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Abstract. In this paper we present an application of Bayesian nontivegaource separation

to the analysis of spectral mixtures obtained from the aislgf multicomponent substances.
The processing aims are formalized as a non-negative sseparation problem. The proposed
Bayesian inference for the analysis is introduced and tha staps of the estimation algorithm are
outlined. Finally, some results obtained with simulated arperimental data are presented.

PROBLEM STATEMENT

The analysis of multicomponent chemical substances ugirgtsscopic techniques
yields data which are mixtures of the pure component spettia processing aims
at identifying the unknown pure components and determittieg concentrations [1].
According to Beer-Lambert-Bouguer law [2], the mixing modgelinear instantaneous

n

Z i.)Si(Vk) +Ei(w), for k=1,...,N, (1)

whereX;(vy), Sj(vk) represent respectively thie¢h observation and thgth pure com-
ponent absorption at wavelengt (this measurement variable can also correspond to
a wavenumber, chemical shift, etc.) a{‘d(i,j)}?zl represent the mixing coefficients

which are proportional to the concentration of th@ure components in thieth mix-

ture. The additif noise terrg; (vx) represents measurement errors and model uncertain-
ties. By varying a physical parameter such as temperatur@@sdure, the amount of
each pure component in the substance changes due to cheeacabn or molecular
interactions. Fom different values of the physical parameter, the obsematmectra

are expressed using matrix notations as

X =AS+E, (2)



where X is them x N data matrix withi-th observation spectra & wavelengths in
each row andA is the m x n mixing matrix whose columns are proportional to the
concentration profile of thea componentsSis an x N matrix of then spectra of the
n pure components, in its rows, akds amx N matrix of the additive noise sequences.
The problem of mixture analysis in spectroscopy is theredtas follows: knowing the
number of components and having all the observations, astithe pure component
spectra and their concentrations. These objectives amafared as a particular source
separation problem in which the sources are identified aptine component spectra
and the concentration profiles are deduced from the mixiedficents.

Two main constraints are associated to this problem: alsthece signals are non-
negatives

Sj(Vk) > O,V j7k7 (3)
and all the mixing coefficients are non-negatives

So, mixture analysis in spectroscopy corresponds to a Bgative source separation
problem. In chemometrics the problem is termed by self-rogeurve resolution [3]
and the mostly used methods consist in minimizing the meaarsg error criterion un-
der the non-negativity constraint, leading to algorithrffedng on the manner how the
non-negativity is introduced. In particular, alternatiegst squares (ALS) method [4]
performs an estimation where the non-negativity is hardipased between succes-
sive iterations by setting to zero the negative estimatéy @erforming a non-negative
least squares estimation [5]. The second method named egative matrix factoriza-
tion (NMF), which has been presented recently [6], achi¢veslecomposition by con-
structing a gradient descent algorithm over the objectimetion and updates iteratively
sources and mixing coefficients by considering a particoaltiplicative learning rule
that ensures the estimates to be non-negatives.

In this paper we address the problem of non-negative soegaation in a Bayesian
framework. we firstly present an approach that we proposdd,iB] and finally, we
discuss some results obtained when applying these metlotietseparation of a
simulated non-negative mixture and to the analysis of saledata obtained from an
infrared (IR) spectroscopy experiment.

BAYESIAN NON-NEGATIVE SOURCE SEPARATION

The main idea of a Bayesian approach for source separatiofasmnalize any available
knowledge on the source signals and the mixing coefficidmsugh the assignment
of prior distributionsp(S) and p(A). According to Bayes’s theorem and considering
the likelihood p(X|S A) and these prior distribution, we obtain the posterior dgnsi
expressed as

P(SAIX) x p(X[SA)-p(S) - p(A). (5)
From this posterior density, joint estimation®andA can be achieved by using various

Bayesian estimators. However, the main task of the inferentmeencode the available
knowledge by appropriate probability distribution furcts.



Bayesian Separation M odel

The noise sequences are assumed independent and idgrdistributed (i.i.d), in-
dependent of the source signals, stationary and Gaussiarzero mean and variances
{02}I ,- Therefore, the likelihood is given as

pP(X|A, S 8;) k_llr!«/V (xi(vk);glA(i,é)Sé(Vk)yaiz) ; (6)

wheref, = {oiz}i";l and.# (z u,0?) refers to a normal distribution of the variable

z with meanu and variances?. The sources are assumed mutually statistically inde-
pendent and eaclith source signal is supposed i.i.d and distributed as a Gadism
tribution of parameter$aj,[3]). The Gamma density is used to take into account the
non-negativity and its parameters allow to fit the spectstrithution that may present
some sparsity and possibly a background. To incorporatenikieng coefficient non-
negativity, each columm of the mixing matrix is also assumed distributed as a Gamma
distribution of parametere/J, ) The two-parameter Gamma density is expressed by

ba
¢ (za,b) = f@ 21 exp[—bZ Ijg 1« (2). (7)

wherel (a) is the Gamma function. The prior densities of the sourceadgyand the
mixing matrix are then given by

N n
p(S8,) = rl 9( SJ Vi); a]»B]) (8)
k=1]=
m n

A| 63 El I:l VJ ) 7 (9)

where6, = {ai,Bj}]_; and6; = {yj,A;}]_;. Using Bayes's theorem and noting By
the vector containing the hyperparametérs- {084, 6,, 85}, the posterior law is given
as

pP(SAX,0) x |_| ﬂﬂ( iA(|,j)Sj(Vk)7O-iZ)

k=11 j
N n
X I_l ﬂg(Sj(Vk);aj,Bj)xr! G (A YirAj)- (210)
i=1]

For an unsupervised learning, the hyperparamdlensve also to be inferred. The
joint posterior distribution including the hyperparanrstis expressed as

in which prior densities are assigned to the hyperparaméter



MCM C Sampling and Estimation

The estimation of the source signals and the mixing coeffisiés performed by
sampling the joint posterior distribution and construgtine estimator from the samples
of the Markov chain. The estimation is achieved using thegmat posterior mean

(MPM) estimator o
(A.S) =Epsax.e) {SA} (12)

and the simulation of the posterior densjiyS A, 6|X) is performed using an hybrid
Metropolis-Hastings-Gibbs sampling algorithm. The maaps of the sampling scheme
are firstly outlined and then the conditional posterior desare given.

To samplep(S A, 8|X), at each new iteration of the algorithm, the main steps
consists in sampling the

1. source signals" Y from p (gg,ﬂ”,@”),
2. mixing coefficientA" ) from p (A}X,S””,Q(r)),

3. noise variance@&”l) from p (Ql‘x,gfﬂ),p\(wl)),

4. source hyperparametegé”l) from p (Q2‘§<r+1)>,
5. mixing coefficient hyperparameteQérH) from p <Q3}A(f+1)).

All the variable are randomly initialized at the first itacat of the sampler and the MPM
estimator is implemented by averaging the retained sangfldse Markov chain (the
first samples corresponding to the burn-in run are discarded

Conditional Posterior Densities

The scaler version of the sampling scheme is implementeeacil component @&,
A and@ is sampled conditionally to the most recent other companéiit the required
conditional posterior densities for MCMC sampling are dethbelow. Firstly priors are
assigned to source signag vk), secondly to mixing coefficient; ;) and finally to the
hyperparameters.

Source Signals. At ther-th iteration of the sampler, the conditional posteriorsign
of each source signal is given as

P (S (% Xy (). 8 3173 (), 84

(r)

o Sj(w)® texp | —
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WhereupOSt( W) = ugjke'(vk)— Bj(r [ Spoﬂ , and
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This distribution is not usual, so its sampling is achievethg a Metropolis-Hastings
algorithm. An instrumental den5|ty |s derlved from this f@o®r law as a truncated nor-
mal distribution of variance set taS Stand mean equal to the mode of this posterior

law. The sampling from the truncated normal distribution ba achieved by cumula-
tive distribution function inversion technique or by usiag accept-reject method [9].
An interesting point with this instrumental distributiogthat constrainingrj = 1 cor-
responds to taking an exponential prior for tth source distribution. The use of the
Metropolis-Hastings algorithm is avoided since the caoddal posterior density is a
truncated normal of parameters equal to those of the prdgosgumental density.

Mixing Coefficients. The conditional posterior density of each mixing coeffitiisn
: (r+1) 1) (r) 5 (r)
p (A X (vin) AT 1) A1y ST, 0111 A1)

_1

Vi 2
ccAfj) exp (As = 1) To i (A ) (14)

Y
2 [O_post]
Aij)

post likel (r) | ~likel 2
whereu _uA”) )\j [GA(HJ , and
4 (r) 2
[apost]z _ [0A<i,j>]
Aipl N S(r+l) ’
MG = 3 S (wer(uo)

(.J) [ nkeq f
A(I i)

; j—1
5fj(Vk) = (xi(vk)_iglAgir;)l)Sng)(Vk) Z A(7 S(r+1 Vk))

. (=]+1

The sampling of this distribution is achieved using a MetlggHastings algorithm and
the same derivation of the instrumental density as for tlvecgosignals.



Noise Variances. The conditional posterior conditional density of each aoiari-
anceo? is expressed by

1
p(;‘*("(m) Al 5““)
|

(L) o] 3 (v B )Zi.p(aiiz). s

The conjugate prior obi~2 is a Gamma distribution of paramete(srp”or,ﬁp”or>.
Therefore, its conditional posterlor density is also of Gaardistribution of parameters

2
N .
t t 1
aggs =3 _|_apr|or andBpos = Z < (Vi) — ZA S(r+ Vi ) _|_B;£|or_

Source signal hyperparametersThe posterior density of each hyperparametgis
given as

p(ai[s™ (vian) .B")

1
r(ajN

which by assigning an exponential priordg with parametel?\(?j”or, takes the form

N
exp[(NIogBj(r)+ leogsgr”)(vk)) C(j] -p(aj), (16)
t=

r r 1 0S N
IO<01|5§ ) (vany) »B,-( )> o (r(aj) eXD[Ap taj]) Lio,40(0f), 17)

whereA} pOSt_ IogBJ — —)\ p”or + = z IogS(r+1 (Vk). The sampling from this distri-

bution is achieved usmg a Metropolls Hastlngs algorithhere an instrumental distri-
bution is derived as a Gamma distribution with parametdrtated from the mode and
the superior inflexion point of this distribution [8]. Conoerg the hyperparametd;,
its conditional posterior distribution is given as

(r+1) N
p(BilS ™ (viaw) @) V) o g exp[—ﬁij S‘ﬁr“)wk)]-p(ﬁj). (18)
=1

The conjugate prior assigned B is a Gamma density of paramete(rs prior Bp””).
Therefore, its conditional posterior density is also a Ganaistribution W|th parameters

aglost (Na(r+1)+agr|or_|_l) andBpost (z S(r+1 ( )_I_Bprlor)_

Mixing coefficient hyperparametersThe mixing coefficient hyperparameters are
sampled using the same manner as the hyperparameters otitice signals.



EXPERIMENTS

To illustrate the usefulness of the proposed method, wesptéso results obtained with
numerical and experimental mixtures. To measure the estimperformances we use
the performance index, noted PI, and the cross-talk, notedv@ith are defined by

12 Gkl N |Giyl?
_ = 1|+ — 0 1 19
2 Zl{( max|G )12 k; max|Gyy,)|* (19)

N

CTs = (Si(vi)—§(w))”, (20)
k=1

whereG(U) are elements of the matr@ = A#A. The Pl measures the overall separation
performances and indicates mainly the mixing matrix edionaquality, while the cross-
talk assesses the accuracy of the source signal recomstruct the following, the two
indexes are expressed in dB.

The first data set is obtained by mixing three simulated negmative signals that are
similar to real spectra. The mixing coefficients are alsoseimoin such a way to get
an evolution similar to what we get in chemical reactiongufe¢ 1 shows the source
signals, the mixing coefficients and the resulting mixtdogsan SNR of 20 dB.
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FIGURE 1. (a) Source signals, (b) mixing coefficients and (c) resgltimxtures for SNR = 20 dB

The second experiment consists in mixing three known chedmnsjgecies (cyclopen-
tane, cyclohexane and n—pentane) and the mixture data tamed by near infrared
(NIR) spectroscopy measurements. These species have esmndbecause their spec-
tra in the NIR frequency band are highly overlapping whictkesathe separation diffi-
cult and they do not interact when they are mixed, guaragtiéiat no new component
appears. The pure spectra and concentration are showniia {@ju
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FIGURE 2. (a) Constituent spectra, (b) concentration profiles andsomea mixture data



TABLE 1. Comparison of the separation performances using diffenethods

Simulated data Experimental data

NNICA NMF ALS BPSS NNICA NMF ALS BPSS

CTsource1 -12.95 -13.64 -17.65 -20.99 -4.82 -1420 -1518 -33.23
CTsouwce2 -10.70 -11.70 -11.11 -19.94 -564 -17.50 -23.43 -24.98
CTsources -19.93 -19.83 -21.76 -19.11 -4.77 -17.88 -14.01 -26.05

Pl -10.03 -9.60 -12.01 -1841 -1.02 -11.60 -8.10 -19.22

Table 1 summarizes the performances of the analysis of thegeres using different
methods. NNICA is the non-negative independent componeaiysis method [10] and
BPSS (for Bayesian positive source separation) refers tortsigoped approach. These
results show the superior performances of the Bayesianat@paapproach.

CONCLUSION

The problem of non-negative source separation has beeessddt in this paper. The
Bayesian inference allows to consider the non-negativitpré® information which
Is encoded through the assignment of Gamma distributicorgriThe result that has
been presented illustrate that such prior distributioneis/\suitable for the separation
of spectral source signals. To achieve a better fit of thecgoagignal distributions,
the proposed approach can be straightforwardly extendeal rriore general model
consisting in mixtures of Gamma or truncated normal digtidms.
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