
HAL Id: hal-00457234
https://hal.science/hal-00457234

Submitted on 16 Feb 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Signatures of combinatorial maps
Stéphane Gosselin, Guillaume Damiand, Christine Solnon

To cite this version:
Stéphane Gosselin, Guillaume Damiand, Christine Solnon. Signatures of combinatorial maps. 13th In-
ternational Workshop on Combinatorial Image Analysis (IWCIA), Nov 2009, Cancun, Mexico. pp.370-
382. �hal-00457234�

https://hal.science/hal-00457234
https://hal.archives-ouvertes.fr

Signatures of Combinatorial Maps

Stéphane Gosselin1 and Guillaume Damiand1 and Christine Solnon1⋆

Université de Lyon, CNRS
Université Lyon 1, LIRIS, UMR5205, F-69622, France

{stephane.gosselin,guillaume.damiand,christine.solnon}@liris.cnrs.fr

Abstract. In this paper, we address the problem of computing a canon-
ical representation of an n-dimensional combinatorial map. To do so, we
define two combinatorial map signatures: the first one has a quadratic
space complexity and may be used to decide of isomorphism with a new
map in linear time whereas the second one has a linear space complexity
and may be used to decide of isomorphism in quadratic time. Experimen-
tal results show that these signatures can be used to recognize images
very efficiently.
Key words: Combinatorial map, canonical representation, signature,
linear isomorphism

1 Motivations

Combinatorial maps are good data structures for modelling space subdivisions.
First defined in 2D [7, 16, 9, 3], they have been extended to nD [2, 11, 12] and
model the subdivision cells and their adjacency relations in any dimension.

There are many different data structures for modelling the partition in regions
of an image. All these structures are more or less derived from Region Adjacency
Graphs (RAG) [15]. It has been shown that using combinatorial maps allows a
precise description of the topology of the image partition (for example in 2D
[1] or in 3D [4]) and there are efficient image processing algorithms using this
topological information .

Our general goal is to define new algorithms for combinatorial maps allow-
ing new and efficient image processing algorithms. Among these operations, we
are interested in image classification. In particular, we propose to characterize
image classes by extracting patterns which occur frequently in these classes.
When modelling images with combinatorial maps, this involves finding frequent
submaps. Finding frequent patterns in large databases is a classical data mining
problem, the tractability of which highly depends on the existency of efficient
algorithms for deciding if two patterns are actually different or if they are two
occurrences of a same object. Hence, if finding frequent subgraphs is intractable
in the general case, it may be solved in incremental polynomial time when con-
sidering classes of graphs for which subgraph isomorphism may be solved in
polynomial time, such as trees or outerplanar graphs [8].

⋆ The authors acknowledge an Anr grant Blanc 07-1 184534: this work was done in
the context of project Sattic.

2 S. Gosselin et al.

7
9

11

12

6

13 16

8 10

5

4

17

18

314

2

151

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

β1 2 3 4 5 6 7 1 9 10 11 8 13 14 15 12 17 18 16
β2 15 14 18 17 10 9 8 7 6 5 12 11 16 2 1 13 4 3

Fig. 1. Combinatorial map example. Darts are represented by numbered black seg-
ments. Two darts 1-sewn are drawn consecutively, and two darts 2-sewn are concur-
rently drawn and in reverse orientation, with little grey segment between the two darts.

In this paper, we address the problem of computing a canonical represen-
tation of combinatorial maps which may be used to efficiently search a map in
a database. This work may be related to [10], which proposes a polynomial al-
gorithm for deciding of the isomorphism of ordered graphs, based on a vertex
labelling. Recently, this work has been extended to deal with combinatorial maps
by proposing a polynomial algorithm for map and submap isomorphism based
on a traversal of the map [6]. We use these principles of labelling and traversal
to define canonical representations of combinatorial maps.

More precisely, we define two map signatures. Both signatures may be com-
puted in quadratic time with respect to the number of darts of the map. The first
signature is a lexicographic tree and has a quadratic space complexity. It allows
one to decide in linear time if a new map is isomorphic to a map described by
this signature. The second signature is a word and has a linear space complexity.
As a counterpart, isomorphism with a new map becomes quadratic.

Notions of combinatorial maps are introduced in section 2. Section 3 presents
an algorithm for labelling maps. Two signatures for connected maps are defined
in section 4 and section 5. These signatures are extended to non connected maps
in section 6. Finally, we experimentally evaluate our work in section 7.

2 Recalls on Combinatorial Maps

Definition 1 (Combinatorial map [12]). An nD combinatorial map, (or n-
map) is defined by a tuple M = (D,β1, . . . , βn) where

– D is a finite set of darts;
– β1 is a permutation on D, i.e., a one-to-one mapping from D to D;
– ∀ 2 ≤ i ≤ n, βi is an involution on D, i.e., a one-to-one mapping from D to

D such that βi = β−1

i ;
– ∀ 1 ≤ i ≤ n − 2, ∀ i + 2 ≤ j ≤ n, βi ◦ βj is an involution on D.

We note β0 for β−1

1 . Two darts i and j such that i = βk(j) are said to be
k-sewn. Fig. 1 gives an example of a 2D combinatorial map.

In some cases, it may be useful to allow some βi to be partially defined, thus
leading to open combinatorial maps. The basic idea is to add a new element ǫ to

Signatures of Combinatorial Maps 3

f

a

b

d

g

c e

a b c d e f g

β1 b c d a f g e
β2 ǫ ǫ e ǫ c ǫ ǫ

Fig. 2. Open combinatorial map example. Darts a, b, d, f and g are not 2-sewn.

the set of darts, and to allow darts to be i-sewn with ǫ. By definition, ∀0 ≤ i ≤ n,
βi(ǫ) = ǫ. Fig. 2 gives an example of open map (see [14] for precise definitions).

Lienhardt has defined isomorphism between two combinatorial maps as fol-
lows.

Definition 2 (Map isomorphism [13]). Two maps M = (D,β1, . . . , βn)
and M ′ = (D′, β′

1, . . . , β
′
n) are isomorphic if there exists a one-to-one mapping

f : D → D′, called isomorphism function, such that ∀d ∈ D,∀i, 1 ≤ i ≤ n

f(βi(d)) = β′
i(f(d)).

This definition has been extended to open maps in [6] by adding that f(ǫ) = ǫ,
thus enforcing that, when a dart is i-sewn with ǫ, then the dart matched to it
by f is i-sewn with ǫ.

Finally, Def. 3 states that a map is connected if there is a path of sewn darts
between every pair of darts.

Definition 3 (Connected map). A combinatorial map M = (D,β1, . . . , βn)
is connected if ∀d ∈ D,∀d′ ∈ D, there exists a path (d1, . . . , dk) such that d1 = d,
dk = d′ and ∀1 ≤ i < k,∃ji ∈ {0, . . . , n}, di+1 = βji

(di).

3 Map Labelling

Our signatures are based on map labellings, which associate a different label
with every different dart. By definition, the label associated with ǫ is 0.

Definition 4 (Labelling). Given a map M = (D,β1, . . . , βn) a labelling of M

is a bijective function l : D ∪ {ǫ} → {0, . . . , |D|} such that l(ǫ) = 0.

Example 1. l = {ǫ : 0, a : 3, b : 1, c : 5 , d : 7, e : 2, f : 6, g : 4} is a labelling of
the map displayed in Fig. 2.

One may compute a labelling of a map by performing a map traversal and
labelling darts with respect to the order of their discovery. Different labellings
may be computed, depending on (i) the initial dart from which the traversal is
started, (ii) the strategy used for memorizing the darts that have been discovered
but that have not yet been used to discover new darts (e.g., FIFO or LIFO), and
(iii) the order in which the βi functions are used to discover new darts.

We define below the labelling corresponding to a breadth first traversal of a
map where βi functions are used in increasing order.

4 S. Gosselin et al.

Algorithm 1: BFL(M,d)

Input: an open connected map M = (D, β1, . . . , βn), and a dart d ∈ D

Output: a labelling l : D ∪ {ǫ} → {0, . . . , |D|}
for each d′ ∈ D do l(d′)← −11

l(ǫ)← 02

let Q be an empty queue3

add d at the end of Q4

l(d)← 15

nextLabel ← 26

while Q is not empty do7

remove d′ from the head of Q8

for i in 0 . . . n do9

if l(βi(d
′)) = −1 then10

l(βi(d
′))← nextLabel11

nextLabel ← nextLabel + 112

add βi(d
′) at the end of Q13

return l14

Definition 5 (Breadth first labelling (BFL)). Given a connected map M =
(D,β1, . . . , βn) and a dart d ∈ D the breadth first labelling associated with (M, d)
is the labelling returned by the function BFL(M, d) described in algorithm 1.

Example 2. The breadth first labellings associated with the map of Fig. 2 for
darts a and e respectively are

BFL(M, a) = {ǫ : 0, a : 1, b : 3, c : 4, d : 2, e : 5, f : 7, g : 6}
BFL(M, e) = {ǫ : 0, a : 7, b : 5, c : 4, d : 6, e : 1, f : 3, g : 2}

Proposition 1. Algorithm 1 returns a labelling.

Proof.

– l(ǫ) is set to 0 in line 2.
– ∀d, d′ ∈ D, d 6= d′ ⇒ l(d) 6= l(d′). Indeed, each time a label is assigned to a

dart (line 11), nextLabel is incremented (line 12).
– ∀d ∈ D, 1 ≤ l(d) ≤ |D|. Indeed, each dart enters exactly once in the queue

because (i) the map is connected and (ii) a dart enters the queue only if it
has not yet been labelled, and it is labelled just before entering it. ⊓⊔

Proposition 2. The time complexity of algorithm 1 is O(n · |D|)

Proof. The while loop (line 7-13) is iterated |D| times as (i) exactly one dart d

is removed from the queue at each iteration; and (ii) each dart d ∈ D enters the
queue exactly once. The for loop (lines 9-13) is iterated n + 1 times. ⊓⊔

Signatures of Combinatorial Maps 5

Given a map M and a labelling l, one may describe M (i.e., its functions β1

to βn) by a sequence of labels of l. The idea is to first list the n labels of the n

darts which are i-sewn with the dart labelled by 1 (i.e., l(β1(1)), . . . , l(βn(1))),
and then by 2 (i.e., l(β1(2)), . . . , l(βn(2))), etc. More formally, we define the
word associated with a map and a labelling as follows.

Definition 6 (Word). Given a connected map M = (D,β1, . . . , βn) and a la-
belling l : D ∪ {ǫ} → {0, . . . , |D|} the word associated with (M, l) is the sequence

W (M, l) =< w1, . . . , wn·|D| >

such that ∀i ∈ {1, . . . , n}, ∀k ∈ {1, . . . , |D|}, wi·k = l(βi(dk)) where dk is the
dart labelled with k, i.e., dk = l−1(k).

Algorithm. Given a map M = (D,β1, . . . , βn) and a labelling l, the word W (M, l)
is computed by considering every dart of D in increasing label order and enu-
merating the labels of its n i-sewn darts. This is done in O(n · |D|).

Notation. The word associated with the breadth first labelling of a map M ,
starting from a dart d, is denoted by WBFL(M,d), i.e.,

WBFL(M,d) = W (M,BFL(M,d))

Example 3. The words associated with the map of Fig. 2 for the two labellings
of example 2 respectively are

WBFL(M,a) =< 3, 0, 1, 0, 4, 0, 2, 5, 7, 4, 5, 0, 6, 0 >

WBFL(M, e) =< 3, 4, 1, 0, 2, 0, 6, 1, 4, 0, 7, 0, 5, 0 >

The key point which allows us to use words for building signatures is that
two maps are isomorphic if and only if they share a word for a breadth first
labelling, as stated in theorem 1.

Theorem 1. Two connected maps M = (D,β1, . . . , βn) and M ′ = (D′, β′
1, . . . , β

′
n)

are isomorphic iff there exist d ∈ D and d′ ∈ D′ such that WBFL(M, d) =
WBFL(M ′, d′)

Proof. ⇒ Let us first consider two isomorphic maps M = (D,β1, . . . , βn) and
M ′ = (D′, β′

1, . . . , β′
n), and let us show that there exist two darts d and d′ such

that WBFL(M,d) = WBFL(M ′, d′). If M and M ′ are isomorphic then there
exists f : D → D′ such that ∀d ∈ D,∀i ∈ {1, . . . , n}, f(βi(d)) = β′

i(f(d)).
Let d1 be a dart of D, and let us note l (resp. l′) the labellings returned by
BFL(M,d1) (resp. BFL(M ′, f(d1))). Claim 1: l and l′ are such that ∀di ∈
D, l(di) = l′(f(di)). This is true for the initial dart d1 as both d1 and f(d1) are
labelled with 1 at the beginning of each traversal. This is true for every other
dart di ∈ D as the traversals of M and M ′ performed by BFL are completely
determined by the fact that (i) they consider the same FIFO strategy to select
the next labelled dart which will be used to discover new darts and (ii) they

6 S. Gosselin et al.

use the βi functions in the same order to discover new darts from a selected
labelled dart. Claim 2: ∀k ∈ {1, . . . , |D|}, f(l−1(k)) = l′−1(k). This is a direct
consequence of Claim 1. Conclusion: ∀i ∈ {1, . . . , n},∀k ∈ {1, . . . , |D|}, the i.kth

element of WBFL(M, d1) is equal to the i.kth element of W ′
BFL(M ′, f(d1)), i.e.,

l(βi(l
−1(k))) = l′(β′

i(l
′−1(k))). Indeed,

l(βi(l
−1(k))) = l′(f(βi(l

−1(k)))) (because of Claim 1)

= l′(β′
i(f(l−1(k)))) (because f is an isomorphism function)

= l′(β′
i(l

′−1(k))) (because of Claim 2)

⇐ Let us now consider two maps M = (D,β1, . . . , βn) and M ′ = (D′, β′
1, . . . , β

′
n)

and two darts d and d′ such that WBFL(M,d) = WBFL(M ′, d′), and let us
show that M and M ′ are isomorphic. Let us note l (resp. l′) the labellings
returned by BFL(M, d) (resp. BFL(M ′, d′)), and let us define the function
f : D → D′ which matches darts with same labels, i.e., ∀dj ∈ D, f(dj) =
l′−1(l(dk)). Note that this implies as well that l(dj) = l′(f(dj)). Claim 3: ∀i ∈
{1, . . . , n},∀k ∈ {1, . . . , |D|}, l(βi(l

−1(k))) = l′(β′
i(l

′−1(k))). This comes from
the fact that WBFL(M,d) = WBFL(M ′, d′) so that the i.kth element of WBFL(M,d1)
is equal to the i.kth element of W ′

BFL(M ′, f(d1)). Conclusion: ∀i ∈ {1, . . . , n},∀dj ∈
D,

f(βi(dj)) = l′−1(l(βi(dj))) (by definition of f)

= l′−1(l′(β′
i(l

′−1(l(dj))))) (because of Claim 3)

= β′
i(l

′−1(l(dj))) (by simplification)

= β′
i(l

′−1(l′(f(dj)))) (by definition of f)

= β′
i(f(dj)) (by simplification)

Hence, f is an isomorphism function and M and M ′ are isomorphic. ⊓⊔

4 Set Signature of a Connected Map

A map is characterized by the set of words associated with all possible breadth
first labellings. This set defines a signature.

Definition 7 (Set Signature). Given a map M = (D,β1, . . . , βn) the Set
Signature associated with M is SS(M) = {WBFL(M,d)|d ∈ D}

Algorithm. SS(M) is built by performing WBFL(M, d) for each d ∈ D and col-
lecting all different returned words in SS(M). Hence, the overall time complexity
is O(n · |D|2).

Theorem 2. SS(M) is a signature, i.e., two connected maps M and M ′ are
isomorphic if and only if SS(M) = SS(M ′)

Signatures of Combinatorial Maps 7

Fig. 3. Lexicographical tree of the set signature of the map of Fig. 2.

Proof. ⇒ Let us consider two isomorphic maps M = (D,β1, . . . , βn) and M ′ =
(D′, β′

1, . . . , β
′
n), and let us show that SS(M) = SS(M ′). This is a direct con-

sequence of theorem 1, where we have shown that given an isomorphism func-
tion f between M and M ′ we have, for every dart d ∈ D, WBFL(M, d) =
WBFL(M ′, f(d)). Hence, every word of SS(M), computed from any dart of D,
necessary belongs to SS(M ′) (and conversely).

⇐ Let us consider two maps M = (D,β1, . . . , βn) and M ′ = (D′, β′
1, . . . , β

′
n)

such that SS(M) = SS(M ′), and let us show that M and M ′ are isomorphic.
Indeed, there exist two words W ∈ SS(M) and W ′ ∈ SS(M ′) such that W =
W ′, thus M and M ′ are isomorphic due to theorem 1. ⊓⊔

Note that a direct consequence of theorem 1 and theorem 2 is that for two
non isomorphic maps M and M ′, SS(M) ∩ SS(M ′) = ∅.

Property 1. The space complexity of the set signature of a map is O(n · |D|2).

Proof. The set signature contains at most |D| words (it may contains less than
|D| words in case of automorphisms). Each word contains exactly n · |D| labels.

Lexicographical tree. The set signature of a map may be represented by a lexi-
cographical tree which groups common prefixes of words. For example, the lexi-
cographical tree of the set signature of the map displayed in Fig. 2 is displayed
in Fig. 3.

Property 2. Given a map M = (D,β1, . . . , βn) and the lexicographical tree of
the set signature SS(M ′) of another map M ′, one determine the isomorphism
between M and M ′ in O(n · |D|).

8 S. Gosselin et al.

Proof. To decide of the isomorphism, one has to build a breadth first labelling,
starting from any dart of d ∈ D, and check if WBFL(M,d) is a branch of the
lexicographical tree. Note that a node of the tree may have more than one son
but, as the number of branches of the tree is bounded by the number of darts,
deciding if a breadth first labelling corresponds to a branch of the tree may be
done in linear time. ⊓⊔

5 Word Signature of a Connected Map

The lexicographical order is a strict total order on a set signature, and we have
shown that if two set signatures share one word, then they are equal. Hence, one
may define a map signature by considering the smallest word of the set signature.

Definition 8 (Word Signature). Given a map M , the Word Signature of M

is, WS(M) = w ∈ SS(M) such that ∀w′ ∈ SS(M), w ≤ w′.

Example 4. The word signature of the map displayed in Fig. 2 is

WS(M) =< 3, 0, 1, 0, 2, 4, 6, 3, 4, 0, 7, 0, 5, 0 >

Property 3. The space complexity of a word signature is O(n · |D|).

Algorithm. The word signature of a map M is built by calling WBFL(M,d)
for each dart d ∈ D, and keeping the smallest returned word with respect to
the lexicographical order. The time complexity for computing the word signa-
ture is O(n · |D|2). Note that this process may be improved (without changing
the worst case complexity) by incrementally comparing the word in construc-
tion with the current smallest word and stopping the construction as soon as it
becomes greater.

Property 4. Given a map M = (D,β1, . . . , βn) and the word signature WS(M ′)
of another map M ′, one determine the isomorphism between M and M ′ in
O(n · |D|2).

Proof. To decide of the isomorphism, one has to build breadth first labellings,
starting from every different dart of d ∈ D, and check if WBFL(M,d) = WS(M ′).
In the worst case, one has to build |D| labellings so that the overall time com-
plexity is in O(n · |D|2). ⊓⊔

6 Signatures of Non Connected Maps

When a map is not connected, it may be decomposed in a set of disjoint con-
nected maps in linear time with respect to the number of darts by performing
successive map traversals until all darts have been discovered. The signature
of a non connected map is built from the signatures of its different connected
components.

Signatures of Combinatorial Maps 9

Fig. 4. Example of non connected map and its Set Signature.

Word signature. To build a signature from the word signatures of the connected
components, we sort the signatures by lexicographical order to obtain a list of
words.

Set signature. To build a signature from the set signatures of the connected
components, we merge the lexicographical trees as displayed in Fig. 4. Each
node in the merged tree corresponding to a leaf in the tree of the ith connected
component is labelled by i. Note that a node in the merged tree may have
several labels as some connected components may be isomorphic. Note also that
labelled nodes in the merged tree may be internal nodes as a branch of the tree
of a connected component may be a prefix of the branch of another tree. To
decide isomorphism between a non connected map and a Set Signature, we have
to compute a breadth first labelling of each connected component starting from
any dart, and check that each corresponding word ends in a node of the merged
tree which is labelled by a different connected component.

7 Experiments

Using map signatures to search images. Maps may be extracted from segmented
images by using the linear algorithm described in [5]. We obtain the same map
whatever we submit the image to a rotation or a scale-up. Hence, map signatures
may be used to identify images even if they have been rotated or scaled-up.
Table 1 shows 5 images and gives the number of darts and faces of maps extracted
from these images, and then gives the CPU time needed to compute set and word
signatures.

Image

Darts 3410 6060 1728 4224 1590

Faces 590 1044 295 716 275

SS(M) 0.83 2.21 0.26 1.14 0.26

WS(M) 0.26 0.53 0.15 0.32 0.16
Table 1. From images to signatures: the first line displays images, the next two lines
give the number of darts and faces in the corresponding maps; the last two lines give
the CPU time in seconds for computing the set and word signatures of these maps.

10 S. Gosselin et al.

Set Signature Word Signature

Time Visited darts
|D|

Time Visited darts
|D|

|D| avg avg (sdv) avg avg (sdv)

1000 0.054 1000 (0) 0.047 19.48 (3.24)

2000 0.228 2000 (0) 0.084 19.27 (3.71)

4000 1.056 4000 (0) 0.262 23.78 (5.31)

8000 4.088 8000 (0) 0.352 26.91 (4.88)

Table 2. Comparison of time complexities for computing set and word signatures
of a map. Each line successively gives the number of darts |D| of the map and, for
each signature, the CPU time (in seconds) and the ratio between the number of visited
darts and |D|. We give average results (and standard deviations) obtained with different
initial darts.

Scale-up properties of signature constructions. To compare scale-up properties
of set and word signatures, we have performed experiments on randomly gen-
erated maps with exponentially growing sizes (with 1000, 2000, 4000 and 8000
darts). Table 2 first compares time complexities for constructing set and word
signatures. To build the set signature, one has to perform a complete breadth
first traversal for each dart so that the total number of visited darts is always
equal to |D|2 and the time complexity does not depend on the initial dart cho-
sen to start the traversal. To build a word signature, one also has to perform a
breadth first traversal for each dart but each traversal may be stopped as soon
as the corresponding word is greater than the smallest word computed so far.
Hence, if the worst case complexity is quadratic, Table 2 shows that the CPU
time needed to compute a word signature is sub quadratic in practice. Indeed,
the average number of darts visited for each traversal varies from 19.48 for the
map with 1000 darts to 26.91 for the map with 8000 darts. Note that, if the
number of visited darts actually depends on the order in which initial darts are
chosen, standard deviations are rather low.

Scale-up properties of isomorphism. We now compare set and word signatures for
deciding if a new map M ′ is isomorphic to a map M described by its signature.

When using the set signature SS(M), the worst case complexity is O(n · |D|).
Table 3 shows that, when M ′ and M are isomorphic (when the percentage of
different darts is 0%), the algorithm visits each dart exactly once. However,
when M and M ′ are not isomorphic, the breadth first traversal of M ′ may be
stopped as soon as no branch of the lexicographical tree matches the word under
construction. Table 3 shows that the more different M and M ′, the smaller the
number of visited darts.

When using the word signature WS(M), the worst case complexity is O(n ·
|D|2) as one has to perform a breadth first traversal starting from every dart of
M ′. However, one may stop each breadth first traversal as soon as the word under
construction is different from the signature. Hence, Table 3 shows that the more
different M and M ′, the smaller the number of visited darts. In practice, each

Signatures of Combinatorial Maps 11

Set Signature Word Signature

|D| Time Visited darts
|D|

Time Visited darts
|D|

avg avg (sdv) avg avg (sdv)

1
0
0
0

0% 0.000099 1.000 (0.000) 0.035 2.13 (0.64)
1% 0.000091 0.298 (0.214) 0.060 3.71 (1.48)

10% 0.000086 0.026 (0.021) 0.059 3.41 (1.34)
50% 0.000072 0.015 (0.006) 0.056 1.88 (1.19)
99% 0.000068 0.011 (0.004) 0.050 1.59 (0.90)

2
0
0
0

0% 0.000215 1.000 (0.000) 0.084 2.59 (1.47)
1% 0.000161 0.069 (0.081) 0.095 3.08 (1.79)

10% 0.000130 0.019 (0.032) 0.076 2.92 (1.76)
50% 0.000098 0.006 (0.005) 0.073 1.77 (1.40)
99% 0.000097 0.006 (0.003) 0.069 1.38 (0.83)

4
0
0
0

0% 0.000341 1.000 (0.000) 0.262 2.46 (1.30)
1% 0.000292 0.015 (0.037) 0.434 3.09 (1.89)

10% 0.000222 0.005 (0.005) 0.329 2.57 (1.81)
50% 0.000178 0.005 (0.006) 0.286 2.03 (1.41)
99% 0.000164 0.005 (0.003) 0.273 1.43 (0.85)

8
0
0
0

0% 0.000697 1.000 (0.000) 0.352 2.23 (1.04)
1% 0.000556 0.032 (0.178) 1.451 3.11 (1.86)

10% 0.000439 0.003 (0.009) 1.343 3.05 (1.81)
50% 0.000296 0.002 (0.003) 1.042 2.44 (1.25)
99% 0.000353 0.003 (0.003) 0.993 1.53 (1.02)

Table 3. Comparison of scale-up properties of set and word signatures for deciding if
a new map M ′ is isomorphic to a map M given the signature of M . M and M ′ have
the same number of darts, but M ′ is obtained from M by removing and then adding
a given percentage of darts. When this percentage is 0%, M and M ′ are isomorphic.
Each line successively gives: the number of darts of M , the percentage of different
darts between M and M ′, and, for each signature, the time and the ratio between the
number of visited darts and the number of darts of M . We give average results (and
standard deviations) obtained when changing the initial dart of M ′.

dart is visited between 2 to 4 times. Interestingly, this ratio does not significantly
vary when increasing the size of the map.

8 Conclusion

In this paper, we have defined two signatures of combinatorial maps, corre-
sponding to canonical representations of n-dimensional combinatorial map. The
memory complexity of the first signature is quadratic, but allows one to decide
isomorphism in linear time in worst case and faster in average time. The memory
complexity of the second signature is linear, but the complexity of the algorithm
to decide isomorphism is quadratic in worst case and linear in average case.

12 S. Gosselin et al.

The results of our experiments show that the signatures can be used to
characterize images. This method is resistant to rotation and scale up. Moreover,
both signatures can be used to find a map in a database. The Set Signature is
faster but the size of the maps can be limited due to the memory size required to
store the lexicographical trees. The Word Signature solves the memory problem,
but the query’s runtime is longer. We need to make several experiments in order
to find the good compromise depending on the needs of the applications.

Now, we plan to use these signatures to compute a similarity measure between
two combinatorial maps. In order to do that, we have to modify the signature so
that it becomes error-tolerant. In further works, we will use those signatures to
search frequent submaps in a database of maps. Our objective is to apply such
method to chemical compound or to images to make a classification.

References

1. J.-P. Braquelaire and L. Brun. Image segmentation with topological maps and
inter-pixel representation. 9(1):62–79, march 1998.

2. E. Brisson. Representing geometric structures in d dimensions: topology and order.
In Proc. 5th Annual ACM Symposium on Computational Geometry, pages 218–227,
Saarbrücken, Germany, 1989.

3. R. Cori. Un code pour les graphes planaires et ses applications. In Astérisque,
volume 27. Soc. Math. de France, Paris, France, 1975.

4. G. Damiand. Topological model for 3d image representation: Definition and
incremental extraction algorithm. Computer Vision and Image Understanding,
109(3):260–289, March 2008.

5. G. Damiand, Y. Bertrand, and C. Fiorio. Topological model for two-dimensional
image representation: definition and optimal extraction algorithm. Computer Vi-
sion and Image Understanding, 93(2):111–154, February 2004.

6. Guillaume Damiand, Colin De La Higuera, Jean-Christophe Janodet, Emilie
Samuel, and Christine Solnon. Polynomial Algorithm for Submap Isomorphism:
Application to searching patterns in images. In Graph-based Representation for
Pattern Recognition (GbR), LNCS, pages 102–112. Springer, May 2009.

7. J. Edmonds. A combinatorial representation for polyhedral surfaces. Notices of
the American Mathematical Society, 7, 1960.

8. T. Horvath, J. Ramon, and S. Wrobel. Frequent subgraph mining in outerplanar
graphs. In KDD 2006, pages 197–206, 2006.

9. A. Jacques. Constellations et graphes topologiques. In Combinatorial Theory and
Applications, volume 2, pages 657–673, 1970.

10. X. Jiang and H. Bunke. Optimal quadratic-time isomorphism of ordered graphs.
Pattern Recognition, 32(7):1273–1283, 1999.

11. P. Lienhardt. Subdivision of n-dimensional spaces and n-dimensional generalized
maps. In Proc. 5th Annual ACM Symposium on Computational Geometry, pages
228–236, Saarbrücken, Germany, 1989.

12. P. Lienhardt. Topological models for boundary representation: a comparison with
n-dimensional generalized maps. Computer-Aided Design, 23(1):59–82, 1991.

13. P. Lienhardt. N-dimensional generalized combinatorial maps and cellular quasi-
manifolds. International Journal of Computational Geometry and Applications,
4(3):275–324, 1994.

Signatures of Combinatorial Maps 13

14. M. Poudret, A. Arnould, Y. Bertrand, and P. Lienhardt. Cartes combinatoires
ouvertes. Research Notes 2007-1, Laboratoire SIC E.A. 4103, F-86962 Futuroscope
Cedex - France, October 2007.

15. A. Rosenfeld. Adjacency in digital pictures. Information and Control, 26(1):24–33,
1974.

16. W.T. Tutte. A census of planar maps. Canad. J. Math., 15:249–271, 1963.

