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ABSTRACT

In some applications involving line spectra or direction ofarrival
(DOA) estimation, we may have a priori information which could
consist of known frequencies in Magnetoencephalography (MEG)
or mechanical signals, or of known DOA’s in a RADAR urban sce-
nario. With this fact in mind we propose an optimal method forarray
processing that exploits the information of the known DOA’sfor es-
timating the unknown DOA’s as accurately as possible. This new
Prior-knowLEDGE (PLEDGE) technique is based on the method
of direction estimation (MODE) approach. To show the benefits
of incorporating prior-knowledge we also present the corresponding
stochastic Cramér-Rao Bound (CRB). Finally, we use PLEDGEfor
estimating frequencies in the current spectrum of an induction motor
to perform the diagnosis on rotor bars.

1. INTRODUCTION

In some applications involving direction of arrival (DOA) or line
spectra estimation, we may have known a priori information.For
example, in a RADAR urban scenario, the presence of stationary
sources such as buildings, leads to waves that impinge on thearray
from known directions. In such a multi-path problem, the sources
are highly correlated or even coherent. Similarly, in Magnetoen-
cephalography (MEG) some neural activities of the brain arerepet-
itive and thus we know frequencies present in the synaptic current
spectrum. A more industrial application but still in the same con-
text is the diagnosis of rotating machines. The kinematic ofthese
systems is well known and particular frequencies are well identified,
which could be on the line signal frequency or gear frequency. The
point is that these prior knowledge might not carry any information
and might mask what is of interest. It is then crucial to take advan-
tage of the prior-information for estimating the parameters of interest
as accurately as possible. Following this way, recent work has been
proposed in the context of NMR spectroscopy [4] and array process-
ing [8]. Each of these methods uses the concept of reduced signal
subspace by deflating the sample covariance matrix. The Cramér-
Rao Bound (CRB) associated with this model has been given and
studied in [2]. This bound, the Prior-CRB, shows that this kind of
methods is limited and suffers from drastic assumptions as well. We
can argue that the non-bijective transformation (the deflation) causes
an information loss. From this it is obvious and easy to understand
why these algorithms are limited.
The idea pursued in this paper is to propose an optimal algorithm
in which we could easily use and fix the known parameters. We
have based our derivation on the popular method of directionestima-
tion (MODE) [12] from which we have deduced the optimalPrior-
knowLEDGE (PLEDGE) algorithm for array processing. The
PLEDGE is presented for the Uniform and Linear Array (ULA)
case which allows us to easily transpose the algorithm to theline
spectra estimation. To show the benefits of incorporating prior-
knowledge we also present the corresponding Cramér-Rao Bound
(CRB). Based on simulation results we present a discussion on what

prior-hypothesis is essential. We end this work by presenting a diag-
nosis problem on rotor bars in an induction motor.

2. MODEL STATEMENT

Considern narrowband and far-field plane waves impinging on an
ULA composed ofL sensors separated by a half wavelength. Let
t be a sample (“snapshot”) and assume that the total number of
available samples isN , then t = 1, . . . N . The one sample re-
sponse, or equivalently the single-experiment time seriesmodel can
be parametrized in the following way

y(t) = A(ω)x(t) + n(t) (1)

whereA(ω) = [a(ω1) . . . a(ωn)] and wherea(ωi) is thei-th steer-
ing vector defined by

a(ωi) = [1 ejωi . . . ej(L−1)ωi ]T (2)

with ωi = −π sin(θi) the spatial pulsation for the direction of arrival
(DOA) estimation problem (θ the DOA) and whereωi could be the
temporal pulsation, i.eωi = 2π fi

fe
(fe the sample frequency) for the

line spectra estimation problem. Amplitude wavesx(t) and noise
signaln(t) are assumed to be jointly Gaussian with zero-mean, sta-
tionary and circular stochastic process of second order moments

E[x(t)xH(t)] = P and E[n(t)nH(t)] = σ2
I (3)

whereE stands for the mathematical expectation andH for the trans-
pose and conjugate. For the latter use we introduceT as the trans-
pose and∗ as the conjugate.
The aim of this work is to furnish an optimal method for the DOAes-
timation which integrates the prior-knownledge of some directions.
The optimality has to be understood in the Maximum Likelihood
(ML) sense and elaborating ML DOA estimation has been treated in
abundance since the three last decades (see for instance [9]). MODE
rose up particularly by its good performances and computational cost
(among other things) [10, 6, 12]. We briefly recall its principle be-
fore using it to tackle the problem of prior-information integration.

3. MODE

The derivation of MODE can be seen by different points of viewand
we choose a pragmatic manner without going into depth, for more
details you can refer to [12] and the references therein. Assume that
the directions can be found by polynomial rooting. Consequently,
we define the polynomial

b0z
n + b1z

n−1 + . . . + bn = b0

nY

i=1

(z − ejωi) (4)

in which then angle roots are then directions of interest. Since all
the roots of (4) belong to the unit circle, its coefficients must satisfy



the conjugate symmetry constraint [12], and thusbi = b∗n−i , i =
0, . . . , n. Let us define now the Sylvester matrix whose rows are
formed by the polynomial coefficients{bi} such as

B
H =

2
64

bn bn−1 . . . b0 0
. . .

. . .
. . .

0 bn bn−1 . . . b0

3
75 (5)

meaning that the columns ofB span the null space ofA.
Consider now by deterministic derivation, the concentrated negative
log-likelihood function [9]FML (ω) = Trace[Π⊥

A R̂] or equivalently

FML (b) = Trace[B(BH
B)−1

B
H

R̂] (6)

with b = [b0 . . . bn]T , whereΠ⊥

A = I − A
`
AH A

´−1

AH , and
where the sample covariance matrix is defined by

R̂ =
1

N

NX

t=1

y(t)yH(t). (7)

Let
R̂ = ÊSΣ̂SÊ

H

S + ÊN Σ̂N Ê
H

N (8)

be an eigendecomposition of̂R. Here,Σ̂S is a diagonal matrix con-
taining then largest eigenvalues, and the columns ofÊS are the cor-
responding eigenvectors. Similarly,Σ̂N contains theL− n remain-
ing eigenvalues and the columns ofÊN are the associated eigenvec-
tors. A consistent estimate of the noise variance is then given by
σ̂2 = 1

L−n
Trace[Σ̂N ].

It has been shown that the ML estimate was computationally heavy
and not efficient, i.e. the variance of the estimation errors(ω̂i − ωi)
do not achieve the CRB for a small number of sensor [12]. So, a
better approach is given by a large sample realization of (6)given by

Trace[AH
ÊN Ê

H
NAW ] (9)

whereW is a positive definite weighting matrix. The derivation
of the optimal (ML sense)W can be found in [12] and after alge-
braic manipulations we obtain the MODE minimizer. The coeffi-
cients{bi} are therefore the solution of the minimizer [12]

FMode(b) = Trace[ B(B̂
H

B̂)−1
B

H
ÊSΛ̂Ê

H

S ] (10)

with
Λ̂ = Σ̂S(Σ̂S − σ̂2

I)−2. (11)

We make use of the rank-1 equivalence ofÊSΛ̂Ê
H
S to observe that

(10) can be viewed as a quadratic minimizer. To this end, we use
conjointly

ÊSΛ̂Ê
H

S =

nX

k=1

λ̂kêkê
H
k (12)

with êk thek-th column ofÊS and its corresponding eigenvalueλ̂k,
and property

B
H

êk = êEkb (13)

introduced in [3] and whereêEk is a(L − n + 1) × (n + 1) Hankel
matrix defined such as

êEk =

2
664

êk(0) êk(1) . . . êk(n)
êk(1) . . . . . . êk(n + 1)

...
...

êk(L − n) . . . . . . êk(L)

3
775 , (14)

to remark that (10) can effectively be written

Trace[ B(B̂
H

B̂)−1
B

H
ÊSΛ̂Ê

H
S ] = b

H
Q̂b (15)

where

Q̂ =

nX

k

λ̂k
êE

H

k (B̂
H

B̂)−1 êEk. (16)

As we can see from (16), we have to first give an estimate ofB̂. It
has been proved in [12] that an initial consistent estimateb̂ is ob-

tained by taking(B̂
H

B̂) = I . Constraining the minimizer with
‖b‖2 = 1, we obtained̂b as the eigenvector corresponding to the

smallest eigenvalue of̂Q =
Pn

k λ̂k
êE

H

k
êEk. Making use of this

consistent estimate, we form̂B and (15) is solved with the con-
straint‖b‖2 = 1 by selecting the eigenvector associated with the
smallest eigenvalue of (16). Lastly, then DOA’s are deduced from
then angle roots of (4).

4. PLEDGE SCHEME

We deduce PLEDGE directly from MODE. Thanks to the polyno-
mial rooting, we can easily write a new polynomial which integrates
known zeros. In such a case, the polynomial defined in (4) can be
factorized in the following manner

b0

nY

i=1

(z − ejωi) = Qk(z)Qu(z) (17)

where the two following polynomials are introduced

Qk(z) = q0

nkY

i=1

(z − ejωi) = q0z
nk + . . . + qnk

(18)

Qu(z) = b̄0

nuY

i=1

(z − ejωi) = b̄0z
nu + . . . + b̄nu

, (19)

which are respectively the polynomials whose zeros are the known
and the unknown DOA’s and where without loss of generality [12],
the modulus of bothq0 andb̄0 are arbitrary. Theb vector can there-
fore be formulated in algebraic correspondence. It is enough for
this to convolve the coefficients of the two polynomialsQk(z) and
Qu(z) and it yields

[b0 b1 . . . bn]
T

= C
T

b̄ (20)

where

b̄ =
ˆ
b̄0 b̄1 . . . b̄nu

˜T

C =

2
64

q0 q1 . . . qnk
0

. . .
. . .

. . .
0 q0 q1 . . . qnk

3
75 .

PLEDGE estimates thenu unknown DOA’s from the estimated poly-
nomial (19). To solve this problem, we substitute (20) into (15) and
the following modified quadratic optimization problem is deduced

Trace[BH(B̂
H

B̂)−1
ÊSΛ̂Ê

H
S B] = b̄

H ˆ̄Qb̄ (21)

with ˆ̄Q = CQ̂CH . From here we follow the steps required for
finding the DOA’s from MODE, namely :



1) find a first consistent estimate of (21) by taking(B̂
H

B̂) = I

and constrain the minimizer with‖b‖2 = 1. We stress on the
fact that as it might not be an evidence, the best performances
are obtained when the constraint is equal to‖b‖2 = 1 and not
‖b̄‖2 = 1. We will not go further on this here,

2) form theB̂ matrix and solve (21) subject to‖b‖2 = 1, then
finally

3) thenu DOA’s are determined as the angle of the roots of (19)

whose coefficients are the{ˆ̄bi} estimated at step 2).

5. PLEDGE CRB

The CRB proposed in [2] is based on a subspace reduction by an or-
thogonal projection method which guarantees to suppress the known
information. This bound, named the Prior-CRB (P-CRB), has been
derived under the deterministic assumption. The results and analysis
which were given, pointed out that exploiting the prior-information
by an orthogonal projection was not an optimal method. Actually the
main observations are :(1) theP-CRB= CRB in general conditions
and(2) theP-CRB< CRBwhen sources associated with the known
and unknown directions are correlated. So, in such a procedure, the
only way to improve the estimation of the unknown DOA’s is to be
in presence of full correlated sources. We can advance two reasons
for that. One is surely the determinist derivation of the P-CRB, and
the other could be felt by the fact we project the data leadingto an
irremediable information loss. Starting from this point, we propose
in this section the stochastic CRB based on PLEDGE model and
thereby named PLEDGE CRB.
We drew our inspiration from [11] to formulate and derive the
PLEDGE CRB. Accordingly, let

α = [ωT
u ρ

T σ2]T (22)

be the unknown parameter vector, whereωu = [ω1 . . . ωu]T .
Actually ωu is the set of unknown DOA’s and indices here
have no importance, they are arbitrary and help the mathemati-
cal formulation. Then2 × 1 vector ρ is made from{P ii} and
{Re(P ij), Im(P ij) for j > i}. Under the previous assumptions
and the Gaussian hypothesis, the Fisher Information Matrix(FIM)
for the parameter vectorα is given by

FIMp,q = NTrace
»
R

−1 ∂R

∂αp
R

−1 ∂R

∂αq

–
(23)

for p, q = 1, . . . , nu + n2 + 1

with the true covariance matrixR = AP AH + σ2I . The further
derivation steps require first the vectorization of (23)

1

N
FIM =

„
∂r

∂αT

«H

(R−T ⊗ R
−1)

„
∂r

∂αT

«
(24)

with ⊗ the kronecker product and

r = vec(R) = (A∗ ⊗ A)vec(P ) + σ2vec(I), (25)

and second the following partitioning

(R−T/2 ⊗ R
−1/2)

»
∂r

∂ωT
u

|
∂r

∂ρT

∂r

∂σ2

–
= [Gu|∆] (26)

which leads to

1

N
FIM =

»
GH

u

∆H

–
[Gu∆]

=

»
GH

u Gu GH
u ∆

∆HGu ∆H∆

–
. (27)

We conduct the derivation for the upper left submatrixGH
u Gu along

with the methodology of [11]. With no surprise, the final result,
agreeing with an intuitive approach, gives us an expressionof the
PLEDGE CRB

PLEDGE CRB(ωu) =

σ2

2N

»
Re

“
D

H
u Π⊥

ADu

”
⊙

“
P

H
u A

H
R

−1
AP u

”T
ff–−1

(28)

with ⊙ the Hadamard product and where the partitioningP =
[P u|P k] is considered. Once again this is an arbitrary choice and
theP u matrix is composed by the columns ofP associated with the
sources whose directions are unknown. Lastly,Du = [d1 . . . dnu

]
wheredi = (da(ωi)/dωi) is the first derivative ofa(ω) considered
atωi.

6. SIMULATIONS

In all the scenarios considered, we have two sources impinging on
a ULA with a half-wavelength distance between the sensors. The
sources have the directionsθ1 andθ2 respectively. We define the
power of each source with respect to the correlation matrix as

P

σ2
=

"
10

SNR1
10 ρ

ρ∗ 10
SNR2
10

#

whereσ2 is kept equal to one for each simulation andρ is the corre-
lation coefficient. The DOA of interest is the second one, namely
θ2. The number of sensors, snapshots, the power of the sources
are varying along with the figures but the two DOA’s are located
at θ1 = 10◦ andθ2 = 12◦ for all experiments concerning Fig.1.
Lastly each results are the mean of 1000 independent trials.We
compare PLEDGE to MODE and P-MUSIC [2] except we have im-
proved the performance of the latter by using the noise-freesample
covariance matrix instead of directly the sample one (i.e.R̂ − σ̂2I

instead ofR̂). We have plotted the stochastic CRB forn parameters,
the PLEDGE CRB, the CRB for uncorrelated sources of Jansson et
al [7] and the CRB fornu unknown DOA’s,nu = 1 in the context
of these simulations.

6.1. On PLEDGE performances

First, PLEDGE achieves the PLEDGE CRB whatever be the sce-
nario. This fact concludes that PLEDGE is an optimal solution to the
prior knowledge-based DOA estimation. Next, the set of Fig.1 and
Fig.2’s plots show the benefit of using PLEDGE instead of MODE
for low and moderate SNR. For example, one would wonder what
could be the gain brought by PLEDGE when the sources of interest
are less or much less powerful than the ones which are known. Ahint
can be found in Fig.1-(b) which reveals that theθ2’s estimation has
been improved. To be sure, one can observe on this figure that when
the source of interest is half as powerful as the known one, having
thenSNR2/SNR1 = 0.5, the gain is significant. For equipowered
sources the advantage could be used at low SNR, less than 10dB,
where the gain can nearly reach 5dB. PLEDGE is thus a valuable
solution to improved the estimation accuracy into the threshold. We
also show that PLEDGE could be much less sensitive to the correla-
tion than MODE and naturally than P-MUSIC which is suboptimal,
to be convinced see Fig.2. Lastly, we can see on Fig.1-(c) that the
P-MUSIC is better than PLEDGE at low SNR. For this SNR range,
P-MUSIC follows a CRB that we named the PLEDGE uncorrelated
CRB. That CRB takes into account the prior knowledge of uncor-
related sources and the knowledge ofθ1 (or generallynk known
DOA’s), which are the implicit hypothesis of the P-MUSIC algo-
rithm. Due to the lack of space and since this bound is not the key



contribution of this work, no closed-form expression of this bound
is presented in this paper, but will be left to future work. These addi-
tional assumptions on prior-information introduce the next reflexion.

6.2. On prior-knowledge

We develop herein a study on using prior-knowledge. We base our
reflexion on the CRBs plotted. Compared to the CRB forn param-
eters of interest, the PLEDGE CRB which is of reduced dimension,
shows that the prior-information is useful especially at low SNR.
In addition, increasing the number of known parameters should in-
crease that difference. Pay now attention to the CRB for uncorrelated
sources. Make use of this prior hypothesis leads to derive the FIM
with 2n + 1 parameters instead ofn2 + n + 1 for the CRB. The
number of FIM elements for the PLEDGE isnu + n2 + 1. Then we
could have thought that knowing the sources are uncorrelated would
improve more significantly the variance. We can verify this with the
help of Fig.1-(c). However for the 2 DOA’s case, we can have a
scenario from which knowing some directions is better than know-
ing the uncorrelation state of the sources. That fact is illustrated by
Fig.1-(d). We conclude by saying that the minimum variance is ob-
tained when we couple together both the assumption of uncorrelated
sources and the assumption of known directions. The correspond-
ing derivation leads to the PLEDGE uncorrelated CRB. This bound
has by far the best gain, whatever be the scenario. It is then neces-
sary to give the PLEDGE for uncorrelated sources. This future work
will be the optimal prior-knowledge algorithm taking into account
both the correlation and the direction. We can imagine furthermore
that this new algorithm could be a new tool to test the assumption of
correlated/uncorrelated sources.
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Fig. 1. (a) 5 sensors, 1000 snapshots and equipowered sources, (b)
SNR1 = 4 dB, 10 sensors and 100 snapshots, (c) 10 sensors, 100
snapshotsSNR1 = 4 dB andSNR2 = 14 dB, (d) SNR=2 dB, 6
sensors and equipowered sources, for all experimentsn = 2.
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Fig. 2. 10 sensors, 100 snapshots SNR = 2 dB,θ1 = 10◦, θ2 = 14◦

with equipowered sources andn = 2.

7. UTILITY FOR MECHANICAL DIAGNOSIS

The mechanical diagnosis seems to be an attractive application by
essence. Indeed, many rotating systems generate frequencies linked
to the rotation of gears or rotor and stator in induction motors. Thus,
acquiring a vibratory signal or a current signal reveals information
on the mechanical structure and health of the system. In addition,
thanks to the kinematic, some frequencies are known and either
do not bring out useful information or prevent the frequencies of
interest from being clearly estimated. The application concerned
corresponds to the second case mentioned and we will depict the
utility of PLEDGE on the estimation of two sideband components
masked by a much powerful one. Those frequencies are besidesof
major importance in rotor bars diagnosis [5].
The following explanations are strongly inspired from
http://www.ieee-kc.org/library/motors/motorslip.htm. An in-
duction motor consists of two basic assemblies : a stator anda rotor.
The name ”induction motor” comes from the alternating current
induced into the rotor via the rotating magnetic flux produced in the
stator. Motor torque is developed from the interaction of currents
flowing in the rotor bars and the stators’ rotating magnetic field. In
actual operation, rotor speed always lags the magnetic field’s speed,
allowing the rotor bars to cut magnetic lines of force and produce
useful torque. This speed difference is called slip speed. The slip is
therefore defined ass = vs−v

vs
expressed in percent wherev is the

actual speed andvs the synchronous speed (stator). For industrial
induction motors, the slip is of1% or 2%. As it is developed in [5],
a useful indicator of broken rotor bars is the sideband components
around the on line frequency. These sidebands are located inthe
current spectrum at frequenciesfs = (1 ± 2s)fline wherefline is
the network frequency, say the 50Hz. Accordingly, the frequencies
of interest are closed from the on line frequency. A drawbackof the
diagnosis relying on the current signal is the inevitable high dynamic
of the 50 Hz. Another drawback is caused by the stability of the
network frequency. In France, the electrical producer company
ensures the stability of the network frequency on a day (witha
certain tolerance only). To estimate the sideband components, the
Fourier transform needs a long observation time to increasethe
precision. However, due to the fluctuation of the 50 Hz, the effect
expected is exactly the opposite. The more data you acquire,the
less accurate the estimation. That is illustrated by Fig.3.From this
figure the sideband frequencies would have been visible on each
side of the 50 Hz lobe but due to the instability of the network
frequency the Fourier analysis is ineffective. The problemis then
to acquire a weak number of data and to have the best precision
by possibly getting rid of the 50 Hz which both does not bring out
information and is awkward for the estimation. So, PLEDGE seems
to be exactly what we need and even if this algorithm has been
derived for the array processing we will show that it is suitable in



the spectral analysis case.

7.1. Experimental conditions

We have used the current signal acquired from an induction motor
(http://www.laspi.fr). The machine as weak broken bars andthus
two sideband components should appear at frequencies 51.17Hz
and 48.83 Hz. The experimental conditions are the following: we
have acquired60000 samples, say 100 revolutions, at the sample fre-
quencyfe = 25.6 KHz of the current signal and we have decimated
of a factor 200 leading to 3 samples per revolution. PLEDGE needs
an estimation of the signal subspace by eigendecompositionof the
sample covariance matrix. In the context of the spectral line search,
we use a Hankel matrix formed by the data samples instead and the
MDL technic to estimate the dimension of the signal subspace, see
[1] and the references therein. The MDL estimator has given 30 pa-
rameters of interest. The 50 Hz network frequency is first estimated
by MODE and we use this estimation as the known frequency in
PLEDGE.

7.2. Results

The frequencies estimated by PLEDGE are reported inside Table1.
The analysis of the table shows that PLEDGE has totally suppressed
the known frequency, that is to say the 50 Hz. We focus now on
the gray cells which indicate the 2 nearest frequencies from50 Hz
estimated by PLEDGE. Without ambiguity, we can claim that the
frequencies 48.87 Hz and 50.98 Hz are those ones which correspond
to the slip frequencies. Then, we can surely say that the induction
motor has bars defects. So, we have shown that PLEDGE was able
to solved the difficult problem of estimating the slip frequencies by
getting rid of the 50 Hz and still keeping a good precision. Conse-
quently, from the analysis of the current signal, PLEDGE seems to
be adapted for the diagnosis of rotor bars. In addition, few samples
are required to monitor the system which is undeniably an advantage
to avoid the bad effects caused by the network frequency deviation
and to improve the computational cost of the processing.
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Fig. 3. Power Spectral Density (PSD) of current signal with 300
samples acquired with a sample frequency equals to 128 Hz.

8. CONCLUSION

In this paper we have proposed an optimalPrior-knowLEDGE
(PLEDGE) method based on the method of direction estimation
(MODE) approach. PLEDGE exploits the information of known
DOA’s to better estimate the unknown ones. To show the bene-
fit of incorporating known information we have also proposedthe
corresponding stochastic CRB. The simulation results showed that
PLEDGE could significantly help the estimation of unknown DOA’s
especially when the sources corresponding to the unknown DOA’s

Estimated frequencies [Hz] by PLEDGE
0.15 1.24 6.13 9.76 14.74 15.64
18.05 22.61 23.71 25.17 25.68 26.76
30.04 31.70 34.19 35.49 37.86 39.12
41.20 42.09 45.45 48.87 50.98 52.26
54.69 57.83 58.93 61.92 62.67 63.49

Table 1. The gray cells correspond to the 2 sideband frequencies
(slip frequencies)

are much less powerful than those ones which are known. We have
shown that PLEDGE has good performance into the threshold and
is robust to the correlation between the sources, even at lowSNR.
Finally, we have presented an induction motor diagnosis problem.
The diagnosis consists of estimating two slip frequencies masked by
a closely located and much more powerful one. We have shown that
PLEDGE is very adequate to solve this problem.
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