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ABSTRACT prior-hypothesis is essential. We end this work by presgrdidiag-

In some applications involving line spectra or directionaofival hosis problem on rotor bars in an induction motor.

(DOA) estimation, we may have a priori information which tbu
consist of known frequencies in Magnetoencephalographiz GIM 2. MODEL STATEMENT

or mechanical signals, or of known DOA's in a RADAR urban sce-Considern narrowband and far-field plane waves impinging on an
nario. With this fact in mind we propose an optimal methodsiory ~ ULA composed ofLL sensors separated by a half wavelength. Let
processing that exploits the information of the known DJAises- ¢ be a sample (“snapshot”) and assume that the total number of
timating the unknown DOA's as accurately as possible. Tki n  available samples i&V, thent = 1,...N. The one sample re-
Prior-knowl. EDGE (PLEDGE) technique is based on the method sponse, or equivalently the single-experiment time seniedel can

of direction estimation (MODE) approach. To show the besefit be parametrized in the following way

of incorporating prior-knowledge we also present the gpoading

stochastic Cramér-Rao Bound (CRB). Finally, we use PLEBGE y(t) = A(w)x(t) + n(t) 1)
estimating frequencies in the current spectrum of an iridachotor

to perform the diagnosis on rotor bars. whereA (w) = [a(w1) ... a(ws)] and wherea (w; ) is thei-th steer-

ing vector defined by
1. INTRODUCTION

In some applications involving direction of arrival (DOA)y tne ) . . . o .
spectra estimation, we may have known a priori informatiior with w; = -7 s_m(ei) the spatial pulsation for the direction of arrival
example, in a RADAR urban scenario, the presence of stagiona (POA) estimation problem(the DOA) and wherev; could be the
sources such as buildings, leads to waves that impinge oartag ~ temporal pulsation, i.e; = 27?';—2 (fe the sample frequency) for the
from known directions. In such a multi-path problem, therses  line spectra estimation problem. Amplitude wave&) and noise
are highly correlated or even coherent. Similarly, in Magea-  signaln(t) are assumed to be jointly Gaussian with zero-mean, sta-
cephalography (MEG) some neural activities of the brainrapet-  tionary and circular stochastic process of second orderentsn
itive and thus we know frequencies present in the synaptient

spectrum. A more industrial application but still in the sagon- Ezt)z"(t) =P and En@#)n”(t)]=0T (@3)
text is the diagnosis of rotating machines. The kinematithete

systems is well known and particular frequencies are weliiified, ~ whereE stands for the mathematical expectation &nidr the trans-
which could be on the line signal frequency or gear frequefitie  pose and conjugate. For the latter use we introdues the trans-
point is that these prior knowledge might not carry any infation  pose and as the conjugate.

and might mask what is of interest. It is then crucial to tattead-  The aim of this work is to furnish an optimal method for the D&%
tage of the prior-information for estimating the parametdiinterest  timation which integrates the prior-knownledge of somedctions.
as accurately as possible. Following this way, recent wasklieen  The optimality has to be understood in the Maximum Likelitioo
proposed in the context of NMR spectroscopy [4] and arraggss- (ML) sense and elaborating ML DOA estimation has been tceiate
ing [8]. Each of these methods uses the concept of reducedlsig abundance since the three last decades (see for instajce@PE
subspace by deflating the sample covariance matrix. The &ram rose up particularly by its good performances and commnaticost
Rao Bound (CRB) associated with this model has been given anghmong other things) [10, 6, 12]. We briefly recall its pripiei be-
studied in [2]. This bound, the Prior-CRB, shows that thisckof  fore using it to tackle the problem of prior-informationegtation.
methods is limited and suffers from drastic assumptionseds W/e

can argue that the non-bijective transformation (the defixtauses 3. MODE

an information loss. From this it is obvious and easy to ustaed
why these algorithms are limited. y The derivation of MODE can be seen by different points of viewl

The idea pursued in this paper is to propose an optimal dtgori W€ qhoose a pragmatic manner without going into dgpth, faremo
in which we could easily use and fix the known parameters. Wéletails you can refer to [12] and the references thereinurssthat
have based our derivation on the popular method of direetitima-  the directions can be found by polynomial rooting. Consetye
tion (MODE) [12] from which we have deduced the optinfalor- ~ We define the polynomial

knowL EDGE (PLEDGE) algorithm for array processing. The n

PLEDGE is presented for the Uniform and Linear Array (ULA) n n—1 _ _ iwi

case which allows us to easily transpose the algorithm tditiee bozt bzt b = o ZHI(Z <) @
spectra estimation. To show the benefits of incorporatingrr B

knowledge we also present the corresponding Cramér-RamdBo in which then angle roots are the directions of interest. Since all
(CRB). Based on simulation results we present a discussiavhat  the roots of (4) belong to the unit circle, its coefficientsatnsatisfy

a(w) =[1e% . e E DT 2



the conjugate symmetry constraint [12], and thus= b,,_; ,i =

to remark that (10) can effectively be written

0,...,n. Let us define now the Sylvester matrix whose rows are

formed by the polynomial coefficien{$; } such as

bo
®)

meaning that the columns @ span the null space oi.
Consider now by deterministic derivation, the concenttategative

log-likelihood function [9]Fu. (w) = TracéIT R] or equivalently
(6)

withb = [bo ... b,]”, whereIlx = I — A (A" A)™" A¥ and
where the sample covariance matrix is defined by

Fu. (b) = Tracé B(BY¥ B)"'B" R]

N
A 1 H
R= N;y(t)y (®)- @
Let
~ ~ o~ ~H PPN ~ H
R=Es3sEs + EN3SNvEN (8)

be an eigendecomposition &. Here, 35 is a diagonal matrix con-
taining then largest eigenvalues, and the columngif are the cor-
responding eigenvectors. Similary,y contains thel, — n remain-
ing eigenvalues and the columnsBiy are the associated eigenvec-
tors. A consistent estimate of the noise variance is theanghy
6% = L TracdSy].

It has been shown that the ML estimate was computationaklyyhe
and not efficient, i.e. the variance of the estimation erférs— w; )

do not achieve the CRB for a small number of sensor [12]. So, a

better approach is given by a large sample realization afit@n by

Tracé A" En Efy AW )
where W is a positive definite weighting matrix. The derivation
of the optimal (ML senseW can be found in [12] and after alge-
braic manipulations we obtain the MODE minimizer. The ceeffi
cients{b; } are therefore the solution of the minimizer [12]
Fuoe(b) = Tracd B(B" B) 'B" EsAES]  (10)
with L
A=35(2s5—-6°1)2 (11)

We make use of the rank-1 equivalencef&$ A E'5 to observe that

Tracé B(B" B) 'B"EsAES) = b" Qb (15)
where
. .o aAH SH o~ A
Q=> M E, (B B) 'E (16)
k

As we can see from (16), we have to first give an estimatB oft
has been proved in [12] that an initial consistent estinbaie ob-
tained by takingB" B) = I. Constraining the minimizer with
[b]> = 1, we obtainedb as the eigenvector corresponding to the

~ L~ aH=a
smallest eigenvalue a@ = >} A\x Ej E). Making use of this
consistent estimate, we ford® and (15) is solved with the con-
straint||b||> = 1 by selecting the eigenvector associated with the
smallest eigenvalue of (16). Lastly, theDOA's are deduced from
then angle roots of (4).

4. PLEDGE SCHEME

We deduce PLEDGE directly from MODE. Thanks to the polyno-
mial rooting, we can easily write a new polynomial which grates
known zeros. In such a case, the polynomial defined in (4) ean b
factorized in the following manner

n

bo H(z — M) = Qp(2) Qu(2)

i=1

n

where the two following polynomials are introduced

Ny

Q(z) = w][E-€¢“)=gz"+.. . +q., (18
i=1

Qu(z) = bo[Jz— ) =boz™ +...+bn,, (19)
i=1

which are respectively the polynomials whose zeros are tiogvk
and the unknown DOA's and where without loss of generalij[1
the modulus of botlgy andbg are arbitrary. Thé vector can there-
fore be formulated in algebraic correspondence. It is ehdog
this to convolve the coefficients of the two polynomi&s (z) and
Q.(z) and it yields

(10) can be viewed as a quadratic minimizer. To this end, vee uUs\yhere

conjointly

n
EsAEL =S Avéné
k=1

(12)

with é;, thek-th column of E s and its corresponding eigenvalig,
and property

BYé, — Exb (13)

introduced in [3] and Whel’ék isa(L—n+1) x (n+ 1) Hankel
matrix defined such as

ék (0) ék(l) ék (n)
E, = : : ’ (14)
én(L —n) én(L)

[bo b b]"=C" b (20)
b = [bo b b ]”
go q1 qny, 0
Cc = _
0 qo q1 qny,

PLEDGE estimates the,, unknown DOA's from the estimated poly-
nomial (19). To solve this problem, we substitute (20) irit6)(and
the following modified quadratic optimization problem isideed

TracéB" (B" B) ' EsAEL B] = b" Qb 1)

with é = CQcC*. From here we follow the steps required for
finding the DOA's from MODE, namely :



1) find a first consistent estimate of (21) by taki@BHB) =1 We conduct the derivation for the upper left subma@i¥ G, along
and constrain the minimizer witfib||*> = 1. We stress on the with the methodology of [11]. With no surprise, the final résu
fact that as it might not be an evidence, the best perfornsanceagreeing with an intuitive approach, gives us an expressidhe
are obtained when the constraint is equallbj®> = 1 and not PLEDGE CRB

b||?> = 1. We will not go further on this here,
16l winotge i ! PLEDGE CREw.) =

2) form the B matrix and solve (21) subject th||> = 1, then

finally o? Hoyl H A H et M1
3) then, DOAs are determined as the angle of the roots of (19) N {Re{ (D“ HAD“) © (P“ AR AP“) }]
whose coefficients are tH@é; } estimated at step 2). (28)
5. PLEDGE CRB with © the Hadamard product and where the partitioniRg =

P.|Py;] is considered. Once again this is an arbitrary choice and
he P, matrix is composed by the columns Bfassociated with the
sources whose directions are unknown. Ladily, = [di...dn,]
whered; = (da(w;)/dw;) is the first derivative of(w) considered
atw;.

The CRB proposed in [2] is based on a subspace reduction by an
thogonal projection method which guarantees to suppredaitbwn
information. This bound, named the Prior-CRB (P-CRB), hesrb
derived under the deterministic assumption. The resuttsaalysis
which were given, pointed out that exploiting the prioramhation
by an orthogonal projection was not an optimal method. Abttlae
main observations arg1) the P-CRB= CRBin general conditions 6. SIMULATIONS
and(2) the P-CRB< CRBwhen sources associated with the known In all the scenarios considered, we have two sources immngn
and unknown directions are correlated. So, in such a preegthe  a ULA with a half-wavelength distance between the sensofe T
only way to improve the estimation of the unknown DOAs is 8 b sources have the directiolds and 0, respectively. We define the
in presence of full correlated sources. We can advance tasprs  power of each source with respect to the correlation magrix a
for that. One is surely the determinist derivation of the RBCand .

10710 P :|

the other could be felt by the fact we project the data leattnan P

irremediable information loss. Starting from this poing propose ) SNRy

in this section the stochastic CRB based on PLEDGE model and p 1071

thereby named PLEDGE CRB.

We drew our inspiration from [11] to formulate and derive the Whereo? is kept equal to one for each simulation gnis$ the corre-

o2

PLEDGE CRB. Accordingly, let lation coefficient. The DOA of interest is the second one, elgm
0>. The number of sensors, snapshots, the power of the sources
a= [wf pT UZ]T (22) are varying along with the figures but the two DOA's are lodate
atf, = 10° andf, = 12° for all experiments concerning Fig.1.
be the unknown parameter vector, whesg¢ = [w; ... wu]T, Lastly each results are the mean of 1000 independent tridls.

Actually w,, is the set of unknown DOAs and indices here compare PLEDGE to MODE and P-MUSIC [2] except we have im-

have no importance, they are arbitrary and help the mattiematproved the performance of the latter by using the noise degeple

cal formulation. Then? x 1 vector p is made from{P;;} and  covariance matrix instead of directly the sample one @e- 621

{Re(Pi;), Im(P;) for j > i}. Under the previous assumptions jnstead off?). We have plotted the stochastic CRB foparameters,

and the Gaussian hypothesis, the Fisher Information M@iM)  the PLEDGE CRB, the CRB for uncorrelated sources of Jansson e

for the parameter vectat is given by al [7] and the CRB fom,, unknown DOA's,n,, = 1 in the context
OR o 8R] of these simulations.

Oayp Oayg (23)

FIMyp.q = NTrace{R’
6.1. On PLEDGE performances
forp,g=1,...,nu+n>+1 First, PLEDGE achieves the PLEDGE CRB whatever be the sce-
nario. This fact concludes that PLEDGE is an optimal sohutmthe
with the true covariance matriR = APA" + o”I. The further  prior knowledge-based DOA estimation. Next, the set of Fand
derivation steps require first the vectorization of (23) Fig.2’s plots show the benefit of using PLEDGE instead of MODE
. for low and moderate SNR. For example, one would wonder what
( or ) (RToR™Y ( or ) (24) could be the gain brought by PLEDGE when the sources of isttere
oaT daT are less or much less powerful than the ones which are knovimtA
can be found in Fig.1-(b) which reveals that thés estimation has
with ® the kronecker product and been improved. To be sure, one can observe on this figure treat w
the source of interest is half as powerful as the known onénga
r =vedR) = (A" ® A)ved P) + o°vedI), (25) thenSNR,/SNR, = 0.5, the gain is significant. For equipowered
sources the advantage could be used at low SNR, less than 10dB

1
~FIM =

and second the following partitioning where the gain can nearly reach 5dB. PLEDGE is thus a valuable
solution to improved the estimation accuracy into the tho&s We
(R-T? @ R™Y?) { or_ Or Oor ] = [G.|A] (26)  also show that PLEDGE could be much less sensitive to thelesrr
owi 9pT 0o tion than MODE and naturally than P-MUSIC which is subopfima
i to be convinced see Fig.2. Lastly, we can see on Fig.1-(¢)ttiea
which leads to P-MUSIC is better than PLEDGE at low SNR. For this SNR range,
1 GH P-MUSIC follows a CRB that we named the PLEDGE uncorrelated
NFIM = {A}‘{} [G.A] CRB. That CRB takes into account the prior knowledge of uncor
related sources and the knowledgeéof(or generallyn, known

DOA’s), which are the implicit hypothesis of the P-MUSIC alg

_ [@iGe. Gia 07
- : (27) rithm. Due to the lack of space and since this bound is not dye k

AfG, AFA



contribution of this work, no closed-form expression oftbound
is presented in this paper, but will be left to future work €5k addi-
tional assumptions on prior-information introduce thetmeflexion.

6.2. On prior-knowledge

We develop herein a study on using prior-knowledge. We base o
reflexion on the CRBs plotted. Compared to the CRBrfgraram-
eters of interest, the PLEDGE CRB which is of reduced dinmmsi
shows that the prior-information is useful especially at IBNR.
In addition, increasing the number of known parameters lshiou
crease that difference. Pay now attention to the CRB foruetzied
sources. Make use of this prior hypothesis leads to deried-til
with 2n + 1 parameters instead + n + 1 for the CRB. The
number of FIM elements for the PLEDGE#is + n? + 1. Then we
could have thought that knowing the sources are uncorcelateild
improve more significantly the variance. We can verify thigwhe

O MODE

O PLEDGE

X P-MUSIC
CRB n parameters| X

— PLEDGE CRB

RMSE (degrees)

i
D

0205 05
Correlation p

Fig. 2. 10 sensors, 100 snapshots SNR = 2@B+= 10°, 2 = 14°
with equipowered sources and= 2.

help of Fig.1-(c). However for the 2 DOAs case, we can have a

scenario from which knowing some directions is better thaovk
ing the uncorrelation state of the sources. That fact istitated by
Fig.1-(d). We conclude by saying that the minimum variarsceh-
tained when we couple together both the assumption of ueleded
sources and the assumption of known directions. The canesp
ing derivation leads to the PLEDGE uncorrelated CRB. Thisrob
has by far the best gain, whatever be the scenario. It is theasa
sary to give the PLEDGE for uncorrelated sources. This &nvork
will be the optimal prior-knowledge algorithm taking intecunt
both the correlation and the direction. We can imagine &rrtiore
that this new algorithm could be a new tool to test the assiomof
correlated/uncorrelated sources.

O MoDE
0 [ PLEDGE
CRB n parameters

| —PLEDGE CRB

RMSE (degrees)
o
RMSE of 6, (degrees)

O MoDE
| | O PLEDGE
CRB n parameters

—PLEDGE CRB

1o
power ratio (SNRZ ! SNRI) [dB]

(b)

]‘ﬂ 1‘5
SURd8]

@)

[ "T0 wooe
o 0 PLEDGE 0
X P-MUSIC
0 __CREN, parameters ]

O MoDE
0 0 PLEDGE

CRB n parameters|

- ~CRBn parameters
- - PLEDGE CRB

>crB uncor

<} PLEDGE uncor CRB

—PLEDGE CRB

«BCRE uncorr

RMSE (degrees)
RMSE (degrees)

1
Number o Snapshots T

(d)

l‘ﬂ 1‘5
SUR[d8]

(©

Fig. 1. (a) 5 sensors, 1000 snapshots and equipowered sources,

7. UTILITY FOR MECHANICAL DIAGNOSIS

The mechanical diagnosis seems to be an attractive appticay
essence. Indeed, many rotating systems generate freqadiméied
to the rotation of gears or rotor and stator in induction matd@hus,
acquiring a vibratory signal or a current signal revealsiimfation
on the mechanical structure and health of the system. Irtiaddi
thanks to the kinematic, some frequencies are known anereith
do not bring out useful information or prevent the frequescdf
interest from being clearly estimated. The applicationceoned
corresponds to the second case mentioned and we will déyact t
utility of PLEDGE on the estimation of two sideband compdsen
masked by a much powerful one. Those frequencies are besfides
major importance in rotor bars diagnosis [5].
The following explanations are strongly inspired from
http://www.ieee-kc.org/library/motors/motorslip.htm  An in-
duction motor consists of two basic assemblies : a statornantbr.
The name "induction motor” comes from the alternating cotrre
induced into the rotor via the rotating magnetic flux prodlizethe
stator. Motor torque is developed from the interaction afrents
flowing in the rotor bars and the stators’ rotating magnegtdfi In
actual operation, rotor speed always lags the magneticsfigbeed,
allowing the rotor bars to cut magnetic lines of force anddpice
useful torque. This speed difference is called slip speée. Slip is
therefore defined as = ra=t expressed in percent whevds the
actual speed and, the synchronous speed (stator). For industrial
induction motors, the slip is df% or 2%. As it is developed in [5],
a useful indicator of broken rotor bars is the sideband corepts
around the on line frequency. These sidebands are locatdtein
current spectrum at frequencigs = (1 £ 2s) fiine Where fii,. is
the network frequency, say the 50Hz. Accordingly, the fextpies
of interest are closed from the on line frequency. A drawhzfdke
diagnosis relying on the current signal is the inevitabggntdynamic
of the 50 Hz. Another drawback is caused by the stability ef th
network frequency. In France, the electrical producer camyp
ensures the stability of the network frequency on a day (with
certain tolerance only). To estimate the sideband compenéme
Fourier transform needs a long observation time to increéhse
precision. However, due to the fluctuation of the 50 Hz, tHeof
expected is exactly the opposite. The more data you acdhiee,
less accurate the estimation. That is illustrated by Figr&m this
figure the sideband frequencies would have been visible oh ea
side of the 50 Hz lobe but due to the instability of the network
frequency the Fourier analysis is ineffective. The probisrthen
to acquire a weak number of data and to have the best precision
possibly getting rid of the 50 Hz which both does not bring o

SNR = 4 dB, 10 sensors and 100 snapshots, (c) 10 sensors, 1Gfformation and is awkward for the estimation. So, PLEDG&se

snapshotsSNR, = 4 dB andSNR, = 14 dB, (d) SNR=2 dB, 6
sensors and equipowered sources, for all experimests2.

to be exactly what we need and even if this algorithm has been
derived for the array processing we will show that it is dolieain



the spectral analysis case.

7.1. Experimental conditions

We have used the current signal acquired from an inductiotomo
(http://www.laspi.fr). The machine as weak broken bars tmc
two sideband components should appear at frequencies 5iz17
and 48.83 Hz. The experimental conditions are the followinge
have acquire60000 samples, say 100 revolutions, at the sample fre
quencyf. = 25.6 KHz of the current signal and we have decimated
of a factor 200 leading to 3 samples per revolution. PLEDGE&tlse
an estimation of the signal subspace by eigendecomposifitime
sample covariance matrix. In the context of the spectral $iearch,
we use a Hankel matrix formed by the data samples insteachand t
MDL technic to estimate the dimension of the signal subspsee
[1] and the references therein. The MDL estimator has gi&pe&
rameters of interest. The 50 Hz network frequency is firstreged
by MODE and we use this estimation as the known frequency i
PLEDGE.

7.2. Results

The frequencies estimated by PLEDGE are reported insideeTa
The analysis of the table shows that PLEDGE has totally sgsed
the known frequency, that is to say the 50 Hz. We focus now o
the gray cells which indicate the 2 nearest frequencies $6rkiz
estimated by PLEDGE. Without ambiguity, we can claim that th
frequencies 48.87 Hz and 50.98 Hz are those ones which porrds
to the slip frequencies. Then, we can surely say that theciiau
motor has bars defects. So, we have shown that PLEDGE was abl
to solved the difficult problem of estimating the slip frequis by
getting rid of the 50 Hz and still keeping a good precisionn&s
quently, from the analysis of the current signal, PLEDGEs&&

be adapted for the diagnosis of rotor bars. In addition, femdes

are required to monitor the system which is undeniably aaathge

to avoid the bad effects caused by the network frequencyatieni

and to improve the computational cost of the processing.

T T T
The 50Hz network frequency
is the most powerfull component

The resolution in this area is not
sufficient to see the 2 sideband components

-40

Power Spectrum Magnitude (dB)

-80

30 40 50
Frequency [Hz]

Fig. 3. Power Spectral Density (PSD) of current signal with 300
samples acquired with a sample frequency equals to 128 Hz.

8. CONCLUSION

In this paper we have proposed an optinfalor-knowl EDGE
(PLEDGE) method based on the method of direction estimatio
(MODE) approach. PLEDGE exploits the information of known
DOAs to better estimate the unknown ones. To show the bene-
fit of incorporating known information we have also proposee
corresponding stochastic CRB. The simulation results slothiat
PLEDGE could significantly help the estimation of unknown/&D
especially when the sources corresponding to the unknowA<DO

[1
N11)

(12]

Estimated frequencies [Hz] by PLEDGE
0.15 1.24 6.13 9.76 14.74 | 15.64
18.05 | 22.61 | 23.71 | 25.17 | 25.68 | 26.76
30.04 | 31.70 | 34.19 | 3549 | 37.86 | 39.12
41.20 | 42.09 | 45.45 52.26
54.69 | 57.83 | 58.93 | 61.92 | 62.67 | 63.49

Table 1. The gray cells correspond to the 2 sideband frequencies
(slip frequencies)

are much less powerful than those ones which are known. We hav
shown that PLEDGE has good performance into the threshald an
is robust to the correlation between the sources, even aSNR.
Finally, we have presented an induction motor diagnosiblpro.
The diagnosis consists of estimating two slip frequenciaskad by

a closely located and much more powerful one. We have shaosin th
"PLEDGE is very adequate to solve this problem.
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