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Abstract

Mapping a pipelined application onto a distributed and parallel plat-
form is a challenging problem. The problem becomes even more difficult
when multiple optimization criteria are involved, and when the target
resources are heterogeneous (processors and communication links) and
subject to failures. This report investigates the problem of mapping
pipelined applications, consisting of a linear chain of stages executed
in a pipeline way, onto such platforms. The objective is to optimize
the reliability under a performance constraint, i.e., while guaranteeing
a threshold throughput. In order to increase reliability, we replicate the
execution of stages on multiple processors. We present complexity re-
sults, proving that this bi-criteria optimization problem is NP-hard. We
then propose some heuristics, and present extensive experiments evalu-
ating their performance.

Keywords: pipelined applications, interval mapping, throughput, reliability,
heterogeneous platforms, bi-criteria optimization, complexity, heuristics.

Résumé

Le problème du placement d’applications sur des infrastructures ma-
térielles distribuées et/ou parallèles représente un grand défi. Ce pro-
blème est encore plus difficile lorsque plusieurs critères à optimiser sont
à prendre en compte et lorsque ces plates-formes sont hétérogènes (pro-
cesseurs et liens de communication). Dans ce rapport, nous étudions
le problème du placement d’applications pipelinées, composées d’une
suite linéaire d’étages exécutés dans un mode pipeline, sur ce type de
plates-formes. Notre objectif est d’optimiser la fiabilité sous contrainte
de performance, c.-à-d, en assurant un débit minimum à l’exécution.
Pour rendre l’application plus fiable, nous utilisons un mécanisme de ré-
plication qui consiste à exécuter un étage de l’application sur plus d’un
processeur. Nous présentons les résultats de complexité qui montrent
que le présent problème d’optimisation bi-critère est NP-difficile. Nous
proposons ensuite un ensemble d’heuristiques et présentons les résultats
expérimentaux qui évaluent leurs performances.

Mots-clés: applications pipelinées, placement, débit, fiabilité, plates-formes hétérogènes,
optimisation bi-critère, complexité, heuristiques.
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1 Introduction

Mapping applications onto distributed and parallel platforms is a difficult problem. The
problem becomes even more difficult if we consider state-of-the-art heterogeneous platforms,
like clusters or grids. These platforms are typically composed of processors with different
speeds and interconnected through networks with different link capacities. In addition, they
are subject to failures, which implies adding replication mechanisms to provide a more reliable
application execution, and which in turn introduces another level of difficulty to the mapping
problem.

A large number of programming models are proposed to design and develop distributed
and parallel applications. These models offer means to deal with the complexity of such
applications as well as with the complexity of the execution platforms, while attempting to
ensure efficient execution and resource usage. In particular, algorithmic skeletons have been
introduced to support typical parallel patterns [6, 10]. A skeleton follows a precise structure
and execution behavior, like pipelined or farmed computations. It thus provides information
that can help the realization of an efficient mapping. In this report, we focus on the widely
used pipeline skeleton. A pipeline is a linear chain structure in which a stream of data enters
a stage and progresses from stage to stage until the final result is computed. Each stage reads
an input data produced by the previous stage, processes the data and outputs a result to the
next stage. Finally, the pipeline operates in a synchronous mode: after an initialization delay,
a new data in the stream is processed every period.

The mapping problem for a pipelined application can informally be stated as to choose
which processor is assigned which stage. This choice may be done according to one or multiple
optimization criteria. We focus on two key metrics: period (inverse of throughput) and
reliability. The period of a mapping is defined as the longest cycle time of a processor.
Under a bounded multiport platform model with overlap [8], i.e., in which a processor can
simultaneously receive, compute and send data, the cycle time is the maximum among the
times spent to perform these operations for all processed data. The reliability of an application
is the probability that all computations will be successfully performed. The reliability is
increased by replicating each stage on a set of processors. Thus, the application fails to be
executed only if processors involved in the execution of a same stage all fail during the whole
execution.

This report is a follow-on of a thread of papers aiming at period and/or reliability op-
timization. Computing a mapping minimizing the period has been studied in [12, 13] onto
homogeneous platforms and later in [3] onto heterogeneous platforms. A first attempt to solve
the period/reliability problem can be found in [2]. The work in [2] addresses a similar but
different problem, that of replicating both for performance (assigning different data sets to
different processors, to decrease the period) and for reliability (assigning the same data sets
to different processors, to increase the reliability), at the price of a simplified model without
any communication cost. In this report, we take communication costs into account, at the
price on concentrating on the sole replication for reliability. Indeed, the impact of commu-
nications turns out to have dramatic consequences on the difficulty of the mapping problem.
This report is the first attempt to deal with the induced combinatorial complexity of deciding
for message originators and orchestrating communications in the period/reliability problem.

We follow an interval-mapping approach, where a processor is assigned a single interval
of consecutive stages. We consider platforms with different-speed processors having either
identical failure probabilities (failure homogeneous platforms) or different failure probabilities
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(fully heterogeneous platforms). The objective is to maximize the reliability under a period
constraint onto such platforms.

The rest of the report is organized as follows. Section 2 illustrates the target optimization
problem through an example, and further motivates this work. Section 3 formally details the
mapping problem, and Section 4 establishes the complexity results. Next in Section 5, we
introduce a linear program to solve the mapping problem onto failure homogeneous platforms.
We also introduce several polynomial-time heuristics in Section 6 to propose practical solutions
for the more general case of fully heterogeneous platforms. Section 7 is devoted to experimental
results; we evaluate the absolute performance of the heuristics with respect to the linear
program on small problem instances, before comparing their relative performance on larger
instances (whose solution is inaccessible to the linear program). Finally, Section 8 provides
some concluding remarks and directions for future work.

2 The mapping problem through an example

S1 S2 S3 S4

input data size:

number of operations:

10 20 5

51021

8 22

Figure 1: Example of a pipelined application with 4 stages (S1..S4).

This section aims at outlining the difficulty of mapping a pipelined application on a given
execution platform. We consider the application example shown in Figure 1. For each stage
of the pipeline, we specify the number of computations, and the size of input/output data.

Figure 2 shows the operations performed for the first six data sets d1..d6 of the (possibly
infinite) input stream. The mapping is assumed to be known: S1 and S2 are both assigned
to same processors, while S3 and S4 are assigned to distinct processors. The notation Si →
Si+1 corresponds to a remote communication from the processor assigned to Si to the one
assigned to Si+1. For a given data set, the stages are executed in a sequential way, while
they are executed in pipelined fashion for different data sets. As soon as the first result res1

is produced, the pipeline reaches a steady state and periodically produces a result. In the
example, provided the threshold 5.5 for the the period of the mapping, i.e., the inverse of the
throughput, is 5.5: a new data set enters in the pipeline every 5.5 time units.

The execution platform is shown in Figure 3. In this platform, processors are heteroge-
neous (different speeds and network card capacities) and are interconnected through homo-
geneous network links (identical bandwidth b = 5 data units per time unit). Such a platform
may well represent a heterogeneous cluster. In addition, we assume that processors are sub-
ject to unrecoverable failures, where each processor has a probability f to fail during the
whole application execution.

To map the application onto the platform, we need to define some rules. First, we assume
that a processor can be assigned at most one set of consecutive stages. Such a set is named
an interval. This rule is reasonable, as it allows to better exploit processor capabilities, and
it may avoid costly communications. Second, we must handle failures to provide a failure-
tolerant execution scheme. For that, we adopt the well known replication principle, which
consists in performing redundant executions of some, or all, application intervals on different
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Figure 2: Periodic execution of the application shown in Figure 1; d1, . . . , d6 are the first six data sets input
to the pipeline, and res1, . . . , res6 are the corresponding results.
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Figure 3: Target execution platform. The links between each processor pair have a bandwidth b = 5.

processors. Therefore, a result will be produced (the one of the last stage in the interval)
even if a processor fails. In order to avoid producing redundant results for the interval if
two or more processors do not fail, we enforce a consensus protocol. This protocol is applied
after the process of each data set for a given stage interval. The protocol elects one surviving
processor as the sender of the output result of the interval to all processors executing the next
interval. This election amounts to choosing the surviving processor allowing for the fastest
output communications. We point out that communication links are assumed to be reliable:
once a communication is initiated by a processor, it is achieved successfully, and no message
is lost.

Considering these rules, mapping stages S1, . . . , S4 on P1, . . . , P7 raises the following ques-
tions: how to partition the stages into intervals and how to partition the processors over the
intervals? The objective function consists in maximizing the reliability of the application,
given a threshold on the period that should not be exceeded. It is a bi-criteria optimization
problem: the goal is to find a mapping which maximizes the reliability with a constraint on
the period.

Figure 4 shows an optimal mapping for the example, when the threshold period set to
Pmax = 5.5. In this mapping, stages are partitioned into 3 intervals [S1, S2], [S3, S3] and



4 A. Benoit, H. L. Bouziane, Y. Robert

[S4, S4]. The period of the mapping is defined by the maximum cycle time of all processors
P1, .., P7. This cycle time is deduced from the periodic behavior illustrated by Figure 2,
which assumes an overlap of communications and computations. For instance, the cycle time
of processor P1 is computed as follows:

CT1 = max

(

max

(

10

10
,
10

5

)

,
1 + 2

1
,max

(

8 ∗ 3

10
,
8

5

))

= 3.

The first term corresponds to input data (size 10, input network card 10, link bandwidth 5),
the second to computations (sum of stage weights 1 + 2 divided by speed 1), and the third to
output data (size 8, sent 3 times, output network card 10, link bandwidth 5). Similarly, the
cycle time of other processors are CT2 = 5.5, CT3 = 5, CT4 = 5, CT5 = 5, CT6 = 4.4 and
CT7 = 2. Note that P2 is the critical resource with the largest cycle time. This cycle time
determines the period reachable in the case where processors P4 and P5 fail (Figure 5).
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Figure 4: A mapping of the pipelined application
of Figure 1 on the platform of Figure 3.
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Figure 5: A failure configuration reaching the
worst case period. P4 and P5 failed. The colored
processors are those elected for sending the results.

Finally, the failure probability is computed as 1 minus the probability that the execution
is successful, which happens if and only if all intervals are successful (hence a product in
the formula); next a given interval fails if and only if all its assigned processors fail. In the
mapping example we derive that

F = 1 − (1 − 0.15 ∗ 0.5) ∗ (1 − 0.4 ∗ 0.2 ∗ 0.5) ∗ (1 − 0.25 ∗ 0.2) = 0.1564.

This latter probability turns out to be the minimum that can be obtained by all possible
mapping solutions of the application example onto the current platform. To prove this, we
have enumerated all possible mapping solutions. However, the number of these solutions is
exponential. While it may be possible to evaluate all of them for small instances, this is
not conceivable for real-life problems. To the best of our knowledge, there is no solution in
the literature for this challenging bi-criteria reliability and period optimization problem, on a
fully heterogeneous platform with communication costs. The following section presents more
formally the applicative framework as well as the mapping problem.

3 Framework

3.1 Applicative framework

This work focuses on pipelined applications. A pipeline is composed of n ordered stages Si,
1 ≤ i ≤ n. These stages continuously operate on a stream of data. When input data are fed
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Figure 6: Overview of a pipelined application.

into the pipeline, they are processed from stage to stage, until they exit the last stage Sn. In
other words, each stage Si receives an input data, of size δi−1, from the previous stage Si−1,
performs a computation composed of wi operations, and produces an output data, of size δi.
The computation of a stage is periodically repeated on each input data in the pipeline stream.
The input (respectively output) of the stream is initially produced (finally consumed) by an
extra stage S0 (respectively Sn+1). A graphical representation of a pipelined application is
shown in Figure 6.

3.2 Target platform

PvPu

bv,outbin,u

su bu,v sv

P0 Pp+1

Figure 7: The target platform.

The target platform is composed of p + 2 processors: p computing processors Pu (1 ≤
u ≤ p) are dedicated to host stages Si (1 ≤ i ≤ n), while P0 (also denoted as Pin) and Pp+1

(also denoted as Pout) are special processors devoted to host the extra stages S0 and Sn+1.
Therefore, Pin is dedicated to store initial input data sets of the pipeline and Pout to receive
and store the final results. Each processor Pu (1 ≤ u ≤ p) has a speed denoted as su. That
means Pu takes X/su time units to execute X operation units. The speed may be identical
for all processors (su = s for 1 ≤ u ≤ p). In this case, the platform is said to be SpeedHom
(homogeneous in speed). On the opposite, the platform is SpeedHet when processors have
different speeds.

As shown in Figure 7, all processors are interconnected as a virtual clique. A link between
any two processors Pu, Pv (0 ≤ u, v ≤ p + 1) is bidirectional and has a bandwidth denoted
as bu,v. Note that a physical link between any processor pair is not required. Instead, the
connection of Pu to Pv may be done through a switch or a path composed of several physical
links. In this latter case, bu,v is the bandwidth of the slowest physical link in the path. When
the links are identical (bu,v = b for all 0 ≤ u, v ≤ p + 1), the platform is said to be LinkHom.
This is the case for instance in parallel machines. Alternatively, the platform is LinkHet , like
in grid infrastructures.

In addition to link bandwidths, the total communication capacity of a processor is limited
by its own input/output network card capacity. Formally, we denote by Bi

u and Bo
u the

input and output card capacity of processor Pu. Thus, Pu cannot receive more than Bi
u data
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units nor send more than Bo
u data units per time unit. When all processors have same card

capacities (Bi
u = Bi, Bo

u = Bo, for all 1 ≤ u ≤ p), the platform is said to be CardHom.
This is often true when processors are identical (parallel machines, homogeneous clusters).
Otherwise, the platform is said to be CardHet .

The platform is assumed to be subject to failures. We consider only fail-silent processor
failures without recovering. Thus, a processor can only perform correct actions before even-
tually crashing (no transient errors). In addition, communication links are assumed to be
reliable, hence no data is lost. For the mapping optimization problem, we need to measure
the reliability of used processors. This is given by the failure probability fu (0 < fu < 1) of
each processor Pu (1 ≤ u ≤ p). This failure probability is assumed to be constant, i.e., the
same at any time during the execution of a pipelined application. This is because we tar-
get a steady-state execution, for instance a scenario with resources loaning/renting. In such
a scenario, resources could be suddenly reclaimed by their owners, as during an episode of
cycle-stealing [1, 5, 11]. Also, there is no time upper bound for the execution of a streaming
application which may involve an arbitrary number of data sets, so the failure probability
cannot depend upon execution time. As a consequence, the failure probability should thus
be seen as a global indicator of the reliability of a processor. We consider platforms with
two failure models. The first model, FailHom, assumes identical failure probabilities for all
processors (fu = f for all 1 ≤ u ≤ p), while the second model, FailHet , assumes different
failure probabilities.

Finally, we classify a target platform according to different combinations of processors and
links properties. In particular, we consider five classes:

• Fully Homogeneous platforms (FullHom): these platforms are both SpeedHom,
CardHom, LinkHom and FailHom.

• Failure Homogeneous platforms: these platforms are FailHom, without any homo-
geneity constraints on processors speeds, network cards and communication links.

• Speed Heterogeneous platforms: these platforms are SpeedHet , but failures, network
cards and communication links are homogeneous.

• Failure Heterogeneous platforms: these platforms are FailHet , but speeds, network
cards and communication links are homogeneous.

• Fully Heterogeneous platforms (FullHet): these platforms are SpeedHet , CardHet ,
LinkHet and FailHet .

This classification is relevant from both theoretical and practical perspectives for the
mapping optimization problem.

3.3 Communication model

Communications between processors follow the bounded multi-port model [8]. In this model,
multiple communications can take place simultaneously on a same communication link. This
assumes the ability to initiate multiple concurrent incoming and outgoing communications,
and to share the link bandwidth. This can be done by using multi-threaded communication
libraries such as MPICH2 [9]. The bounded characteristic of simultaneous communications is
related to the fact that each communication is allotted a bandwidth fraction of the network
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card, and the sum of these fractions cannot exceed the total capacity of the card. Moreover, we
assume full overlap of communications and computations: a stage can simultaneously receive,
compute and send independent data. This assumption is reasonable as most state-of-the-art
processors are running multi-threaded operating systems capable of such an overlap.

3.4 Mapping problem

Mapping a pipelined application is the process of allocating target execution processors to the
pipeline stages. To decide how application stages are assigned to processors, different rules
may be adopted. For instance, in one-to-one mappings, each stage is assigned to a distinct
processor, and thus each processor processes only one single stage. A less restrictive class
of mappings, interval mappings, are such that a processor may be processing a consecutive
subset of stages. In this report, we focus on such interval mappings, which have been widely
studied [3, 4, 12, 13].

In the following, we formally define interval mappings and the adopted replication model
to deal with processors failures. Then, we express the period and failure probability of a
pipelined application, once given a mapping.

Interval mappings: in an interval mapping (with replication), stages Si (1 ≤ i ≤ n) are
partitioned into m ≤ n intervals, and each interval is assigned to a distinct set of processors.
This consists in partitioning the interval of stages indices [1..n] into m intervals Ij = [dj , ej ],
where dj ≤ ej for 1 ≤ j ≤ m, d1 = 1, dj+1 = ej + 1 for 1 ≤ j ≤ m − 1 and em = n. Each
interval Ij is mapped to one set of processors whose indices belong to alloc(dj). In such a
mapping, alloc(i) = alloc(dj) for dj ≤ i ≤ ej . In addition, a processor cannot process two
distinct intervals, i.e., alloc(dj) ∩ alloc(dj′) = ∅ for 1 ≤ j, j′ ≤ m, j 6= j′.

Replication model: as discussed in Section 3.2, processors are subject to failures. To deal
with such failures, we adopt an active replication protocol. In more details, all processors Pu

(u ∈ alloc(dj), 1 ≤ j ≤ m) perform the same assigned interval computations (active) on the
same input data. Therefore, the output data of an interval Ij has to be sent to all processors
Pv with v ∈ alloc(dj+1). To avoid redundant input data, a consensus protocol [14] is executed
by surviving processors Pu (u ∈ alloc(dj)) after each execution of interval Ij on an input data.
The consensus aims at electing a processor as the sole one that will send the output data of
Ij to all surviving processors Pv. This protocol is illustrated in Figure 8, where all processors
are surviving. It allows to pay at most |alloc(dj+1)| outgoing communications by the elected
processor (according to the bounded multi-port communication model) and only one incoming
communication by Pv. In the scope of this report, we assume that communications intrinsic to
the consensus have a negligible overhead. Hence, only the multiple outgoing communications
executed by an elected processor are accounted for in the performance model.

Period: the period P of an interval mapping with replication on the most general FullHet
platforms is expressed as:

P = max
1≤j≤m

max
u∈alloc(dj)

max

{

δdj−1

min
v∈alloc(dj−1)

(bv,u,Bi
u) ,

Pej

i=dj
wi

su
,

δej

min
v∈alloc(dj+1)

(bu,v) ,
|alloc(dj+1)|δej

Bo
u

}

. (1)

This formula considers the worst case scenario, where only one processor Pu allocated
to interval Ij (u ∈ alloc(dj)) is surviving, while all processors allocated to the next interval



8 A. Benoit, H. L. Bouziane, Y. Robert

δ2

P1

S1, S2

P2

S3

P3

S4, S5

P6S3
P7

P4

S1, S2

S3

P5

S4, S5

δ3

S3

P8P0

S0

δ0

δ5

Figure 8: Replication model. Each processor periodically receives input data from one predecessor (on the
plain incoming arrow), executes all assigned interval stages, exchanges extra messages (on dashed vertical
arrows) with processors allocated to the same interval, agrees upon which processor (filled circle) has to send
the result to all its successors (on plain outgoing arrows).

Ij+1 are alive. The formula for Pu accounts for input data (one communication from the
slowest processor assigned to interval Ij−1, hence the minimum taken on link and network
card bandwidths), for computations, and for output data (constraint on each communication
link, on the network card, and there is a total of |alloc(dj+1)| communications). There remains
to take the maximum of these cycle times for u ∈ alloc(dj), and then a global maximum over
all intervals.

Failure probability: the failure probability F of a pipelined application in the most general
situation (FailHet) is computed by the following formula:

F = 1 −
∏

1≤j≤m

(

1 −
∏

u∈alloc(dj)

fu

)

. (2)

This formula is obtained from the fact that the execution of an application is successful
if and only if there remains at least one surviving processor per set alloc(dj) of processors
allocated to each interval of stages, i.e., for 1 ≤ j ≤ m.

Finally, the target optimization problem is to determine the best interval mapping that
minimizes the failure probability F given a threshold period Pmax: the mapping must be such
that P ≤ Pmax.

4 Complexity results

We first prove that the problem can be solved in polynomial time on a fully homogeneous
(FullHom) platform (SpeedHom, LinkHom, CardHom and FailHom), using dynamic program-
ming. However, the problem becomes NP-hard as soon as we add one level of heterogeneity
(SpeedHet or FailHet).

Theorem 1. For fully homogeneous platforms, the optimal interval mapping which mini-
mizes the failure probability under a fixed period threshold can be determined in polynomial
time O(n2p3).

Proof. We exhibit here a dynamic programming algorithm which computes the optimal map-
ping. Let P denote the threshold period. We recursively compute the value of R(i, q, qsucc),
which is the optimal value of reliability, i.e., 1 − F , that can be achieved by any interval
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mapping of stages S1 to Si, using exactly q processors, and given that the following inter-
val (starting with stage Si+1) is using exactly qsucc processors. The goal is to determine
max1≤q≤p R(n, q, 1), since the final interval has only one succeeding processor, Pout. Maxi-
mizing the reliability amounts to minimizing the failure probability. The recurrence relation
can be expressed as:

R(i, q, qsucc) = max
0≤j<i, 1≤q′≤q























R(j, q − q′, q′) × (1 − f q′) if















δj

min(b,Bi)
≤ P, and

Pi
k=j+1 wk

s
≤ P, and

max
(

δi

b
, qsucc×δi

Bo

)

≤ P;

0 otherwise,

for 1 ≤ i ≤ n, 1 ≤ q, qsucc ≤ p, with the initialization

R(0, q, qsucc) = 1 for 1 ≤ q, qsucc ≤ p,

R(i, 0, qsucc) = 0 for 1 ≤ i ≤ n, 1 ≤ qsucc ≤ p.

The recurrence is easy to justify: to compute R(i, q, qsucc), we create an interval from
stages Sj+1 to Si, for 0 ≤ j < i, and we allocate it onto q′ processors. Since everything is ho-
mogeneous, the contribution to the reliability from this interval is (1−f q′), and the reliability
is the product of reliabilities of all intervals. The solution is valid only if the constraint on the
period is satisfied, hence the condition checking whether input communications, computations
and output communications satisfy the bound. The parameter qsucc is needed to compute the
time required by output communications. In the recursive call, the new value of qsucc is thus
q′, and we consider stages S1 to Sj .

For the initialization, if we have already mapped all stages, the contribution to the relia-
bility is 1 (R(0, q, qsucc)), while if we used all processors and we still have stages that remain
not allocated, then the reliability is set to 0 in order to indicate that this solution is not valid
(the failure probability becomes 1).

The complexity of this dynamic programming algorithm is bounded by O(n2p3): we need
to compute O(np2) values of R(i, q, qsucc), and it takes a time O(np) to compute one value in
the worst case (maximum over j and q′).

Theorem 2. For SpeedHet or FailHet platforms, finding the optimal interval mapping which
minimizes the failure probability under a fixed period threshold is NP-hard, even with no
communication cost.

Proof. We consider the associated decision problem INT-PF: given a period P and a failure
probability F , is there a mapping of period less than P and of failure probability less than F?

It is clear that INT-PF is in NP: given a period, a failure probability and a mapping,
it is easy to check in polynomial time that it is valid by computing its period and failure
probability.

The completeness for SpeedHet platforms comes directly from [3], in which we prove that
minimizing the period with different speed processors is NP-hard (this is the heterogeneous
chains-on-chains problem, denoted CoC-HET). Thus, starting from an instance of CoC-HET,
we create an instance of INT-PF with no communication, F set to 1, and the same period as
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in CoC-HET. There is no need to replicate in this case: it can only decrease the period, and
we do not care about failures since F = 1. The two problems are thus fully identical.

To establish the completeness for FailHet platforms, we use a reduction from 3-PARTI-
TION [7], which is NP-complete in the strong sense. We consider an instance I1 of
3-PARTITION: given a set {a1, ..., a3m} of 3m integers, and an integer B such that
∑

1≤j≤3m aj = mB, does there exist m independent subsets B1, · · · , Bm of {1, · · · , 3m} such
that for all 1 ≤ i ≤ m,

∑

j∈Bi
aj = B?

We build the following instance I2 of our problem: the pipeline is composed of n = m
stages with w = 1, and p = 3m processors with speeds s = 1, and failure probabilities
fu = 2−au , for 1 ≤ u ≤ p. We then set K = 1 and F = 1 − (1 − 2−B)m.

Note that the size of I2 is polynomial in the size of I1. Indeed, since 3-PARTITION
is NP-complete in the strong sense, we could encode I1 in unary, and thus the size of the
instance would be in O(mB). Moreover, the values of fu and F can be encoded in binary and
thus their size is polynomial in the size of I1.

Now we show that I1 has a solution if and only if I2 has a solution. Suppose first that
I1 has a solution. For 1 ≤ i ≤ m, stage Si is mapped onto the processors of subset Bi,
thus respecting the period of 1, and this stage is successful with a probability 1−

∏

j∈Bi
fj =

1 −
∏

j∈Bi
2−aj = 1 − 2

P

j∈Bi
−aj = 1 − 2−B. Since there are m intervals of one stage in the

mapping, the total failure probability is 1− (1− 2−B)m, which means that I2 has a solution.

Suppose now that I2 has a solution. A processor cannot handle more than one stage,
otherwise its period becomes greater than K = 1 (it would be at least 2w/s = 2). Let Ti be
the set of indices of processors working onto stage Si, for 1 ≤ i ≤ m. The failure probability is

thus 1−
∏m

i=1(1− 2
−

P

j∈Ti
aj ). This quantity is always strictly larger than 1−

∏m
i=1(1− 2−B)

unless when
∑

j∈Ti
aj = B for 1 ≤ i ≤ m, as was proved by Lemma 2 in [2]. Thus, the

processor indices of the mapping correspond to a solution of I1, which concludes the proof.

5 A mixed integer linear problem

This section deals with the problem of maximizing reliability under period constraints. As
stated in Section 4, this problem is NP-hard for interval mappings on heterogeneous platforms.
In this section, we introduce a mixed integer linear program which computes the optimal
interval mapping on such platforms, but restricting to FailHom processors.

We failed to derive a program with a polynomial number of variables for FailHet platforms.
The reason can be seen from Equation 2: we would have needed to create a variable for
all possible processor subsets S, and to pre-compute the corresponding product

∏

u∈S fu.
Instead, with FailHom platforms, we succeed to keep a polynomial number of variables; the
key observation is that we only need to record the number of processors assigned to each
interval.

Recall that a pipelined application is composed of n stages and the target platform of p
processors, plus two fictitious extra stages S0 and Sn+1 respectively assigned to two extra
processors P0 and Pp+1. We start by defining the program parameters and variables, then we
describe the linear constraints of the problem:

Parameters:
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• n: number of application stages, except S0, Sn+1.

• p: number of target platform processors, except P0, Pp+1.

• δi (i ∈ [0..n]): the size of output data of stage Si.

• wi (i ∈ [1..n]): the workload of stage Si.

• su (u ∈ [1..p]): the speed of processor Pu.

• Bi
u (u ∈ [1..p]): the input network card capacity of processor Pu.

• Bo
u (u ∈ [1..p]): the output network card capacity of processor Pu.

• bu,v (u, v ∈ [0..p + 1], u 6= v): the bandwidth of link Pu ↔ Pv.

• Λk (k ∈ [1..p]): double equal to log(1 − fk), where f is the failure probability of all
processors (FailHom platform).

• Pmax: the constrained maximum period.

Decision variables:

• Rlog: the logarithm of the reliability probability to maximize.

• xi,u (i ∈ [0..n + 1], u ∈ [0..p + 1]): a boolean variable equal to 1 if stage Si is assigned
to processor Pu. Hypothesis: x0,0 = xn+1,p+1 = 1, xi,0 = 0 for i ≥ 1, x0,u = 0 for u ≥ 1,
xi,p+1 = 0 for i ≤ n and xn+1,u = 0 for u ≤ p.

• yi (i ∈ [0..n]): a boolean variable equal to 0 if stages Si and Si+1 belong to a same
interval. Hypothesis: y0 = yn = 1.

• zi,u,v (i ∈ [0..n], u, v ∈ [0..p + 1]): a boolean variable equal to 1 if stage Si is assigned
to Pu and stage Si+1 is assigned to Pv. When u 6= v, Si is not assigned to Pv and Si+1

is not assigned to Pu (Si and Si+1 are in distinct intervals). Hypothesis: zi,0,v = 0 for
i 6= 0 and all v, and zi,u,p+1 = 0 for i 6= n and all u.

• firstu and lastu (u ∈ [1..p]): integer variables which denotes, in order, the first and
last stages Sfirstu and Slastu assigned to processor Pu. Thus Pu is assigned the interval
[firstu, lastu]. Hypothesis: 1 ≤ firstu ≤ lastu ≤ n.

• nbPi (i ∈ [0..n + 1]): integer variable which denotes the number of processors allocated
to stage Si. Hypothesis: 1 ≤ nbPi ≤ p and nbP0 = nbPn+1 = 1.

• PperINTi,k (i ∈ [1..n], k ∈ [1..p]): boolean variable equal to 1 if stages Si and Si+1 are
assigned to different processors and if Si is assigned to exactly k processors.
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Constraints:

• Stages assignment on processors:

– If stage Si is assigned to Pu and not to Pv and stage Si+1 is assigned to Pv and
not to Pu, then zi,u,v = 1:

∀i ∈ [0..n],∀u, v ∈ [0..p + 1], u 6= v, xi,u + xi+1,v + (1 − xi,v) ≤ 2 + zi,u,v

– If stages Si and Si+1 are both assigned to Pu, then zi,u,u = 1:

∀i ∈ [0..n],∀u ∈ [0..p + 1], xi,u + xi+1,u ≤ 1 + zi,u,u

– If zi,u,v = 1, then stage Si is assigned to Pu and stage Si+1 to Pv. In addition,
when u 6= v, Si is not assigned to Pv nor Si+1 to Pu:

∀i ∈ [0..n],∀u, v ∈ [0..p + 1], zi,u,v ≤ xi,u

∀i ∈ [0..n],∀u, v ∈ [0..p + 1], zi,u,v ≤ xi+1,v

∀i ∈ [0..n],∀u, v ∈ [0..p + 1], u 6= v, zi,u,v ≤ 1 − xi,v

– If stages Si and Si+1 are both assigned to Pu, then yi = 0:

∀i ∈ [0..n],
∑

u∈[0..p+1]

∑

v∈[0..p+1],u 6=v

zi,u,v ≥ yi

– If stages Si and Si+1 are assigned to different processors, then yi = 1:

∀i ∈ [0..n],∀u ∈ [0..p + 1],∀v ∈ [0..p + 1], u 6= v, zi,u,v ≤ yi

– If stage Si is assigned to Pu, then zi,u,u is the inverse of yi:

∀i ∈ [0..n],∀u ∈ [1..p], zi,u,u ≤ 1 − yi

∀i ∈ [0..n],∀u ∈ [1..p], xi,u − zi,u,u ≤ yi

• The bounds of an interval:

– If stage Si is assigned to Pu, then firstu ≤ i ≤ lastu:

∀i ∈ [1..n],∀u ∈ [1..p], firstu ≤ i ∗ xi,u + n ∗ (1 − xi,u)

∀i ∈ [1..n],∀u ∈ [1..p], lastu ≥ i ∗ xi,u

– If stage Si is assigned to Pu and stage Si+1 to Pv (v 6= u), i.e., zi,u,v = 1, then
lastu ≤ i and firstv ≥ i + 1 since we consider intervals:

∀i ∈ [1..n − 1],∀u ∈ [1..p],∀v ∈ [1..p], v 6= u, lastu ≤ i ∗ zi,u,v + n ∗ (1 − zi,u,v)

∀i ∈ [1..n − 1],∀u ∈ [1..p],∀v ∈ [1..p], v 6= u, firstv ≥ (i + 1) ∗ zi,u,v

– If a processor Pu is not used, then lastu and firstu are forced to be equal to 1:

∀u ∈ [1..p], firstu ≤
∑

i∈[1..n]

xi,u ∗ n + 1

∀u ∈ [1..p], lastu ≤
∑

i∈[1..n]

xi,u ∗ n + 1
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• The number of processors allocated to a stage/interval:

– Each stage is assigned exactly nbPi processors:

∀i ∈ [0..n + 1],
∑

u∈[0..p+1]

xi,u = nbPi

– If stages Si and Si+1 are both assigned to a same processor, then nbPi = nbPi+1:

∀i ∈ [0..n], nbPi − nbPi+1 ≤ yi ∗ p

∀i ∈ [0..n], nbPi − nbPi+1 ≥ −yi ∗ p

– If yi = 1, then exactly one value of k ∈ [1..p] corresponds to the number of
processors allocated to Si, in which case, PperINTi,k = 1, otherwise PperINTi,k =
0 for all i and all k:

∀i ∈ [1..n],
∑

k∈[1..p]

PperINTi,k = yi

– If PperINTi,k = 1, then k = nbPi:

∀i ∈ [1..n], nbPi −
∑

k∈[1..p]

k ∗ PperINTi,k ≤ (1 − yi) ∗ p

∀i ∈ [1..n], nbPi −
∑

k∈[1..p]

k ∗ PperINTi,k ≥ (1 − yi)

• Cycle-time of a processor:

– The workload of a processor is expressed as:

∀u ∈ [1..p],
∑

i∈[1..n]

wi

su
xi,u ≤ Pmax

– Incoming communications1 of a processor are expressed as:

∀u ∈ [1..p],∀t ∈ [0..p], t 6= u,
∑

i∈[1..n]

δi−1

Bi
u

zi−1,t,u ≤ Pmax

∀u ∈ [1..p],∀t ∈ [0..p], t 6= u,
∑

i∈[1..n]

δi−1

bt,u
zi−1,t,u ≤ Pmax

– Outgoing communications1 of a processor are expressed as:

∀u ∈ [1..p],
∑

i∈[1..n]

∑

v∈[1..p+1],v 6=u

δi

Bo
u

zi,u,v ≤ Pmax

∀u ∈ [1..p],∀v ∈ [1..p + 1], v 6= u,
∑

i∈[1..n]

δi

bu,v
zi,u,v ≤ Pmax

1Recall that communications follow the multi-port model with overlap.
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• Failure probability: the reliability probability (inverse of failure probability) of the whole
pipelined application is expressed as:

∑

i∈[1..n]

∑

k∈[1..p]

Λk ∗ PperINTi,k ≥ Rlog

Objective function: we aim at finding values for each variable in order to maximize Rlog,
given that all constraints are satisfied.

6 Heuristics

In this section, we propose heuristics for interval mappings with replication on FullHet plat-
forms (Section 3.2). The objective is to find a mapping optimizing the failure probability F
under a fixed period bound Pmax. From Section 4, we know that determining the optimal
mapping is NP-hard on heterogeneous platforms. In addition, we know that to satisfy the
period bound, it can be necessary to have multiple intervals. Therefore, we propose a large
number of stage partitioning techniques to find a good mapping. In particular, we propose
two classes of heuristics. In the first class, the partitioning and mapping phases are addressed
by different procedures (Section 6.1). In the second class, partitioning and mapping decisions
are made on the fly as the heuristics progress (Section 6.2). We intend to explore quite a
comprehensive set of mapping solutions, thereby (hopefully) producing a final mapping with
satisfyingly small failure probability.

Before presenting the heuristics, we discuss how the allocation of a processor to an interval
succeeds during the mapping process.

Processor allocation: during the processor mapping phase, the cycle-time of a candidate
processor for assignment to an interval Ij = [dj , ej ] (1 ≤ j ≤ m ≤ n) is computed to verify
the upper fixed period bound Pmax. According to Formula 1 (computation of the period
P of a mapping), this cycle-time depends on the processors allocated to both previous and
next intervals (Ij−1, Ij+1), if they exist. In addition, allocating a processor to an interval
changes the cycle-time of these processors and eventually the period of the whole application.
However, when attempting an allocation, some intervals may be not yet assigned. Hence,
we introduce some rules to be able to return a cycle-time value at each moment during the
mapping. These rules are defined through Algorithm 1. This algorithm checks whether a
processor may be allocated to a given interval, i.e., preserves P ≤ Pmax. This verification is
essential for the success of the progressive mapping done by the proposed heuristics. In the
algorithm, the notation I0 (respectively Im+1) is used to design the interval composed of the
extra stage S0 (respectively Sn+1). The set alloc(Ij) (1 ≤ j ≤ m) contains the processors
allocated to interval Ij before the current application of Algorithm 1.

6.1 Class 1: Heuristics partitioning then mapping

The heuristics presented in this section (Class 1) work in two phases. First, the application
is partitioned into a set of intervals. Then we try to map these intervals onto the platform
in order to satisfy the bound on the period, and we compute the reliability of the mapping.
We try several different partitionings, and keep the solution which returns the most reliable
mapping.
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Algorithm 1: Potential allocation of processor Pu to interval Ij , checking whether Pu’s
cycle-time preserves a period P ≤ Pmax (the period constraint).

begin
Initialize Bo

0 = Bi
p+1 = 1012 for extra processors P0 and Pp+1

if |alloc(Ij−1)| 6= 0 then
foreach v ∈ alloc(Ij−1) do

sentv =
|alloc(Ij)|δj−1

Bo
v

// cf. Formula 1

if sentv > Pmax then
return ”failure”

end

end

commi
u =

δj−1

minv∈alloc(Ij−1)(bv,u,Bi
u)

// cf. Formula 1

end
else

commi
u =

δj−1

Bi
u

end
if |alloc(Ij+1)| 6= 0 then

commo
u = max(

δj

minv∈alloc(Ij+1) bu,v
,
|alloc(Ij+1)|δj

Bo
u

) // cf. Formula 1

end
else

commo
u =

δj

Bo
u

// There is at least one communication.

end

loadu =

Pej

i=dj
wi

su
// cf. Formula 1

if max(commi
u, commo

u, loadu) > Pmax then
return ”failure”

end
return ”success”

end
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6.1.1 Partitioning phase

We start with the partitioning phase. Different partitions are returned, by varying the number
of target intervals for the partition: the stages are partitioned into k intervals, with 1 ≤ k ≤
min(n, p). Three criteria are considered for the partitioning phase.

• Communication cost: stages are split at the (k − 1) smallest output data sizes (δi).
Then, longest inter-stage communications are avoided and replaced by local memory
accesses on a processor. In the rest of this report, we identify heuristics using this split
criteria by a prefix Partc.

• Computation cost: stages are split into k intervals such that the computation load

of each interval approximates the average
Pn

i=1 wi

k
. Then, costly intervals in terms of

computation may be reduced. In the rest of this report, we identify heuristics using this
split criteria by a prefix Partw.

• Random partitioning: stages are split into k intervals at a random place. In the rest of
this report, we identify heuristics using this split criteria by a prefix Partr.

These three ways of interval creation seem to be a good trade-off when mapping com-
putation costly, and/or communication costly, stages on various platforms (homogeneous or
heterogeneous).

6.1.2 Heuristics for mapping pre-defined intervals

This section presents four main heuristics and derives some variants. These heuristics differ
in the way processors are distributed over the pre-defined intervals (computed with one of the
previous split criteria), and in the priority to order the assignment of these intervals.

Small: smallest fu – This greedy heuristic starts by randomly assigning each interval to one
processor satisfying the period constraint. Then, it repeatedly assigns the interval with the
highest failure probability to the more reliable processor. As soon as a processor is allocated
to an interval, it cannot be reused any more. After all processors are considered, the heuristic
attempts to improve the global failure probability. For that, it repeatedly merges the interval
with the highest failure probability with previous or next intervals (Algorithm 6). The merge
process is done as long as the failure probability can be decreased and the period bound is
still satisfied. The heuristic is further detailed in Algorithm 2.

Snake: snake allocation of processors – This heuristic assigns each interval to the most
reliable processor satisfying the period constraint. At the next step, each interval is assigned
to the least reliable processor, and steps are alternated. As soon as a processor is allocated
to an interval, it cannot be reused any more. After all intervals/processors are treated, the
heuristic attempts to improve the failure probability of the resulting mapping. For that, it
performs the same merge step as done by the Small heuristic (application of Algorithm 6).
The heuristic is further detailed in Algorithm 3. From this heuristic, we can derive some
variants, depending upon the order in which intervals are considered for assignment. In the
present work, we define two variants Snake-c and Snake-w. Snake-c considers intervals
in a decreasing order of their output data size (δej

), while Snake-w considers intervals in a



Mapping pipelined applications for reliability under throughput constraints 17

Algorithm 2: Heuristic Small: greedy mapping of k given intervals to most reliable
processors, under a fixed period Pmax.

begin
for j = 1 to k do

Assign interval Ij to a non-used processor randomly selected and satisfying the
period Pmax (success of Algorithm 1)
Mark this processor as used

end
Order remaining non-used processors Pu by increasing failure probability fu in
list Lp
foreach Pu ∈ Lp in order do

Allocate Pu to the interval Ij with the highest failure probability and for which
Pu satisfies the period Pmax (success of Algorithm 1)
If success, mark Pu as used

end
Apply Algorithm 6 (merge) to improve the failure probability of the current
mapping

end

decreasing order of their workload (
∑ej

i=dj
wi). Therefore, the mapping priority is given to

costly intervals in terms of either their output communications or their workload.

Algorithm 3: Heuristic Snake: snake allocation of p processors to k given intervals,
under a fixed period Pmax.

begin
Order processors Pu, 1 ≤ u ≤ p by increasing failure probability fu in list Lp
Order intervals Ij = [dj , ej ] (1 ≤ j ≤ k) by decreasing workload

∑ej

i=dj
wi in list Li

(or decreasing output data size, i.e., δej
)

for i = 1 to roundUpInt( p
k
) do

foreach Ij ∈ Li in order do
Assign interval Ij to the first processor found in Lp that satisfies the period
Pmax (success of Algorithm 1)
Remove this processor from Lp

end
Inverse the order of processors in Lp

end
Apply Algorithm 6 (merge) to improve failure probability of the resulted mapping

end

BCT: biggest cycle-time – this heuristic repeatedly considers each interval and searches
the most critical processor, i.e., with the longest cycle-time satisfying the period Pmax, and
allocates it to this interval. As soon as a processor is allocated to an interval, it cannot
be reused any more. After all intervals/processors are treated, the heuristic attempts to
improve the failure probability of the computed mapping, with Algorithm 6 similarly to
previous heuristics. The BCT heuristic is further detailed in Algorithm 4. We can also
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derive some variants, depending upon the order in which intervals are treated. As for the
Snake heuristic, we define two variants BCT-c and BCT-w. BCT-c (respectively BCT-w)
considers intervals in a decreasing order of their output data size (resp. their workload). We
recall that the objective of such variants is to give a priority for mapping costly intervals.

Algorithm 4: Heuristic BCT: mapping k given intervals on critical processors, under
a fixed period Pmax.

begin

Order intervals Ij = [dj , ej ] (1 ≤ j ≤ k) by decreasing computation load
∑ej

i=dj
wi

in list Li (or decreasing output data size, i.e. δej
)

for i = 1 to roundedToUpperInt( p
k
) do

// p is the number of processors.
foreach Ij ∈ Li in order do

Assign Ij to the non-used processor resulting to biggest cycle-time and
satisfying the period Pmax (success of Algorithm 1)
Mark this processor as used

end

end
Apply Algorithm 6 (merge) to improve failure probability of the resulted mapping

end

Bal: balancing failure probabilities – This heuristic assigns each interval Ij to a set of
most critical processors, i.e., with the longest cycle-time satisfying the period Pmax. This
set (alloc(Ij)) is such that the product of the processors failure probabilities

∏

u∈alloc(Ij)
fu

approximates the average value k

√

∏

u∈[1..p] fu (p is the number of all processors). As soon as

a processor is allocated to an interval, it can not be reused any more. When all intervals are
assigned, the heuristic attempts to improve the failure probability of the computed mapping
by applying the intervals merging algorithm (Algorithm 6). The heuristic is further detailed
in Algorithm 5. As for Snake and BCT heuristics, we define two variants of the Bal one:
Bal-c and Bal-w. Bal-c (respectively Bal-w) treats the intervals in a decreasing order of
their output data size (resp. their workload). The objective is still the same, i.e., to provide
a mapping priority for costly intervals.

6.1.3 Partitioning-then-mapping heuristics

Given a partitioning criteria, we map the intervals of a partition using one of the mapping
heuristics. With three different partitioning criteria, four mapping strategies and three vari-
ants of these strategies (thus a total of seven mapping strategies), we obtain the following
21 heuristics:

• Partc-Small, Partr-Small, Partw-Small,

• Partc-Snake-c, Partr-Snake-c, Partw-Snake-c,
Partc-Snake-w, Partr-Snake-w, Partw-Snake-w,

• Partc-BCT-c, Partr-BCT-c, Partw-BCT-c,
Partc-BCT-w, Partr-BCT-w, Partw-BCT-w,



Mapping pipelined applications for reliability under throughput constraints 19

Algorithm 5: Heuristic Bal: mapping k given intervals with balancing their failure
probabilities, under a fixed period Pmax.

begin

Order intervals Ij = [dj , ej ] (1 ≤ j ≤ k) by decreasing computation load
∑ej

i=dj
wi

in list Li (or decreasing output data size, i.e., δej
)

foreach Ij ∈ Li in order do
Assign Ij to a set of non-used processors procs of Pu(1 ≤ u ≤ p) with
∏

u∈alloc(Ij)
fu ≈ ( k

√

∏

u∈[1..p] fu) and which result to the largest cycle-times

satisfying the period Pmax (success of Algorithm 1)
Mark each processor in procs as used

end
Order remaining non-used processors Pu by increasing failure probability fu in
list Lp
foreach Pu ∈ Lp in order do

Allocate Pu to the interval Ij with the highest failure probability and for which
the period P is satisfied (success of Algorithm 1)

end
Apply Algorithm 6 (merge) to improve failure probability of the resulted mapping

end

• Partc-Bal-c, Partr-Bal-c, Partw-Bal-c,
Partc-Bal-w, Partr-Bal-w, Partw-Bal-w.

Algorithm 7 details the Partc-Small heuristic, and the others are working in a similar
way, with different variants.

6.2 Class 2: Heuristics with progressive creation of intervals

In opposition to the previous heuristics, the heuristics of class 2 compute a mapping solution
based on interleaved (and progressive) interval creations and processor allocations. Their
principle is common. It consists in splitting stages within an interval into several intervals
only if it is necessary, i.e., if no processor can be allocated without transgressing the period
constraint. The objective is to minimize the number of intervals, so as to reach the smallest
failure probability of a mapping.

In more details, each heuristic in the present class repeatedly attempts to assign an inter-
val I (initially composed of all stages S1, .., Sn) to an initial number q of processors satisfying
the period Pmax. If no processors are found, the heuristic splits interval I into two new in-
tervals, and try recursively to perform such an assignment. The process is repeated until
processors are found for the interval, or no further split is possible. Because the final number
of intervals is not known, q may be chosen between 1 and p. To increase the probability to
find processors to be allocated at each step, we have chosen q between 1 and p

2 . At the end,
the heuristic attempts to assign the remaining non used processors (if any). It also tries to
improve the failure probability of the resulted mapping. For that, it repeatedly merges the
interval with the highest failure probability with previous or next intervals (Algorithm 6).
The merge process is done as long as the failure probability can be decreased and the period
bound is still satisfied. Finally, the heuristic explores solutions for several values of q (as
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Algorithm 6: Merging intervals of a given mapping with initially k intervals to decrease
failure probability F , under a fixed period Pmax.

begin
while it is possible to decrease F and there are at least 2 intervals do

Find interval Ij (1 ≤ j ≤ k) in the current mapping with the highest failure
probability
// Step 1
Merge Ij with Ij+1 (Ij+1 6= [n + 1, n + 1])
Discard processors among those initially assigned to Ij and Ij+1 and non-used
ones that do not satisfy the period after merge. Discarded processors become
non-used
// Step 2
Merge Ij with Ij−1 (Ij−1 6= [0, 0])
Discard processors among those initially assigned to Ij and Ij−1 and non-used
ones that do not satisfy the period after merge. Discarded processors become
non-used
// Step 3
if Step 1 or Step 2 decreases the failure probability of the initial mapping then

Retain the mapping with the smallest failure probability
end
else

Ignore the merge done in Step 1 and Step 2
end

end
Order remaining non-used processors Pu by increasing failure probability fu in
list Lp
foreach Pu ∈ Lp in order do

Allocate Pu to the interval Ij with the biggest failure probability and for which
Pu satisfies the period Pmax (success of Algorithm 1)

end
end
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Algorithm 7: Heuristic Partc-Small computing an interval mapping optimizing F ,
under a fixed period Pmax.

begin
Initialize the failure probability of the application F to 1
for k = 1 to min(n, p) do

// Step 1: create intervals according to communication cost criterion.
Split the interval [1..n] of all stages S1, .., Sn into k intervals at stages Sj

(1 ≤ j ≤ n) with the k smallest δj , Now Sj and Sj+1 (if it exists) belong to new
different intervals
// Step 2: compute a mapping for the created intervals.
Apply Algorithm 2 and compute the failure probability Ft of the resulted
mapping (if an interval is not assigned, set Ft to 1)
Accept the mapping with min(Ft,F) and set F to this value

end
// Step 3: return a mapping solution.
if Ft = 1 then

return ”failure” // one (at least) interval was not assigned.
end
Return a mapping solution among the min(n, p) computed ones with the final
failure probability F
return ”success”

end

explained above, q varies from 1 to p
2) and it retains the solution with the smallest failure

probability F .

The way the split is done, as well as the mapping order of the step-by-step computed
intervals, determine different heuristic variants in the present class. First, the split can be
done at several places within an interval. In this work, we propose a recursive split of an
interval into two intervals according to two criteria:

• Communication cost, where the split is done at the stage with the smallest output data
size. The objective is to reduce costly communications. In the rest of this report, we
identify heuristics using this split criteria by a prefix Splitc.

• Random partitioning, where the split is done at a randomly computed place. The
objective is to have an intermediate solution between costly communications and costly
computations. In the rest of this report, we identify heuristics using this split criteria
by a prefix Splitr.

Secondly, we determine a mapping order of split intervals. In the present work, we defined
two orders. The first order gives a mapping priority to the interval with the biggest output
data size. Heuristics using this order are denoted with a suffix c. The second order gives the
priority to the interval with the biggest workload (

∑ej

i=dj
wi). Heuristics using this order are

denoted with a suffix w. Therefore, the mapping priority is given to costly intervals in terms
of either their output communications or their workload. Finally, we define the following four
heuristics (including their variants): Splitc-c, Splitc-w, Splitr-c and Splitr-w.
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Algorithm 8: Heuristic Splitc-c computing an interval-mapping optimizing F under
a fixed period Pmax.

begin
Initialize interval Int = [1, n] of all stages S1, .., Sn

for q = 1 to p
2 do

Apply Algorithm 9 on interval Int with q as the maximum number of
processors to allocate to each final interval
Order remaining non-used processors Pu by increasing failure probability fu in
list Lp
foreach Pu ∈ Lp in order do

Allocate Pu to the interval Ij with the biggest failure probability and for
which the period Pmax is satisfied (success of Algorithm 1)

end
Apply Algorithm 6 (merge) to improve failure probability of the resulted
mapping

end
Choose a valid solution (success of Algorithm 9) among q previous ones with the
smallest failure probability
if non valid solution exists then

return ”failure”
end
return ”success”

end

Heuristic Splitc-c is detailed in Algorithms 8 and 9. We recall that the heuristic explores
solutions for different numbers of processors to be allocated per interval, and retains the
solution with the smallest failure probability F .

7 Experiments

This section discusses the performance of the heuristics proposed in Section 6 for different
problems sizes. We have simulated several mapping scenarios for randomly generated appli-
cations with n from 2 to 120 stages and randomly generated platforms with p from 6 to 100
processors. For all these experiments, the computation load (w) of stages is a random double
chosen in the interval [1, 20] and the output data size (δ) or d) is a random integer chosen
in the interval [1, 25]. As for computing resources, we recall that the heuristics have been
designed for FullHet platforms. Experiments are done for such platforms, as well as for the
restricted case of Failure Homogeneous ones. For each processor, the speed (w) is a random
double chosen in the interval [1, 20], and the input/output network card capacity is a random
double chosen in the interval [1, 10], like the bandwidth b of communication links. At last,
the failure probability (f) of processors are either homogeneous, equal to 0.1, or a random
value chosen between 0.05 and 0.3.

Heuristics have been developed using the C/C++ language and gcc compiler version
4.3.2. Experiments have been conducted on two machines: one quad-processor machine (64-
bit AMD Opteron at 2.3GHz) with 32 GB of RAM and one quad-processor machine (64-bit
AMD Opteron at 2.4GHz) with 80 GB of RAM. The whole source code of the heuristics and
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Algorithm 9: Heuristic Splitc-c-bis for recursive interval-mapping of an interval Int
on at most q processors per resulted intervals under a fixed period Pmax.

begin
if there is no more non-used processors then

return ”failure”
end
Assign the input interval Int = [d, e] to a set of maximum q non-used processors
procs that result to biggest cycle-times satisfying the period Pmax (success of
Algorithm 1)
Mark each processor in procs as used
if procs 6= ∅ then

return ”success”
end
if d = e then

return ”failure”
end
Split Int into intervals Int1 = [d, e1] and Int2 = [d2, e] at stage Si (i = e1), such as
Si has the smallest output data δi compared to stages Sd, ..Se−1

Apply the present Algorithm 9 to the interval among Int1, Int2 with the biggest
output data size
if this application fails then

return ”failure”
end
Apply the present Algorithm 9 to remaining interval
if this application fails then

return ”failure”
end
return ”success”

end
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Failure probability Execution time
min max av. stdv. best rate av. (msec)

Partc-Small 0.000 0.729 0.011 0.074 85.29% 11.69
Partr-Small 0.000 0.969 0.033 0.145 76.71% 17.97
Partw-Small 0.000 0.969 0.033 0.139 75.14% 17.12
Partc-Snake-c 0.000 0.729 0.007 0.050 84.14% 3.36
Partc-Snake-w 0.000 0.729 0.007 0.050 85.43% 2.63
Partr-Snake-c 0.000 0.900 0.030 0.132 75.14% 4.66
Partr-Snake-w 0.000 0.900 0.020 0.100 76.14% 6.07
Partw-Snake-c 0.000 0.969 0.032 0.137 73.14% 2.56
Partw-Snake-w 0.000 0.900 0.030 0.130 73.29% 9.42
Partc-BCT-c 0.000 0.891 0.010 0.066 83.86% 4.42
Partc-BCT-w 0.000 0.802 0.011 0.065 83.43% 5.02
Partr-BCT-c 0.000 0.900 0.025 0.116 74.43% 3.12
Partr-BCT-w 0.000 0.890 0.024 0.112 75.71% 5.54
Partw-BCT-c 0.000 0.969 0.030 0.130 71.86% 8.66
Partw-BCT-w 0.000 0.969 0.031 0.133 73.14% 5.88
Partc-Bal-c 0.000 0.900 0.016 0.096 82.43% 8.64
Partc-Bal-w 0.000 0.810 0.015 0.090 83.14% 7.29
Partr-Bal-c 0.000 0.891 0.027 0.123 73.71% 6.57
Partr-Bal-w 0.000 0.890 0.022 0.107 75.29% 3.06
Partw-Bal-c 0.000 0.900 0.034 0.136 70.00% 8.29
Partw-Bal-w 0.000 0.900 0.030 0.128 71.14% 7.33
Splitc-c 0.000 0.891 0.027 0.085 65.14% 3.95
Splitc-w 0.000 0.900 0.034 0.110 64.29% 4.60
Splitr-c 0.000 0.900 0.034 0.110 63.86% 1.63
Splitr-w 0.000 0.890 0.033 0.106 64.29% 2.73
Linear-P 0.000 0.000 0.000 0.000 100.00% 2.78e+05

Table 1: Heuristics vs linear program results on a small Failure Homogeneous platform.
Failure probabilities: minimum, maximum, average and standard absolute deviation for 700
mapping results. Execution times: average over the 700 executions.

the experiments setup can be found on the Web at: http://graal.ens-lyon.fr/~hbouzian/
code/heuristics-FT-P.tgz.

In the following we first evaluate the performance of the heuristics compared to the optimal
solution returned by the linear program presented in Section 5. Next, we focus on comparing
the heuristics for large problem instances.

7.1 Absolute performance of heuristics

This section compares the results obtained by the heuristics to the optimal mapping solution
returned by the linear program. This linear program is solved using the CPLEX Interactive
Optimizer version 11.2.0. This version has a support for mixed integer linear programs like
in the present case.

As the linear program has been designed for FailHom platforms (see Section 5), we limit
the comparison with heuristics on such platforms. In addition, the large number of variables
in the linear program forces us to limit the experiments to small applications and platforms.
We have chosen scenarios with 8 stages and 10 processors. In particular, we selected 14 period
bounds between 1.5 and 8.0. For each bound, 50 instances of application-platform pairs have
been generated.

Table 1 reports the absolute deviation of the failure probabilities resulting from the heuris-
tics compared to the optimal results. Several conclusions can be drawn. First, from the
average (av.) and standard deviation (stdv.) columns, the heuristics based on the commu-
nication criteria to partition the stages into intervals (Partc-*) approach better the optimal

http://graal.ens-lyon.fr/~hbouzian/code/heuristics-FT-P.tgz
http://graal.ens-lyon.fr/~hbouzian/code/heuristics-FT-P.tgz
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program.

solution. This is explained by the fact that small messages between intervals can increase
the replication degree of each intervals and then the reliability of the mapping. Second, the
best results are obtained by heuristics that repeatedly allocate processors one by one to all
intervals. Indeed, the opposite behavior of the variants Partc-Bal-{c|w} and those of class
2 ({Splitc|Splitr}-{c|w}) can more frequently limit the possibility to allocate processors.
However, experiments presented later report that these heuristics can behave better for larger
platforms. Therefore, the current experiment is not sufficient to determine the best heuristics
in a general case. Third, from the success rates of heuristics to return the optimal mapping,
we can conclude that most of the heuristics give satisfying results. At last, to confirm the
above conclusions, Figure 9 shows the evolution of the average behavior of selected heuristics
depending on the period bound. It can be noted that for period bounds higher than 2.5, the
behavior compared to the linear program varies. The main reason is that stage partition-
ing and processor distribution are done according to partially known data (communication
and/or computation costs). Therefore, it is critical to identify one best heuristic for all period
bounds.

Table 1 also reports the execution time of the heuristics and of the linear program. We
see that the heuristics are very fast. The biggest average, ≈ 18 msec, is obtained when using
the Small heuristic variants. This time is explained by the multiple attempts performed to
randomly find a processor to be allocated to an interval. From the table, we also see that
the linear program requires an average of some minutes (≈ 5) to find the optimal solution.
To explain this time, Figure 10 shows its evolution depending on the period bound. We
can see that the average time considerably increases with the period bound. Indeed, when
this bound is large, the solution space is wider, thus more operations are performed. The
maximum resulted time is more than 3 hours, reached for a period bound set to 8. This time
is estimated to be very long for a small platform. This represents the main limitation of the
linear program. For this reason, we limited experiments with the linear program to small
problem instances.

7.2 Comparisons between heuristics

This section presents the results obtained for six sets of experiments. These sets correspond
to scenarios with different platform and application sizes. We discuss the impact of varying
these parameters on the performance of the heuristics. For each scenario, we also discuss the
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impact of the heterogeneity degree of processor failure probabilities. In this direction, each
experiment set has been executed on both FullHet and FailHom platforms. All experiments
have been executed on a same machine. In the following figures, each reported experimental
value is an average of mapping failure probabilities over 200 application-platform pairs.

Figures 11, 12, 13, 14 and 15 compare the results obtained for the variants of each mapping
heuristic presented in Section 6. There are six pairs of plots in each Figure. Each pair of plots
corresponds to a set of experiments conduced on FailHom (on the left) and FullHet platforms
(on the right). The first four pairs evaluate the performance of heuristics for fixed sizes of
application-platform pairs and different period bounds, while the last two pairs evaluate the
performance for fixed sizes of platforms (number of processors) and different applications sizes
(number of stages) under a fixed period.

From each figure, we first observe that the behavior of heuristic variants is almost similar
for both FailHom and FullHet platforms. This is explained by the fact that even if the failure
probability of a processor is a relevant parameter considered by the mapping process, the
respect of the period constraint has a more relevant impact on the result. Second, we observe
that the average gap between the results of each heuristic variant becomes more important
for medium and large platforms (p ≥ 50). That is mainly explained by the fact that when
the number of processors increases, the order in which processors are allocated varies more,
and the probability to allocate a same processor to a same interval decreases. Third, for
the same platforms, we observe that heuristics Partc-* and Splitc-* globally reach better
performance. These heuristics partition the stages (prefix Partc) or split the intervals (prefix
Splitc) according to the communication criterion. In this case, the communication of large
amount of data is avoided when possible, by mapping the two consecutive stages onto a same
processor. For smaller communications, it is then possible to send more copies of the output
data to the processor in charge of the next interval, while not exceeding the bound on the
period. Therefore, it becomes easier to increase the replication degree of an interval, hence
to reach a better reliability. Last, it is interesting to note that the random partitioning done
by heuristics of class 1 (with a prefix Partr) can behave better than the heuristics that
partition stages according to computation costs criterion (with a prefix Partw). This often
appears when the period bound is not too small (failure probability close to 1) nor too large
(failure probability close to 0). This is explained by the fact that an important variation of
stage workloads can easily lead to costly intervals when partitioning according to computation
costs. Thus, the probability to find a processor matching the period bound may be reduced.

7.3 Summary

Table 2 sums up the performance of all heuristics over all experiments. For each heuristic,
we have represented its absolute failure probability, and compared it to that of the heuristic
reaching the best (smallest) probability for each experimental value. We have chosen this
representation because it defines a meaningful lower bound for comparison. For small plat-
forms, we observe that heuristic Partc-Small surpasses all the other heuristics in terms of
success rate to give the smallest failure probability. However, from the average and standard
deviation columns, other heuristics, like Splitc-c with a poor success rate, achieve better per-
formance. The results are different for larger platforms. No large success rate is observed for
one particular heuristic, but the rate is dispersed over multiple heuristics. However, we can
deduce that heuristics partitioning stages or splitting intervals according to communication
costs reach better performance. Among these heuristics, it is no obvious to distinguish a best
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Small platforms (22800 results) Large platforms (14800 results)
min max av. stdv. best rate min max av. stdv. best rate

Partc-Small 0.000 0.969 0.076 0.184 59.79% 0.000 0.958 0.065 0.100 14.77%
Partr-Small 0.000 0.990 0.093 0.191 4.84% 0.000 0.862 0.114 0.123 0.75%
Partw-Small 0.000 0.988 0.093 0.194 3.20% 0.000 0.995 0.215 0.271 0.71%
Partc-Snake-c 0.000 0.961 0.072 0.177 4.86% 0.000 0.958 0.064 0.100 4.97%
Partc-Snake-w 0.000 0.951 0.057 0.154 3.97% 0.000 0.958 0.045 0.087 10.45%
Partr-Snake-c 0.000 0.990 0.089 0.185 1.35% 0.000 0.871 0.120 0.125 0.46%
Partr-Snake-w 0.000 0.990 0.071 0.159 1.75% 0.000 0.886 0.099 0.112 0.88%
Partw-Snake-c 0.000 0.989 0.072 0.162 1.45% 0.000 0.997 0.225 0.266 0.47%
Partw-Snake-w 0.000 0.988 0.064 0.151 1.41% 0.000 0.995 0.209 0.262 0.50%
Partc-BCT-c 0.000 0.951 0.061 0.159 2.34% 0.000 0.958 0.059 0.095 5.47%
Partc-BCT-w 0.000 0.951 0.056 0.153 2.10% 0.000 0.958 0.052 0.090 8.38%
Partr-BCT-c 0.000 0.990 0.081 0.174 1.19% 0.000 0.886 0.113 0.122 0.61%
Partr-BCT-w 0.000 0.900 0.069 0.155 1.17% 0.000 0.862 0.102 0.111 0.52%
Partw-BCT-c 0.000 0.988 0.067 0.154 0.96% 0.000 0.997 0.225 0.265 0.43%
Partw-BCT-w 0.000 0.988 0.061 0.146 0.88% 0.000 0.997 0.221 0.261 0.42%
Partc-Bal-c 0.000 0.951 0.062 0.160 1.04% 0.000 1.000 0.079 0.127 9.93%
Partc-Bal-w 0.000 0.951 0.058 0.154 1.44% 0.000 0.958 0.075 0.118 7.34%
Partr-Bal-c 0.000 0.988 0.082 0.173 0.76% 0.000 1.000 0.129 0.152 1.18%
Partr-Bal-w 0.000 0.988 0.070 0.156 0.92% 0.000 1.000 0.118 0.134 0.75%
Partw-Bal-c 0.000 0.988 0.068 0.154 2.04% 0.000 1.000 0.248 0.289 1.00%
Partw-Bal-w 0.000 0.990 0.062 0.146 0.44% 0.000 1.000 0.240 0.285 0.56%
Splitc-c 0.000 0.931 0.050 0.102 2.34% 0.000 0.777 0.074 0.088 11.48%
Splitc-w 0.000 0.909 0.052 0.106 1.43% 0.000 0.882 0.053 0.076 17.64%
Splitr-c 0.000 0.985 0.076 0.143 0.95% 0.000 0.871 0.181 0.155 0.27%
Splitr-w 0.000 0.990 0.074 0.139 1.23% 0.000 0.871 0.177 0.151 0.28%

Table 2: Heuristics comparison over all done experiments (minimum, maximum, average and
standard absolute deviation of failure probabilities for computed mappings).

one. Nevertheless, we observe satisfying results: with not-too-constrained periods, we reach
failures probabilities less than 0.2.

8 Conclusion

We have studied the complexity of the mapping problem onto heterogeneous platforms subject
to failures. We focused on pipelined applications, composed of consecutive stages executed in
a pipeline way. The objective is to find interval mapping solutions for such applications, while
maximizing the reliability under a performance (throughput) constraint. A major difficulty is
to deal with the impact of communication overheads. To the best of our knowledge, there are
no previous results for this important bi-criteria problem, despite the fact that such pipeline
workflows are widely encountered in real-life problems.

Our first contribution was to present new complexity results, providing a polynomial
algorithm to solve the problem in a fully homogeneous setting, and proving the NP-hardness
of the problem when adding one degree of heterogeneity. We also proposed a mixed integer
linear programming formulation, which allows us to compute (in exponential time) the optimal
solution on FailHom platforms. Even for such platforms, the program can take very long time
to execute, even for small application/platform pairs, and we could not derive a formulation
with a polynomial number of variables for FullHet platforms. At last, we have developed
polynomial-time heuristics for fully heterogeneous platforms. Experimental results showed
that for small FailHom platforms, the heuristics reach results close to the optimal solution
provided by the linear program. Finally, we pointed out that for different problems sizes,
multiple heuristics reach quite good results, and it is difficult to identify a particular one with
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“the best behavior” in all situations.

We are currently investigating an extension of the results to general mappings, where
a processor may be assigned multiple intervals of stages. In this context, even computing
the worst-case period of a given mapping becomes difficult, because it depends upon an
exponential number of possible failure configurations. Therefore, much more work is needed
before tackling the corresponding optimization problem: in a nutshell, before finding the best
mapping, we have to agree on a polynomial approximation of the worst-case period of a given
mapping! However, on the practical side, many of the heuristics presented in this report could
be extended to this new problem.
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Figure 11: Comparison of {Partc|Partr|Partw}-Small heuristic variants on Failure Homo-
geneous (right column) and FullHet (left column) platforms.
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Figure 12: Comparison of {Partc|Partr|Partw}-Snake-{c|w} heuristic variants on Failure
Homogeneous (right column) and FullHet (left column) platforms.
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Figure 13: Comparison of {Partc|Partr|Partw}-BCT-{c|w} heuristic variants on Failure
Homogeneous (right column) and FullHet (left column) platforms.
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Figure 14: Comparison of {Partc|Partr|Partw}-Bal-{c|w} heuristic variants on Failure
Homogeneous (right column) and FullHet (left column) platforms.
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Figure 15: Comparison of {Splitc|Splitr}-{c|w} heuristic variants on Failure Homogeneous
(right column) and FullHet (left column) platforms.
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