
HAL Id: hal-00456891
https://hal.science/hal-00456891v1

Preprint submitted on 15 Feb 2010 (v1), last revised 8 Dec 2015 (v6)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Practical use of variational principles for modeling water
waves

Didier Clamond, Denys Dutykh

To cite this version:
Didier Clamond, Denys Dutykh. Practical use of variational principles for modeling water waves.
2010. �hal-00456891v1�

https://hal.science/hal-00456891v1
https://hal.archives-ouvertes.fr


Practical use of variational principles for

modeling water waves

Didier Clamond a,∗
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Abstract

This paper describes a method for deriving approximate equations for water
waves. The method is based on a ‘relaxed’ variational principle, i.e., on a Lagrangian
involving as many variables as possible. This formulation is particularly suitable for
the construction of approximate water wave models, since it allows more freedom
while preserving the variational structure. The advantages of this relaxed formula-
tion are illustrated with various examples in shallow and deep waters, as well as
arbitrary depths.

Using subordinate constraints (e.g., irrotationality and free surface impermeabil-
ity) in various combinations, several model equations are derived, some being well-
known, other being new. The models obtained are studied analytically and exact
travelling wave solutions are constructed when possible.

Key words: water waves, variational principles, Lagrangian, Hamiltonian, shallow
water, deep water

1 Introduction

The water wave problem in fluid mechanics has been known since more than
two hundreds years (Craik 2004). The classical mathematical formulation of
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surface gravity waves involves five equations: the irrotationality of the fluid
flow, the fluid incompressibility, the bottom and the surface impermeabili-
ties, and the surface isobarity (Mei 1989). This system of equations cannot be
generally solved exactly and, historically, the water wave theory has been de-
veloped by constructing various approximations. In shallow water, we have the
equations of Korteweg and de Vries (1895), Boussinesq (1871), Benjamin et
al. (1972), Serre (1953), Green and Naghdi (1976), Camassa and Holm (1993),
Degasperis–Procesi (1999), and many other model equations. On finite depth
and deep water, there is the celebrated nonlinear Schrödinger equation (Mei
1989) and the equations of Dysthe (1979), Trulsen et al. (2000), Kraenkel
et al. (2005), among others. These equations are most often derived via some
perturbation techniques and are thus valid for waves of small amplitude. More-
over, these equations are generally valid for a very limited range of the ratio
wavelength/water depth and for narrow-banded spectra. However, for many
applications it is necessary to use models uniformly valid for all depths and
which are accurate for large amplitudes. It is well-known in theoretical physics
that variational formulations are tools of choice to derive such approximations
when small parameter expansions are inefficient. Variational principles have
also the big advantage of ensuring that one can build approximations with
optimal ‘fit’ among all the equations defining the problem at hand.

There are two variational formulations for surface waves that are commonly
used, namely the Lagrangian of Luke (1967) and the Hamiltonian of Zakharov
(1968). Details on the variational formulations for surface waves can be found
in review papers, e.g., Radder (1999), Salmon (1988), Zakharov and Kuznetsov
(1997). Luke’s Lagrangian assumes that the flow is exactly irrotational, i.e.,
the Lagrangian involves a velocity potential but not explicitly the velocity
components. If in addition the fluid incompressibility and the bottom imper-
meability are satisfied identically, the equations at the surface can be derived
from Zakharov’s Hamiltonian. Thus, both principles naturally assume that the
flow is exactly irrotational, as it is the case of the water wave problem formula-
tion, but Zakharov’s Hamiltonian is more constrained than Luke’s Lagrangian.
Luke’s and Zakharov’s variational formulations require that part or all of the
equations in the bulk of the fluid and at the bottom are satisfied identically,
while the remaining relations must be approximated (Craig & Sulem 1993). It
is because the irrotationality and incompressibility are mathematically easy to
fulfill, that they are chosen to be satisfied identically. Beside simplicity, there
are generally no reasons to fulfill irrotationality and/or incompressibility in-
stead of the impermeability or the isobarity of the free surface, for example.

Variational formulations involving as few dependent variables as possible are
often regarded as simpler (Yahalom & Lynden-Bell 2008). It is understand-
ably tempting to solve exactly (i.e., analytically) as many equations as possible
in order to ‘improve’ the solution accuracy. This is not always a good idea,
however. Indeed, numerical analysis and scientific computing know many ex-
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amples when efficient and most used algorithms do exactly the opposite. These
so-called relaxation methods — e.g., pseudo-compressibility for incompressible
fluid flows (Kameyama et al. 2005) — have proven to be very effective for stiff
problems. The same idea may also apply to analytical approximations. When
solving a system of equations, the exact resolution of a few equations does not
necessarily ensure that the overall error is reduced: what really matters is that
the global error is minimized. Since for water waves it is possible to use a vari-
ational formulation, approximations derived from the latter are guaranteed to
be optima.

In this study we would like to elucidate the benefit of using relaxed variational
methods for the water wave problem. In other words, we illustrate the advan-
tage of using a variational principle involving as many dependent variables as
possible. The paper is organized as follows.

In Section 2, Luke’s Lagrangian is relaxed to incorporate explicitly more de-
grees of freedom. This modification yields the Hamilton principle in its most
general form. The advantage of this formulation is subsequently illustrated
with examples over a fixed horizontal bottom, for the sake of simplicity. We
begin in Section 3 with shallow water models, where some well-known and
a few novel models are derived from the same Lagrangian, but with differ-
ent subordinate constraints. In Section 4, similar model equations are derived
in the deep water limit. In particular, a generalization of the Klein–Gordon
equation and a remarkably simple accurate approximation for traveling waves
are derived. A generalized ansatz, including the shallow and deep waters as
limiting particular cases is presented in Section 5. Further generalizations are
discussed in Section 6 and their advantage is illustrated with a variant of
Serre’s equations. Finally, conclusions and perspectives for future studies are
outlined in Section 7.

2 Generalized variational formulation

Water wave problem possesses several variational structures (Whitham 1965;
Luke 1967; Zakharov 1968). In the present study we will extensively exploit
the Lagrangian variational formalism. Surface gravity wave equations, for a
potential flow with an impermeable bottom and an impermeable free surface
where the pressure is constant (taken to be zero), can be derived minimizing
the following functional (Luke 1967):

L =
∫ t2

t1

∫

Ω
L ρ d2

x dt, L = −
∫ η

−d

[

gy + φt +
1
2
(∇φ)2 + 1

2
φ 2
y

]

dy, (1)

with x = (x1, x2) the horizontal Cartesian coordinates, y the upward vertical
coordinate, t the time, ∇ the horizontal gradient, Ω the horizontal domain, φ
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the velocity potential and g > 0 the acceleration due to gravity; y = η(x, t),
y = 0 and y = −d(x, t) being, respectively, the equations of the free surface, of
the still water level and of the bottom. For the sake of simplicity, the surface
tension effect is neglected and the fluid density ρ is constant (and can thus be
set to unity without any loss of generality), but this is not a limitation for the
purpose of this paper.

Integrating by parts, then neglecting the terms at the horizontal and tem-
poral boundaries because they do not contribute to the minimization (this
will be done repeatedly below without explicit mention), Luke’s variational
formulation (1) can be rewritten with the following Lagrangian density:

L = φ̃ ηt + φ̌ dt − 1
2
gη2 + 1

2
gd2 −

∫ η

−d

[

1
2
(∇φ)2 + 1

2
φ 2
y

]

dy, (2)

where the over ‘tildes’ and ‘wedges’ denote, respectively, the quantities written
at the free surface y = η and at the bottom y = −d. We shall also denote with
‘bars’ the quantities averaged over the water depth, e.g.

ū(x, t) ≡ 1

η(x, t) + d(x, t)

∫ η(x,t)

−d(x,t)
u(x, y, t) dy.

The variational formulations (1) and (2) impose that any approximation is
exactly irrotational, i.e., the choice of an ansatz for φ necessarily implies an
irrotational motion. Note that the term 1

2
gd2 in (2) can be omitted because,

d being prescribed, it does not contribute to the minimization process.

To give us more freedom while keeping an exact formulation, the variational
principle is modified (relaxed) by introducing explicitly the horizontal velocity
u = ∇φ and the vertical one v = φy. The variational formulation can thus be
reformulated with the Lagrangian density

L = φ̃ηt+ φ̌dt− 1
2
gη2−

∫ η

−d

[

1
2
(u2 + v2) + µ · (∇φ− u) + ν(φy − v)

]

dy, (3)

where the Lagrange multipliers µ and ν have to be determined. By variations
with respect of u and v, one finds at once that µ = u and ν = v, implying
that (3) becomes

L = φ̃ ηt + φ̌ dt − 1
2
g η2 +

∫ η

−d

[

1
2
u

2 + 1
2
v2 − u · ∇φ − v φy

]

dy. (4)

The Lagrangian density (3) involves six variables {η, φ,u, v,µ, ν}, while the
simplified Lagrangian (4) involves only four variables {η, φ,u, v} and the orig-
inal Lagrangian (2) only two (η and φ). These additional variables introduce
additional freedom in the construction of approximations, thus allowing more
subordinate relations to be fulfilled. The Lagrangian density (4) was used by
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Kim et al. (2001) to derive the ‘irrotational’ Green–Naghdi equations for long
waves in shallow water. The more general Lagrangian density (3) provides
more flexibility to derive model equations, as illustrated below.

The connection of (3) with the variational formulation of the classical mechan-
ics can be seen applying Green’s theorem to (3) that yields another equivalent
variational formulation involving the Lagrangian density

L = (ηt + µ̃ · ∇η − ν̃) φ̃ + (dt + µ̌ · ∇d+ ν̌) φ̌ − 1
2
g η2

+
∫ η

−d

[

µ · u− 1
2
u

2 + νv − 1
2
v2 + (∇ · µ+ νy)φ

]

dy, (5)

which in deep water limit (d → ∞) becomes (if φ decay faster than y−1 as
y → −∞)

L = (ηt + µ̃ · ∇η − ν̃) φ̃ − 1
2
g η2

+
∫ η

−∞

[

µ · u− 1
2
u

2 + νv − 1
2
v2 + (∇ · µ+ νy)φ

]

dy.

Thus, the Hamilton principle of classical mechanics is recovered in Eulerian
description of motion, i.e., the variational principle involves the kinetic energy
minus the potential energy plus some constraints for the fluid incompressibil-
ity, for the flow irrotationality and for the bottom and surface impermeabili-
ties. In other words, the Lagrangian density (5) is the Hamilton principle in
its most general form for irrotational surface gravity waves.

Note that, via the integration by parts, the term ηtφ̃, for example, can be
replaced by −ηφ̃t in all the Lagrangian densities given above, without loss
(nor gain) of generality. Note also that the relaxed variational formulations
involving (3) and (5) being strictly equivalent, one should use the more con-
venient one depending on the problem under consideration. Note finally that
extensions of (3) and (5) including, e.g., obstacles, surface tensions and strat-
ifications in several homogeneous layers are straightforward generalizations.
For instance, to include the surface tension it is sufficient to add the term

−σ(
√

1 + (∇η)2−1) into the definition of the Lagrangian density (5), σ being
the surface tension coefficient.

The goal in this paper is to illustrate the power of the relaxed variational
principle via some simple examples. We shall thus consider, for simplicity, a
fixed horizontal bottom and we shall derive various approximate equations
for shallow and deep waters. Possibilities for arbitrary depths and some other
generalizations will also be discussed.
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3 Examples in shallow water

Let consider first the shallow water case, with constant depth for the clarity
of exposition. We introduce a realistic ansatz for these waves and then apply
several constraints to derive various approximations, some of them being well-
known, others being new.

3.1 Choice of a simple ansatz

For a long wave in shallow water, in potential motion on a horizontal imper-
meable sea bed at y = −d, it has long been noticed that the velocity field can
be well approximated truncating the following expansion (Lagrange 1781)

u = ǔ − 1
2
(y + d)2∇2

ǔ + 1
24
(y + d)4∇4

ǔ + · · · .

All Lagrange’s followers (e.g., Airy, Boussinesq, Rayleigh and many others)
used this type of expansions to derive their respective approximations (Craik
2004). Reviews on shallow water approximations can be found in Bona et al.
(2002, 2004), Kirby (1997), Madsen and Schäffer (1999), Wu (2001), Dougalis
& Mitsotakis (2008), among others.

We consider here a simple ansatz of polynomial type, that is a zeroth-order
polynomial in y for φ and for u, and a first-order one for v, i.e., we approximate
flows that are nearly uniform along the vertical direction. Our ansatz thus
reads

φ ≈ φ̄(x, t), u ≈ ū(x, t), v ≈ (y + d) (η + d)−1 ṽ(x, t). (6)

Such ansatz are the basis of most shallow water approximations. We have also
to introduce suitable ansatz for the Lagrange multiplier µ and ν. Since µ = u

and ν = v for the exact solution, the natural ansatz for the multipliers are

µ ≈ µ̄(x, t), ν ≈ (y + d) (η + d)−1 ν̃(x, t). (7)

With the ansatz (6) and (7), the Lagrangian density (5) becomes

L = (ηt + µ̄ · ∇η) φ̄ − 1
2
g η2

+ (η + d)
[

µ̄ · ū − 1
2
ū

2 + 1
3
ν̃ ṽ − 1

6
ṽ2 + φ̄∇ · µ̄

]

. (8)

Using the Green formula, the variational problem can also be written such
that the Lagrangian density is in the following simpler form

L = φ̄ηt − 1
2
gη2 + (η + d)

[

µ̄ · ū− 1
2
ū

2 + 1
3
ν̃ṽ − 1

6
ṽ2 − µ̄ · ∇φ̄

]

. (9)
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The two Lagrangian densities (8) and (9) differing by a divergence term, they
yield exactly the same equations. Thus, depending on the constraints, we use
the Lagrangian density leading to the simpler expression. We now investigate
equations led by this shallow water model under various subordinate relations.

3.2 Unconstrained approximation

Without further constraints, the minimization of (9) yields

δ ū : 0 = µ̄ − ū, (10)

δ ṽ : 0 = ν̃ − ṽ, (11)

δ µ̄ : 0 = ū − ∇φ̄, (12)

δ ν̃ : 0 = ṽ, (13)

δ φ̄ : 0 = ηt + ∇ · [ (η + d) µ̄ ] , (14)

δ η : 0 = µ̄ · ū − 1
2
ū

2 + 1
3
ν̃ ṽ − 1

6
ṽ2 − µ̄ · ∇φ̄ − φ̄t − g η. (15)

The relations (10) – (13) imply that the flow is exactly potential, but the fluid
incompressibility is not satisfied identically. With these four relations, the last
two equations can be rewritten in this form:

ht + ∇ · [ h ū ] = 0, (16)

ūt + (ū · ∇) ū + g∇h = 0, (17)

where h = η + d is the total water depth. Equations (16) – (17) are the very
well-known nonlinear shallow water equations, also known as Airy or Saint-
Venant equations (Wehausen & Laitone 1960, §28). They are sometimes called
non-dispersive fully-nonlinear approximation because their classical derivation
assumes long waves without the extra hypothesis of small amplitudes.

The Saint-Venant equations do not admit smooth progressive wave solutions.
They are nevertheless widely used because they can be solved analytically
by the method of characteristics (Stoker 1957). Moreover, numerous efficient
finite volumes type schemes have been proposed (Zhou 2002).

3.3 Constraining with free surface impermeability

We now constrain the ansatz (6) imposing that the impermeability of the free
surface is satisfied identically. Since the surface impermeability is expressed
through the velocity (µ, ν) in (5), we substitute

ν̃ = ηt + µ̄ · ∇η, (18)
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into the Lagrangian density (8), and the minimization procedure gives

δ ū : 0 = µ̄ − ū, (19)

δ ṽ : 0 = ηt + µ̄ · ∇η − ṽ, (20)

δ µ̄ : 0 = ū + 1
3
ṽ∇η − ∇φ̄, (21)

δ φ̄ : 0 = ηt + ∇ · [ (η + d) µ̄ ] , (22)

δ η : 0 = µ̄ · ū − 1
2
ū

2 − 1
6
ṽ2 − µ̄ · ∇φ̄ − φ̄t − g η

− 1
3
(η + d) [ ṽt + µ̄ · ∇ṽ + ṽ∇ · µ̄ ] . (23)

The relations (19) and (21) link the velocity potential and the horizontal ve-
locity as ∇φ̄ 6= ū = µ̄ and, therefore, equations (19) – (23) cannot be derived
from Luke’s variational principle. Nevertheless, the relaxed variational prin-
ciple ensures that the vorticity is minimum. Relations (19) and (22) provide
the mass conservation and hence, with (18), the approximation (19) – (23)
implies that the fluid incompressibility is fulfilled identically.

Eliminating φ̄, µ̄ and ṽ from the horizontal gradient of (23), the system (19)
– (23) becomes

ht +∇ · [hū] = 0, (24)

ūt + ū · ∇ū+ g∇h+ 1
3
h−1

∇[h2γ̃] = (ū · ∇h)∇(h∇ · ū)

− [ ū · ∇(h∇ · ū) ]∇h, (25)

with h = η + d and where

γ̃ = ṽt + ū · ∇ṽ = h
{

(∇ · ū)2 − ∇ · ūt − ū · ∇ [∇ · ū ]
}

, (26)

is the fluid vertical acceleration at the free surface.

In the two-dimensional case (one horizontal dimension) the right-hand side of
(25) vanishes and the system (24), (25) reduces to the equations first derived by
Serre (1953), independently rediscovered by Su and Gardner (1969) and again
by Green, Laws and Naghdi (1974). It is sometimes called weakly-dispersive
fully-nonlinear approximation (Wu 2001). These equations admit a traveling
solitary wave solution

η = a sech2 1
2
κ(x1 − ct), c2 = g (d+ a), (κd)2 = 3 a (d+ a)−1,

which is linearly stable (Li 2002). Note that this solution does not impose
any limitation on the wave amplitude, meaning that Serre’s equations are
inconsistent for the highest waves. Note also that the Serre equations have a
non-canonical Hamiltonian structure (Holm 1988; Li 2002).

In three dimensions, equations (24), (25) were called by Kim et al. (2001) ‘ir-
rotational’ Green–Naghdi equations. If the right-hand side of (25) is neglected,
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we recover the classical Green–Naghdi equations (Green & Naghdi 1976).

3.4 Constraining with incompressibility and partial potential flow I

Here, we restrict the freedom imposing that the pseudo-velocity is related
to the horizontal velocity as u = ∇φ, and that the fluid incompressibility
∇ · u + vy = 0 is fulfilled together with the relations µ = u and ν = v, i.e.,
we take

µ̄ = ū, ν̃ = ṽ, ū = ∇φ̄, ṽ = −(η + d)∇2φ̄.

These constraints do not impose exact irrotationality because v 6= φy. Obvi-
ously, we shall derive an approximation which lies “between” the Saint-Venant
and Serre equations.

Thus, the Lagrangian density (9) becomes

L = φ̄ ηt − 1
2
g η2 − 1

2
(η + d)

(

∇φ̄
)2

+ 1
6
(η + d)3

(

∇
2φ̄
)2

,

and its minimization yields

δ φ̄ : 0 = ηt + ∇ ·

[

(η + d)∇φ̄
]

+ 1
3
∇

2
[

(η + d)3
(

∇
2φ̄
) ]

,

δ η : 0 = φ̄t + g η + 1
2

(

∇φ̄
)2 − 1

2
(η + d)2

(

∇
2φ̄
)2

.

It seems that these equations have never appeared before in the literature.
They are a generalization of the so-called Kaup–Boussinesq (or canonical
Boussinesq) equations (Kaup 1975; Kupershmidt 1985) and are thus referred
to as the gKB equations. This can be seen noticing that the gKB equations
can be derived from the canonical Hamiltonian

∫

Ω

{

1
2
g η2 + 1

2
(η + d)

(

∇φ̄
)2 − 1

6
(η + d)3

(

∇
2φ̄
)2
}

d2
x, (27)

while the classical Kaup–Boussinesq (cKB) equations are obtained replacing
(η+d)3 by d3 in (27) and restricting the resulting Hamiltonian to one horizontal
dimension.

The linearized gKB and cKB systems admit the special traveling wave solution

η = a cos k(x1 − ct), c2 = gd (1− 1
3
k2d2), (28)

implying that these equations are linearly ill-conditioned (c2 < 0 for kd >
√
3).

Moreover, the Hamiltonian (27) is not always positive. However, if, like the
cKB, the gKB equations are integrable, they may be a somewhat interesting
model for gravity waves in shallow water.
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3.5 Constraining with incompressibility and partial potential flow II

So far, all the approximations derived turned out to be such that µ = u and
ν = v. We propose here a novel approximation that does not satisfies one of
these identities and that is an interesting variant of the previous model.

We impose a partially potential flow such that µ = ∇φ and ν = φy, together
with the incompressibility condition ∇·u+ vy = 0 and the condition u = µ.
Thus, substituting the constraints

µ̄ = ū = ∇φ̄, ν̃ = 0, ṽ = −(η + d)∇2φ̄,

into the Lagrangian density (9) yields

L = φ̄ ηt − 1
2
g η2 − 1

2
(η + d)

(

∇φ̄
)2 − 1

6
(η + d)3

(

∇
2φ̄
)2

,

and the minimization procedure gives the equations

δ φ̄ : 0 = ηt + ∇ ·

[

(η + d)∇φ̄
]

− 1
3
∇

2
[

(η + d)3
(

∇
2φ̄
) ]

, (29)

δ η : 0 = φ̄t + g η + 1
2

(

∇φ̄
)2

+ 1
2
(η + d)2

(

∇
2φ̄
)2

. (30)

These equations can be derived from the canonical Hamiltonian

∫

Ω

{

1
2
g η2 + 1

2
(η + d)

(

∇φ̄
)2

+ 1
6
(η + d)3

(

∇
2φ̄
)2
}

d2
x,

which is always positive (an interesting feature for modeling water waves).
To the linear approximation, equations (29), (30) have the progressive wave
solution

η = a cos k(x1 − ct), c2 = gd (1 + 1
3
k2d2), (31)

which is well-behaved (i.e., c2 is never negative). Comparisons with the gKB
equations suggest to call equations (29), (30) regularized general Kaup-Boussinesq
(rgKB). However, the linear dispersion relation (31) does not correspond to a
Taylor expansion around kd = 0 of the exact dispersion relation of linear waves
(i.e., c2 = g tanh(kd)/k), while (28) does. Therefore, the rgKB equations are
not very interesting for modeling water waves. However, these equations may
be of mathematical interest or to model some physical processes other than
water waves.
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3.6 Other constraints and generalizations

3.6.1 Constraining with incompressibility and potential flow I

In the previous example, we have constructed an approximation such that
µ = u but ν 6= v. Now, we release the constrain µ = u and keep other
remaining constraints. Thus, we impose

µ̄ = ∇φ̄, ν̃ = 0, ṽ = −(η + d)∇ · ū,

so that the pseudo velocity field (µ, ν) is irrotational while the velocity field
(u, v) is incompressible. After same elementary algebra, the Lagrangian den-
sity becomes

L = φ̄ ht − 1
2
g η2 + h ū · ∇φ̄ − 1

2
h ū2 − 1

6
h3 (∇ · ū)2 − h

(

∇φ̄
)2

,

where h = η + d. The minimization procedure yields

δ ū : 0 = h∇φ̄ − h ū + 1
3
∇

[

h3
∇ · ū

]

,

δ φ̄ : 0 = ht − ∇ · [h ū ] + 2∇ ·

[

h∇φ̄
]

,

δ η : 0 = φ̄t + g η + 1
2
ū

2 +
(

∇φ̄
)2 − ū · ∇φ̄ + 1

2
h2 (∇ · ū)2 .

The linearization of this system of equations have a (2π/k)-periodic sinusoidal
traveling wave solution with the dispersion relation

c2 = gd (1 + 2
3
k2d2) (1 + 1

3
k2d2)−1 = gd (1 + 1

3
k2d2) + O(k4),

which, like the previous example, is not satisfactory for water waves. However,
these equations may be of interest in other contexts than water waves.

3.6.2 Constraining with incompressibility and potential flow II

We now assume that the pseudo velocity field (µ, ν) is divergence free, while
the velocity field (u, v) is irrotational, i.e., we impose the constraints

ū = ∇φ̄, ṽ = 0, ν̃ = −(η + d)∇ · µ̄.

The Lagrangian density becomes

L = φ̄ ηt − 1
2
g η2 − 1

2

(

∇φ̄
)2

,

which, after minimization, yields the Saint-Venant equations. Thus, these con-
straints do not bring anything new. It should be emphasized that this is the
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case for the special shallow water ansatz we are considering here, but this is
not necessarily the case for other ansatz.

3.6.3 Further possibilities

The constraints of Sections (3.4) to (3.6.2) can be unified into a single formal-
ism considering combinations. Indeed, the velocity field (u, v) being not more
(nor less) physical than the pseudo-velocity field (µ, ν) and the potential ve-
locity field (∇φ, φy), the constraints can be imposed by combinations of these
three fields. For instance, we could impose the irrotationality for the field

{ c1u + c2µ + (1− c1 − c2)∇φ ; c1v + c2ν + (1− c1 − c2)φy },

the fluid incompressibility for the field

{ c3u + c4µ + (1− c3 − c4)∇φ ; c3v + c4ν + (1− c3 − c4)φy },

and so on for any constraint we may think of. The cn are parameters at our
disposal. We can choose them in a convenient way based on some mathemati-
cal and physical considerations. For example, imposing that the approximate
equations derived must be linearly well-posed and/or have better dispersion
relation properties.

In the examples above, only some kinematic constraints (irrotationality, in-
compressibility, impermeability) were used. We could have also considered
dynamical constraints based on, e.g., the Bernoulli equation, or other relevant
dynamical equations.

The relaxed variational principle provided a common platform for deriving
several shallow water equations from the same ansatz in changing only the
constraints. Beside the ansatz, no further approximation were made and the
derivations required only some elementary algebra. Using more general ansatz
— i.e., involving more free functions and parameters — one can introduce
more constraints, if desired, and derives more accurate approximations. A
simple example is given in Section 6 below.

4 Examples in deep water

We illustrate here the advantages of the relaxed variational principle in the
opposite limiting case of deep water.
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4.1 Choice of an ansatz

For progressive waves in deep water, the Stokes expansion shows that the
velocity field varies nearly exponentially along the vertical (Appendix A). Even
for very large unsteady waves (including breaking waves), accurate numerical
simulations and experiments have shown that the vertical variation of the
velocity field is indeed very close to an exponential (Grue et al. 2003; Jensen et
al. 2007). Thus, this property is exploited here to derive simple approximations
for waves in deep water.

Let κ be a characteristic wavenumber corresponding, for example, to the car-
rier wave of a modulated wave group or to the peak frequency of a JONSWAP
spectrum. Following the discussion above, it is natural to seek approximations
in the form

{φ ; u ; v ; µ ; ν } ≈ { φ̃ ; ũ ; ṽ ; µ̃ ; ν̃ } eκ(y−η), (32)

where φ̃, ũ, ṽ, µ̃ and ν̃ are functions of x and t that will be determined
using the variational principle. The ansatz (32) is certainly the simplest pos-
sible that is consistent with experimental evidences. This ansatz has already
been used by Kraenkel et al. (2005) for building their approximation. Possible
generalizations are discussed in Section 6.

For the sake of simplicity, we introduce the constraints µ̃ = ũ and ν̃ = ṽ.
Thus, the ansatz (32) substituted into the Lagrangian density (4) yields

2κL = 2κ φ̃ ηt − gκ η2 + 1
2
ũ

2 + 1
2
ṽ2 − ũ · (∇φ̃− κφ̃∇η) − κ ṽ φ̃. (33)

With (or without) subordinate relations, this Lagrangian gives various equa-
tions. We investigate two cases here.

4.2 Unconstrained approximation

Without further constraints, the minimization procedure yields

δ ũ : 0 = ũ − ∇φ̃ + κ φ̃∇η,

δ ṽ : 0 = ṽ − κ φ̃,

δ φ̃ : 0 = 2κ ηt + ∇ · ũ − κ ṽ + κ ũ · ∇η,

δ η : 0 = 2gκ η + 2κ φ̃t + κ∇ · ( φ̃ ũ ).

The two first relations imply that this approximation is exactly irrotational
and their use in the last two equations gives

13



ηt +
1
2
κ−1

∇
2φ̃ − 1

2
κφ̃ = 1

2
φ̃
[

∇
2η + κ (∇η)2

]

, (34)

φ̃t + g η = −1
2
∇ ·

[

φ̃∇φ̃ − κ φ̃2
∇η

]

. (35)

Since equations (34), (35) derive from an irrotational motion, they can also
be obtained from Luke’s Lagrangian (2) under ansatz (32). Equations (34),
(35) are a deep water counterpart of Saint-Venant equations for shallow water
waves; this claim will appear clearer in Section 5. They can also be derived
from the canonical Hamiltonian

∫

Ω

{

1
2
g η2 + 1

4
κ−1

[

∇φ̃ − κ φ̃∇η
]2

+ 1
4
κ φ̃2

}

d2
x. (36)

This ‘simple’ Hamiltonian is quartic in nonlinearities and involves only first-
order derivatives. It has to be compared with Zakharov’s quartic Hamiltonian
(B.2) which involves second-order derivatives and Hilbert transforms. How-
ever, Zakharov’s quartic Hamiltonian is valid for broad spectra. Note that the
Hamiltonian (36) cannot be derived from the exact one (B.1), since the latter
assumes that irrotationality and incompressibility are both satisfied identi-
cally in the bulk, while the incompressibility is not fulfilled by equations (34),
(35).

To the linear approximation, after elimination of φ̃, equations (34), (35) yield

ηtt − 1
2
(g/κ)∇2η + 1

2
g κ η = 0, (37)

that is a Klein–Gordon equation. For this reason, equations (34), (35) will be
referred here as generalized Klein–Gordon (gKG). The Klein–Gordon equa-
tion is prominent in mathematical physics and appears, e.g., as a relativistic
generalization of the Schrödinger equation. The Klein–Gordon equation (37)
admits a special (2π/k)-periodic traveling wave solution

η = a cos k(x1 − ct), c2 = 1
2
g (k2 + κ2) (κ k2)−1.

Therefore, if k = κ the exact dispersion relation of linear waves (i.e., c2 = g/k)
is recovered, as it should be. This means, in particular, that the gKG model
is valid for narrow-banded spectra.

We focus now on (2π/κ)-periodic progressive waves solution of the gKG equa-
tions, i.e., we seek for solutions depending only on the variable θ = κ(x1−ct).
We were not able to find an exact analytic solution but a Stokes-like expansion
gives some interesting insights. To the seventh-order, we have
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κ η=α cos θ + 1
2
α2
(

1+ 25

12
α2+ 1675

192
α4
)

cos 2θ

+ 3
8
α3
(

1+ 99

16
α2+ 11807

320
α4
)

cos 3θ + 1
3
α4
(

1+ 64

5
α2
)

cos 4θ

+ 125
384

α5
(

1+ 6797

300
α2
)

cos 5θ + 27
80
α6 cos 6θ + 16807

46080
α7 cos 7θ + O(α8),

g−
1

2κ
3

2 φ̃=α
(

1− 1
4
α2− 59

96
α4− 4741

1536
α6
)

sin θ + 1
2
α2
(

1+ 11

12
α2+ 547

192
α4
)

sin 2θ

+ 3
8
α3
(

1+ 163

48
α2+ 221

15
α4
)

sin 3θ + 1
3
α4
(

1+ 149

20
α2
)

sin 4θ

+ 125
384

α5
(

1+ 5057

375
α2
)

sin 5θ + 27
80
α6 sin 6θ + 16807

46080
α7 sin 7θ + O(α8),

g−
1

2κ
1

2 c=1 + 1
2
α2 + 1

2
α4 + 899

384
α6 +O(α8).

The expansions of η and φ̃ match the exact Stokes wave (c.f. Appendix A)
up to the third-order (non-matching coefficients are displayed bold). This is
not surprising since the gKG equationsare cubic in nonlinearities. A bit more
surprising is that the phase velocity c is correct up to the fifth-order. But the
most interesting is that, to the leading order, the nth Fourier coefficient is (for
all n up to infinity)

nn−2 αn

2n−1 (n−1)!
, (38)

which is also the case for the exact Stokes wave (Appendix A).

In comparison, for the cubic Zakharov equations (B.3), (B.4) the phase ve-
locity is correct only up to the third-order and the Fourier coefficients do not
verify the asymptotic behavior (38) (see Appendix B). Truncating Zakharov’s
Hamiltonian at the order N + 1 in nonlinearities, the corresponding Stokes
double series is correct up to the order N in the expansion parameter. But
none of these higher approximations have the exact asymptotic behavior (38)
for their Fourier coefficients because they involve expansions around η = 0,
while the gKG does not.

4.3 Constraining with the free surface impermeability

In order to satisfy the free surface impermeability identically, we take

ṽ = ηt + ũ · ∇η,

and the Lagrangian density (33) becomes

2κL = φ̃ (κ ηt +∇ · ũ) − gκ η2 + 1
2
ũ

2 + 1
2
(ηt + ũ · ∇η)2, (39)

while the minimization procedure yields the equations
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δ ũ : 0 = ũ+ (ηt + ũ · ∇η)∇η −∇φ̃, (40)

δ φ̃ : 0 = κηt +∇ · ũ, (41)

δ η : 0 = 2gκη + κφ̃t + ηtt + (ũ · ∇η)t +∇ · (ũηt) +∇ · [(ũ · ∇η)ũ]. (42)

The relation (41) implying that ∇ · u + vy = 0, the solution satisfies the in-
compressibility identically. On the other hand, the irrotationality being not
verified identically, equations (40) – (42) cannot be derived from Luke’s vari-
ational formulation. Note that (40) yields ∇φ̃ = ũ + ṽ∇η that is exact for
potential flows, meaning that this ‘incompressible’ approximation is “potential
at the free surface”.

As for the shallow water case, the potential φ̃ can be eliminated from equa-
tions (40), thus yielding a deep water analog of the Serre’s and Green–Naghdi
equations.

To the linear approximation, relations (40) – (42) can be combined into a
single equation for the elevation of the free surface:

(∇2 − κ2) ηtt + 2 g κ∇2η = 0,

which admits the special (2π/k)-periodic solution

η = a cos k(x1 − ct), c2 = 2 g κ (k2 + κ2)−1.

Therefore, if k = κ the exact linear approximation is recovered, as it should
be. Again, this means that this model is valid for narrow-banded spectra. How
narrow will be investigated now.

4.3.1 Two-dimensional progressive waves

We seek now exact solutions depending only on ξ ≡ x1 − ct (two-dimensional
progressive waves). The equations (40) and (41) yield respectively

φ̃ξ = ũ + (ũ− c) η 2
ξ , ũ = c κ η + cK1,

where K1 is an integration constant. Substituting these relations into (42) and
multiplying the result by ηξ, after one integration and some algebra, we obtain

(

d η

dξ

)2

=
K 2

0 −
(

κ η − K1 ε̂
−2
)2

ε̂−2 ( κ η + K1 − 1 )2
, (43)

with

ε̂2 ≡ 2 g κ−1 c−2 − 1,
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and where K0 is another integration constant. Assuming that ηξ = 0 at the
wave crest where η = a and at the trough where η = −b (hence a+b is the
total wave height), we find

K0 = 1
2
κ (a+ b), K1 = 1

2
κ (a− b) ε̂2.

Solving equation (43), together with the condition of zero mean free surface
elevation, we obtain an exact (2π/k)-periodic solution in the parametric form
(Geniet 2003):

k ξ(τ) = τ − ε ε̂−1 sin τ, k η(τ) = 1
2
ε2 ε̂−1 + ε cos τ, (44)

with

ε = 1
2
k (a+ b), k κ−1 = ε̂ + 1

2
( ε̂−1 + ε̂ ) ε2,

ε being a wave steepness and τ being a parametric variable such that a crest is
at τ = 0 and the closest troughs at τ = ±π. This remarkably simple solution
describes surface waves as trochoids and is similar (but not identical) to the
well-known Gerstner wave (Wehausen & Laitone 1960, §34-β). Smooth surface
profiles are obtained for 0 ≤ ε < ε̂, ε ≪ ε̂ corresponding to quasi-sinusoidal
solutions (infinitesimal waves). For the limiting case ε = ε̂, in the vicinity of

the crest k(a−η) ∼ 1
2
ε(6kξ)

2

3 so the solution involves a sharp angle forming a
0◦ inner angle (i.e., a cusp), while the exact angle should be 120◦.

So far, κ is a free parameter at our disposal. We shall now investigate various
choices.

4.3.2 Simple approximation

A ‘natural’ choice is to take κ = k, yielding the steepness ε̂ ≈ 0.596 for the
limiting wave. With this peculiar choice of κ, a Stokes-like expansion of the
solution of (44) is

k η=α cos kξ + 1
2
α2
(

1+ 13

12
α2+ 395

192
α4
)

cos 2kξ

+ 3
8
α3
(

1+ 35

16
α2+ 1727

320
α4
)

cos 3kξ + 1
3
α4
(

1+ 33

10
α2
)

cos 4kξ

+ 125
384

α5
(

1+ 53

12
α2
)

cos 5kξ + 27
80
α6 cos 6kξ + 16807

46080
α7 cos 7kξ + O(α8),

√

k/g c=1 + 1
2
α2 + 1

2
α4 + 611

384
α6 +O(α8).

As for the gKB approximation, the Fourier coefficients of this Stokes-like ex-
pansion satisfy the asymptotic expression (38) and the expansion of c is exact
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up to the fifth-order. Therefore, taking κ = k leads to a quite accurate approx-
imation. However, the optimum value of κ leads to an even more interesting
approximation.

4.3.3 Optimum parameter

With the trochoidal solution and the relation between the parameters obtained
above, the Lagrangian density (39) integrated over one wavelength yields the
Lagrangian

L =
π g ε4

4 k3
=

π g

k3



− 1 +
κ c2

2 g
+

√

k2 c2

2 g κ
− k2 c4

4 g2





2

.

Thus, the Lagrangian is minimum when the steepness is minimum or, equiv-
alently, the wavelength is maximum if the wave height is kept constant. The
variational principle being defined with fixed horizontal and temporal bound-
aries, the optimum parameter κ is obtained minimizing L keeping k and c
constant. After some algebra, the equation dL/dκ = 0 gives two solutions for
κ:

κ± =
√
2 k

[

1 + 2ε2 ±
√
1− 4ε2

]−
1

2 ,

provided that ε 6 1/2. Both solutions correspond to an extremum of L. How-
ever, a solution is stable only if the optimal κ is a minimum of L, i.e., if

d2
L

dκ2

∣

∣

∣

∣

∣

κ=κ±

> 0,

which, after some algebra, yields the condition

√
3 ε κ± < k. (45)

The first solution

κ+ / k =
√
2
[

1 + 2ε2 +
√
1− 4ε2

]−
1

2 = 1 + 1
2
ε4 + O

(

ε6
)

,

is very close to the wavenumber k when the steepness ε is small. When the
steepness increases form 0 to 1/2, the dimensionless parameters κ/k, kc2/g
and

√
3εκ/k increase monotonically. The highest wave is obtained for ε = 1/2,

where κ/k = 2/
√
3 ≈ 1.15, kc2/g = 3

√
3/4 ≈ 1.3 and

√
3εκ/k = 1. All these

waves are smooth and stable because the condition (45) is fulfilled.

The second solution

κ− / k =
√
2
[

1 + 2ε2 −
√
1− 4ε2

]−
1

2 ,
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is admissible (i.e., real) if 1/2 > ε >
√√

5− 2 ≈ 0.486. As the steepness decays

form 1/2 to
√√

5− 2, the crest sharpens, the limiting value ε = ε̂ =
√√

5− 2
corresponding to a cusp at the crest. Thus the sharp-crested wave is not the
highest one. All these waves are unstable because the condition (45) is violated.

4.3.4 Remarks

Taking the optimum parameter κ has improved the accuracy of the approxi-
mation. The main gain is qualitative, however. Indeed, we found that waves
are unstable before a sharp crest is formed. Such behavior is not predicted by
low-order perturbation expansions. This simple example is a remarkable illus-
tration of the power of the variational method. The trochoidal wave described
here is probably the approximation with the highest ratio accuracy/ complexity
ever derived for a traveling wave in deep water. This approximation has first
been derived by Geniet (2003) via a different route.

5 Arbitrary depth

A general ansatz, for waves in finite constant depth and satisfying identically
the bottom impermeability, is suggested by the linear theory of water waves:

φ ≈ cosh κY

cosh κh
φ̃(x, t), u ≈ cosh κY

cosh κh
ũ(x, t), v ≈ sinh κY

sinh κh
ṽ(x, t),

µ ≈ cosh κY

cosh κh
µ̃(x, t), ν ≈ sinh κY

sinh κh
ν̃(x, t), (46)

where Y = y + d and h = η + d. The parameter κ is a characteristic wave
number to be made precise a posteriori . This ansatz is uniformly valid for all
depths because it yields the shallow water one (6) as κ → 0, and the deep
water one (32) as d → ∞. Obviously, the ansatz (46) is valid for wave fields
with wavenumber spectra that are narrow-banded around κ. Substituting the
ansatz (46) into the relaxed variational principle (5), we obtain

L = [ ηt + µ̃ · ∇η ] φ̃ − 1
2
g η2 + [ ν̃ ṽ − 1

2
ṽ2 ]

sinh(2κh)− 2κh

2κ cosh(2κh)− 2κ

+ [µ̃ · ũ− 1
2
ũ

2 + φ̃∇ · µ̃− κ tanh(κh)φ̃ µ̃ · ∇η]
sinh(2κh) + 2κh

2κ cosh(2κh) + 2κ

+ 1
2
φ̃ ν̃

[

2κh

sinh(2κh)
− 1

]

.

Applying various constraints, one obtains generalized equations including the
ones derived in Sections 3 and 4 as limiting cases. In particular, we can derive
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arbitrary depth generalizations of the Saint-Venant and ‘irrotational’ Green–
Naghdi equations. Thus, the relaxed variational principle leads simple deriva-
tions of model equations for finite amplitude waves in arbitrary depth, which is
not the case with the classical perturbations techniques. These developments
are left to future investigations.

6 Generalizations

The ansatz (46) can be generalized in many relevant ways, depending on the
problem under consideration. Natural generalizations can be based on the
velocity vertical variations given by, e.g., higher-order deep and shallow water
theories, or obtained fitting some experimental data. In this section we propose
a possible generalization based on an ansatz of the form

φ ≈
[

cosh κY

cosh κh

]λ

φ̃(x, t), u ≈
[

cosh κY

cosh κh

]λ

ũ(x, t), v ≈
[

sinh κY

sinh κh

]λ

ṽ(x, t),

(47)
where λ is a parameter at our disposal. If λ = 1, the ansatz (46) is recovered,
but the case λ 6= 1 does not correspond to the vertical profile predicted by
any theory based on perturbation expansions. Still, this type of ansatz is of
some interest, as we shall illustrate it below.

Note first that in the deep water limit d → ∞, the ansatz (47) becomes

φ ≈ eλκ(y−η)φ̃(x, t), u ≈ eλκ(y−η)
ũ(x, t), v ≈ eλκ(y−η) ṽ(x, t),

and thus, via the change of parameter λκ 7→ κ, the ansatz (32) is recovered.
This means that (47) is not more general than (46) in deep water. On the
contrary, these two ansatz are very different in finite depth. We illustrate this
claim in the simple case of shallow water (κh → 0) when (47) becomes

φ ≈ φ̄(x, t), u ≈ ū(x, t), v ≈
[

y + d

η + d

]λ

ṽ(x, t),

where we have replaced φ̃ and ũ by φ̄ and ū, respectively, since they are equal
in this limiting case.

6.1 Modified Serre’s equations

For the sake of simplicity, we consider here only one horizontal dimension, say
x1, and we set x1 = x and u1 = u, for brevity. We also consider the special
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case µ = u and ν = v together with the constraint ṽ = ηt+ ũηx (free surface’s
impermeability). Thus, the Lagrangian density (5) yields

L = (ηt + [(η + d)ū]x) φ̃− 1
2
gη2 + 1

2
(η+ d)ū2 + 1

2
β(η+ d) [ηt + ūηx]

2 , (48)

where β = (2λ + 1)−1. After some algebra, the minimization procedure leads
to the following equations

ht + [ h ū ]x = 0, (49)

ūt + ū ūx + g hx + β h−1 [ h2 γ̃ ]x = 0, (50)

where γ̃ is defined in (26). If β = 1
3
the classical Serre equations are recovered.

Equations (49), (50) admit a (2π/k)-periodic cnoidal traveling wave solution:

ū =
c η

d+ η
, (51)

η = a
dn2

(

1
2
κ(x− ct)|m

)

−E/K

1− E/K
= a − H sn2

(

1
2
κ(x− ct)|m

)

, (52)

dn and sn being elliptic functions of Jacobi of parameter m (0 6 m 6 1),
and where K = K(m) and E = E(m) are the complete ellipic integrals of the
first and second kinds, respectively (Abramowitz & Stegun 1965, #17.3). The
parameter κ is a sort of wavenumber, a is the wave amplitude (mean level to
crest elevation), H is the total wave height (trough to crest elevation) and c
is the wave phase velocity observed in the frame of reference without mean
flow. The wave parameters are related via the relations

k =
π κ

2K
, H =

maK

K −E
, (κd)2 =

g H

mβ c2
, (53)

m =
g H (d+ a) (d+ a−H)

g (d+ a)2 (d+ a−H) − d2 c2
. (54)

In the limiting case m → 1, we have K → ∞, E/K → 0, k → 0, H → a and
hence, the classical solitary wave solution is recovered

η = a sech2 1
2
κ(x− ct), c2 = g (d+ a),

a

d
=

β (κd)2

1 − β (κd)2
.

At this stage, β is still a free parameter. An optimum expression for this param-
eter can be obtained substituting the solution (51), (52) into the Lagrangian
density (48), integrating L over one wavelength, then solving dL/dβ = 0
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keeping k and c constant (as well as g and d), the other parameters varying
according to relations (53), (54). Thus, after some cumbersome algebra, we
found that β = 0 is the optimum value for this parameter, which is not very
interesting for practical applications.

Nonetheless, the main objective of this section is to show that one can derive
sensible equations from ansatz not deriving from some classical approxima-
tion procedure. This is another illustration of the power of the variational
procedure.

7 Discussion

In this study, we have illustrated the advantage of using a variational principle
with as many variables as possible. We call it the relaxed variational principle,
since the Lagrangian density (5) involves more degrees of freedom (i.e., the
variables η, φ, u, v, µ and ν) compared to the two degrees of freedom (η and φ)
in the classical case. In particular, these extra variables can be used to impose
various constraints such that incompressibility, irrotationality, impermeability,
etc. The practical use of the relaxed formulation was illustrated on numerous
examples in shallow, deep and intermediate waters. Thus, we obtained several
approximations, some well-known, some new to our knowledge.

In the shallow water regime, we have first obtained the classical nonlinear
shallow water (or Saint-Venant) equations (16), (17). Then, with the same
ansatz (6) but imposing the constraint of the free surface impermeability, we
have derived the irrotational Green–Naghdi equations (24), (25). Applying the
incompressibility constraint and choosing differently the pseudo-velocity field,
we have obtained two kinds of generalized Kaup-Boussinesq equations. Several
ways of further generalizations were also outlined.

In deep water, two models were considered. Namely, we derived deep water
counterparts of the celebrated Saint-Venant and Serre equations. The former
has a canonical Hamiltonian formulation and degenerates to the Klein–Gordon
equation in the linear approximation; we thus called the new system (34), (35)
generalized Klein–Gordon equations. The latter could be solved analytically
for a two-dimensional traveling wave. This solution is a striking illustration of
the power of the variational formulation compared to asymptotic expansions,
specially for large amplitudes. In addition, both equations were shown to pos-
sess excellent asymptotic properties with respect to Stokes-like expansions.

The case of arbitrary depth has also been briefly considered. In particular, it
has been shown how easily one can introduce an ansatz valid for all depths.
Indeed, the vertical variation of the velocity field suggested by the linear theory
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provides at once such a general ansatz which degenerates to previous cases
when the water is shallow (κd → 0) or deep (d → ∞). This simplicity and
flexibility of the variational principle is quite remarkable.

Finally, we considered a generalized ansatz and we illustrated its consequence
in the limiting case of shallow water. In this way, we derived the modified
Serre equations and subsequently obtained exact cnoidal and solitary wave
solutions. The main purpose of this example was to illustrate the fact that one
can introduce an ansatz which is not inspired by any asymptotic expansion
and nevertheless lead to good approximations.

In the present paper, some further possibilities for generalizations are also
mentioned. However, we have to emphasize that not all ansatz and constraints
will necessarily lead to physically relevant and tractable approximations (the
same is true for models derived from asymptotic expansions.) Nonetheless, the
relaxed variational formulation is sufficiently versatile to allow easy derivations
of physically sound models. We have illustrated this claim, in particular, by
showing how it is simple to obtain approximate equations valid for all depths.

In order to derive approximate models, variational formulations are more effi-
cient than asymptotic expansions. However, both approaches can be also com-
bined. Indeed, once the variational principle has been applied to an ansatz,
asymptotic expansions can be further applied to obtain simpler models. For
instance, one could consider ‘unidirectionalized’ approximations (Olver 1984,
1988) to derive variants of Korteweg and de Vries (1895), Dysthe (1979), Ca-
massa and Holm (1993), Degasperis and Procesi (1999), Kraenkel et al. (2005),
and other equations. This possibility will be investigated in future works.

For the sake of simplicity, we have considered only gravity waves propagating
at the surface of a single layer of a homogeneous fluid with a horizontal bot-
tom. It is trivial to introduce a relaxed variational formulation including, e.g.,
surface tension, stratifications in several homogeneous layers and obstacles.
Such a general variational formulation, together with relevant ansatz and well
chosen constraints, will easily lead to interesting models. For perfect fluids,
variational formulations can also be obtained for rotational motions (Eckart
1960; Luke 1967; Salmon 1988; Morrison 1998; Constantin et al. 2006). A
relaxed version of such variational principles will facilitate the derivation of
approximate models.

The numerical models for simulating water waves are undergoing constant
improvements. The state of the art can be found in recent reviews (e.g., Fenton
1999; Dias & Bridges 2006; Ma 2010). Certainly, the variational principle is the
tool of choice to derive efficient approximations. By efficient, we mean models
that capture most of the relevant physics and which, in the same time, can
be easily and rapidly solved numerically. One interesting direction for future
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researches is the development of numerical schemes preserving hamiltonian
structure at the discrete level. Another interesting application is the derivation
of new improved models with uneven bathymetry for coastal hydrodynamics
and tsunami wave modeling (Synolakis & Bernard 2006).

The use of a variational principle for modeling surface waves is by no mean
new. However, its power has not yet been fully exploited. The present paper
is a further contribution in this direction.
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A Exact Stokes wave

In deep water, a seventh-order Stokes expansion (for the exact equations) is

κ η=α cos θ + 1
2
α2
(

1+ 17
12
α2+ 233

64
α4
)

cos 2θ

+ 3
8
α3
(

1+ 51
16
α2+ 3463

320
α4
)

cos 3θ + 1
3
α4
(

1+ 307
60
α2
)

cos 4θ

+ 125
384

α5
(

1+ 10697
1500

α2
)

cos 5θ + 27
80
α6 cos 6θ + 16807

46080
α7 cos 7θ + O(α8),

g−
1

2κ
3

2 φ̃=α
(

1− 1
4
α2− 43

96
α4− 2261

1536
α6
)

sin θ + 1
2
α2
(

1+ 7
12
α2+ 81

64
α4
)

sin 2θ

+ 3
8
α3
(

1+ 281
144

α2+ 5813
1080

α4
)

sin 3θ + 1
3
α4
(

1+ 431
120

α2
)

sin 4θ

+ 125
384

α5
(

1+ 3369
625

α2
)

sin 5θ + 27
80
α6 sin 6θ + 16807

46080
α7 sin 7θ + O(α8),

g−
1

2κ
1

2 c=1 + 1
2
α2 + 1

2
α4 + 707

384
α6 +O(α8),

where θ = x− ct. Note that, to the leading order, the n-th Fourier coefficient
is 21−nnn−2αn/(n−1)! (this is also true for all n > 7). In the bulk of the fluid,
the velocity potential is

g−
1

2κ
3

2 φ=α
(

1− 1
8
α2− 7

12
α4− 14761

9216
α6
)

eκy sin θ + 1
2
α4
(

1+ 11
6
α2
)

e2κy sin 2θ

+ 1
12
α5
(

1+ 191
24
α2
)

e3κy sin 3θ + 1
72
α6 e4κy sin 4θ

+ 1
480

α7 e5κy sin 5θ + O(α8),
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meaning that harmonics appear at the fourth-order only, thus justifying the
ansatz (32). Note that, to the leading order, the n-th Fourier coefficient is
αn+2/n!(n−1) for all n > 1.

B Cubic Zakharov’s equations

Satisfying exactly the Laplace equation and the bottom impermeability, the
gravity waves variational formulation (Luke 1967) yields the Hamiltonian (Za-
kharov 1968)

H= 1
2

∫

{

g η2 + φ̃ V
}

d2
x, V = [φy −∇η · ∇φ ]

y=η
. (B.1)

Introducing a Dirichlet–Neumann operator G, such that V = G(η)φ̃ (Craig &
Sulem 1993), expanding G around η = 0 and neglecting the terms beyond the
quartic nonlinearities, the Hamiltonian (B.1) becomes

H= 1
2

∫

{

gη2 + φ̃
[

dφ̃− d(ηdφ̃)−∇ · (η∇φ̃)

+ 1
2
d(η2∇2φ̃) + d(η d(η dφ̃)) + 1

2
∇

2(η2 dφ̃)
]}

d2
x, (B.2)

with the pseudo-differential operator d = (−∇
2)

1

2 tanh[(−∇
2)

1

2d ]. (For one
horizontal dimension in infinite depth df = −H(fx), H the Hilbert transform.)
Thus, the cubic Zakharov’s equations (CZE) are

ηt − dφ̃=−∇ · (η∇φ̃)− d(ηdφ̃) +
1
2
∇

2(η2dφ̃) + d(ηd(ηdφ̃)) + 1
2
d(η2∇2φ̃), (B.3)

φ̃t + gη= 1
2
(dφ̃)2 − 1

2
(∇φ̃)2 − (ηdφ̃)∇2φ̃− (dφ̃)d(ηdφ̃). (B.4)

For progressive (2π/κ)-periodic solutions in infinite depth, a seventh-order
Stokes expansion is
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κ η=α cos θ + 1
2
α2
(

1+ 3

2
α2+ 445

96
α4
)

cos 2θ

+ 3
8
α3
(

1+ 41

12
α2+ 5213

384
α4
)

cos 3θ + 7

24
α4
(

1+ 263

42
α2
)

cos 4θ

+ 67

384
α5
(

1+ 2569

201
α2
)

cos 5θ 9

320
α6 cos 6θ 16751

46080
α7 cos 7θ + O(α8),

g−
1

2κ
3

2 φ̃=α
(

1− 1
4
α2− 31

64
α4− 465

256
α6
)

sin θ + 1
2
α2
(

1+ 3

4
α2+ 123

64
α4
)

sin 2θ

+ 3
8
α3
(

1+ 89

36
α2+ 27271

3456
α4
)

sin 3θ + 7

24
α4
(

1+ 1795

336
α2
)

sin 4θ

+ 67

384
α5
(

1+ 24769

2010
α2
)

sin 5θ 9

320
α6 sin 6θ 16751

46080
α7 sin 7θ + O(α8),

g−
1

2κ
1

2 c=1 + 1
2
α2 + 41

64
α4 + 913

384
α6 +O(α8),

where the incorrect (compared to the exact expansion) coefficients and signs
are displayed in bold face. Thus, the CZE match the exact Stokes wave up
to the third-order only. Truncating the Hamiltonian at the order N + 1 in
nonlinearities, the corresponding Stokes double series is correct up to the order
N in the expansion parameter. None of these approximations have the exact
asymptotic behavior (38) for their Fourier coefficients.
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