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An analysis of permutations in arrays ⋆

Valentin Perrelle and Nicolas Halbwachs
{Valentin.Perrelle,Nicolas.Halbwachs}@imag.fr

Vérimag⋆⋆, Grenoble University – France

Abstract. This paper is concerned with the synthesis of invariants in
programs with arrays. More specifically, we consider properties concern-
ing array contents up to a permutation. For instance, to prove a sorting
procedure, one has to show that the result is sorted, but also that it is a

permutation of the initial array. In order to analyze this kind of proper-
ties, we define an abstract interpretation working on multisets of values,
and able to discover invariant equations about such multisets.

1 Introduction

The analysis of properties of data structures is a challenging goal. It has been
widely studied, but still strongly needs to be improved, concerning the efficiency
and precision of analyzes, but also the class of properties that can be handled.
Roughly speaking, data structure properties can be divided into three classes:
(1) The most widely studied properties are structural properties: they concern
the shape of data structures and the correctness of their accesses, independently
of their contents. Array bound checking (e.g., [CC76,LS79]), and shape analysis
(e.g., [WSR00,SRW02,DRS03]) address this class of properties. (2) More re-
cently, several methods were proposed for analyzing positional properties of data
structure contents, i.e., properties relating the value of a cell with its position in
the structure [BMS06,IHV08,FQ02,LB04,JM07,GMT08,Cou03,GRS05,HP08].
The fact that two arrays are pointwise equal, or that a list is sorted, are ex-
amples of such properties. (3) In this paper, we will consider an instance of non

positional properties, which concern the whole content of a data structure, inde-
pendently of the structure itself. A typical example is the fact that an array is
a permutation of another array. Showing that the result of a sorting procedure
is indeed sorted is not enough to prove the procedure; one has to show also that
the result is a permutation of the initial structure. There are many examples
of such algorithms which are intended to reorganize a data structure without
changing its global content. Showing that the global content is not changed is
therefore an issue. Such non positional properties are not easily expressible with
usual formalisms: they cannot be expressed as “∀ . . .∃ . . .” formulas as those con-
sidered in [SG09], and [SJ80] remarks that the fact that two arrays are equal up
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to a permutation cannot be expressed by a first order formula. This may explain
that these properties have been more or less ignored in the literature on program
analysis.

In this paper, we describe an analysis technique able to discover equations
about global contents of arrays. Such a global content is a multiset, since several
cells may contain the same value. For simplicity, the paper is specialized on (one-
dimensional) array analysis, but the approach could be extended to other data
structures. For instance, our method is able to discover that if, at the beginning
of an insertion sort procedure, the array A to be sorted contains a multiset M
of values, it contains the same multiset at the end of the procedure. Combined
with an analysis of positional properties such as [HP08], it provides an automatic
method for discovering the exact input/output behavior of the procedure.

Basically, our analysis is an abstract interpretation propagating multiset
equations. It is helped by other, more classical analyzes, discovering equalities
and disequalities between indexes — which are, of course, very important to deal
with aliases1 — and equalities between variables and array cells. After giving
the basic notations and definitions (Section 2), we introduce the analysis by an
example (Section 3). Section 4 presents the principles of the analysis, before ad-
dressing the main problem, which concerns the computation of an upper bound
of two abstract values.

Section 5 presents a first version of our abstract lattice, together with an
algorithm for the upper bound. This operation is reduced to a classical problem
of maximum flow in a network. However, we show that the result is sometimes
not the most precise we could get, mainly because of the separation between
variable equalities and multiset equations. So, this solution is not completely
satisfactory, but still deserves to be presented as an unexpected application of
max-flow algorithms in this context.

Another solution is presented in Section 6, where variables equalities are
considered as (singleton-) multiset equalities, and merged with multiset equa-
tions. Now, we have to deal with systems of multiset equations, which are all
linear equations. The new idea is to use the classical lattice proposed by Karr
as early as 1976 [Kar76], to deal with affine equalities among numerical vari-
ables. Since this lattice only uses the affine structure of the space, its operations
can be straightforwardly applied to our problem, and provide a well-defined and
precise upper bound operator. This solution has been implemented, and some
experimental results are given in Section 7.

2 Definitions and notations

For simplicity, we consider a unique set X of contents values. As said before, the
content of an array should be considered as a multiset of values of X. Since a
multiset may contain several instances of the same value, it can be formalized
as a function from X to the set of naturals N: if M is a multiset, M(x) is

1 knowing that i = j or i 6= j is essential to know whether an assignment to A[i] may
or must affect the value of A[j].



the number of instances of the value x in M. M is included in M′ (noted
M ⊆ M′ as usual) iff ∀x ∈ X,M(x) ≤ M′(x). We use the generalized notion,
sometimes called hybrid multiset [Syr01,SIYJ07], of multiset with positive or
negative multiplicities, i.e., functions from X to the set Z of integers. ⊕ and ⊖
denote the sum (disjoint union) and difference of (hybrid) multisets:

M⊕M′ = λx.M(x) + M′(x) , M⊖M′ = λx.M(x) −M′(x)

A sum of k instances of M can be noted k ⊗M.
For simplicity, we restrict ourselves to programs containing integer variables

(noted i, j), variables with values in X (noted v, w), and one-dimensional arrays
with values in X (noted A,B).

Let A be a one-dimensional array, indexed from 1 to |A| (the size of A). Then
Â denotes the multiset of contents of A, i.e.,

Â = λx.

|A|
∑

i=1

δx,A[i] , where δx,y = (if x = y then 1 else 0)

An atom is either a value in X, or a variable valued in X, or an array cell. If a
is an atom, a will also denote the singleton multiset λx.δx,a.

Our analysis relies on (approximate but conservative) results obtained by
two other standard analyzes:
– We use equalities and disequalities about variables and constants used as

array indices, to simplify the treatment of aliases: the knowledge that i = j
(resp., i 6= j) involves that A[i] and A[j] are (resp., are not) aliased. So,
we assume the availability of a standard analysis (e.g., based on poten-
tials [Dil89,ACD93], octagons [Min01], or dDBMs [PH07]) giving this kind
of informations at each control point. We call it index analysis.

– We also use equalities among content variables and array cells. Some of these
relations result from the index analysis, others come from assignments and
conditional statements. This analysis is called content analysis.

So, our abstract values are triples made of
– a system of equations and disequations between integer variables and con-

stants used as array indices, provided by the index analysis;
– a system of equations between atoms, provided by the content analysis;
– a system of equations between multiset expressions, which is computed by

our specific multiset analysis.

3 An example of analysis

Let’s consider the program fragment of Fig. 1.a, which switches the values of
two array cells. An analysis could run as follows:
– At control point 1, the analysis starts with the multiset equation (Â = M)

— i.e., naming M the initial content of the array.
– At point 2, the content analysis provides the equation (v = A[i]), while the

previous multiset equation (Â = M) is preserved.
– At point 3, we have to compute the effect of the assignment A[i] := A[j]; two

cases may occur:



1. either i = j, in which case A[i] and A[j] are aliased, the assignment does
nothing, and we get the postcondition (i = j)∧ (v = A[i] = A[j])∧ (Â =
M);

2. or i 6= j, and the usual semantics of the assignment provides (i 6= j) ∧
(A[i] = A[j]) ∧ (∃x0, (v = x0), (Â = M⊖ x0 ⊕ A[j])) (x0 is the previous
value of A[i], which is overwritten and disappears from the array content,
while the value of A[j] is duplicated). So, after simplification, we get
(i 6= j) ∧ (A[i] = A[j]) ∧ (Â = M⊖ v ⊕ A[j])

. . . . . . . . . {(Â = M)}

1 v := A[i] ; . . . . . . . . . {(v = A[i]) ∧ (Â = M)}

2 A[i] := A[j] ;. . . . . . . . . {(A[i] = A[j]) ∧ (Â = M⊖ v ⊕ A[j])}

3 A[j] := v ; . . . . . . . . . {(Â = M)}
4

(a) Program (b) Results

Fig. 1. Switch example
Now, as a postcondition of the assignment, we want to compute an upper
approximation of the disjunction

(

(i = j) ∧ (v = A[i] = A[j]) ∧ (Â = M)
)

∨
(

(i 6= j) ∧ (A[i] = A[j]) ∧ (Â = M⊖ v ⊕ A[j])
)

This (least) upper bound computation will be the main topic of the paper.
Obviously, since the first term of the disjunction contains the equation (v =
A[j]), it can be rewritten into (i = j)∧(v = A[i] = A[j])∧(Â = M⊖v⊕A[j]).
Now, both terms contain the same multiset equation and can be unified
into (A[i] = A[j]) ∧ (Â = M ⊖ v ⊕ A[j]), which is a correct (and precise)
postcondition.

– At point 4, the computation of the effect of the assignment A[j] := v is similar:
1. either i = j, and we get (i = j)∧ (A[i] = A[j])∧ (∃x0, Â = M⊖ v⊕x0 ⊖

x0 ⊕ v), i.e., (i = j) ∧ (A[i] = A[j]) ∧ (Â = M);
2. or i 6= j, and we get (i 6= j)∧(∃x0, (A[i] = x0)∧(Â = M⊖v⊕x0⊖x0⊕v),

i.e., (i 6= j) ∧ (Â = M).
So, the two cases unify into (Â = M), as expected.

4 Principles of the analysis

As said before, our abstract values are triples (ϕI , ϕX , ϕM) , where
– ϕI is a system of equations, and possibly disequations, between indices; it

belongs to an abstract lattice (LI ,⊑I ,⊔I ,⊓I ,⊤I ,⊥I).
– ϕX is a system of equations between atoms; it belongs to an abstract lattice

(LX ,⊑X ,⊔X ,⊓X ,⊤X ,⊥X).
– ϕM is a system of equations between multiset expressions.

All array cells appearing in ϕX or (as singletons) in ϕM are of the form A[i],
meaning that, e.g., A[i + 1] is rewritten as A[k] where k is a fresh variable and
the equation (k = i + 1) is expressed in ϕI .



We assume that we analyze a procedure taking arrays A1, . . . , Ap as reference
parameters, and whose body is made of assignments, conditional statements and
loops.

At the entry point of the procedure, a multiset equation is generated for
each array, to record its initial content. So the abstract value at the entry point
is ϕI = ⊤I , ϕX = ⊤X , ϕM = (Â1 = A1, . . . , Âp = Ap). Of course, initial
knowledge about indices and contents could be taken into account in ϕI and
ϕX , instead of taking ⊤I and ⊤X .

We assume that operations are available to propagate abstract values in LI

and LX among statements, together with widening or acceleration operators to
avoid infinite iterations around loops. So, we concentrate on the propagation of
multiset equations. Apart from the upper bound — that will be addressed in
next sections —, the only non-trivial operation is the assignment to an array

cell: let A[i]:=e (ϕI , ϕX , ϕM) denote the effect of the assignment A[i] := e to

the abstract value (ϕI , ϕX , ϕM). Let J be the set of index variables such that
A[j] appears in ϕX or ϕM. To get the correct and most precise result, we have
to consider all the alias cases that should be taken into account, i.e., all the cases
where i is equal to some variables j ∈ J . An alias case is subsumed by a subset
K of J , interpreted as the index formula (∀j ∈ K, i = j) ∧ (∀j ∈ J \ K, i 6= j).
We note E[[x/y]] the substitution of x in place of all occurrences of y in E, and
E[[x/A[i,K]]] the substitution in E of x in place of A[i] and all occurrences of
A[j], for all j ∈ K. With these notations, the rule of array assignment is the
following:

A[i]:= e (ϕI , ϕX , ϕM) =
⊔

K⊆J

ΦK

where ΦK =

(1)
(

ϕI ⊓I (
∧

j∈K j = i) ⊓I (
∧

j∈J\K j 6= i),

∃x0,
(2) ϕX [[x0/A[i,K]]] ⊓X (A[i] = e[[x0/A[i,K]]] ∧

∧

j∈K

ℓ=1..p

Aℓ[j] = Aℓ[i]),

(3) ϕM[[x0/A[i,K]]][[Â ⊕ x0 ⊖ A[i]/Â]]
)

Each ΦK is a triple (ϕI,K , ϕX,K , ϕM,K) corresponding to an alias case K. In the
formula above, line (1) defines ϕI,K and expresses that K is an alias case (notice
that it is ⊥I if ϕI makes it unfeasible), lines (2) and (3) classically involve a
common quantified variable x0 representing the previous value of A[i]: line (2)
defines ϕX,K and expresses the changes in ϕX , taking into account the aliases,
and line (3) reflects in φM that x0 represents the common previous value of all
the array elements aliased with A[i] and that, in the multiset Â, the previous
value of A[i] has been replaced by its new value. Once again, the only non-trivial
operation is the upper bound ⊔ that we consider now.

5 Upper bound: a solution based on flows

While the least upper bound operators for systems of index and atom equations
are provided by the corresponding lattices, we have to define it for multiset



equations, i.e., to unify two multiset equations, each of which being considered
together with a system of atom equations.

Coming back to the computation made at point 3 in the example of §3, we
had to unify the multiset equation Â ⊖M = ∅, knowing that (v = A[i] = A[j]),
with the equation Â ⊖M = A[j] ⊖ v, knowing that (A[i] = A[j]).

Formally, given two multiset expressions E1 and E2 (∅ and A[j] ⊖ v in our
example), and two equivalence relations ≡1 and ≡2 over atoms involved in E1

and E2 ((v ≡1 A[i] ≡1 A[j]) and (A[i] ≡2 A[j]) in our example), we want to
rewrite each Ei into a common multiset expression E, such that Ei ≡i E, i = 1, 2.

Basically, the rewriting of an expression Ei into an expression E′
i can be done

by adding to Ei a term a⊖ b such that a ≡i b. In our example, such a rewriting
is immediate, since E1 = ∅ ≡1 (A[j] ⊖ v) and (A[j] ⊖ v) = E2.

5.1 Rewriting atoms

As said before, when an atom a appears only in E1, one it can be introduced in
E2 by adding a⊖ b to E2, for some b such that a ≡2 b. This rewriting introduces
b in E2, so it may have to be introduced in E1 in turn, and so on. The process of
finding a common rewriting for atoms can be seen as a travel in a graph: consider
equivalence classes of ≡1 and ≡2 as vertices, and connect two vertices V, V ′ with
an edge labelled by x if x ∈ V ∩ V ′. The obtained graph is obviously bipartite:
each edge connects classes of ≡1 and ≡2. The graph drawn below corresponds to
an example where we have to unify E1 = a with E2 = e, knowing (b ≡1 c ≡1 d)
and (a ≡2 b, d ≡2 e). Now, finding a rewriting from E1 = x into E2 = y boils
down to finding a path from [x]1 (the vertex corresponding to the class of x

according to ≡1) to [y]2 in the graph: each succession of two edges
z

−→[.]1
w

−→
around a vertex of class 1 in such a path, corresponds to a rewriting of E1 into
E1 ⊕ w ⊖ z; conversely, each succession of edges

z
−→[.]2

w
−→ corresponds to a

rewriting of E2 into E2 ⊕ z ⊖ w.

For our example (see the op-
posite figure) the solution is the

path [a]1
a

−→[a, b]2
b

−→[b, c, d]1
d

−→[d, e]2:
traversing the vertex [a, b]2 corresponds
to the rewriting E2 = e ≡2 a ⊖ b ⊕ e,
then traversing the vertex [b, c, d]1 cor-
responds to E1 = a ≡1 a ⊖ b ⊕ d, and
finally reaching [d, e]2 allows to deduce
E2 ≡2 a⊖ b⊕d, the common rewriting.

[a]1 [a, b]2

[b, c, d]1 [c]2

[e]1 [d, e]2

a

c

b

d

e

5.2 General case

In general, we want to find, if it exists, a common rewriting of multiset expres-
sions E1 and E2, which are sums and differences of atoms, possibly with positive
coefficients (e.g., E1 = a⊖(2⊗b)⊕(3⊗c)). We could use the previous procedure



to find a common rewriting between each atom in E1 and an atom of E2. In-
stead, we can directly convert our problem into the classical problem of finding
a maximal flow in a graph with capacities: we split each expression Ei into a
difference Fi ⊖Gi where Fi and Gi are sums of atoms with positive coefficients.
Now, we consider again the graph of equivalence classes, as before, where all
edges are assigned an infinite capacity, and we extend it with

– a source vertex, labelled with F1 ⊕ G2; for each term k ⊗ a in F1 (resp., in
G2), we create an edge of capacity k from the source vertex to the vertex
[a]1 (resp., [a]2);

– and a target vertex, labelled with F2 ⊕G1; for each term k ⊗ a in F2 (resp.,
in G1), we create an edge of capacity k from the vertex [a]2 (resp., [a]1) to
the target vertex.

Let’s recall that a flow in such a graph with capacities consists of an orientation of
the graph (from the source to the target), together with a function φ associating
with each edge e = (V1, V2) of the graph a natural φ(e), such that (1) for each
edge e, φ(e) does not exceed the capacity κ(e) of e, and (2) for each vertex V
which is neither the source nor the target, the sum of the values of the flow over
all incoming edges to V is equal to the sum of the flow over all outgoing edges. We
compute a maximal flow φmax from the source to the target (using, e.g, Ford-
Fulkerson [FF56] or Edmonds-Karp [EK72] algorithms); if this maximal flow
saturates the capacity of edges from the source and to the target, it corresponds
to a solution to the initial problem. The common rewriting of E1 and E2 is

E =
⊕

V1 ∈≡1

e = V1

a

−→V2

φmax(e) ⊗ a ⊖
⊕

V2 ∈≡2

e = V2

a

−→V1

φmax(e) ⊗ a

Example: Let E1 = a⊖ (2⊗b), E2 = (2⊗c)⊖ (3⊗d), and (a ≡1 c, b ≡1 d), (a ≡2

d, c ≡2 b). The corresponding graph is represented by Fig. 2, together with
a maximum flow (each edge e is associated with κ(e)/φmax(e)). The common
rewriting is then E = (2 ⊗ c) ⊖ a ⊖ (2 ⊗ d)

a ⊕ 3 ⊗ d 2 ⊗ c ⊕ 2 ⊗ b

[b, d]1

1/1

3/3
∞/1

∞/2

∞/2

source

[a, c]1

[a, d]2 [b, c]2

∞/0

2/2

2/2
target

a

d

c

b

Fig. 2. Max-flow example

Conversely if there is a solution E to the initial problem, it corresponds to a
flow : for each atom e in E add one flow unit to the vertex labeled by e, saturate
the edges from the source and to the target and the flow conservation will follow
from the equation E1 ≡1 E ≡2 E2. The reduction is hence sound and complete.



5.3 The canonicity problem

Unfortunately, there can be several maximum flows in the graph, which provide
several, non-equivalent solutions for the unified multiset equation. Let’s consider
the following program fragment:

1 d:= A[i]; A[i]:= c;
2 if cond then a:= c; b :=d;
3 else a:= d; b:= c;
4 endif
5 c:= x;

Starting with Â ⊖M = ∅ as before, at point 2 we get Â ⊖M = c ⊖ d, then,
after the “then” branch, (a = c∧ b = d)∧ (Â⊖M = c⊖ d), and after the “else”
branch, (a = d ∧ b = c) ∧ (Â ⊖ M = c ⊖ d). After line 4, we have to compute
the unification of the previous two values. The max-flow algorithm provides two
solutions:
1. (Â ⊖M = c ⊖ d)
2. (Â ⊖M = a ⊕ b ⊖ (2 ⊗ d))

If we choose the solution (1), after line 5 we lose all information since the value
of c is lost; however, if we choose the solution (2) which does not involve c, the
equation (Â ⊖M = a ⊕ b ⊖ (2 ⊗ d)) is preserved after line 5.

So, the max-flow method provides a correct upper bound which is not always
the most precise. However, it suggests another approach: notice that the mul-
tiplicity of solutions comes from the presence of cycles in the graph. Since the
capacities of the edges in a cycle are infinite, we can add or remove flow along
a cycle and still get a solution. So, as soon as there is a cycle in the graph, we
get an infinite set of solutions. Conversely if there are several solutions, one can
be found from another by adding or removing flow along a cycle. An idea is to
keep track of the informations given by these cycles. In the previous example
before the final assignment, we have the property a ⊕ b = c ⊕ d (which means
(a = c ∧ b = d) ∨ (a = d ∧ b = c). It is true since the only difference between
the two branches is that c and d are swapped which does not alter the equation.
Moreover, this equation corresponds to the cycle found in the graph (which is
the same as Fig 2 with different capacities). Adding this equation to one solution
is exactly the same thing as increasing the flow along the cycle a, c, b, d. Thus
keeping this additional equation between singletons allows us to find any other
solution from a single one. The next section describe a more general solution to
compute upper bounds which improves the precision since it is able to retain
singleton equations and then find the least upper bound.

6 A solution based on linear algebra

Another solution is to consider the atom equations as (singleton) multiset equa-
tions, and to handle them together with other multiset equations: then, we get
the conjunction of two systems of multiset equations, which are all linear. The
next idea is to use classical operators in linear algebra, and in particular those



proposed by Karr [Kar76] for propagating affine equations between numerical
variables. The key operator is the least upper bound, which computes the sys-
tem of equations of the least affine space containing two given affine spaces. Of
course, we don’t consider numerical affine spaces, but the only operations used
are those of a vectorial space. Notice also that our equations are always linear
(with a null constant term).

The lattice of linear equations: Let us briefly recall the principles of Karr’s
analysis. Karr’s domain is the lattice of linear varieties of an n-dimensional
vectorial space. Such a linear variety is defined by a vectorial equation MX = C,
where M is an (m × n)-matrix, and C is a constant vector. In our special case,
the coefficients in M are integers, and C is the null vector (all its components are
the empty multiset). There is a classical normal form to this kind of equations,
by putting M in row-echelon form, using Gauss procedure. The propagation
of system of equations through linear assignments is straightforward. The least
upper bound operator provides the least linear variety containing its arguments;
it is therefore well-defined, geometrically. The procedure proposed by M. Karr
is recalled in the appendix: taking 2 matrices M1 and M2 in canonical form, it
returns a matrix M , also in canonical form, such that the variety MX = 0 is
the least variety containing both M1X = 0 and M2X = 0.

Coming back to the example of §5.3, we have to compute the least upper

bound
(

a = c ∧ b = d ∧ Â ⊖M = c ⊖ d
)

⊔
(

a = d ∧ b = c ∧ Â ⊖M = c ⊖ d
)

Karr’s operator provides the result a⊕b = c⊕d ∧ Â⊖M = c⊖d. Eliminating c
to compute the result after line 5, we get the precise result Â⊖M = a⊕b⊖(2⊗d).

Taking into account that the theoretical complexity of the max-flow algo-
rithm (n2) is better than the complexity of Karr’s affine hull (n3), we could use
the max-flow solution to deal with the multiset equations, and apply the affine
hull to unify atom equations. However, it is not likely that, in practice, the con-
sidered systems of equation become very large, so the complexity is not really
an issue.

Let’s recall that Karr’s lattice is of finite depth: the size of strictly increasing
chains is bounded by the number of variables (the dimension of the space), so
there is no need for widening to ensure the termination.

Atoms are not numbers

The fact that, in contrast with [Kar76], we are not working in a numerical
vectorial space may raise some questions, concerning the existence of solutions,
and some implicit consequences of atom equations.

The emptiness problem: some systems of equations have solutions in the usual
numerical space, but not in our multiset space. For instance, the equation a⊕b =
c, where a, b, c are atoms, has no solution. It is the case of all atom equations
which are not balanced (i.e., where the sum of coefficients of both members are
not equal). However, this question is not relevant for our analysis, since all the
equations considered in the analysis are well-balanced.



Implicit equations: on the other hand, some systems of equations have implicit
consequences in our multiset space, which would not occur in the numerical
space. For instance, the equation a ⊕ b = 2 ⊗ c, where a, b, c are atoms, im-
plies a = b = c. Detecting all such implicit equations is NP-hard (see, e.g.,
[DV99,DPR08]). However, we don’t have any example of program where this
kind of implicit equations would appear and be useful. Moreover, finding equal-
ities between atoms is not the goal of the multiset analysis.

So, while algorithms exist for discovering such implicit equations, they were
not implemented in our analyzer, because of their excessive cost and the debat-
able interest of such additional properties. However, notice that this does not
change the correctness of our analysis.

7 Experimental results

This analysis has been implemented within the analyzer developed by
M. Péron [HP08], taking as input the same language restricted to simple loops
and one-dimensional arrays. However, many language restrictions could be easily
released for our analysis.

In this section, we show some examples of analyzes. Notice that, for all the
examples presented below, the analysis based on flows gives the same results as
Karr’s lattice. The reported execution times are those with Karr’s lattice.

7.1 Insertion sort

We detail below the analysis of the “insertion sort” procedure. We indicate at
each line the three properties, respectively concerning indices, contents, and mul-
tisets. We assume that the lattice of index properties is the lattice of potentials,
with a reasonable widening. The analysis terminates after 3 iterations.

First iteration
for i:= 1 to n do . . . {(i = 1), (Â = M)}

x:=A[i]; j:=i-1; . . . {(i = 1, j = i − 1), (x = A[i]), (Â = M)}

while j>=1 and A[j]>k do . . . {(i = 1, j = i − 1), (x = A[i]), (Â = M)}

A[j+1]:= A[j];. . . {(i = 1, j = i − 1), (x = A[i]), (Â = M⊖ x ⊕ A[j])}

j:=j-1; . . . {(i = 1, j = i − 2), (x = A[i]), (Â = M⊖ x ⊕ A[j + 1])}
end
A[j+1] := x;

end

Second iteration
for i:= 1 to n do . . . {(i = 1), (Â = M)}

x:=A[i]; j:=i-1; . . . {(i = 1, j = i − 1), (x = A[i]), (Â = M)}

while j>=1 and A[j]>k do ..(i = 1, 1≤j < i), (x = A[i]), (Â = M⊖x⊕A[j + 1])

A[j+1]:= A[j]; . . . {(i = 1, 0 ≤ j < i), (x = A[i]), (Â = M⊖ x ⊕ A[j])}

j:=j-1; . . . {(i = 1, 0 ≤ j < i − 1), (x = A[i]), (Â = M⊖ x ⊕ A[j + 1])}

end . . . {(i = 1, 0 ≤ j < i), (x = A[i]), (Â = M⊖ x ⊕ A[j + 1])}

A[j+1] := x;. . . {(i = 1, 0 ≤ j < i), (x = A[i]), (Â = M)}
end



Third iteration
for i:= 1 to n do . . . {(1 ≤ i ≤ n), (Â = M)}

x:=A[i]; j:=i-1; . . . {(1 ≤ i ≤ n, j = i − 1), (x = A[i]), (Â = M)}

while j>=1 and A[j]>k do..(1 ≤ i ≤ n, 1≤j < i), (x = A[i]), (Â = M⊖x⊕A[j + 1])

A[j+1]:= A[j]; . . . {(1 ≤ i ≤ n, 1 ≤ j < i), (x = A[i]), (Â = M⊖ x ⊕ A[j])}

j:=j-1; . . . {(1 ≤ i ≤ n, 0 ≤ j < i − 1), (x = A[i]), (Â = M⊖ x ⊕ A[j + 1])}

end . . . {(1 ≤ i ≤ n, 0 ≤ j < i), (x = A[i]), (Â = M⊖ x ⊕ A[j + 1])}

A[j+1] := x;. . . {(1 ≤ i ≤ n, 0 ≤ j < i), (x = A[i]), (Â = M)}

end . . . {(Â = M)}

7.2 An aliasing surprise

As another simple example, consider two versions of a procedure, intended to
perform a circular permutation of the contents of three array cells:

. . . {Â = M}
x:=A[i]; . . . {x = A[i], Â = M}
A[i]:=A[j];
. . . {A[i] = A[j], Â = M⊖ x⊕A[j]}
A[j]:=A[k];
. . . {A[j] = A[k], Â = M⊖x⊕A[k]}
A[k]:=x; . . . {A[k] = x, Â = M}

(a) rotation

. . . {Â = M}
x:=A[i];. . . {x = A[i], Â = M}
y:=A[j];. . . {x = A[i], y = A[j], Â = M}
z:=A[k];
. . . {x = A[i], y = A[j], z = A[k], Â = M}
A[i]:=y;. . . {y = A[j] = A[i], Â = M⊖ x⊕ y}
A[j]:=z;. . . {A[j] = z, Â = M⊖ x ⊕ z}
A[k]:=x; . . . {A[k] = x}

(b) copy-store

Fig. 3. Permuting 3 values

– The first version (Fig. 3.a) performs a simple rotation, using a buffer x. The
analysis proves that the final content of the array is a permutation of the
initial one.

– In the second version (Fig. 3.b), the three values are first copied in buffers,
and then stored back at their respective places. On that program, the analysis
is not able to show anything interesting about the final content. Of course,
this could result from some imprecision; but if we look closer at the cause
of the failure, it appears that there is a case where the content of the array
is not preserved: if i = k 6= j, the initial value of A[i] is copied twice in the
final array, and the initial value of A[j] is lost. So, our analysis is precise and
detects a bug in the program.

7.3 Combining the analysis with array partitioning

Our analysis can be easily combined with the methods [GRS05,HP08] which
partition the arrays into symbolic slices, and associate a summary variable with
each such slice.

For instance, we used the method of [HP08] to partition arrays into relevant
slices, and used our abstract domain to analyze the properties of these slices.



Program exp. res. results time nb.iter.

switch 2 cells by rotation Â = A ok <4ms 1

switch 2 cells by copy-store Â = A ok <4ms 1

switch 3 cells by rotation Â = A ok <4ms 1

switch 3 cells by copy-store Â 6= A ok <4ms 1

Dutch national flag [Dij76] Â = A ok <4ms 2

Insertion sort Â = A ok <4ms 3

Selection sort Â = A ok <4ms 2

Bubble sort Â = A ok <4ms 3

With array partitioning
Array copy ̂A[0..n−1]= ̂B[0..n−1] ok < 4ms 2
Split on sign [KV09] ̂A[0..a−1]= ̂B[0..b−1]⊕ ̂C[0..c−1] ok 12ms 2

Table 1. Some experimental results

In [HP08], array accesses and loop indices are used to separate array cells that
should be considered separately (as singleton slices). Then an array is partitioned
into these singleton slices, and contiguous slices separating these singletons.

Only a small amount of work is needed to adapt the abstract domain to this
slicing technique. When an index is progressing, a slice may be growing and then
we have to perform a substitution in the equation system to reflect that the new
slice is the union of old slice with some singleton.

This combination of techniques can now be used to find some other interesting
properties. For instance in a program which copies an array A to an array B we
are now able to state at each step of the loop indexed by i that the multisets of
values of cells with index greater than 0 but less than i are equals in the array
A and in the array B. Then this intermediate property allows us to discover the
multiset equality of A and B and finally use it to prove more specific properties.

The opposite program is another interesting exam-
ple considered in [KV09]: it splits an array A into B
and C according to the signs of the elements. Using
our combined analysis we get respectively for each ar-
ray A, B and C the partitions {A[0..a−1], A[a], A[a+
1..n − 1]}, {B[0..b − 1], B[b], B[b + 1..n − 1]} and
{C[0..c − 1], C[c], B[c + 1..n − 1]}. Propagating the
multiset properties between these slices, we find the
expected loop invariant:

̂A[0..a − 1] = ̂B[0..b − 1] ⊕ ̂C[0..c − 1]

a := 0, b := 0, c := 0 ;
while a < n do

if A[a] ≥ 0 then
B[b] := A[a] ;
b + + ;

else
C[c] := A[a] ;
c + + ;

a + + ;

which, once again, could not be expressed as a first-order formula.

7.4 Other examples

Table 1 shows the analysis time for several small programs. All the results are
as expected.



7.5 An example with linked data structures

Our lattice of multiset equations can be used for other data structures than
arrays. As an example of possible application, we have analyzed (by hand) the
Deutsch-Schorr-Waite data structure traversal algorithm [SW67]. In fact, we
consider the version of [Lin73], dedicated to data structures without cycles, and
which does not involve any auxiliary marking. A slightly different version of
this algorithm has been completely proven with TVLA [LRS06]. We recall that
this algorithm traverses a binary structure (a dag or a tree), without using a
stack, by redirecting pointers in the structure to store the return path. We note
T̂ the multiset of pointers contained in the structure, i.e., contained in a node
initially reachable from the root of the structure. The goal would be to show
that this multiset is restored at the end of the traversal (of course, this does not
show that the structure has been restored). The results are shown in Fig. 4. The
goal is not reached, because it needs the additional fact that, at the end of the
program, root = prev, a fact that would need another kind of analysis, and
the knowledge that “-1” does not appear in the initial structure. However, the
computed invariants are precise.

prev:=-1; cur:=root; . . . {prev = −1, cur = root, T̂ = M}

while cur<>-1 . . . {T̂ = M⊕ root ⊕−1 ⊖ cur ⊖ prev}
next:=cur->left; cur->left:=cur->right;

cur->right:=prev; . . . {T̂ = M⊕ root ⊕−1 ⊖ cur ⊖ next}

prev:=cur; cur:=next; . . . {cur = next, T̂ = M⊕ root ⊕−1 ⊖ prev ⊖ next}

if cur=NULL . . . {cur = next = NULL, T̂ = M⊕ root ⊕−1 ⊖ prev ⊖ next}
cur:=prev; prev=NULL;

. . . {prev = next = NULL, T̂ = M⊕ root ⊕−1 ⊖ cur ⊖ next}

end . . . {T̂ = M⊕ root ⊕−1 ⊖ cur ⊖ prev}

end . . . {T̂ = M⊕ root ⊖ prev}

Fig. 4. Results for the Deutsch-Schorr-Waite algorithm

8 Conclusion

To our knowledge, it is the first automatic analysis for handling permutation-
invariant properties of data-structures. Basically, our abstract values are equa-
tions between multiset expressions, together with equations, gathered by other
analyzes, between locations (indices, pointers) and structure contents. Two ways
for computing least upper bounds of multiset equations have been proposed: the
solution based on flows is theoretically more efficient, but may be less precise in
general; the other solution makes use of the standard lattice of linear equations,
and deals jointly with multiset and content equations.

The paper is specialized to the analysis of arrays, but our lattice could be used
for any kind of data structures, as shown by the Deutsch-Schorr-Waite example,
provided a suitable interpretation of statements on these data-structures is avail-
able. This would give a relevant abstraction for every collection data structure
and thus could be used in a shape-value abstraction [Vaf09] in conjunction with



a shape analysis to derive properties of these structures or to use these prop-
erties in programs manipulating collections. It would be also useful to consider
more general programs (e.g., recursive programs) and statements (e.g., indirect
indexing), but this would not interfere with the definition of the lattice and its
operations. Another perspective is to consider multiset inclusions, in order to
be able to show that some data structure is included, up to some permutation,
inside another one.
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[Min01] A. Miné. The octagon abstract domain. In AST 2001 in WCRE 2001, IEEE,
pages 310–319. IEEE CS Press, October 2001.
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Appendix: Karr’s algorithm for linear hull

Let’s recall the algorithm proposed in [Kar76] for computing the linear hull:
given two linear subspaces, defined by their matrices M and M ′ in reduced row-
echelon form (i.e., (1) each row has at least one non-zero entry, and for any row
i0, if j0 is the first column with a non zero entry of the row, then (2) for all
i > i0, j <= j0, Mij = 0 and (3) forall i 6= i0,Mi,j0 = 0), the algorithm returns
the matrix (in reduced echelon form) of the least linear subspace containing the
two given subspaces. The algorithm progressively modifies M and M ′ so that,
at the end of step s, the first s columns of M and M ′ are equal. After n steps,
M and M ′ are equal, and it is the solution. The two matrices are maintained in
the following form:

M =

(

C
0

N

)

, M ′ =

(

C
0

N ′

)

where the common part C has s columns at step s.
At the beginning of step s, let r be the number of rows of C plus 1. There

are 3 cases according to the values of Nrs and N ′
rs:

1. either Nrs = N ′
rs = 1, then, from the hypotheses on M and M ′, we have:

M =











C
.
.
.

0

1
N











, M ′ =











C
.
.
.

0

1
N ′











and we just increment r and s;
2. or Nrs = 1 and N ′

rs = 0 (or conversely), and the matrices are in the form:

M =











C
.
.
.

0

1
N











, M ′ =

(

C β
N ′

)

then, M is modified by obtaining the column β in the r − 1 positions of
column s (previously 0), by performing suitable linear combinations of there
r − 1 rows with row s. Row s of M is then suppressed.

3. or Nrs = N ′
rs = 0, and the matrices are in the form:

M =

(

C α
N

)

, M ′ =

(

C β
N ′

)

If columns α and β are the same, s is just incremented. Otherwise, let ℓ be
the greatest row index such that αℓ 6= βℓ. Then, in each matrix, let Rℓ be the
row ℓ and Ri be a row on index < ℓ; replace each Ri by Ri − (αi −βi)/(αℓ −
βℓ)Rℓ; finally, delete row ℓ in both matrices: columns s are the same in both
matrices, and s can be incremented.


