG. 2. SYMBOL [·] DENOTES THE CLOSEST INTEGER.

T method SMSE (dB) iterations flops×103 cases with

([mean]± [std]) (mean ± std) SMSE > −10 dB

50 FastICA −11.6 14± 56 4.1± 16.8 240

RobustICA −19.0 1± 0 1.1± 0 18

100 FastICA −14.7 7± 6 4.1± 3.8 79

RobustICA −23.1 1± 0 2.2± 0 0

150 FastICA −17.0 6± 6 5.3± 5.1 20

RobustICA −25.1 1± 0 3.3± 0 0

TABLE III

AA EXTRACTION IN AF EPISODES: SPECTRAL CONCENTRATION(SC),POSITION OF DOMINANT SPECTRAL PEAK(fp),

NUMBER OF ITERATIONS, ALGORITHMIC COMPLEXITY AND POSITION OF ESTIMATEDAA SOURCE AVERAGED OVER

THE 35 ECGRECORDINGS.

SC (%) fp (Hz) iterations flops×106 AA source position

Method (mean± std) (mean± std) ([mean]± [std]) (mean± std) (median± [std])

FastICA-SOBI 48.55 ± 17.06 5.40± 1.18 1245 ± 934 406.2 ± 302.8 9± 2

RobustICA 55.67 ± 16.78 5.41± 1.18 202± 99 786.9 ± 387.4 3± 2
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Fig. 1. Contrast function values and trajectories for an orthogonal mixture realization of two uniformly distributed

sources composed ofT = 50 samples. Dashed line: FastICA’s contrast function (4). Solid line: RobustICA’s contrast

function (3). Triangle markers and upward arrows: initial positions. Cross markers: algorithms’ solutions after eachiteration.

Round markers and downward arrows: final solutions. Vertical dotted lines: satisfactory separation solutions up to sign and

permutation. Subplots (a)–(b) correspond to two differentextracting vector initializations over the same mixture realization.



IEEE TRANSACTIONS ON NEURAL NETWORKS, 21(2):248-261, FEB.2010 27

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

SMSE FastICA

S
M

S
E

 R
o

b
u

s
tI

C
A

Fig. 2. Extraction quality scatter plots for the FastICA andRobustICA algorithms with random orthogonal mixtures of

two uniformly distributed sources composed ofT = 50 samples. Termination parameterη = 0.5×10−6 , 1000 independent

trials.
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Fig. 3. Average extraction quality as a function of computational cost for different mixture sizesK, with signal blocks

composed ofT = 150 samples and 1000 mixture realizations. Solid lines:K = 5. Dashed lines:K = 10. Dotted lines:

K = 20.
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Fig. 4. Average extraction quality as a function of computational cost for different sample sizesT , with mixture size

K = 10 sources and 1000 mixture realizations. Solid lines:T = 50. Dashed lines:T = 100. Dotted lines:T = 150.
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Fig. 5. Average extraction quality as a function of block length for different mixture sizesK with complexity fixed at

400 flops/source/sample and 1000 mixture realizations. Solid lines:K = 5. Dashed lines:K = 10. Dotted lines:K = 20.
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Fig. 6. Average extraction quality in isotropic additive white Gaussian noise withK = 10 sources,T samples per source

and a complexity fixed at 400 flops/source/sample and 1000 mixture realizations. Solid lines:T = 100. Dashed lines:

T = 200. Dotted lines:T = 500.
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Fig. 7. Average extraction quality as a function of computational cost for different sample sizesT , with mixture size

K = 10 sources and 1000 mixture realizations. Solid lines:T = 50. Dashed lines:T = 100. Dotted lines:T = 150. (a)

Without prewhitening. (b) With prewhitening.
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Fig. 8. Atrial activity extraction in atrial fibrillation ECGs. Top: a 5-second segment of lead V1 from the first patient ofthe

database. Middle: AA contribution to lead V1 estimated by FastICA-SOBI from the 12-lead ECG. Bottom: AA contribution

to lead V1 estimated by RobustICA from the 12-lead ECG. Only relative amplitudes are relevant on the vertical axes.
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Fig. 9. Atrial activity extraction in atrial fibrillation ECGs. Frequency spectra of the signals shown in Fig. 8. Top: power

spectral density of signal V1 from the first patient of the database. Middle: power spectral density of AA contribution to

lead V1 estimated by FastICA-SOBI from the 12-lead ECG. Bottom: power spectral density of AA contribution to lead V1

estimated by RobustICA from the 12-lead ECG. Values on the left-hand side and dashed lines: dominant frequency. Values

on the right-hand side: spectral concentration. Dash-dotted lines: bounds used in the computation of spectral concentration.

Only relative amplitudes are relevant on the vertical axes.


