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Abstract

An important challenge in constraint programming is to
rewrite constraint models into executable programs cateul

ing the solutions. This phase of constraint processing may
require translations between constraint programming lan-
guages, transformations of constraint representationdem
optimizations, and tuning of solving strategies. In thipgra

we introduce a pivot metamodel describing the common fea-
tures of constraint models including different kinds of €on
straints, statements like conditionals and loops, androthe
first-class elements like object classes and predicategs Th
metamodel is general enough to cope with the constructions
of many languages, from object-oriented modeling langsiage
to logic languages, but it is independent from them. The
rewriting operations manipulate metamodel instancestapar
from languages. As a consequence, the rewriting operations
apply whatever languages are selected and they are able to
manage model semantic information. A bridge is created
between the metamodel space and languages using parsing
technigues. Tools from the software engineering world can
be useful to implement this framework.

Introduction

In constraint programming (CP), users describe properties
of problems as constraints involving variables. The com-
puter system calls constraint solvers to calculate the-solu
tions. The automatic mapping from constraint models to
solvers is the key issue of this paper. The goal is to de-
velop middle software tools that are able to reformulate and
rewrite models according to solving requirements.

Modeling real-world problems requires high-level lan-
guages with many constructions such as constraint defi-
nitions, programming statements, and modularity features
In the recent past, a variety of languages has been de-
signed for a variety of users and problem categories. On
one hand, there are many modeling languages for com-
binatorial problems such as OPL (Van Hentenryck et al.
1999), Essencg (Frisch et al. 2007), and MiniZinc (Nether-
cote et al. 2007) or numerical constraint and optimization
problems such as Numerica (Van Hentenryck, Michel, and
Deville 1997) and Realpaver (Granvilliers and Benhamou
2006). On the other hand, constraint solving libraries have
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been plugged in computer programming languages, for in-
stance ILOG Solver[(Puget 1994), Gecode (Schulte and
Tack 2006), and ECIPS (Ppt and Wallace 20Q7). In the
following, we will only consider modeling languages as in-
put constraint models. However, computer programming
languages can be chosen as targets of the mapping process.
Our aim is therefore to provide a many-to-many mapping
tool that is able to cope with a variety of languages.

Many constructions are shared among the different lan-
guages, in particular the definitions of constraints. Other
constructions are specific such as classes in object-edent
languages or predicates in logic languages. We propose
to embed this collection of concepts in a so-called meta-
model, that is a model of constraint models. This pivot
metamodel describes the relations between concepts and it
encodes in an abstract manner the rules for constraint mod-
eling. This is a considerable improvement of our previous
work (Chenouard, Granvilliers, and Soto 2p08) which was
restricted to a one-to-many mapping approach from a partic-
ular modeling language. Moreover, the translations toinbta
Flat s-COMMA models were hand-coded and model struc-
tures are always flattened like for FlatZinc models (Nether-
cote et al. 2007). Previous model transformations were also
specific toFlat s-COMMA and its structure (e.g. there is no
object and no loop to manage). Our pivot metamodel is in-
dependent of modeling languages and our approach offers
more flexibility in getting efficient executable models.

The rewriting process can be seen as a three-steps pro-
cedure. During the first step, the user constraint model is
parsed and a metamodel instance is created. During the last
step, the resulting program is generated from a metamodel
instance. These two steps constitute a bridge between lan-
guages — the grammar space — and models — the model
space. The middle step may implement rewriting operations
over metamodel instances, for instance to transform con-
straint representations from an integer model to a boolean
model. The main interest is to manipulate concepts rather
than syntactic constructions. As a consequence, the rewrit
ing operations can be expressed with clarity and they apply
whatever languages are chosen.

An interesting work is about the rule-based programming
language Cadmiumn) (Duck, Stuckey, and Brand 2006) com-
bining constraint handling rulef (Frithwirth 2p09) andrter
rewriting to transform constraint models. The rewriting al




gorithm matches rules against terms in order to derive some
term normal forms. This approach provides a very clear se-
mantics to the mapping procedure and it addresses conflu- cammarrs
ence and termination issues. Considering metamodels al-
lows one to reuse metamodeling tools from software en-
gineering. For instance, ATL (Kurtev, van den Berg, and

Jouault 2007) is a general rule-based transformation lan-
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mium. Kermeta [(Muller, Fleurey, and Jézéquel 2005) is
a transformation framework allowing to handle model el-
ements using object-oriented programs. A benefit of the
model-driven approach is to directly manage typed model
concepts using the metamodel abstract description.

The remaining of this paper is organized as follows.
Section 2 presents the general model-driven transformatio
framework underlying this work. A motivating example us-
ing known CP languages is described in Section 3. The pivot
metamodel and rewriting operations are presented in Sectio
4. Section 5 investigates some transformation experiments
on well-known CP models. Finally, Section 6 concludes the
paper and details some future work.

Figure 1: Constraint model transformation process.

The shift from languages to models can be implemented
by parsing techniques. ModeA is created from the
source user modeh. This model must conform to the
Model Engineering Framework user language metamodel, as is required in the model
. . . . sSpace. As a consequence, metamodels of languages —
A constraint model is a representation of a problem, writ- modeling languages, constraint programming languages,
ten in a language, and having a structure. Our purpose is gqyer languages— must be defined. The oubig gen-
to transform solver-independent models to solver-depende o ated from moddB. This model must conform to the meta-
models. That may lead model of the solver language.
to change the representation of input models, namely the  Model transformations are defined in the model space.
intrir)sic constraint definitions, in order to improve the The goal is to transform modé\ reflecting the user con-
solving strategy, straint model to modeB associated to the solver. As pre-
to translate languages, from high-level modeling lan- Viously mentioned, that requires to change model represen-
guages to low-level solver languages or computer pro- tations and structures. This process can be done by rewrit-
gramming languages, and ing operations manipulating concepts frénto B. In order

to modify model structures according to the capabilities of © Shareé common concepts, we propose to introduce the so-
solvers, for instance to make a shift from object-oriented called pivot metamodel. The t_ransformatlon chain S then
modelslto logic models based on predicates a three-steps procedure: a shift from modeab the pivot

) . ) . model, the application of rewriting operations over theopiv
Managing representations supposes to specify constraint 1, oqel and a shift from the pivot model to mod&!
transformatlon rules suqh as the gquwalence of constraint | he following (Section 4), we will present the pivot
formulations or constraint relaxations. Translating lan- - odels and model transformation operations. How-
guages requires to map concrete syntactic elements. Manip-gyer ‘\ve will present first a motivating example (next sec-
ulating structures deals with abstract modeling concé#ts | )" 304 discuss the requirements for handling constraint
objects or predicates. An important motivationis to sefgara 0 jals.
these different concerns. In particular, the equivalerfce o
constraint formulations is independent from the languages Lo
This argues in favour of a modgl technical space (M%E '?’S) A Motivating Example
gathering modeling concepts and transformation rules and a Let us illustrate the transformation process on the social
grammar technical space (Grammar TS) addressing the lan-golfers problem. The user model is written in the object-
guage issues, as shown in Figﬂre 1. oriented modeling languageCOMMA. The outputis a com-

In the grammar space, models are written in languages puter program written in the constraint logic programming
given by grammars. In the model space, they are defined language ECIPS. This problem considers a group of
as relations between elements that conform to metamodels.n = g x s golfers that wish to play golf each week, arranged
The elements are instances of concepts described in meta-into g groups ofs golfers. The problem is to find a playing

models, for example a constrainty- y = z deriving from
some algebraic constraint concept. The relations defike lin

schedule forw weeks such that no two golfers play together
more than once. Figuf¢ 2 afid 3 show t,eOMMA model

between concepts such as composition and inheritance. Thatand the ECEPS* model for this problem, respectively.

allows one to define complex elements, such as constraint

systems composed of collections of constraints.

Thes-COMMA modelis divided in a data file and a model
file. The data file is composed by an enumeration holding



the golfer names, and three constants to define the problem; *&s 5 9

dimensions (size of groups, number of weeks, and groups ¥ ‘(’svgj b
per week). The model file is divided into three classes. s. ’

6. i WEEKSCHED GROUPSCHED PLAYERS, 12, 1, 9) ,
One to model the groups, one to model the weeks and one 7 L a0 . ROUPeO D PLATERE. )
to arrange the schedule of the social golfers. Theup s
class owns thel ayer s attribute corresponding to a set of 7 (of (ve, weri W paran(C G W) do
golfers playing together, each golfer being identified by a 11. (for(Gl, 1,6, paramL, G W, W) do

. . . . . 12. f @, 1, , L,GW, W, Gl) d
name given in the enumeration from the data file. In this 15 o' & Wl ce enive vi . =
t i i 14. V3 is G+(W-1)+Q&, nth(V4,V3, L),
class, the code block calleg oupSi ze (lines 14 to 16) is ! rove e Wy e

. N 5.
a constraint zone (constraint zones are used to group state-1s. )
ments such as loops, conditionals and constraints under aj; ’
given name). Ther oupSi ze constraint zone restricts the 19.).
size of th_e golfers group. Thﬁ_éek class has an array of 5, (1or(11. 1. W, paran(L, S, W@ do
G oup objects and the constraint zopeay OncePer Week 22. (for(12,1,G,paran(L,S,WG11) do
X 23. V6 is G(11-1)+2,nth(V7,V6,L),
ensures that each golfer takes part of a unique group perzi.  #v7, vs), v8 $= s

week. Finally, theSoci al Gol f ers class has an array of 25 )

. . B 26. ),
Week objects and the constraint zodef f er ent G oups 27.
states that each golfer never plays two times with the same 2 ((21{ (4 G Parartt 9 do
golfer throughout the considered weeks. 30. (for(@,Gl+1,Q,paran(L, G11,Gl) do
31, VO is Gr(11-1)+GL, nth(V10,V9,L),

) 32. V11 is G-(11-1)+&, nth(V12, V11, L),
//Data file
1. enum Nane := {a,b,c,d, e f,g,h,i}; gi ) #(V10 /A V12, 0)
2. int s :=3; //size of groups 35. )
3. int w:=4; //nunber of weeks 36. )
4. int g :=3; //groups per week 37. !
/I Vodel file 38. | abel _sets(L).

1. main class Social Golfers {
2. Week weekSched[ W ;

3. constraint differentGoups { Figure 3: The social golfers problem expressed in BZE.

4. forall(wl in 1..w

5. f (w2 in wi+l..

3. foéfal :(l(?llan 1i. g)‘)N){

. or al n e . . .

8. card(\%eekSched?wl] . groupSched] g1] . pl ayers i nter sect The treatment of objects is more subtle since they must
N ) weekSched[w2] . groupSched[ g2] . pl ayers) <= 1; not participate to ECIPS models. Many mapping strate-
0.} gies may be devised, for instance mapping objects to predi-
15 L ass @oup | cates [Soto and Granvilliers 2007). Another mapping strat-
13, Name set players; egy is used here, which consists of removing the object-
1o S dropsize based problem structure. Flattening the problem requires
1e. }) visiting the many classes through their inheritance and-com
18. position relations. A few problems to be handled are de-
b ngﬁpvf,?zuésmed[ o scribed as follows. Important impacts on the attributes may
21 constraint playncePer\Week { happen. For example, theekSched array ofWweek objects
A AL defined at line 2 of the model file in Figu[k 2 is refactored
24, car d(gr oupSched| gl]h gl BZETsl . and transformed to théFEKSCHED.GROUPSCHED_PLAYERS

»5. , intersect groupSched[g2].players) = 0; flat list stated at line 6 in FlgUrE 3.1t may be pOSSibIe to
26. } } insert new loops in order to traverse arrays of objects and to

post the whole set of constraints. For instance, the laskblo
) ) of for loops in the ECEPS model (lines 28 to 36) has been
Figure 2: Ans-COMMA model of the social golfers problem.  pyilt from thepl ayOncePer Week constraint zone of the-
, . ) o COMMA model, but there is an additional for loop (line 28)
The generated ECPS model is depicted in FigurB 3, since thewsek instances are contained in theekSched
which has been built as a single predicate whose body is a array. Another issue is related to lists that cannot be ac-
sequence of atoms. The sequence is made of the problemcessed in the same way as arrays-@OMMA. Thus, local

dimensions (lines 2 to 4), the list of integer setglines 6 variables ;) and the well-knowmt h Prolog predicate are
to 7), and three nested loop blocks resulting from the trans- jntroduced in the ECIPS model.

formation of the three-COMMA classes (lines 9 to 36). It
turns out that parts of both models are similar. This is due : :
to the sharing of concepts in the underlying metamodels, for Pivot Model Handling

instance constantsor al | statements, or constraints. How-  Our pivot metamodel has been defined to catch most mod-
ever, the syntaxes are different and specific processing may eling needs that occur in constraint modeling languages.
be required. For instance, ther statement of ECIPS Then, pivot models are managed with several refining trans-
needs th@ar amkeyword to declare parameters defined out- formations, where each transformation identifies a clear re
side the current scope, e.g. the number of graups fining process, namely structure modifications (e.g. refhova



of object variables) or model optimization.

Pivot Metamodel

to the test evaluation. The second set of statements is
optional if no alternative to the true evaluation of the
test is defined.

Figure[}# depicts an extract of our pivot structure metamodel o par anet er i zedEl enent defines concepts having a list

in a simplified UML Class diagram formalism. Italic font is
used to denote abstract concepts. The root concéptiisl
which contains all entities. Three abstract concepts ihher
from the abstract clasgdel El ement :

e Cl assifier represents all types than can be used to de-
fine variables or constants:

— Dat aType corresponds to common primitive data
types used in CP, namely Boolean, Integer and Real.

— Enuner at i on is used to define symbolic types, i.e. a
set of symbolic values defined &suniiteral (not
defined here to keep the figure readable), eegum

of parameters and not being a classifier neither an instance
of aMbdel Feat ure:

— Predi cat e represents logical predicates in a model as
in ECL'PS. Predicates have parameters and a body
composed of a sequence itbdel Feat ur e, such as
variable definitions or constraint statements.

— Functi on represents user-defined functions stated in
a model. It contains also a body, but it is based on a
statement used to compute a result.

The notion of expression is ubiquitous in CP. The related

i . oS concepts of our metamodel are detailed in Figdre 5. They
Nane: ={a, b, ...}, line 1 of data file in Figurg[2. represent all the entities occurring in first-order fornsula
— O ass is similar to the object-oriented concept of class, made from variables, terms, relations, and connectives. Th

but defined in a CP context (Soto and Granvilliers conceptexpr essi on is abstract and is used as super class
2007), i.e. a class definition is composed of variable for all kinds of expressions:

or constant definitions and also constraints and other
statements. Thus, @ ass has a set of features being

e FunctionCall is used to refer to an already defined

instances ofbdel Feat ur e.

e Model Feat ur e corresponds to the instance concepts de-
fined within a model. It is also divided in three concepts:

— Recor d relates to non-typed instances being composed

of a collection of elements, such as tuples. To cover a
broader range of record definitions, we define a com-
position ofMbdel Feat ur e instances.

— TypedEl enent is an abstract concept corresponding
to typed constraint model elements. Thus, it has a ref-
erence to a classifier. The concept of array variable is
not distinguished from variable, but array can be repre-

sented using a sequence of sizes, corresponding to each

dimension of an array (more than two dimensions are
allowed). Theses sizes are expresse&gs essi on
instances.
x Vari abl e has an optionabomai n definition (not
shown here) restricting values belonging to the asso-
ciated type. Three concepts@dnmai n are taken into

account: intervals, sets and domains defined as an ex-

pression.

x Const ant concept is for constants having a type and
a fixed value.

— St at enment is used to represent all the other features
that may occur in &bdel orad ass:

% Const r ai nt is the abstract constraint concept having
two sub-conceptsExpr essi onConst r ai nt stands
for constraints built inductively from terms and rela-
tions. d obal Ct r handles global constraints defined
by a name and a list of parameters.

x For Al | defines a loop mechanism over constraints
and other statements. It has an iterating variable
which is local to the loop.

x | f obviously defines a conditional statement. It is
composed of arexpr essi on corresponding to the

Functi on and contains a list of parameters defined as
Expr essi on.

e Var Cccurrence is used to refer to already defined in-

stances: records, variables or constants. It is only com-
posed of a reference to the corresponding instance dec-
laration and to a list of optional indexes to handle ar-
rays. It is specialized ibj ect Occur rence in order

to express the navigation path to an object attribute (e.g.
groupSched[ gi] . pl ayers, line 8 in Figure[IZ). Vari-
able occurrences are not classified according to their dec-
laration type in one of the three expression types inherit-
ing fromExpr essi on in order to avoid multiple declara-
tion of the same concept, while requiring type inference
mechanism.

Bool eanExpr essi on is used to specify boolean con-
cepts occurring in expressions:

— Bool Val ue represents the terms ue andFal se.

— Predi cat eCal | corresponds to the call of a predicate
with its list of parameters. Thus, it is composed of a
reference to #r edi cat e with a list of parameters de-
fined asExpr essi on in order to allow at the same time
Var Cccur r ence and evaluable expressions, such as
xorx+ 1.

— Bool Oper at or is an abstract concept having a name
representing the symbol of well-known operators. It is
specialized in the two common types of operators:

x Bool Unar yOp corresponds to the negation operator
and has an operand corresponding t&apr essi on,
since it can be a boolean expression, but also a vari-
able. In the following, operands of all operators will
be defined as a composition®fpr essi on.

x Bool Bi nar yQp corresponds to the several common
binary operators returning a boolean value, such as:
&, —,and, or=, #, <, >, <, >.

boolean test and two sets of statements correspond- e Set Expr essi on defines the main constructs available to

ing to the statements to take into account according

deal with sets within expressions:
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features L—

| DataType | [ Class | | Enumeration |4 TypedElement|| | Record | | Statement |

ParameterizedE lement|
AN

| Variable| [ Constant| [ Constraint| | Forall || If |
parameters | « L *
value | 1
- ExpressionConstrain [GlobalCtr|
_Expresswn I
1 i g

Figure 4: Representation of variables and problem strastirthe pivot metamodel.

[ FunctionCall —{varOccurrenced] | BooleanExpression |
AN AN
|objectOccurrence] [ BoolOperator |[BoolValue| [PredicateCal] | SetOperator | [Setvalue] [SetFunction| | AlgOperator | | Algvalue | | AlgFunction |
[ BooiBinaryop | [Boolunaryor] -+ [Intvalue] | RealValue | [ IntervalValue |

Figure 5: Representation of expressions used to defineragmsxpression in the pivot metamodel.



— Set Val ue corresponds to a set of value occurrences,
such as{1,2,3}. To tackle various contents as set el-
ements (e.g.{1,z + 1}), it is composed of a list of
elements conformed tBxpr essi on.

— Set Funct i on corresponds to the call of known func-
tions over sets, such as the cardinality function.

— Set Oper at or is specialized only inSet Bi naryQp
since no unary operator is commonly used on sets. For
instance, intersection, union and difference are avail-
able.

e Al gebr ai cExpr essi on defines the numerical expres-
sions:

— Al gval ue is abstract and represents the three
main concepts of values in numerical expressions:
I nt Val ue for integer values,Real Val ue for real
number values andnt er val Val ue for interval val-
ues such ag-1, 1].

— Al gFunct i on corresponds to the call of a well-known
function over numbers, such as trigonometric func-
tions.

— Al gOper at or refers to the common operators used
in algebraic expressionsAl gunaryp(—, +) and
Al gBi naryQ (+, —, *, / and").
Our pivot metamodel has been defined to fit with most
modeling needs in CP, but also to fit with the metamodel of

Algorithm 1 Transforming and removing object variables
and class definitions
objectRemoval(m : Model )
: Mbdel
1: letres :Model
2: for all oin m.elementslo

3 if is_var(o) and is_class(o.type)then

4: res.insertfatten(o,o.type.features))
5: else if notis_class(o) then

6: res.elements.insert(o)

7: end if

8: end for

9: return res

flatten(o : Vari abl e, features Setof Mbdel Feat ur e)
: Setof Mbdel Feat ure

1: letres :Setof Model Feature =)
2: for all f in featuresdo

3: if is_var(f) andnot is_class(f.type)then
4: letv: variabl e
5: v < duplicate(f)
6: v.name = 0.name +"+ v.name
7: res.insert(v)
8 else
9:
10: end if
11: end for

CP languages. Thus, some simplifications have been done to12: return res

ease transformations such as tfe Cccur r ence concept
which directly inherits fromExpr essi on. Indeed, variable

occurrences can be typed in expressions (i.e. booleary, set o jn the output model (line 5,6), whilel ass definitions are

algebraic), but we define only one to avoid redundancies.

Pivot model refactoring

Model transformations are implemented as rewriting opera-
tions over pivot models.

For sake of clarity, we will present a few operations us-
ing an imperative pseudo-code style, while specific trans-
formation languages are used in practice. The main inter-
est given by the concept hierarchy is to provide navigation
mechanisms through models. For instance, it is immediate
to iterate over the set of variables of a constraint, sinte th
information is gathered in the corresponding abstract con-
straint concept (see e.g. Algorithm 2). It is therefore poss
ble to manipulate models globally, which is very powerful.

Object flattening This refactoring step replaces object in-
stances, namely variables whose type is a class, by all el-
ements defined in the class definition (variable, constants,

constraints and other statements). In order to prevent name

conflicts, named elements are prefixed with the name of ob-
ject instances.

This refactoring transformation can be expressed in terms
of a brief pseudo-code algorithm as shown in Algoritﬂm 1.
TheObj ect Renoval function processes a source model by
iterating on all its elements (line 2). If object instances
are detected (line 3), then the functibhat t en is called
and its result is added to the output model elements (line
4). Instances not being @ ass definition are duplicated

removed. In thefl atten function every feature given

as parameter is cloned and added to the resulting set of
Model Feat ure. In the case of a variable (and also con-
stants), its name is concatenated to the object variable@ nam
(line 6). Figurdp depicts the result of the transformatian o
the social golfers example previously presented.

class Social Gol fers { Wek weekSched[ W] ; ...}
class Week { G oup groupSched[gd];...}

class Group { Nane set players;...}

= Name set weekSched_groupSched._pl ayers[g*w;

Figure 6: Applying the object flattening transformation on
the social golfers example usisgCOMMA syntax.

Arrays of objects and expressions refactoring are not pre-
sented here to keep the algorithm simple. As mentioned at
the end of Section 3, in the case of object arrays, we must
transfer their size to their attributes and a loop staternast
to be introduced to iterate on thedt at enent instances.
Within expressions, instances\édr Cccur r ence may just
be updated with the declaration of the new flat variables.

Alldifferentremoval  Since global constraints are not han-
dled by every solver, there is a motivation to reformulate
them or to generate relaxations. We consider here, the well-
known global constraird! | di f f er ent (21, ..., x,,). We as-
sume that the domain of eaafy varies from1 to n to ease



the definition of the two last algorithms. We propose three Experiments

possible transformations: The presented architecture has been implemented with three

e Generating a set of disequalities as shown in Algorighm 2. tools and languages: KM3 (Jouault and Bézivin 2006)
For all variable combinations (line 2,3), a constraint is is a metamodel language, ATL (Kurtev, van den Berg,
generated and added to the result (line 6). and Jouault 2007) is a declarative rule language to de-

scribe model transformations and TCS (Jouault, Bézivin,

and Kurtev 2006) is a declarative language based on tem-
plates to define the text to model and model to text transi-

Algorithm 2 Transforming alldifferent to a set of disequali-

tes_ : _ : tions. These MDE tools allow us to choose the refactoring
AlIDiffToDisequalities (c : G obal Const r ai nt) steps to apply on pivot models in order to keep supported
: Setof Const r ai nt structures of the target metamodel.
1: letres :Setof Constraint =0 We have carried out a set of tests in order to analyze
2: forall i in 1..c.parameters.sizefp the performance of our approach. We used five CP prob-
3: forall jin i+ 1.c.parameters.sizedp lems: Social Golfers, Engine Design, Send+More=Money,
4: letx : Vari abl e = c.parameter[i] Stable Marriage and N-Queens. The first experiment eval-
5 lety : Vari abl e = c.parameter[j] uates the performance in terms of translation time, and the
6: res.insertfew Const r ai nt (X # Y)) second one was done to show that the automatic generation
7: end for of solver files does not lead to a loss of performance in terms
8: end for of solving time. The benchmarking study was performed on
9: return res a 2.66Ghz computer with 2GB RAM running Ubuntu.
Problems sC s-to-P | Object | Enum | P-to-E | Total Ecl
e Generating a relaxation as shown on Algoritﬂm 3. Only Lines | (s) (s) (s) (s) (s) | Lines
one constraint is created (line 3) assessing that the sum of Gojrers 31 1 0276 | 0340 | 0080 | 0075 | 07721 37
all variable values is equal to(n + 1) /2. Engine | 112 | 0292 | 0.641 | 0.146 | 0.087 | 1.166 | 78
Send 16 | 0289 | 0273 | - | 0089 | 0.651| 21
Algorithm 3 Generating alldifferent relaxations Mariage | 46 | 0330 | 0469 | 0.085 | 0.067 | 0951 | 26
10-Q 14 0.279 0.252 - 0.033 0.564 12

AlIDiffToRelaxation (c : G obal Constrai nt)

: Constraint
1: let n: Integer = c.parameters.size()
2: letsum :Expression =) ., c.parameters]
3: return new Constrai nt (sum = n(n+1)/2)

Table 1: Times for complete transformation chains of sev-
eral classical problems.

In the first experiment we test th@e COMMA (sC) to
ECL'PS (Ecl) translation. Tablf] 1 depicts the results. The
i ) ) first column gives the problem names. The second column
* Generating a boolean version as shown on Algorifhm 4. ghos the number of lines of theCOMMA source files.

In this case, we define a new matrix of boolean variables e following columns correspond to the time of atomic

(line 2,3,4), where[i, j] being true means; has valugj. steps involved in the transformation (in seconds): tramsfo

Line 7 checks that only one value per variable is defined. ations froms-COMMA to Pivot (s-to-P) (corresponds to

Line 10 ensures that two variables have different values. gy rce Text A to Model Pivot in Figurﬂ 1), object flatten-
ing (Object), enumeration removal (Enum), and transforma-
Algorithm 4 Reformulating alldifferent into a boolean tions from Pivot to ECEPS (P-to-E) (corresponds to Model

model Pivot to Target Text B in Figurf] 1). The next column de-
AlIDiffToBoolean(c : G obal Constrai nt) tails the total time of the complete transformation, and the
. Setof Mbdel Feat ur e last column depicts the number of lines of the generated
1: letres :Setof Constraint =) ECL'PS files.
2: letn: Integer = c.parameters.size() The results show that the text processing phases (s-to-
3: let m : Integer = card(c.parameters.domain) P and P-to-E) are fast, but we may remark that the given
4: let b[n,m] : Boolean problems are concisely stated (maximum of 112 lines). The
5: res.insert(b) transformatiors-COMMA to pivot is slower than the trans-
6: for iin 1..n do formation pivot to ECLPS'. This is explained by the refac-
7. res.insertfew Constrai nt (3.7, b[i,j] = 1)) toring phases performed on the pivot that reduce the number
8: end for of elements to handle the pivot to E(RS step. The com-
9: for jin 1..m do position flatt_ening is the more _expensive phase. Ir_1 particu-
10:  res.insertfew Const r ai nt (2?21 b[i,j] = 1)) Ia_lr, th(_a Engm_e problem exh|b|ts the slo_v\_/est running time,
11: end for since it contains several object compositions. In summary,

considering the whole set of phases involved, we believe the
results show reasonable translation times.



Native Generated Generated (Flat) solver-independent platform where solvers can be mapped
Problems || solve(s) | Lines | solve(s) | Lines | solve(s) [ Lines to ECL'PS, Gecode/J, RealPaver, and GNU Prolog (Diaz
Golfers 0.21 28 0.21 31 022 | 276 and Codognet 2000). The language also involves an inter-
Marriage || 0.01 42 0.01 46 001 | 226 mediate model calledlat s=COMMA to facilitate the trans-
20-Q 463 | 11 | 465 | 12 | 502 | 1162 lation. Hand-written translators and MDE-translatorsehav
28-Q 8073 | 11 | 8078 | 12 | 8773 | 2284 been developed to translatecat s-COMMA model in the

target solver model.
Table 2: Solving times and model sizes of native and gener-  Our approach can be seen as a natural evolution of this
ated files solver-independent architecture. Two major advantages

arise. (1) In the aforementioned approaches just one model-

) . ing language can be used as the source of the transformation,

_In the second experiment we compare the BRE i 'oyr framework many modeling language can be plugged
files automatically generated by the framework with native - 55 the source. We believe this enables flexibility and pro-
ECL'PS files written by hand (see Tabjp 2). We consider yiges freedom to the modelers. (2) In ty&OMMA, Miniz-
the solving time and the lines of each problem file. The data jnc and Essence transformation processes, the refagtorin
of the native models is first given. We then introduce gener- gieps (e.qg. enumeration removal, loop and set unrollireg) ar
ated files where the loops have not been unrolied (avoiding ajways applied. This makes the structure of the solver file
this phase the size of generated solver files is closer to the completely different from the original model. In our frame-
native ones). In this case, the solving times of both types of york we focus on generating optimized models while trying
files are almost equivalent. Atthe end, we consider problems o maintain as much as possible the original structure of the
including the loop unrolling phase (Flat). This processlea  soyrce model. We believe that keeping the source modeling

toa considerable increase of model sizes. Only the soIvi.ng structures into target models, then improve their readgbil
time of the flat 20-Queens and 28-Queens problems are im- 44 ynderstanding.

pacted (about 0.4 and 7 seconds). This may be explained
by the incremental propagation algorithm commonly imple- :
mented in CLP languages. We may suppose that a propaga- Conclusion and Future Work
tion happens each time a constraint is added to the coristrain In this paper, we have presented a new framework for con-
store. If a for statement is not interleaved with propaggtio  straint model transformations. This framework is suppbrte
i.e. it is considered as one block, then only one propagation by an MDE approach and a pivot metamodel that pro-
step is required. This is not the case if loops are unrolled, vides independence and flexibility to cope with different
leading to one propagation for each individual constrdint. ~ languages. The transformation chain involves three main
results in a slow-down. This negative impact in terms of steps: from the source to the pivot model, refining of the
solving time demonstrates the need for keeping the streictur pivot model and from the pivot model to the target. Among
of target models (e.g. not unrolling loops) instead of build  others, an important feature of this chain is the modularity
ing a flat model. of mode transformations and that the hard transformation
work (refactoring/optimization) is always performed over
Related Work the pivot. This makes the transformations from/to pivot-sim
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posed. The solver-independent architecture is likely to be N @ near future, we intend to increase the number of CP
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