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Sufficient conditions have been given for the convergence in norm and a.e. of the ergodic Hilbert transform ([11], [5], [6]). Here we apply these conditions to the rotated ergodic Hilbert transform ∞ n=1 λ n n T n f , where λ is a complex number of modulus 1. When T is a contraction in a Hilbert space, we show that the logarithmic Hausdorff dimension of the set of λ's for which this series does not converge is at most 2 and give examples where this bound is attained.

Introduction

Let T be a normal contraction on a Hilbert space H. Let D be the unit disk and, for f ∈ H, denote the spectral measure of f with respect to T by σ f . In [START_REF] Cohen | The one-sided ergodic Hilbert transform of normal contractions[END_REF] (see also [START_REF] Assani | On the one-sided ergodic Hilbert transform[END_REF] for earlier results) it was proved that the one-sided ergodic Hilbert transform (EHT)

∞ n=1
T n f n converges in H if and only if D log 2 |1 -z| dσ f < ∞. It is proved in [START_REF] Cohen | The one-sided ergodic Hilbert transform of normal contractions[END_REF] that when T is a contraction (even not normal) on H = L 2 (m) of a σ-finite measure, then for f ∈ L 2 (m) the convergence of ∞ n=3 T n f,f log n(log log log n) 2 n insures m-a.e. and norm convergence of ∞ n=1 T n f n . Convergence of the EHT is a strengthening of the convergence of the ergodic means given by the ergodic theorems.

Denote by Γ the unit circle and take λ ∈ Γ. By the mean ergodic theorem we know that for every contraction T the averages 1 n n k=1 λ k T k f converge in norm. When T is induced by a measure-preserving transformation on a probability space (Ω, m), the Wiener-Wintner theorem [START_REF] Wiener | Harmonic analysis and ergodic theory[END_REF] says that for f ∈ L 2 (Ω, m) and for m-a.e. ω ∈ Ω, the averages 1 n n k=1 λ k T k f (ω) converge for every λ ∈ Γ. It is then natural to consider the convergence for λ ∈ Γ of the rotated EHT (1)

∞ n=1 λ n T n f n .
For the two-sided rotated ergodic Hilbert transform

∞ n=1 λ n T n f -λ n T * n f n
, for every contraction T (not necessarily normal) on H and for every f ∈ H, convergence in norm holds for every λ ∈ Γ (Campbell [START_REF] Campbell | Spectral analysis of the ergodic Hilbert transform[END_REF]). Lacey and Terwilleger proved recently that if T is induced by an invertible measure preserving transformation on a probability space, then for every f ∈ L p (m), p > 1, m-a.e. the two-sided ergodic Hilbert transform converges for every λ ∈ Γ ( [START_REF] Lacey | A Wiener-Wintner theorem for the Hilbert transform[END_REF], Corollary 7.2).

For the one-sided ergodic Hilbert transform, by Theorem 3.6 in [START_REF] Cohen | The one-sided ergodic Hilbert transform of normal contractions[END_REF] applied to λT and Carleson's theorem, convergence in norm holds for Lebesgue a.e. λ. The aim of this paper is to answer the following question: For a given f ∈ H, what is the size of the set of λ's such that the series in [START_REF] Assani | Spectral characterization of Wiener-Wintner dynamical systems[END_REF] does not converge in norm ? We will show that the logarithmic Hausdorff dimension of this set is at most 2, and construct examples where it can be 2. We consider also a.e. convergence when H is the space L 2 (m) of a σ-finite measure m.

Remark that, unlike the two-sided ergodic Hilbert transform, we cannot expect that outside a set of m-measure 0, pointwise convergence holds for every λ ∈ Γ. Consider the map : (x, y) → (x, y + x) on the 2-torus. The spectrum is continuous on the subspace orthogonal to the functions depending only on x. For the function f (x, y) := e 2πiy there is convergence in norm, but the set of points (x, y) such that pointwise convergence holds for every λ is empty.

1. Ergodic Hilbert transform and rotated ergodic Hilbert transform 1.1. A lemma on Fourier series.

We begin with some preliminaries which slightly extend results of [START_REF] Cohen | The one-sided ergodic Hilbert transform of normal contractions[END_REF].

Let b : u → b(u) be a positive slowly varying function defined for u ≥ 1 (i.e. for every δ > 0, u δ b(u) is increasing and u -δ b(u) is decreasing for u large enough). Write B(t [START_REF] Zygmund | Trigonometric series[END_REF], Ch. V, p. 188). 

) := t 1 b(u) u du. It is known that, if ∞ n=1 b(n) n = ∞, then, as t → ∞, B(t) ∼ = n≤t b(n) n and b(t) = o(B(t)) (see
π -π B( 1 |t| ) ν(dt) < ∞; (2) ∞ k=1 π -π e ikt b(k) k ν(dt) converges; (3) lim inf n→+∞ n k=1 π -π cos(kt) b(k) k ν(dt) < +∞. ( 4 
)
Proof. Clearly (3) ⇒ (4). The proof of (2) ⇒ (3) is similar to that of (i) ⇒ (ii) of Theorem 3.3 given in [START_REF] Cohen | The one-sided ergodic Hilbert transform of normal contractions[END_REF] for the special case b(k) = log k. We prove the general result for the sake of completeness.

Assume that (2) holds. | is dominated by B(|t| -1 ).

We will bound sup n≥1 | n k=1

e ikt b(k) k | for 0 < |t| ≤ 1 3 . Let n t := [|t| -1 ].
For n ≤ n t , we have:

n k=1 e ikt b(k) k ≤ n k=1 b(k) k ≤ CB(n) ≤ CB(|t| -1 ).
For n > n t , we use the decomposition

n k=1 e ikt b(k) k = nt k=1 e ikt b(k) k + n k=nt+1 e ikt b(k) k = P 1 + P 2 ,
with P 1 estimated above. Let S j := j k=1 e ikt , for j ≥ 1. Since n ≥ n t + 1 > |t| -1 and {b(n)/n} is decreasing, using Abel's summation, we obtain

|P 2 | ≤ b(n) n |S n | + n-1 k=nt+1 b(k) k - b(k + 1) k + 1 |S k | + b(n t + 1) n t + 1 |S nt | ≤ b(n) n π 2|t| + 2 b(n t + 1) n t + 1 π 2|t| ≤ 3π 2 b(|t| -1 ) |t| -1 1 |t| = 3π 2 b(|t| -1 ).
The two cases together give

sup n≥1 n k=1 e ikt b(k) k ≤ C ′ b(|t| -1 ) + CB(|t| -1 ), ∀t ∈ [-π, π] \ {0}. This prove our claim, since b(u) = o(B(u)) as u → ∞.
Now we prove (4) ⇒ (2). For α ∈]0, 1[, the partial sums

n k=1 cos(kt) k α
are uniformly bounded from below (see Zygmund ([17], Ch. V, Th. 2.29)). Hence, by Abel's summation by parts (using the fact that {b(n)/n 1-α } decreases) the partial sums n k=1 cos(kt) b(k) k are uniformly bounded from below, say by -C.

We have ν({0}) = 0, since (4) implies

0 ≤ lim inf n→∞ π -π C + n k=1 cos(kt)b(k) k ν(dt) < ∞.
Using again that the sequence {b(k)/k} decreases to zero, and Abel's summation by parts, we have the convergence of the series ∞ k=1 cos(kt) b(k) k

for every 0 = t ∈ [-π, π], hence its convergence ν-a.e., and by Fatou's lemma

π -π lim n→∞ C + n k=1 cos(kt)b(k) k ν(dt) ≤ lim inf n→∞ π -π C + n k=1 cos(kt)b(k) k ν(dt) . The integrand in (2) is bounded for |t| ≥ ε > 0. Since ∞ k=1 cos(kt) b(k) k
behaves like B(|t| -1 ) as t → 0 (see Zygmund ([17], Ch. V, Th. 2.15)), condition (2) is satisfied.

Note that although we only assume that the lim inf in (4) is not +∞, the proof shows that it can not be -∞, and that in fact the series converges. Let T be a contraction of a Hilbert space H. Define T n := T n for n ≥ 0 and T n := (T * ) |n| for n < 0. Then { T n f, f } is a positive semi-definite sequence ( [START_REF] Riesz | Functional Analysis[END_REF], Appendix, §9) and therefore by Herglotz's theorem it is the sequence of the Fourier coefficients of a positive finite measure ν f on the unit circle Γ. We will still denote by ν f the representation of the measure ν f as a measure on the interval I = [-π, π[ and use both representations.

By the unitary dilation theorem of B. Sz. Nagy ( [START_REF] Riesz | Functional Analysis[END_REF], Theorem III, p. 469), there exist a larger Hilbert space H ′ , an orthogonal projection P H from H ′ onto H, and an unitary operator U on H ′ such that

T n P H g = P H U n g, ∀g ∈ H ′ , ∀n ∈ Z.
For f ∈ H, the above identity yields

T n f, f = P H U n f, f = U n f, P * H f = U n f, P H f = U n f, f
. By the spectral representation theorem for unitary operators, ν f is the spectral measure of f with respect to U, with Fourier coefficients {ν n = T n f, f }. Definition 1.2. For a contraction T on H and f ∈ H, ν f is called the unitary spectral measure of f (with respect to T ). When ν f is absolutely continuous with respect to the Lebesgue measure, we say that f has a spectral density.

Let b(u) be a positive slowly varying function such that ∞ n=1 b(n) n = ∞. With the previous notations, the equivalence given by Lemma 1.1 yields immediately the equivalence between the following conditions:

π -π B( 1 |t| ) ν f (dt) < ∞; (5) ∞ k=1 π -π e ikt b(k) k ν f (dt) converges. ( 6 
)
If T is a normal contraction, then the previous conditions are equivalent to

∞ n=1 n k=1 T k f 2 b(n) n 3 < ∞. (7)
Indeed the proof of the equivalence between ( 5), ( 6) and ( 7) for the special case b(n) = log n (and hence B(u) = log 2 u) was given in [START_REF] Cohen | The one-sided ergodic Hilbert transform of normal contractions[END_REF], Theorem 3.3, for T a normal contraction and can be adapted for a more general b(n).

Let us also mention Cuny ([7], Lemma 2.1) for the equivalence ( 5) ⇔ (7) and, for the case b(n) = log n(log log log n) 2 , Gaposhkin ( [START_REF] Gaposhkin | Spectral criteria for existence of generalized ergodic transforms[END_REF], conditions (33) and ( 34)) who has indicated that in the unitary case, with this choice of b(n), ( 5) and ( 7) are equivalent and both are implied by [START_REF] Cuny | On the a.s. convergence of the one-sided ergodic Hilbert transform[END_REF]. Here we see that these three conditions are equivalent. Theorem 1.3. 1) Let T be a contraction on a Hilbert space H and f ∈ H with unitary spectral measure ν f . Then the following conditions are equivalent:

π -π log 2 |t| ν f (dt) < ∞, (8) 
∞ n=1 T n f, f log n n converges. (9) They imply ∞ n=1 T n f n converges in norm. (10)
2) If T is a normal contraction, then (8), ( 9), ( 10) and ( 11) below (where σ f is the spectral measure of f ) are equivalent

D log 2 |1 -z| σ f (dz) < ∞. (11) 3) If T is a contraction of L 2 (m) of a σ-finite measure space and f is in L 2 (m), the con- vergence of the series ∞ n=1 T n f, f log n(log log log n) 2 n implies the convergence in norm and m-a.e. of ∞ n=1 T n f n .
Proof. The theorem is essentially in [START_REF] Cohen | The one-sided ergodic Hilbert transform of normal contractions[END_REF], except that it is shown here that all the information about the convergence of the one-sided EHT is contained in the unitary spectral measure, since the equivalence ( 8) ⇔ ( 9) is a particular case of ( 5) ⇔ (6).

The implication ( 9) ⇒ ( 10) is Theorem 4.2 in [START_REF] Cohen | The one-sided ergodic Hilbert transform of normal contractions[END_REF], where also the equivalence ( 11) ⇔ (9) ⇔ ( 10) is shown for a normal contraction. For the a.e. and norm convergence, see Theorem 4.3 in [START_REF] Cohen | The one-sided ergodic Hilbert transform of normal contractions[END_REF].

Remarks 1) If T is a normal contraction and U its unitary dilation, then

∞ n=1 U n f n converges if and only if ∞ n=1
T n f n converges. Indeed, the "only if" follows by the continuity of the projection P H . For the "if" condition we apply the theorem to the unitary operator U, since (9) holds for U.

2) As mentioned in [START_REF] Cohen | The one-sided ergodic Hilbert transform of normal contractions[END_REF], if T is an isometry and U its unitary dilation, then T n f = U n f for every f ∈ H. Hence, when T is an isometry, (8) ⇔ (9) ⇔ (10).

3) Gaposhkin [START_REF] Gaposhkin | Spectral criteria for existence of generalized ergodic transforms[END_REF] has shown that in the family of all unitary operators T , the condition n T n f . Let T be a contraction on H and let f ∈ H. Let ν f be the unitary spectral measure of f with respect to T . For λ ∈ Γ we have (λT ) n = λ n T n , for every n ∈ Z. Hence the unitary spectral measure of f with respect to λT is ν

f (λ -1 •) (denoted by δ λ * ν f ).
Similarly, if T is a normal contraction on H and if σ f is the spectral measure of f with respect to T , then the spectral measure of f with respect to λT is σ f (λ -1 •). Therefore the following proposition results immediately from Theorem 1.3.

Proposition 1.4. Let T be a contraction on a Hilbert space H, let f be in H with unitary spectral measure ν f , and let λ ∈ Γ.

1) Then the following conditions are equivalent:

Γ log 2 |1 -z| δ λ * ν f (dz) < ∞, (12) ∞ n=1 λ n T n f, f log n n converges. (13) They imply ∞ n=1 λ n T n f n converges in norm. (14)
2) If T is a normal contraction, then ( 12), ( 13), ( 14) and ( 15) below are equivalent

D log 2 |1 -z| δ λ * σ f (dz) < ∞. (15)
3) Assume that T is contraction of the space L 2 (m) of a σ-finite measure space and f ∈ L 2 (m).

Then the convergence of the series Since the modulus of λT is T in the first case, the linear modulus of T in the second case, this results from Theorem 2.1 in Cuny [START_REF] Cuny | On the a.s. convergence of the one-sided ergodic Hilbert transform[END_REF] applied to λT .

∞ n=1 λ n T n f, f log n (log log log n) 2 n implies that ∞ n=1 λ n T n f n converges
2) When the measure ν f is absolutely continuous and dν f /dt ∈ L p (dt), for some p > 1, then, as (log

(1/|t|)) 2 (log log | log(1/|t|)|) 2 ∈ L q ([-π, π[, dt)
for every 1 ≤ q < ∞, Hölder's inequality implies that ( 16) holds for every λ ∈ Γ.

3) If T is induced by an ergodic dynamical system defined on a probability space (Ω, m) and if T has Lebesgue spectrum, then there is a dense set of functions in the space L 0 2 (m) of functions in L 2 (m) with zero integral such that (16) holds for every λ ∈ Γ. Indeed, when T has Lebesgue spectrum, there is an orthogonal decomposition j∈J H j of the space L 0 2 (m), where J is the spectral multiplicity, and H j , j ∈ J, is the closed subspace of L 0 2 (m) spanned by {T k f j , k ∈ Z} for some function f j ∈ L 0 2 (m) such that f j , T k f j = 0, for every k = 0. The finite linear combinations of {T k f j , j ∈ J, k ∈ Z} are dense in L 0 2 (m) and these functions have a polynomial spectral density. The result then follows from Remark 2). 4) If ( 14) holds for some λ, then it holds for the orthogonal projection of f on any Tinvariant subspace, hence f is orthogonal to the eigenspace corresponding to the eigenvalue λ (if there is a λ-eigenfunction) and σ f ({λ}) = 0. Proposition 1.4 shows that, for a normal contraction, if we have norm convergence of

∞ n=1 λ n T n f n
for f ∈ H and for every λ ∈ Γ, then it is not only that σ f is a continuous measure but it has a rate in its modulus of continuity. For every subset B ⊂ D containing λ, with 0 < δ = sup z∈B |z -λ| ≤ 1, we have

σ f (B) = B dσ f ≤ 1 log 2 δ D log 2 |1 -λz| dσ f (z) ≤ C λ log 2 δ .
5) For any aperiodic dynamical system and any λ ∈ Γ, there is a dense G δ set of functions f ∈ L 0 2 (m) such that ( 16) does not hold (del Junco and Rosenblatt, see Remark following Corollary 3.3 in [START_REF] Del Junco | Counterexamples in ergodic theory and number theory[END_REF]).

We construct in Section 2 a stationary process such that the set of λ's for which [START_REF] Wiener | Harmonic analysis and ergodic theory[END_REF] does not hold is "big" in some sense. The same construction can be performed for any dynamical system with Lebesgue spectrum and provides functions f such that the set of λ ∈ Γ for which [START_REF] Wiener | Harmonic analysis and ergodic theory[END_REF] does not hold has a logarithmic Hausdorff dimension 2.

In the opposite direction, for every contraction, 2 is always a bound for logarithmic Hausdorff dimension of the set of such λ's: 

Examples

Moving averages.

Let {ξ k } be a sequence of centered i.i.d. complex random variables on a probability space (Ω, m) with E|ξ 1 | 2 dm = 1. Let {c k } k∈Z be a sequence in ℓ 2 (Z) and c(t

) := ∞ k=-∞ c k e ikt .
For n ∈ Z, we define the moving averages f n := ∞ k=-∞ c k ξ n+k . This series converges in L 2 (m) by the Riesz-Fischer theorem, and almost everywhere by the Khintchine-Kolmogorov theorem. Clearly f n = T n f 0 , where T is induced by the two-sided shift that generates {ξ k }. The spectral measure ν of f 0 with respect to T is absolutely continuous and dν dt (t) = |c(t)| 2 . Conversely, for any function c ∈ L 2 ([-π, π[, dt), |c(t)| 2 is the spectral density of a moving average. Therefore, for any nonnegative function g with π -π g dt = 1, there is a stationary moving average model with g as spectral density. If we choose {ξ k } to be Gaussian, then the resulting stationary process is also Gaussian.

In terms of the function c which generates the moving averages, the condition for the convergence (condition (12) of Proposition 1.4) reads, for λ = e is , π -π |c(t)| 2 log 2 |s -t| dt < ∞. Since T in the examples of this section is unitary, ( 12) is equivalent to the convergence in norm of the rotated EHT.

The next proposition shows that, for this class of examples, the set of λ's where ∞ n=1 λ n fn n does not converge is the same for the convergence in probability, in norm, and a.e. That is, in general, we can not reduce the size of this set by weakening the mode of convergence.

Proposition 2.1. Assume that the random variables {ξ k } are in L 4 (Ω, m). Then, for any sequence of complex numbers {a n }, the convergence in probability and the convergence in L 2 -norm of ∞ n=1 a n f n are equivalent. When a n = λ n /n, convergence in probability, convergence in norm, and a.e. convergence are equivalent.

Proof. For k ∈ Z and N ≥ 1, let b N k := N n=1 a n c k-n . Since {c k } is in ℓ 2 (Z), for every N ≥ 1 we have b N := {b N k } k∈Z ∈ ℓ 2 (Z), and (17) 
N n=1 a n f n = ∞ k=-∞ ξ k N n=1 a n c k-n = ∞ k=-∞ ξ k b N k .
Assume convergence in probability of the sequence ( N n=1 a n f n ) N ≥1 . By [START_REF] Zygmund | Trigonometric series[END_REF] we conclude that for every ε > 0, lim

N,M →∞ m | ∞ k=-∞ ξ k (b N k -b M k )| > ε = 0 .
Now we prove that {b N } N ≥1 is a Cauchy sequence in ℓ 2 (Z). Otherwise, there would exist ε 0 > 0 and a sequence of integers N j ↑ ∞, such that b N j+1 -b N j 2 ≥ ε 0 . Since ξ k ∈ L 4 , by the Paley-Zygmund inequality (cf. [START_REF] Kahane | Some random series of functions[END_REF], p. 31, Theorem 3), for a fixed κ ∈]0, 1[ there exists η > 0, such that

m ∞ k=-∞ ξ k (b N j+1 k -b N j k ) > κε 0 ξ 0 2 ≥ m ∞ k=-∞ ξ k (b N j+1 k -b N j k ) > κ ξ 0 2 b N j+1 -b N j 2 > η.
Since the left hand side of the above inequality tends to zero as j → ∞, we have a contradiction.

Hence {b N } N ≥1 is a Cauchy sequence and therefore converges to some sequence b = {b k } ∈ ℓ 2 (Z). Using [START_REF] Zygmund | Trigonometric series[END_REF] we obtain

M n=N +1 a n f n 2 = ∞ k=-∞ ξ k (b M k -b N k ) 2 = b M -b N 2 ξ 0 2 -→ 0. This implies that N n=1 a n f n converges in norm to ∞ k=-∞ b k ξ k , with b k = ∞ n=1 a n c k-n .
When a n = λ n /n, the equivalence with a.e. convergence follows from the result of Cuny [6, Theorem 2.1] mentioned in the remarks of Section 1.3.

Examples with an uncountable set of λ's of non-convergence.

We construct now by a different method stationary Gaussian processes, first with a countable set of non-convergence, then with an uncountable set.

Proposition 2.2. There is a Gaussian stationary process {X n } with a spectral density such that the series ∞ n=1 λ n Xn n does not converge in norm for λ in an infinite countable subset of Γ.

Proof. The computations are done on the interval [-π, π[. Let {s k } be a sequence in [0, e -1 ) and let {c k } ∈ ℓ 1 be a positive sequence. On [-π, π], define g k (t) :=

1 [s k ,e -1 ] (t) (t-s k ) log 2 (t-s k ) . Since the integral on [-π, π] of g k is less than e -1 0 dt t log 2 (t) = 1, the series g(t) := ∞ k=1 c k g k (t
) is a.e. convergent and defines an integrable function g such that g 1 ≤ ∞ k=1 c k .

By Doob [8, Th. 3.1, p. 72], there is a stationary Gaussian process {X n } with spectral density g. Let T be the transformation such that X n = T n X 0 . The spectral density of X 0 with respect to T is g. As the series is positive:

π -π log 2 |t -s| g(t) dt = ∞ k=1 e -1 s k log 2 |t -s| c k (t -s k ) log 2 (t -s k ) dt.
Hence, the integral on the left hand side is infinite for every s ∈ {s k }. Now we modify this example to get a set of nonconvergence of positive logarithmic Hausdorff dimension. (See Assani [START_REF] Assani | Spectral characterization of Wiener-Wintner dynamical systems[END_REF] for a related question).

Proposition 2.3. For every α < 2, there exists a non-empty perfect nowhere dense subset P ⊂ Γ, with logarithmic Hausdorff dimension ≥ α, and a Gaussian stationary process {X n }, with a spectral density, such that the series ∞ n=1 λ n Xn n does not converge in norm for every λ ∈ P .

Proof. The construction of {X n } is like in the previous example, but we change the definition of {s k } and g k . We build a sequence {s k } ⊂ [0, e -e ] whose elements are the endpoints of intervals in the construction of a Cantor type set of a non-constant ratio of dissection. The closure of {s k } will be a uncountable perfect nowhere dense set. Observe that each of the end points appears infinitely often in the sequence {s k }. 

η k = [η k-1 • η k-2 • • • η 1 ] -1 3 -(2+ε) k 2 = 3 (2+ε) k-1 2 
3 (2+ε) k 2 , k ≥ 2. ( 18 
)
Starting from [0, e -e ], we perform a dissection of type [2; η 1 ] and remove the middle interval. On each remaining end interval we perform a dissection of type [2; η 2 ], and remove the middle intervals -and so on. After n operations we have 2 n end intervals, each of length e -e η n η n-1 • • • η 1 . As n → ∞ we obtain a non-empty perfect nowhere dense set P (necessarily uncountable) of Lebesgue measure zero.

The sequence {s k } is defined as follows. At the first dissection we have two end intervals [s 1 , s 2 ] and [s 3 , s 4 ]. At the second dissection we have 4 end intervals. Let s 5 , . . . , s 12 be their endpoints (in increasing order) -and so on. One easily sees that the closure of {s k } is the same Cantor type set P obtained in the dissection process above. Let B n be the set of indexes k such that s k belongs to the n-th operation. Let

c k := 1 (2+ε) n , for k ∈ B n . Since B n contains 2 n+1 elements, clearly {c k } ∈ ℓ 1 .
The functions g k are defined by:

g k (t) := 1 [s k ,e -e ] (t) (t -s k )| log(t -s k )|(log | log(t -s k )|) 2 . The function g(t) := ∞ k=1 c k g k (t) is integrable with g 1 = ∞ k=1 c k π -π g k (t)dt ≤ ∞ k=1 c k ,
and we have the following lower bound for every s ∈ [0, e -e ]:

π -π log 2 |t -s| g(t)dt ≥ k: s k <s c k 1 2 (s+s k ) s k log 2 |t -s| dt (t -s k )| log(t -s k )|(log | log(t -s k )|) 2 ≥ k: s k <s c k log 2 (s -s k ) 1 2 (s+s k ) s k dt (t -s k )| log(t -s k )|(log | log(t -s k )|) 2 = k: s k <s c k log 2 (s -s k ) log | log( 1 2 (s -s k ))|
.

From the construction it follows that, for any s ∈ P and any integer n ≥ 1, there exists an interval endpoint s(n), such that s(n

) < s with s -s(n) ≤ e -e η n • • • η 1 < 3 -(2+ε) n 2
, and s(n) belongs to the n-th operation. Hence, for s ∈ P :

π -π log 2 |t -s| g(t)dt ≥ k: s k <s c k log 2 (s -s k ) log | log( 1 2 (s -s k ))| = ∞ n=1 k∈Bn,s k <s c k log 2 (s -s k ) log | log( 1 2 (s -s k ))| ≥ ∞ n=1 1 (2 + ε) n log 2 (s -s(n)) log | log( 1 2 (s -s(n)))| ≥ ∞ n=1 1 (2 + ε) n [(2 + ε) n 2 log 3] 2 | log[(2 + ε) n 2 log 3 -log 2]| = +∞.
Define the function K(x) = (log(1/x) + ) α , α > 0. Using Carleson [4, §IV, Theorem 3], we conclude that P has a positive K-capacity if and only if the series

∞ k=1 2 -k K(η k ) converges. According to (18), we have ∞ k=2 2 -k K(η k ) = log α (3) ∞ k=2 2 -k [(2 + ε) k 2 - (2 + ε) k-1
2 ] α and the series converges if and only if α < 2 log(2)/ log(2 + ε). Theorem 1 in [START_REF] Carleson | Selected problems on exceptional sets[END_REF]§IV] implies that the logarithmic Hausdorff dimension is ≥ α. As ε is arbitrary the assertion follows.

The bound 2 of the logarithmic Hausdorff dimension of the set of λ ∈ Γ such that

∞ n=1 λ n T n f n
does not converge in norm can be attained:

Theorem 2.4. There exist an uncountable subset P ⊂ Γ with logarithmic Hausdorff dimension 2 and a Gaussian stationary process {X n } with a spectral density, such that the series ∞ n=1 λ n Xn n does not converge in norm for every λ ∈ P . The closure of P is a perfect set.

Proof. Take α j ↑ 2 and for every j ≥ 1 build the associated function g j and and set P j as in Proposition 2.3. We can assume that g j 1 = 1 for every j ≥ 1. Now, define P = ∪ ∞ j=1 P j and put g = ∞ j=1 β j g j , where {β j } is a summable sequence of positive numbers. Clearly, g is an integrable function and there is a Gaussian stationary process {X n } with spectral density g. For j ≥ 1 we have π -π log 2 |t -s| g(t)dt ≥ β j π -π log 2 |t -s| g j (t)dt. Hence, for every j ≥ 1 and for every s ∈ P j , we have π -π log 2 |t -s| g(t)dt = ∞. We conclude that for every s ∈ P the series ∞ n=1 e ins Xn n does not converge in norm.

Since each set P j is perfect, so is the closure of P . Furthermore, the logarithmic Hausdorff dimension of P is not less than the dimension of any P j . So, the logarithmic dimension of P is ≥ 2. Using Theorem 1.5 we obtain that the logarithmic dimension of P is 2.

3. Appendix: Hausdorff dimension of a set of divergence

h-Hausdorff dimension.

We prove in this appendix the result used in Theorem 1.5 (Theorem 3.2). It is likely to belong to the "folklore" of Hausdorff dimension theory, but for the sake of completeness we prove the result which fits exactly to our need. First we recall general notions and results on the construction of Hausdorff measures on a metric space (X, d). For our purpose it suffices to take X = R.

Let F be a family of subsets of X and ζ be a map from F to [0, ∞]. A generalized Hausdorff measure φ on (X, d) is associated to (F , ζ) in a standard way: For every δ > 0, we define the set function φ δ by

φ δ (A) = inf{ i∈N ζ(U i )}, A ⊂ X,
where the infimum is taken over all countable families (U i ) i∈N of elements of F such that A ⊂ ∪ i∈N U i and diam U i ≤ δ for all i. The Hausdorff measure of a subset A is φ(A) = lim δ→0 φ δ (A) = sup δ>0 φ δ (A).

We will consider functions ζ of the following form: let h : [0, ∞[→ [0, ∞[ be an increasing continuous function with h(0) = 0 and let F be the family all bounded subsets of R. For each s > 0, we can take as ζ the map

ζ s : F → [0, ∞[, A → h s (diam A).
The corresponding set functions are denoted by φ s δ and φ s .

Using the continuity at 0 and the monotonicity of h, it is easy to see that if φ s (A) < ∞ for some s > 0, then φ t (A) = 0 for all t > s. The generalized h-Hausdorff dimension of A is defined by dim h (A) := inf{s > 0 : φ s (A) = 0}.

We will use the following result on approximation by compact sets (which holds for any Suslin subset, cf.

[Fe], p. 186, Corollary 2.10.23).

Theorem 3.1. Let X be a metric space such that all bounded closed subsets are compact and F be the family of all compact subsets of X. Suppose that the map ζ is continuous for the Hausdorff distance and that ζ(C) > 0 whenever diam C > 0. Then every Borel subset S of X satisfies

φ(S) = sup{φ(C) : C ∈ F , C ⊂ S}.
Let G : X ×X → [0, ∞] be a LSC (lower semi-continuous) kernel. For a positive measure µ on X, for x ∈ X the potential associated with µ and G, and the potential associated with µ and the dual kernel G * (x, y) = G(y, x) are defined by

Gµ(x) := G(x, y) µ(dy), G * µ(x) := G(y, x) µ(dy).
Since G is LSC, Fatou's lemma implies that Gµ and G * µ are also LSC. The energy of µ for the kernel G is I G (µ) := G(x, y) µ(dx)µ(dy) = Gµ(x) µ(dx) = G * µ(y) µ(dy).

h-Hausdorff dimension of the set of divergence of the potential.

We are interested by the size of the set where the potential of a measure µ is infinite for the kernels G s , s > 0, defined (with the convention 1 0 = +∞) by

(19) G s : (x, y) ∈ R×R → 1 h s (|x -y|) .
For a positive measure µ on R with finite mass and a parameter s 0 > 0, we consider the following set

(20) F µ,s 0 := {x ∈ R: G s 0 µ(x) = R 1 h s 0 (|x -y|) µ(dy) = +∞}.
Theorem 3.2. Let h : [0, +∞[→ [0, +∞[ be a continuous increasing function with h(0) = 0, continuously differentiable outside a discrete subset of [0, +∞[. Assume that there exists a constant C such that h(2x) ≤ Ch(x), ∀x ≥ 0. Then for any µ with finite mass and s 0 > 0, we have dim h (F µ,s 0 ) ≤ s 0 .

The proof is based on the proposition and the lemma below. Some details are straightforward extensions of proofs which can be found in standard books on Hausdorff measures ([9], [START_REF] Federer | Geometric measure theory[END_REF], [START_REF] Carleson | Selected problems on exceptional sets[END_REF]) and are omitted.

Proposition 3.3. Let G be a LSC kernel such that, for some positive constant

C 1 , ∀x, y, z ∈ X, d(y, z) ≤ 3d(x, z) ⇒ G(z, x) ≤ C 1 G(z, y).
Let µ be a finite positive measure on X and let F = {x ∈ X : Gµ(x) = +∞}. Then the energy I G (ν) of any non zero positive measure ν with support in F is infinite.

Proof. Let λ be a positive measure and E = supp λ. For all x ∈ X, there exists y ∈ E such that d(x, y) ≤ 2d(x, E). For all z ∈ E, we have d(y, x)

≤ 2d(x, E) ≤ 2d(x, z), therefore d(y, z) ≤ d(y, x) + d(x, z) ≤ 3d(x, z). Hence G(z, x) ≤ C 1 G(z, y) and G * λ(x) = G(z, x) λ(dz) ≤ C 1 G(z, y) λ(dz) = C 1 G * λ(y). Therefore sup x∈X G * λ(x) ≤ C 1 sup y∈E G * λ(y). Moreover suppose that E = supp λ ⊂ F, then +∞ = Gµ(y) λ(dy) = G * λ(x) µ(dx).
Since µ is finite, it follows that sup x∈X G * λ(x) = +∞. Hence sup y∈E G * λ(y) = +∞. Now let ν be a non zero positive measure positive with supp ν ⊂ F, and assume that the energy of ν is finite, G * ν(x) ν(dx) = I G (ν) < +∞. We will apply the first part of the proof to a measure λ deduced from ν and get a contradiction.

For all a > 0, we have ν({x ∈ X : G * ν(x) > a}) ≤ I G (ν)/a. Hence, if a is large enough, the set A = {x ∈ X : G * ν(x) ≤ a} has a positive measure. Choose such a number a.

The set A is closed, since G * ν is LSC.

Consider the measure λ defined by λ(B) = ν(A ∩ B) for all Borel subsets B of X. On the one hand, the choice of a ensures that λ is not zero. On the other hand, λ ≤ ν and therefore G * λ ≤ G * ν ≤ a on the set A since A contains E = supp λ. This contradicts sup y∈E G * λ(y) = +∞, and therefore the energy of ν cannot be finite.

Lemma 3.4. If φ s (F µ,s 0 ) > 0 for some s > 0, there exists a finite positive measure ν 0 with support in F µ,s 0 such that, for all 0 < t < s, I Gt (ν 0 ) = 1 h t (|x -y|) ν 0 (dx) ν 0 (dy) < +∞.

Proof. The measure ν 0 is constructed by restricting φ s to a suitable compact subset K 0 of F µ,s 0 .

1) The continuity of the kernel G s : (x, y) ∈ R×R→ 1 h s (|x-y|) ∈ [0, +∞] implies that F µ,s 0 is a G δ and hence a Borel subset of R. Theorem 3.1 with S = F µ,s 0 and φ = φ s provides a compact set K 1 ⊂ F µ,s 0 such that φ s (K 1 ) > 0. Now there is a compact subset K 2 ⊂ K 1 such that 0 < φ s (K 2 ) < +∞. The proof of this assertion can be easily adapted from [START_REF] Falconer | Fractal geometry. Mathematical foundations and applications[END_REF] p. 62, Theorem 4.10, where the same result is proved for the usual Hausdorff measure.

2) Using the inequality h(2x) ≤ Ch(x) and standard arguments (covering lemma and Egoroff's theorem (cf. [START_REF] Falconer | Fractal geometry. Mathematical foundations and applications[END_REF] Proposition 4.9 p. 61 and Proposition 4.11 p. 63)) one can show that there exists a compact subset K 0 ⊂ K 2 and a finite constant b such that φ s (K 0 ) > 0 and (21) φ s (K 0 ∩ B(x, r)) ≤ bh s (r), ∀x ∈ R, r > 0.

Let ν 0 be the measure defined by ν 0 (A) = φ s (K 0 ∩ A). For 0 < t < s, let G t ν 0 (x) := R ν 0 (dy) h t (|x-y|) . For all x ∈ R and r ≥ 0, set m x (r) = ν 0 (B(x, r)). We have m x (0) = 0 since h s (r) tends to 0 as r → 0, and m x (r) ≤ bh s (r) by (21). By the same computation as in [9, p. 65-66], we obtain: Therefore, G t ν 0 is bounded on R and I Gt (ν 0 ) < +∞.

G t ν 0 (x) = B(x,
Proof of Theorem 3.2 Let µ be a positive finite measure on R and let s 0 > 0. Suppose that there exists s > s 0 such that φ s (F µ,s 0 ) > 0, where F µ,s 0 is defined by (20). It follows from Proposition 3.3 that for all positive measures ν with support in F µ,s 0 , I Gs 0 (ν) = +∞. But this contradicts the existence of a measure ν 0 with support in F µ,s 0 , such that I Gs 0 (ν) < +∞, as asserted by Lemma 3.4.
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 11 Let ν be a finite measure on the interval [-π, π[. For a positive slowly varying function b such that ∞ n=1 b(n) n = ∞, the following conditions are equivalent:

For every n ≥ 1

 1 and t ∈ [-π, π] \ {0}, we have | n k=1 e ikt | ≤ π 2|t| . Since b(u) is slowly varying, the sequence {b(n)/n} n≥1 decreases to zero and Abel's summation by parts yields that the series ∞ n=1 e int b(n) n converges for every t ∈ [-π, π] \ {0}, and that the partial sums are uniformly bounded on the set {t ∈ [-π, π] : |t| ≥ ε > 0} for every ε > 0. As ν({0}) = 0 by (2), ∞ k=1 e ikt b(k) k converges ν-a.e. To prove (3), by the Lebesgue dominated convergence theorem and by (2), it suffices to prove that, for t in a neighborhood of 0, sup n≥1 | n k=1 e ikt b(k) k

1. 2 .

 2 The one-sided ergodic Hilbert transform.

π 1 b 1 . 3 .

 113 -π b(t) ν f (dt) < ∞ with b(t) := log(|t| -1 ) log log | log(|t| -1 )| 2 is sharp. As well, by the equivalence (2) ⇔ (3) in Lemma 1.1, the factor log n(log log log n) 2 in claim 3) of Theorem 1.3 can not be replaced by any slowly varying function b(u) with ∞ (u) u du = ∞ and b(n) = o log n(log log log n) 2 for the class of unitary operators. The rotated one-sided ergodic Hilbert transform ∞ n=1 λ n

  in norm and m -a.e. (16) Remarks 1) If T be a positive contraction on L 2 (m) of a σ-finite measure m, or if T is a Dunford-Schwartz operator, then ∞ n=1 λ n T n f n converges m-a.e. for λ ∈ Γ such that (14) holds.
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 15 Let T be a contraction on a Hilbert space H and f ∈ H. The set of λ ∈ Γ such that ∞ n=1 λ n T n f n does not converge in norm has a logarithmic Hausdorff dimension at most 2. Proof. By Proposition 1.4 the set of non-convergence is included in the set {λ : Γ log 2 |1-z| δ λ * ν f (dz) = +∞}. The result then follows from Theorem 3.2 on h-Hausdorff dimensions (see Appendix), with h defined by h(0) = 0, h(x) = 1/| log x| for 0 < x ≤ 1/2, and h(x) = 1/ log 2, for x > 1/2.

For

  any interval [x, x + l] and η ∈]0, 1/2[, let us consider the closed disjoint intervals [x, x + lη] and [x + l(1 -η), x + l]. These intervals are called 'end intervals' and the complementary open interval with respect to [x, x+l], called 'middle interval', is removed.This dissection of [x, x + l] will be said of type [2; η]. Let ε > 0, η 1 := 1/3(2+ε) 
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 111 [START_REF] Assani | Spectral characterization of Wiener-Wintner dynamical systems[END_REF] ν 0 (dy) h t (|x -y|)+ B(x,1) C ν 0 (dy) h t (|x -y|) ≤ -t (r) dm x (r) + ν 0 (R)h -t (1) = [h -t (r) m x (r)] 1 0 th -t-1 (r)h ′ (r) m x (r)dr + ν 0 (R)h -t (1) ≤ h -t (1) b h s (1) + th -t-1 (r) h ′ (r) bh s (r) dr + ν 0 (R)h -t(1)≤ b + ν 0 (R)h -t (1) + b t h s-t (r)
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