Extremal functions and symmetry breaking in

Caffarelli-Kohn-Nirenberg inequalities Jean Dolbeault (joint work with M. Esteban, M. Loss, G. Tarantello, A. Tertikas)

We consider the extremal functions for the interpolation inequalities introduced by Caffarelli, Kohn and Nirenberg in [START_REF] Caffarelli | First order interpolation inequalities with weights[END_REF], that can be written as (1)

R d |u| p |x| bp dx 2 p ≤ C CKN (θ, a, b) R d |∇u| 2 |x| 2a dx θ R d |u| 2 |x| 2(a+1) dx 1-θ
where u is a smooth function with compact support in R d \{0} and the parameters are in the range: b ∈ (a + 1/2, a

+ 1] if d = 1, b ∈ (a, a + 1] if d = 2 and b ∈ [a, a + 1] if d ≥ 3, a = (d -2)/2 =: a c , p = 2d d-2+2(b-a) and θ ∈ [ϑ(p, d), 1] with ϑ(p, d) := d (p -2)/(2 p).
We also consider weighted logarithmic Hardy inequalities, introduced in [4], which correspond to the limit θ = γ (p -2), p → 2 + and read as

(2) R d |u| 2 |x| 2(a+1) log |x| d-2-2a |u| 2 dx ≤ 2γ log C GLH (γ, a) R d |∇u| 2 |x| 2a dx for any smooth function u such that |x| -(a+1) |u L 2 (C) = 1, with compact support in R d \ {0}. The parameters are such that a < a c , γ ≥ d/4 and γ > 1/2 if d = 2.
Inequalities (1) and ( 2) can be extended to the larger space D 1,2 a (R d ) obtained by completion with respect to the norm u → R d |x| -2a |∇u| 2 dx. Extremal functions are such that the inequalities, written with their optimal constants, become equalities. We shall assume that C CKN (θ, p, a) and C GLH (γ, a) are optimal, i.e. take their lowest possible value. By a Kelvin transformation (see [START_REF] Dolbeault | The role of Onofri type inequalities in the symmetry properties of extremals for Caffarelli-Kohn-Nirenberg inequalities, in two space dimensions[END_REF]), the case a > a c can be reduced to the case a < a c . For simplicity, we shall assume that a < a c .

The case θ = 1, p ∈ [2, 2 * ] and d ≥ 3 has been widely discussed in the literature. Existence of extremal functions for (1) has been studied in various papers in case θ = 1: see [START_REF] Catrina | On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions[END_REF] and references therein for details. Radial symmetry of the extremal functions is an important issue, which has been established in a number of cases: see [START_REF] Chou | On the best constant for a weighted Sobolev-Hardy inequality[END_REF][START_REF] Dolbeault | On the symmetry of extremals for the Caffarelli-Kohn-Nirenberg inequalities[END_REF][START_REF] Dolbeault | The role of Onofri type inequalities in the symmetry properties of extremals for Caffarelli-Kohn-Nirenberg inequalities, in two space dimensions[END_REF][START_REF] Horiuchi | Best constant in weighted Sobolev inequality with weights being powers of distance from the origin[END_REF][START_REF] Smets | Partial symmetry and asymptotic behavior for some elliptic variational problems[END_REF][START_REF] Dolbeault | On the symmetry of extremals for the Caffarelli-Kohn-Nirenberg inequalities[END_REF]. Extremal functions are then entirely determined and the value of the optimal constants is known. On the other hand, symmetry breaking, which means that extremal functions are not radially symmetric, holds for

(3) d ≥ 2 , b < 1 2 (a -a c ) 2 - d (a -a c ) 2 + d -1 ,
as it has been established in [START_REF] Catrina | On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions[END_REF][START_REF] Dolbeault | The role of Onofri type inequalities in the symmetry properties of extremals for Caffarelli-Kohn-Nirenberg inequalities, in two space dimensions[END_REF][START_REF] Felli | Perturbation results of critical elliptic equations of Caffarelli-Kohn-Nirenberg type[END_REF]. Moreover, according to [START_REF] Dolbeault | On the symmetry of extremals for the Caffarelli-Kohn-Nirenberg inequalities[END_REF], a continuous curve p → a(p) with values in the region a < 0, b < a + 1 separates the symmetry breaking region from the region where radial symmetry holds. The case θ < 1 of Inequality (1) has been much less considered. Symmetry breaking has been established in [START_REF] Del Pino | A logarithmic Hardy inequality[END_REF] in a region which extends the one found in [START_REF] Dolbeault | The role of Onofri type inequalities in the symmetry properties of extremals for Caffarelli-Kohn-Nirenberg inequalities, in two space dimensions[END_REF][START_REF] Felli | Perturbation results of critical elliptic equations of Caffarelli-Kohn-Nirenberg type[END_REF]. If either d = 1 or d ≥ 2 but for radial functions, existence of extremal functions for (1) has been proved in [START_REF] Del Pino | A logarithmic Hardy inequality[END_REF] for any θ > ϑ(p, d). However, the best constant is not achieved if θ = ϑ(p, d) and d = 1. Existence of extremal functions without symmetry assumption and some results of radial symmetry have also been obtained in [START_REF] Dolbeault | Extremal functions for Caffarelli-Kohn-Nirenberg and logarithmic Hardy inequalities[END_REF][START_REF] Dolbeault | Radial symmetry and symmetry breaking for some interpolation inequalities[END_REF].

A symmetry breaking result for (2) has been established in [START_REF] Del Pino | A logarithmic Hardy inequality[END_REF] when

(4) d ≥ 2 , a < -1/2 and γ < 1 4 + (a -a c ) 2 d -1 .
It is very convenient to reformulate Inequalities ( 1) and ( 2) in cylindrical variables as in [START_REF] Catrina | On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions[END_REF]. By means of the Emden-Fowler transformation 2) respectively, when the set of functions is restricted to the radially symmetric ones. From [START_REF] Del Pino | A logarithmic Hardy inequality[END_REF], we know that

t = log |x| ∈ R , ω = x |x| ∈ S d-1 , y = (t, ω) , v(y) = |x| ac-a u(x) , Inequality ( 
C CKN (θ, p, a) ≥ C * CKN (θ, p, a) = C * CKN (θ, p, a c -1) Λ p-2 2p -θ C WLH (γ, a) ≥ C * WLH (γ, a) = C * WLH (γ, a c -1) Λ -1+1/(4γ)
where Λ = (aa c ) 2 . Symmetry breaking means that the above inequalities are strict. Finding extremal functions amounts to minimize the functionals

E[v] := ∇v 2 L 2 (C) + Λ v 2 L 2 (C) θ v 2(1-θ) L 2 (C) / v 2 L p (C) , F [w] := ∇w 2 L 2 (C) +Λ w 2 L 2 (C) w 2 L 2 (C) exp -1 2γ C |w| 2 w 2 L 2 (C) log |w| 2 w 2 L 2 (C)
dy .

Radial symmetry for (1) and ( 2) means that there are minimizers of E and F which depend only on t.

The method of [START_REF] Catrina | On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions[END_REF][START_REF] Felli | Perturbation results of critical elliptic equations of Caffarelli-Kohn-Nirenberg type[END_REF][START_REF] Del Pino | A logarithmic Hardy inequality[END_REF] for proving symmetry breaking goes as follows. In case of Inequality (1), consider a symmetric minimizer v * of E, depending only on t. Up to a scaling and a multiplication by a constant, v

* (t) = (cosh t) -2/(p-2) solves (p -2) 2 v ′′ -4 v + 2 p |v| p-2 v = 0 .
An expansion of E[v] at order two around v * involves the operator L := -∆ + κ w * p-2 + µ for some κ and µ which are explicit in terms of θ, p and d. Eigenfunctions are characterized in terms of Legendre's polynomials and spherical harmonic functions. The eigenspace of L corresponding to the lowest eigenfunction is generated by w * (after a multiplication by a constant and a scaling). The eigenfunction λ 1,0 associated to the first non trivial spherical harmonic function is not radially symmetric. Condition (3) is determined by requiring that λ 1,0 < 0, which implies that C CKN (θ, p, a) > C * CKN (θ, p, a). In case of Inequality (2), a similar analysis can be done. The radial minimizer is a Gaussian function in t and the operator L is the Schrödinger operator with harmonic potential.

Symmetry results in [START_REF] Dolbeault | On the symmetry of extremals for the Caffarelli-Kohn-Nirenberg inequalities[END_REF][START_REF] Dolbeault | Radial symmetry and symmetry breaking for some interpolation inequalities[END_REF] also involves some spectral analysis. By considering sequences (v n ) n∈N of minimizers of E appropriately normalized by the condition

v n 2 L p (C) = 1, one proves that ∇v n 2 L 2 (C) is bounded when either b = b n con- verges to a + 1, or a = a n → 0 -if θ = 1, or a = a n → a c-if θ < 1.
Minimizers being solutions of an elliptic PDE, the convergence to a limit actually holds locally uniformly, which allows to write a linear equation for D ω v n , where D ω denotes an appropriate derivative with respect to ω. By spectral gap considerations, we conclude that D ω v n ≡ 0 for n large enough: v n depends only on t.

Using scaling properties, it has been proved in [START_REF] Dolbeault | On the symmetry of extremals for the Caffarelli-Kohn-Nirenberg inequalities[END_REF][START_REF] Dolbeault | Radial symmetry and symmetry breaking for some interpolation inequalities[END_REF] that there is a curve separating the region of symmetry for (3) from the region of symmetry breaking. The same property holds for (2). However, in both cases, no quantitative estimates are known about the position of the curve in the region a < 0. It is an open question to decide whether it coincides with the region defined by ( 3) and (4) or not.

  [START_REF] Caffarelli | First order interpolation inequalities with weights[END_REF] for u is equivalent to a Gagliardo-Nirenberg-Sobolev inequality on the cylinderC := R × S d-1 : for any v ∈ H 1 (C), C |v| p dy 2 p ≤ C CKN (θ, p, a) = (a ca) 2 . Similarly, with w(y) = |x| ac-a u(x), (2) is equivalent to C |w| 2 log |w| 2 dy ≤ 2 γ log C WLH (γ, a) C |∇w| 2 dy + Λ for any w ∈ H 1 (C) such that w L 2 (C) = 1.We shall denote by C * CKN (θ, p, a) and C * WLH (γ, a) the optimal constants for (1) and (
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