
HAL Id: hal-00457219
https://hal.science/hal-00457219v1

Submitted on 16 Feb 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

JavaCompExt: Extracting Architectural Elements from
Java Source Code

Pascal André, Nicolas Anquetil, Gilles Ardourel, Jean-Claude Royer, Petr
Hnetynka, Tomás Poch, Dragos Petrascu, Vladiela Petrascu

To cite this version:
Pascal André, Nicolas Anquetil, Gilles Ardourel, Jean-Claude Royer, Petr Hnetynka, et al.. JavaCom-
pExt: Extracting Architectural Elements from Java Source Code. WCRE, Oct 2009, Lille, France.
pp.317-318, �10.1109/WCRE.2009.53�. �hal-00457219�

https://hal.science/hal-00457219v1
https://hal.archives-ouvertes.fr


Component types and communication channels recovery from Java source code

Pascal André, Nicolas Anquetil, Gilles Ardourel, Jean-Claude Royer
LINA - EMN / University of Nantes, France

Email:(pascal.andre,gilles.ardourel)@univ-nantes.fr

Petr Hnětynka, Tomáš Poch
DSRG - Charles University, Prague, Czech Republic

Email: (hnetynka,poch)@dsrg.mff.cuni.cz

Dragoş Petraşcu and Vladiela Petraşcu
LCI - Babeş-Bolyai University, Cluj-Napoca, Romania

Email: (vladi,petrascu)@cs.ubbcluj.ro

Abstract

Software architecture erosion is a general problem in
legacy software. Because they don’t know or don’t un-
derstand the original architectural intent, maintainers in-
troduce changes that violate the intended architecture and
properties. To fight this trend, component models and lan-
guages are designed to try to make explicit, and automat-
ically enforceable, the architectural decisions in terms of
components, interfaces, and allowed communication chan-
nels between component interfaces. But, what about ex-
isting systems written in traditional (e.g. object-oriented)
languages? To help maintainers work on such systems,
we explore the possibility of extracting architectural ele-
ments (components, communications, services, . . . ) from
the source code. Some extraction heuristics are proposed
and experimented on several implementations of a non-
trivial system.

1 Introduction

Architectural erosion is the process by which a system’s
architecture gradually degrade as maintainers make changes
to the system that violates the original architectural intents.
This happens because maintainers are not aware of these
intents or do not completely understand the system. The
result is that the system becomes gradually more difficult
to maintain as communication channels (e.g. method calls)
are established among all parts of the system. It becomes
difficult to make any significant change without having to
change many parts, apparently unrelated to the issue.

To fight this trend, new languages and development

methods are proposed that make explicit some architectural
decisions in the source code (for the benefit of the program-
mers) and allow automatic verification and enforcement of
these decisions, either at compile or execution time. For
example, initiatives like ArchJava [?] extend the Java lan-
guage with architectural component types, in and out ports
on the components, that allow to establish explicit connec-
tions between the components, . . . One interesting property
is to be able to statically check communication integrity [?]
that is to say, ensure that implemented components do not
communicate between themselves in ways that would vio-
late the intended control flow rules of the architecture.

In [?], Abi-Antoun et al. report their experience in man-
ually re-engineering a conventional Java legacy system into
a system with explicit definition of architectural compo-
nents and allowed communication between them. Other
worthwhile, but less ambitious, objectives could be: to help
matching a concrete implementation to an abstract specifi-
cation; or to help prolongating the life of the architecture
by making explicit the components it contains, the commu-
nication between them, the provided and required services,
etc.

As always in reverse engineering, one cannot expect a
“random” application to follow strict development patterns,
for example with clear separation of communications, data
types, components types, etc. In this paper we assume an
intermediary position, where we suppose that an applica-
tion was developed with componentization in mind, but not
necessarily with the required rigor. This would be the case
for example, when one designs an architectural model, with
proper specification of components and allowed communi-
cations, but implement the application with typical indus-
trial approaches such as CCM, EJB, or OSGI that focus on



the runtime infrastructure, but provide little support for au-
tomatic verification of properties.

We explore the possibilities of automatic reverse-
engineering of such an application toward a more formal
model by extracting the component types it contains and
making explicit the communication channels between them.

The paper is organized as follows. Section 2 gives the
context of the project and a more formal definition of our
goals. We then present our method to extract components
from source code (Section 3). In Section 4, we present ex-
perimentation of our tool on Java applications and its re-
sults. We present the related work in Section 5 before con-
cluding the paper and discussing future work.

2 Project

2.1 CBSE

Component Based Software Engineering (CBSE) tries
to improve software development practice by proposing
a development model where systems are assembled from
components rather than programmed from scratch. CBSE
claims to reduce development costs and improve the relia-
bility of the resulting system. We will propose here a basic
and generic definition of the main CBSE elements. There
are many proposed models that implement these elements
in specific ways, and add others (e.g. the notion of ports).
We will not enter into these specificities.

In CBSE, systems are built from reusable software
components, offering or requiring services, and with well
defined communication channels between them. Bosch,
Szyperski and Weck [?] propose the following definition
of components: “A software component is a unit of com-
position with contractually specified interfaces and explicit
context dependencies only. A software component can be
deployed independently and is subject to composition by
third parties.” This implies that:

• A software component is a unit, that is to say it is can-
not be divided and it is self contained (except for its
declared required interface);

• it specifies an interface (or interfaces) of services it can
provide, and it is bound by contract to implement at
least this (these) interface(s);

• it specifies context dependencies, that is to say services
it requires to work properly, its context dependencies
are limited to, at most, this specification.

• it may be part of a larger composite component.

The specification of the provided and required services
make up the interface of the component. Typically, a ser-
vice will be implemented by a routine or a method accessi-
ble from outside the component. These properties make any

component substitutable by other components that provide
the same services.

Note that this definition of component differs from the
usual definition used in reverse engineering and component
recovery. Koschke [?], for example, defines components
as one of: Abstract Data Object, a group of global vari-
ables and constants together with the routines that access
them; Abstract data type, an abstraction of a data structure
(a user-defined type) and all the type’s valid operations on
that data structure; Hybrid Component, an abstract data type
that uses global variables to save state information, Set of
related routines, a set of routines that together perform a
logical functions, that is, have functional cohesion.

In comparison with the former definition, this one do ac-
knowledge the fact that they are units, but it only focuses
on the structure of the components in terms of atomic data
(variable) and atomic services (routines), whereas the for-
mer definition allows to compose composite components
from existing ones. However, the services provided are not
explicitly specified, and there is no mention of the services
required. This problem was also identified by Chouambe
et al. [?]. In this paper we will use the first definition of
components.

Concomitant to CBSE is the notion of component based
architecture. A component based architecture formerly de-
fines how components will be composed to form the system.
It includes the specification of the components and their in-
terface (provided and required services), and the commu-
nication channels between them, that is to say from what
other components a component may require services (and
which one), and to what other components it may provide
services (and which one). Two components can commu-
nicate only if a communication channel has been formerly
defined between them. This is one of the strength of the
approach that allows to explicitly specify and automatically
check some of the architectural decisions, thus actively lim-
iting the chances of architecture drift. Allowed communica-
tions depend on the structure of the components: commu-
nications are allowed between a component and its parent
(composite) component or between two siblings (subcom-
ponents of the same composite component).

2.2 Project Overview

If component architecture models and languages allow
to specify communication between components and check
it statistically, they seem to have yet a limited impact on
the practice. On the contrary, industrial approaches such
as CCM, EJB, or OSGI focus on the implementation, they
have strong and mature runtime infrastructure, but provide
little support for automatic verification of the correctness of
components’ usage. As a result, applications often define
flat component structure that do not allow checking the in-

2



tegrity of communication for example. Applications may
be formally specified with an “academic” model but then
implemented with the industrial approach. This leads to a
mismatch between component specification and component
implementation, where changes may happen on one level
that would not be made on the other. This gap is called
architecture erosion [?].

Our research takes place within the broader context of
the Econet international project1 which aims at establishing
a link between component implementation — that could be
called the concrete model — and component specifications
— that could be called the abstract model. The concrete
model can be any object-oriented application but we cur-
rently work with Java applications. There are a number
of possible abstract models, in this paper we will assume
a generic position with as little commitment as possible to
any particular proposition.

This research contributes to a more general framework
that the Econet project tries to establish:

• A common component meta-model that addresses both
the problem of handling several specific component
models (e.g. SOFA [?], Kmelia [?], KADL [?], FRAC-
TAL [?]) in a generic way and the problem of linking
abstract models and concrete code. The meta-model
also provides the data structure to store the traceability
links between models and code, and a set of rules to
check the abstract models well-formedness.

• The structure abstraction tool (the research reported in
this paper) extracts and infers architectural and typing
features from source code. It is designed as an iterative
and rule-based process.

• The behavioral abstraction tool extracts a specification
of the dynamic behavior of the components identified
during the structure abstraction process. It also works
from static analysis of the source code.

The general approach envisioned in the Econet project is
that of a tool box used in an iterative and interactive pro-
cess. Each iteration applies one of the abstraction tools (the
two described above or others) to the (possibly annotated)
source code and produce the same source code with new an-
notations. The idea is to combine primitive transformations
in a customized human driven process. Examples of primi-
tive transformations are: annotate a Java program from user
information, build a component model from a plain or an
annotated Java source, analyze a distributed program to de-
tect components (deployment), analyze dependencies us-
ing graph tools and extract clusters, extract behaviors from
communications between components, . . .

1Nr 16293RG, www.lina.sciences.univ-nantes.fr
/coloss/wiki/doku.php?id=econet:materials

As already stated, this paper focuses on one basic tool
of the framework: recovering components and communica-
tions from a plain Java application. The input is a (possibly
annotated) Java source code, and the output is a set of com-
ponents with several kind of relations between them (com-
munications, links, inheritance) and a set of data types.

3 Component and Communication Abstrac-
tion from Source Code

A full component based architectural model can include:
Components, required and provided services of the com-
ponents, composition structure of the components (com-
posite components and sub-components), communication
channels between components, and data circulating on the
communication channels. All these informations are not
independent, the composition structure of the components
limits the possible communication channels, data circulat-
ing depend on the needs of the services, . . . We will discuss
some heuristics to extract most of these informations in sec-
tion 3.2. Before that, we set some hypotheses we made on
the analyzed code.

3.1 Working hypothesis

We are currently working on Java code, but our hypothe-
ses could apply to any Object-Oriented language. Compo-
nent types are created from the classes and Java interfaces
of the system, we do not group variables, routines or ob-
ject to create components as traditional component recov-
ery would do (e.g. see [?]). Classes and Java interfaces are
called types of interest. A type of interest may be either a
component type or a data type.

We pay more attention to the components because they
are semantically richer from an architectural point of view:
they have provided and required interfaces, they commu-
nicate, etc. We made the decision to favor precision of
components over recall, this means, we prefer recover fewer
components, with lower probability of false positive, rather
than trying to extract “all” components at the cost of having
many false positive. Therefore, we use strict rules for com-
ponents. The idea is that the iterative nature of the process
(see Section 2) may allow to extract more components.

In this paper, we work with systems that were designed
with componentization in mind (see Section 4.1). A “ran-
dom” application may not offer the notion of a compo-
nent (as defined in Section 2.1) without heavy restructuring.
However, note that other used the same rule (see [?]), and
that even in this case, our tool present interest as explained
in Section 2.2.

3



3.2 Heuristics for recovering component
types and communications

Components:

1-a) If a type of interest is passed as parameter of a method
or returned by a method it is considered a data type,
otherwise it is considered a component type.
The idea is that static checking of communication in-
tegrity is possible only when all uses of a component
are explicit (as opposed to accessing the component
through a pointer). This is a standard assumption in
CBSE (e.g. [?], [?]).

1-b) Exception to heuristic 1-a): component may be passed
to or returned by constructor.
This is often necessary to allow building composite
components.

1-c) A sub-type of a data type is considered a data type.
This follows from heuristic 1-a), since instances of the
sub-type could be used as parameters using sub-typing
rules.

1-d) “External” types of interest (not defined in the Java
project) are ignored.
We chose to ignore all types of interest not defined
in the Java project (e.g. ignore all external libraries
as java.io.*, or org.eclipse.*). One rea-
son is that we want to extract the provided services
of the components, and their structure. This requires
having access to the source code (the Java reflective
API could help, but we favor a more generic solution).
Also, there are good chances that Object will be
passed as parameter of, or returned by, some method,
turning it into a Data Type (rule 1-a)). This would, in
turn, qualify all types of interest as Data Types (rule
1-c)).
Finally we cannot hope to restructure the entire world
and would like to limit ourselves to the application at
hand.

Composition structure:

2-a) The composition structure of components is extracted
from the fields (component that is part of another com-
ponent).
We choose to consider the maximal structure, that is
collecting the defined attributes and the inherited ones.

Communications:

3-a) There is a communication between two component
types if a method of one component type makes a call
to a method of the other.

Other communications means are possible. For exam-
ple in Java, using the reflective API. We did not con-
sider these cases here as they require more advanced
knowledge of an application to know how communi-
cations are implemented in it.
If the method “returns” void it is a one way commu-
nication, otherwise, it is a two ways if it returns a data
type.

Subtyping:

4-a) Subtyping relationships are computed from the lan-
guage inheritance relationships.
In Java, there are two such relationships: extends
and implements. Component types may inherit
from component types but not data types (see also rule
1-c)). Data type may inherit from data types or com-
ponent types.
Note that CBSE usually makes little use of inheri-
tance. We decided to deal with it because some im-
plementation may use it to represent component types
and their communication interface, for example.

Required/provided services:

5-a) The required services of a component type are those
methods that are called in the component type.

5-b) Provided services are all the publicly available meth-
ods defined in the component type.
In Java, these methods are the public and
default package ones.

3.3 Further considerations

With these rules it is also possible to do some check-
ing of the proper communication channels established. The
boundary analysis checking has the role of identifying the
communications which are not conform to the structure of
the components. In a strict component framework, com-
ponents may communicate directly if they are in the same
scope or boundary of a composite structure. A component
may communicate with its composite component or with
sibling components (see Section 2.1). But the Java code
may not always respect these well-formedness constraints.
By identifying communication channels and structural rela-
tionships between component types, we are able to pinpoint
such anomalies. The correction of the problem would be left
to the user in most cases although some could be performed
automatically, when the communicating components have
an ancestor in common that is not their direct parent.

Java has four notions of nested classes, static member,
inner, local and anonymous. Most of the time these nested

4



classes are used to implement complex things, like simulat-
ing multiple inheritance. However it is theoretically possi-
ble to define some public services using this feature. It may,
therefore, be important to analyze them to get the whole
story. Our plugin is able to analyze nested classes as nor-
mal classes. However because we are not sure how exactly
they could be used in a componentized implementation, we
suggest to ignore them for now until more information is
gathered on the possible uses. There were no inner classes
in the systems we experimented with.

4 Experimentations

The above rules apply under some hypotheses on the
Java code.

We use the Eclipse JDT parser to analyze Java projects.
The program is a source code (binary Java code could be
analyzed in more or less the same way, either directly or af-
ter decompiling). We don’t consider generic types, this is a
main future extension of this work. To relax this restriction
is not easy since Java 1.5 introduces a sophisticated type
system and we have to distinguish generic definition, instan-
tiation of them, their use in fields, inheritance and methods.

Figure 1 illustrates the output produced by our plug-in.
The graph may be dynamically configured to show compo-
nent types and/or data types, structure relationships, and/or
communication relationships, and/or inheritance relation-
ships. Here the graph shows the component types and the
data types, and the structure relationships and communica-
tion relationships.

4.1 The test bed

We experimented our tool on various implementations of
CoCoME. CoCoME2 [?], the Common Component Mod-
eling Example, is a contest set to evaluate and compare
the practical appliance of existing component models and
the corresponding specification techniques using a common
component-based system as modeling example. Based on
a UML-based description of CoCoME, a provided sample
implementation, and test cases, the participating teams had
to elaborate their own modeling of CoCoME, applying their
own component model and description techniques. The ex-
ample describes a Trading System as it can be observed in a
supermarket handling sales. This includes the processes at
a single Cash Desk like scanning products using a Bar Code
Scanner or paying by credit card or cash as well as admin-
istrative tasks like ordering of running out products or gen-
erating reports. CoCoME specifications include a use case
model, detailed specification of use cases (both in textual
form and as sequence diagrams), architectural component
models, a deployment model, or test cases.

2available at http://www.cocome.org/

We used three different instances of CoCoME. Each in-
stance is composed of a meta-model and its implementa-
tion. Except for the first instance, the reference sample
implementation, each instance uses the specificities of the
tool and approach championed by a given team. For lack of
time, many team did not implement the entire solution.

The implementations we used for our experiments are:

Reference: This was the basic sample implementation pro-
vided with the system specifications as a reference. It
does not make use of any specific component technol-
ogy and consist in a Java program designed and im-
plemented manually (no automatic generation). It in-
cludes 5078 LOC, 40 packages, 95 classes, 20 inter-
faces and 375 methods.

The abstract model is that of CoCoME. It is relatively
detailed with components, sequence, or communica-
tion diagrams. However it does not explicitly identify
all the services, and only a few appear in sequence di-
agrams.

rCOS: A solution implemented at the
United Nation University, Macao
(http://wiki.iist.unu.edu/cocome).
It includes 2772 LOC, 28 packages, 58 classes, 0
interfaces and 291 methods.

Oasis: The solution proposed by the Oasis research
team from INRIA Sophia Antipolis, France
(http://www-sop.inria.fr/oasis/
Vercors/Cocome/). As described in [?], this
approach is based on a component model for
distributed components called GCM for Grid Com-
ponent Model, that is an extension of the FRACTAL
Component Model to address Grid concerns. The
implementation is done with the Java middle-ware
ProActive, an extension of Java with active objects
communicating via asynchronous calls and futures.
Code for the composite is automatically generated
from the architectural description. The approach
allow the specification of the dynamic behavior and
from this description the control code is automatically
generated. The user has to provide the code for the
services.

It includes 1770 LOC, 13 packages, 26 classes, 26 in-
terfaces and 194 methods.

These three implementations were chosen for the follow-
ing reasons: The first one is the reference implementation
and it seems natural to consider it. The two others made
their source code and abstract model available on Internet
which was a requisite for our analysis.

5



Figure 1. A screenshot of the result presented by our tool. The dark box are data types, the light
boxes are component types. Plain arrows go from a composite component type to a sub-component
type. Dashed arrows illustrate a communication (i.e. one or more method call), from the caller to
the callee. The width of the dashed arrow depend on the number of services called on this com-
munication channel. A context window (on top of the main window on the right hand side) on the
components show the services it provides and requires. A context window on the communication
shows what services are involved in this communication.

4.2 Results

We will provide and comment some results on our three
experiments in the following. Because numbers are rela-
tively few and small, we chose to present raw results instead
of statistics such as precision and recall. An other issue to
keep in mind is that comparisons are difficult since in dif-
ferent cases, the implemented model (the code) does not
conform exactly to the abstract model (the documentation),
i.e. the abstract model was not implemented as specified. In
such a case, the comparison lead to bad results, not because
of our tool, but because of the gap between specification
and implementation. It is one of the goal of our research to
detect such a gap.

4.2.1 CoCoME Reference

There are 25 components in the abstract model and our tool
extracted 51. After analysis, we found that from these 51,

12 are components in the abstract model, 9 correspond to
communication interfaces (with 9 implementations), 5 are
false positives (3 data events and 2 exceptions), and the 16
others are actual components types not mentioned in the ab-
stract model. Note that the 2 Java exceptions could eas-
ily be identified properly by the tool because they inherit
from the Java class Exception. This could be a future
improvement. Identification of components was made dif-
ficult by the fact that they are implemented with packages.
This made it impossible in general for our tool to recover
them since we don’t analyze packages. However, some of
these packages contain only one Java class that implements
the component. These are the 12 component types from the
abstract model that we could recover.

Nine other component types could have been detected
(they have a corresponding single class) but were not be-
cause of the use of a Factory design pattern. The Factory is
used to create the components and therefore it has methods
returning these components. This goes against rule 1-a) and

6



the tool classified them as data types. We discuss this issue
in Section 4.3.

For the services, it is impossible to know how many there
are in the abstract model because they are not all identified.
The tool found 481 provided services and 321 required ser-
vices. They correspond respectively to all public methods
and all called methods in the application. This is clearly a
problem and we are looking into it (Section 4.3).

Finally 139 communication channels (one-way) lead to
less than 70 links (two-way) while there were 63 manually
identified communication channels in the UML diagrams.
We feel this result is quite acceptable.

On a more qualitative analysis, this is one example where
the mapping between the abstract and concrete models was
made difficult by some design decision: to implement the
components as Java packages. For example, the special
component EventBus of the abstract model is replaced
by the Java Message Service framework, and the database
uses JDBC.

On a positive note, we could detect some design patterns
that were used but not documented. For example, in the
control part (CashDeskLine) the developers often ap-
plied a design pattern to implement the controller compo-
nents of the CashDeskLine. While in the data manage-
ment part (Inventory), others patterns are used.

4.2.2 CoCoME OASIS

The abstract model does not cover the complete case study.
The article [?] only describes in details the architecture of
the CashDesk.

There are 9 components in the abstract model, 1
large composite component type (CashDesk) and 8 sub-
components. There are 60 services identified (60 provided
and 60 required, since, in the abstract model, a service re-
quired by one component type must be provided by an-
other). Our tool found 7 of the nine components although
they did not always had exactly the same name as in the ab-
stract model. The two missing are the large composite com-
ponent type which is not implemented explicitly in the code,
and another component type (logger) that was not imple-
mented either. This last one may have been substituted by
a Monitor component type (note: Monitor is the com-
ponents type part-of 12 other components in the center of
Figure 1).

The plug-in extracted 21 component types (from which
7 were in the abstract model). The others are related to im-
plementing a running application with GUI, DataBase ac-
cess, etc. (e.g. Main, or CommonBus). There are also
components implementing parts of the CoCoME reference
model, but not shown in the OASIS abstract model (e.g.
Inventory). Finally there are also a number of data type
that seem to be additional component types not listed in the

abstract model (data type related to transaction, pin code,
and implementations of components).

We feel there is little to do with the first issue, running
application will presumably always require such utilitari-
ans and it seems a waste of time to model this in a compo-
nent model. For the second issue, we see it as a clue from
our plug-in that the implemented code does not match com-
pletely the abstract model. This was the kind of information
we were looking for.

Because the large composite component type was not
implemented, we had no success in recovering the structure
relationships of the abstract model.

There are 60 services in the abstract model, but only
names are given (no parameters and return type), 53 of these
services were found by the plug-in with complete signature.
Amongst the 13 communication interfaces we found 9. The
remaining 4 interfaces were found but are empty (no ser-
vices in them).

On a more qualitative analysis, the plug-in extracted 13
types of interest implementing interfaces (coherent group of
services) used for communication. Their names are suffixed
by If. When a component type provides or requires an in-
terface, its name is suffixed by ControlIf and EventIf
respectively. The (component) interface itself is imple-
mented as a Java interface.

We could also identify an implementation following the
membrane concept inherited from Fractal [?].

Although we were able to recover most of the ser-
vices listed in the abstract model (53 out of 60), we
found that some of them were relocated. For instance,
BankIf has two services validateCardReq and
validateCardResp but the implementation has only
one validateCard(CreditCardScanned, Pin)
-> Transaction. This service implements both of the
services listed in the abstract model.

The tool extracted 194 provided services and 111 re-
quired services. This is due to the large amount of public
methods that are needed in Java to implement a real ap-
plication. This is a problem and we are studying another
solution (see Section 4.3).

4.2.3 CoCoME rCOS

We first compare the rCOS implementation with its docu-
mented UML2 component diagram. It specifies the inter-
faces and services between components, as well as some
Java classes inside the component types. There are 11 com-
ponents in this diagram from which our tool extracts the
only 4 components that were actually implemented in the
code. There are 25 services in the component diagram and
22 of them are implemented in the source code. All these
services were found, but there were also a lot of false posi-
tives due to the following reasons:

7



• too many methods are public in the Java code, such as
methods for initializing GUI components or managing
Mouse Events,

• the classes (e.g. CashDesk) that have been “pro-
moted” to component status have methods that would
not have been part of a proper component model.

Again, these are clearly problems with the implementation.

It became rapidly clear that the code did not implement
the abstract model faithfully. To try to get better result,
we resorted to a second diagram (“components in the use
cases”), that describes some additional components, with-
out specifying services, or communication channels. This
second diagram has 16 components (2 of them in common
with the first diagram). Twelve of these were implemented
in the code, and the tool found 10 of them. Eight compo-
nent had the same name as in the abstract model and two had
very different names (e.g. StoreGUI plays the role of the
Application subcomponent). Another component have
been implemented differently: 6 components actually sim-
ulate the database component. It looks like the second
diagram has been influential in the structuring of the appli-
cation. The only component implemented that was missed
was the Store.

In total, from the 58 Java classes in the code, our tool
found 29 components and missed only one, 18 components
types were found in the abstract model (with its two dia-
grams). As described in [?] many components have been
implemented using an abstract class and a concrete subclass
suffixed by Impl. However, no java interface have been
used to represent the interfaces of the components. Our
tool currently detects both the abstract class and the con-
crete class as components, generating 18 components which
should be merged as 9.

All the communication channels implemented have
been discovered except the ones of the Store com-
ponent which was not detected as such. Some chan-
nels have been merged as a consequence of the ab-
sence of components in the implementation. For instance,
in the specification, the CashDeskGUI communicates
with the SalesHandler using its CashDeskIf inter-
face and through the BusControler component which
uses the SalesIf interface to forward messages to the
SalesHandler. The absence of implementation of
the BusControler has the consequence of merging the
SalesIf and CashDeskIf and their channels.

Results are therefore bad if one only considers the UML
Component diagram, but this mainly reflects the fact that
the implementation was not structured according the ab-
stract model described in this diagram.

4.3 Discussion and Future Work

Our first conclusion is that the results are quite encourag-
ing. Although the rules to recognize component types may
seem very strict, in the chosen context (application devel-
oped with componentization in mind), they worked quite
well. We could very quickly discover mappings between
the concrete code and the abstract model which was one
of our goals. The tool also highlighted big mismatches be-
tween the designed application (abstract model) and the im-
plemented one. More specifically in the case of the rCOS
implementation.

One difficulty was raised by the use of Factory and meth-
ods to look for specific components. Although these uses
are legitimate, they result in methods returning component
types. With our rules (especially rule 1-a)) such compo-
nents were classified as data types. This is also a conse-
quence of us working specifically on component uses in
this first experiment. We need now to pay more attention
to components construction.

We see two solutions to this problem, both relying on
the iterative and interactive nature of the extraction process.
The tool can build its result on top of previous iteration
through the use of annotations in the source code. These
annotations (inserted by the tool or some other one from our
tool box, see Section 2.2) currently flag a type of interest as
a component type or a data type:

• The simplest solution would be to implement a manual
editor to flag a type of interest as the user sees best
fitted. In the case of the Factory, a data type would
be re-flagged as a component type. The tool would
then need to rerun to make the needed adjustment (for
example because of the data type inheritance rule 1-c)).

• A more strict solution, could be to create a
“@IgnoreReturn” annotation that would work
somehow as the “@SuppressWarnings” annota-
tion in Eclipse. It would cause the tool to ignore a
return type and thus allow to correctly flag the type of
interest as a component type. This solution is more
cumbersome for the user because it imposes to find all
the methods legitimately returning a component type.
On the other hand, it would be more semantically cor-
rect.

For now we tend to prefer the simplest solution although
it is not implemented yet.

Some implementation elected to implement component
types as Java packages. This is a problem for us as we do
not analyze packages yet. The fact that in rCOS, the tool
was able to find the main class out of the many that imple-
mented a component type, might point toward a possible
solution. We are looking into this problem, but no immedi-
ate solution came to mind.

8



We have had rather less success with the communication
and required/provided services. This is due to the many
public methods that are required in a Java application to
have all classes communicate between themselves. A pos-
sible solution that we are studying is to restrict the provided
and required services only to the identified components.
Currently, we consider all classes because components may
need to access methods in the data types. A first experiment
on OASIS gave only 75 required services instead of the 194
currently extracted. This seems therefore a path worth pur-
suing.

5 Related Work

In CBSE reverse-engineering, the concepts of compo-
nent and architecture vary from one approach to another.
For example, in [?], design components are high level con-
cepts close to design patterns, but they are not abstract com-
ponents.

Chouambe et al. have objectives very similar to ours,
however, they chose to extract the components from metrics
instead of using heuristics. They put much more emphasis
than we do in discovering a “proper” components’ structure.
It is too early to provide a more significant comparison of
these two approaches.

Washizaki et al. [?] propose to extract JavaBeans com-
ponents of Java programs. Only the structure is abstracted,
while, in addition, we consider the communication integrity
property. Our analysis of the composite structure is compa-
rable to their structural clustering algorithm but we simplify
by assuming that component structure is built from the class
fields.

There as been a lot of research on architecture and com-
ponent recovery in the reverse engineering community (see
Koschke, [?] and [?], for a review of the field). However,
the problems they tackle are different:

Architecture recovery typically tries to partition the set of
software elements of a system in various coherent sub-
sets. For this, it may use clustering to group together
the elements that have more things in common.

Component recovery typically tries to group constants,
variables and routines of a procedural source code into
objects or classes. For this it considers what variables
or constant routines access, and may also use cluster-
ing of variables and constants.

This is far from our preoccupations, as we work from an
object-oriented system assuming that the classes correspond
(or may correspond) to components. We are not trying to re-
group things together, but rather to explicitly identify com-
munication paths between existing components.

Favre et al. [?] describe how they (manually) build a
meta-model from a component based source to help under-
stand the system and help build reverse engineering tools
for that system.

In [?], Abi-Antoun et al. manually re-engineered a Java
legacy system into an ArchJava system with explicit (and
enforceable) definition of control flow and data sharing.
This correspond closely to our final objective although the
work presented here is only the first step toward this ob-
jective. There are two main differences between our work
and their: they did a manual re-engineering whereas we
explored automatic tools; and, the work from a conven-
tional object-oriented system, whereas we are assuming an
implementation that is already “component aware” in the
sense that we suppose the system was developed from some
abstract component definition although the implementation
may not perfectly match this abstract definition.

Component recovery and architecture recovery are the
main issues for abstracting structures. In their paper Bow-
man et al. [?] study various ways to extract model infor-
mation from Java code. Two approaches are possible: static
or dynamic analysis. Static analysis usually gives more ab-
stract information. Dynamic analysis depends on the exe-
cution context and may provide very accurate information
about polymorphic call, dynamic types of objects, and in-
formation related to the use of the reflective Java API. How-
ever, it usually produces a huge quantity of information that
one must filter. Static analysis also allows exploiting com-
ments and code annotations which we are using in our tool.

The model looked for by [?] is a simple entity relation-
ship model but it is not too far from a component model.
The conclusion from [?] is that: if static analysis is suffi-
cient thus disassembling (Java Byte code) is probably the
best choice. The problem is still open. For instance, [?]
considers that runtime analysis or profiling is needed, since
types and objects may be dynamically created.

6 Conclusion

One possibility to fight against the erosion of a system’s
architecture is to make it explicit in the source code. Com-
ponent Based Software Engineering proposes tools and ap-
proaches that allow this. They specify explicitly which
component may communicate with which other, and they
offer the possibility to check this property either statically
or at runtime. However, existing approaches remain mostly
theoretical, and industrial approaches such as CCM, EJB,
or OSGI focus on a strong and mature runtime infrastruc-
ture, but provide little support for automatic verification of
the correctness of components’ usage. It may often hap-
pen that even if it is specified with a rich component model,
an application is implemented as a flat component structure
that do not allow checking the integrity of communication

9



for example. There is a mismatch between the component
specification and the component implementation.

The Econet project aims at defining a recovery process
and tool box to help mapping the implemented component
code to the specified abstract model. One of the tools of
this toolbox is a component recovery tool that extracts com-
ponent types, data types, provided and required services,
structure of composite component types, and communica-
tion channels between components.

This tool is intended to help its user compare (and map)
a concrete implementation with an abstract model. We saw
that one of our application (CoCoME rCOS implementa-
tion) had a bad mapping in this sense. It could also be
used to check the good state of the architecture of a sys-
tem by indicating when one components is used improperly
(e.g. passed as parameter, or communicating with the wrong
other component), something that is typically not possible
with existing industrial approaches.

The tool may also be used to hint at possible problems
in the implementation: component passed as parameters,
cycle in the structure of (composite) components, boundary
analysis checking (see Section 3.3), etc.

Finally we believe the tool could be used to help restruc-
turing an application into a componentized one. It could
help the user identify components or check that what he
thinks are components really respect the typical rules (see
Section 3.2) of the kind.

10


