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Constraint programming can definitely be seen as a model-driven paradigm. The users write programs for modeling problems. These programs are mapped to executable models to calculate the solutions. This paper focuses on efficient model management (definition and transformation). From this point of view, we propose to revisit the design of constraint-programming systems. A modeldriven architecture is introduced to map solving-independent constraint models to solving-dependent decision models. Several important questions are examined, such as the need for a visual highlevel modeling language, and the quality of metamodeling techniques to implement the transformations. A main result is the s-COMMA platform that efficiently implements the chain from modeling to solving constraint problems.

Introduction

In constraint programming (CP), programmers define a model of a problem using constraints over variables. The variables may take values from domains, typically boolean, integer, or rational values. The solutions to be found are tuples of values of the variables satisfying the constraints. The search process is performed by powerful solving techniques, for instance backtracking-like procedures and consistency algorithms to explore and reduce the space of potential solutions. In the past, CP has been shown to be efficient for solving hard combinatorial problems.

CP systems evolved from the early days of constraint logic programming (CLP). In a CLP system, the constraint language is embedded in a logic language, and the solving procedure combines the SLD-resolution with calls to constraint solvers [START_REF] Jaffar | Constraint Logic Programming[END_REF]. The logic language can be replaced with any computer programming language Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. PPDP'08, July 16-18, 2008, Valencia, Spain. Copyright c 2008 ACM 978-1-60558-117-0/08/07. . . $5.00 (e.g. C++ in ILOG Solver [26] or Java in Gecode/J [START_REF]Gecode System[END_REF]) and even term rewriting [11]. It turns out that the programming task may be hard, especially for non experts of CP or computer programming. In this approach, modeling concerns are not enough to write programs, and it is often mandatory to deal with the encoding aspects of the host language or to tune the solving strategy. In response to this problem, almost pure modeling languages have been built, such as OPL [START_REF] Van Hentenryck | The OPL Language[END_REF] and Zinc [START_REF] Rafeh | From Zinc to Design Model[END_REF].

The design of the last generation of CP systems has been governed by the idea of separating modeling and solving capabilities (e.g. Essence [START_REF] Frisch | The Design of ESSENCE: A Constraint Language for Specifying Combinatorial Problems[END_REF] and MiniZinc [START_REF] Nethercote | MiniZinc: Towards a Standard CP Modelling Language[END_REF]). The system architecture has three layers, including the modeling language, the solvers, and a middle tool composed by a set of solver-translators implementing the mappings. In particular, this approach gives important benefits: The full expressiveness of CP is supported by a unique highlevel modeling language, which is expected to be simple enough for non experts. The user is able to process one model with different solvers, a crucial feature for easy and fast problem experimentation.

The platform is open to plug new solvers.

Our work follows this solver-independent idea, but under a Model-Driven Development (MDD) approach [START_REF]OMG -Model Driven Architecture (MDA) Guide V1.0.1[END_REF], which is wellknown in the software engineering sphere. General requirements have been defined for MDD architectures in order to define concise models, to enable interoperability between tools, and to easily program mappings between models. The classical MDD infrastructure uses as base element the notion of a metamodel, which allows one to clearly define the concepts appearing in a model.

In this paper, the MDD approach is applied to a CP system. The goal is to implement the chain from modeling to solving constraints. Our approach is to transform user solving-independent models defined through a visual modeling language to solver (executable) models using a metamodeling strategy. CP concepts like domains, variables, constraints, and relations between them are defined in a metamodel, and thus the transformation rules are able to map these concepts from a source language to a target one. It results in a flexible and extensible architecture, robust enough to support changes at the mapping tool level. Moreover, we believe that the study of metamodels for CP is of interest.

These ideas have been implemented in the s-COMMA platform [28]. The front tool allows users to graphically define constraint models. It is made on top of a general object-oriented constraint language [START_REF] Soto | The Design of COMMA: An Extensible Framework for Mapping Constrained Objects to Native Solver Models[END_REF]. Many solvers have been plugged in the platform such as ECL i PS e [31], Gecode/J [START_REF]Gecode System[END_REF], GNU Prolog [START_REF] Diaz | The GNU Prolog System and its Implementation[END_REF] and Realpaver [START_REF] Granvilliers | Algorithm 852: RealPaver: an interval solver using constraint satisfaction techniques[END_REF]. Upgrades are supported at the mapping tool, new solver-translators can be added by means of the AMMA platform [START_REF] Kurtev | Model-based DSL frameworks[END_REF].

The language for stating constraints in s-COMMA is clearly not the novel part of the platform, in fact it includes typical and stateof-the-art modeling constructs and features. Novelty arises from the introduction of a solver-independent visual language -which we believe is intuitive and simple enough for non experts -, and the use of a MDD approach involving metamodeling techniques to implement the mappings.

The outline of this paper is as follows. The MDD architecture proposed is introduced in Section 2. The s-COMMA modeling language and the associated graphical interface are presented in Section 3. The mapping tool and the metamodeling techniques used to develop solver-translators are explained in Section 4. Some experimental results are then discussed in Section 5. The related work and conclusion follows.

A MDD approach for CP

Model-Driven Engineering (MDE) aims to consider models as first class entities. A model is defined according to the semantics of a model of models, also called a metamodel. A metamodel describes the concepts appearing in a model, but also the links between these concepts, such as: inheritance, composition or simple association.

Figure 1 depicts a general Model-Driven Architecture (MDA) for model transformation. Level M1 holds the model. Level M2 describes the semantic of the level M1 and thus identifies concepts handled by this model through a metamodel. Level M3 is the specification of level M2 and is self-defined. Transformation rules are defined to translate models from a source model to a target one, the semantic of these rules is also defined by a metamodel.

A major strength of using this metamodeling approach is that models are concisely represented by metamodels. This allows one to define transformation rules that only operate on the concepts of metamodels (at the M2 level of the MDA approach), not on the concrete syntax of a language. Syntax concerns are defined independently (we illustrate this in Section 4). This separation is a great advantage for a clearly definition of transformation rules and grammar descriptions, which are the base of our mapping tool. Let us now illustrate how this approach is implemented in our platform. Figure 2 shows the MDD s-COMMA architecture, which is composed by two main parts, a modeling tool and a mapping tool.

The s-COMMA GUI is our modeling tool, and it allow users to state constraint models using visual artifacts. An exactly textual representation of this language is also provided (for who does not want to use visual artifacts). Both languages are solver-independent and are designed conform to the same metamodel (see Section 3). The output of the s-COMMA GUI is Flat s-COMMA an intermediate language which is still solver-independent but, in terms of abstraction is closer to the solver level. The goal is to simplify the development of solver-translators. Flat s-COMMA is also designed conform to a metamodel (see Section 3.3).

The mapping tool is composed by a set of solver-translators. Solver-translators are designed to match the metamodel concepts of Flat s-COMMA to the concepts of the solver metamodel (see Section 4). This process is defined conform to the general MDA for model transformation. The s-COMMA GUI is written in Java (about 30000 lines) and translators are developed using the AMMA platform. The whole system allows to perform the complete process from visual models to solver models. The system involves several metamodels: an s-COMMA metamodel, a Flat s-COMMA and solver metamodels. The s-COMMA metamodel has been built just for defining the concepts of the s-COMMA textual and visual language, it is not used to map s-COMMA to Flat s-COMMA. For this task we already have an efficient translator. Our key aim of using metamodeling techniques is to provide an easier way to develop new solvertranslators, compared to the task of writing translators by hand.

In the following two sections we present the main parts of this architecture: The modeling and the mapping tool, respectively.

Modeling Tool

We have built our s-COMMA GUI modeling tool on top of the s-COMMA language. The s-COMMA language is defined through its metamodel and it has been designed to represent the concepts of constraint problems, also called constraint satisfaction problems (CSPs). In this metamodel, the CSP concepts such as variables and domains have been merged with object-oriented concepts in order to state CSPs using an object-oriented style. The result is an objectoriented visual language for modeling CSPs. These decisions are supported by the following benefits:

• A problem is generally composed of several parts which may represent objects. They are naturally specified through classes. Thus, we obtain a more modular model, instead of forcing modelers to state the entire problem in a single block of code. • We gain similar benefits -constraint and variable encapsulation, composition, inheritance, reuse -to those gained by writing software in a object-oriented programming language. • Visual artifacts are more intuitive to use and give a clearer view of the complete structure of the problem.

Figure 3 illustrates the main concepts of the s-COMMA metamodel using UML class diagram notation. The role of each one of these concepts is explained in the following paragraphs.

s-COMMA models

The s-COMMA metamodel defines the concepts appearing in s-COMMA models. Thus, conform to this metamodel an s-COMMA model must be composed by two main parts, the model and data. The model describes the structure of the problem and the data contain the constant values used by the model. In our s-COMMA GUI front tool this problem's structure is represented by class artifacts and the data concept is represented by the data artifact 1 (see Figure 4). 

Class artifacts

Class artifacts have by default three compartments, the upper compartment for the class name, the middle compartment for attributes and the bottom one for constraint zones. By clicking on the class artifact its specification can be opened to define its class name, their attributes and constraint zones. Relationships can be used to define inheritance (a subclass inherits all attributes and constraint zones of its superclass) or composition between classes.

Data artifacts

Data artifacts have two compartments, one for the file name and another for both the constants and variable-assignments. Constants, also called data variables can be defined with a real, integer or enumeration type. Arrays of one dimension and arrays of two dimensions of constants are allowed. Variable-assignment corresponds to the assignment of a value to a variable of an object. Variableassignments can also be performed if objects are inside an array (see an example in Section 3.2). 1 Artifacts used on the s-COMMA GUI have been adapted from the class artifact provided by the UML Infrastructure Library Basic Package. This adaptation is completely allowed by the UML Infrastructure Specification [START_REF]OMG -The Unified Modeling Language (UML) 2.1.1 Infrastructure Specification[END_REF].

Attributes

Attributes may represent decision variables, sets, objects or arrays. Decision variables can be defined by an integer, real or boolean type. Sets can be composed of integers or enumeration values. Objects are instances of classes which must be typed with their class name. Arrays of one and two dimensions are allowed, they can contain decision variables, sets or objects. Decision variables, sets and arrays can be constrained to a determined domain.

Constraint Zones

Constraint zones are used to group constraints encapsulating them inside a class. A constraint zone is stated with a name and it can contain the following elements:

• Constraints: Typical operations and relations are provided to post constraints. For example, comparison relations (<,>, <=,>=,=,<>), arithmetic operations (+,*, -,/), logical relations (and,or,xor, ->,<-,<->), and set operations (in, subset, superset, union, diff, symdiff, intersection, cardinality).

• Statements: Forall and conditional statements are supported.

The forall (e.g. forall(i in 1..5)) is stated by declaring a loop-variable (i) and the set of values to be traversed (1..5).

A loop-variable is a local variable and it is valid just inside the loop where it was declared. Conditionals are stated by means of if-else expressions. For instance, if(a) b else c; where a is the condition, which can includes decision variables; and b and c are the alternatives, which may be statements or constraints. • Objective: objective functions are allowed and they can be stated by tagging the expression involved with the selected option (e.g. [minimize] x+y+z;). • Global Constraints: a basic set of global constraints (e.g. alldifferent, cumulatives) is supported. Additional constraints can be integrated to this basic set by means of extension mechanisms (for details refer to [START_REF] Soto | The Design of COMMA: An Extensible Framework for Mapping Constrained Objects to Native Solver Models[END_REF]).

The stable marriage problem

Let us now illustrate some of these concepts in the s-COMMA GUI by means of the stable marriage problem. The problem is to find a matching between the groups such that the marriages are stable i.e., there are no pair of people of opposite sex that like each other better than their respective spouses.

Figure 5 shows a snapshot of the s-COMMA GUI where the stable marriage problem is represented by a class diagram. This diagram is composed by three classes, one class to represent men, one to represent women, and a main class to describe the stable marriages. Once the user states a visual artifact, the corresponding s-COMMA textual version is automatically generated on the rightpanel of the tool. For readability we illustrate the textual version of the problem in Fig. 6 / The class representing men (at line 29 in the model file) is composed by one array containing integer values which represents the preferences of a man, the array is indexed by the enumeration type womenList (at line 2 in the data file), thereby the 1st index of the array is Helen, the 2nd is Tracy, the third is Linda and so on. Then, an attribute called wife is defined (line 31), which represents the spouse of an object man. This variable has womenList as a type which means that its domain is given by the enumeration womenList. The definition of the class Women is analogous.

The class StableMarriage has a more complex declaration. We first define two arrays, one called man which contains objects of the class Man and other which contains objects of the class Woman. Each one represents the group of men and the group of women, respectively. The composition relationship between classes can be seen on the class diagram.

At line 8 a constraint zone called matchHusbandWife is stated. In this constraint zone, two forall loops including a constraint are posted to ensure that the pairs man-wife match with the pairs woman-husband. The forbidUnstableCouples constraint zone contains two loops including two logical formulas to ensure that marriages are stable.

The data file is called by means of an import statement (at line 1). This file contains two enumeration types, menList and womenList, which have been used in the model as a type, for indexing arrays, and as the set of values that loop-variables must traverse. StableMarriage.man is a variable-assignment for the array called man defined at line 5 in the model file.

This variable-assignment is composed by five objects (enclosed by '{}'), one for each men of the group. Each of these objects has two elements, the first element2 is an array (enclosed by '[ ]'). This array sets the preferences of a men, assigning the values to the array rank of a Man object (e.g. Richard prefers Tracy 1st, Linda 2nd, Wanda 3rd, etc).

The second element is an underscore symbol (' '). This symbol is used to omit assignments, so the variable wife remains as a decision variable of the problem i.e., a variable for which the solver must search a solution.

Flat s-COMMA models

Before explaining how s-COMMA models are mapped to their equivalent solver models, let us introduce the intermediate Flat s-COMMA language. Flat s-COMMA has been designed to simplify the transformation process from s-COMMA models to solver models. In Flat s-COMMA much of the constructs supported by s-COMMA are transformed to simpler ones, in order to be closer to the form required by classical solver languages. Flat s-COMMA is also defined by a metamodel.

Figure 7 illustrates the main elements of the Flat s-COMMA metamodel, where many s-COMMA concepts have been removed. Now, the metamodel is mainly a definition of a problem composed by variables (decision variables) and constraints.

In order to transform s-COMMA to Flat s-COMMA, several steps are involved, which are explained in the following. Figure 8 depicts the Flat s-COMMA model of the stable marriage problem. The file is composed of two main parts, variables and constraints. Variables at lines 3-4 are generated by the flattening composition process. The array man composed by objects of type Man is decomposed and transformed to a single array of decision variables. The array man wife contains the decision variables wife of the original array man; and the array woman husband contains the decision variables husband of the original array woman. The arrays rank of both objects Man and Woman are not considered as decision variables since they have been filled with constants (at lines 3-4 of the data file in Figure 6). The size of the array man wife is 5, this value is given by the enumeration substitution step which sets the size of the array with the size of the enumeration menList (5). The domain [1,5] is also given by this step which states as domain an integer range corresponding to the number of elements of the enumeration used as a type (womenList) by the attribute wife. The type of both arrays is maintained to give the solutions in the enumeration format. These values are stored in the block enum-types. Lines 8-15 come from the loop unrolling phase of the forall statements of the matchHusbandWife constraint zone. Likewise, lines 18-26 are generated by the loops of forbidUnstableCouples. In these constraints, the data substitution step has replaced several constants with their corresponding integer values.

Mapping Tool

In this section we explain the mechanisms provided by the MDD approach to develop our solver-translators. These translators are designed to perform the mapping from Flat s-COMMA to solver models. We use the AMMA platform as our base tool to build them.

The AMMA platform allows one to develop this task by means of two languages: KM3 [18] and ATL [START_REF] Jouault | Transforming Models with ATL[END_REF]. KM3 is used to define metamodels, and ATL is used to describe the transformation rules and also to generate the target file.

KM3

The Kernel Meta Meta Model (KM3) is a language to define metamodels. KM3 has been designed to support most metamodeling standards and it is based on the simple notion of classes to define each one of the concepts of a metamodel. These concepts will then be used by the transformation rules and to generate the target file. Figure 9 illustrates an extract of the Flat s-COMMA metamodel written in KM3. 

ATL

The Atlas Transformation Language (ATL) allow us to define transformation rules according to one or several metamodels. The rules clearly state how concepts from source metamodels are matched to concepts of the target ones. Figure 10 shows some of the ATL rules used to transform the concepts of the Flat s-COMMA metamodel to the concepts of the Gecode/J metamodel. The metamodel of Gecode/J is not presented here since it is very close to the Flat s-COMMA metamodel. Indeed, most CP solver languages are used to express quite the same concepts and Flat s-COMMA is designed to be as close as possible from the solving level. This is a great asset because transformation rules become simple: we mainly need one to one transformations. The first line of this file specifies the name of the transformation. A module is used to define and regroup a set of rules and helpers. Rules define the mappings, and helpers allow to define factorized ATL code that can be called from different points of the ATL file (they can be viewed as the ATL equivalent to Java methods).

Line 2 states the target (create) and source metamodels (from). The first rule presented is called Problem2Problem and defines the matching between the concepts Problem expressed in Flat s-COMMA and Gecode/J. The source elements are stated with the reserved word from and the target ones with the reserved word to. These elements are declared like variables with a name (s,t) and a type corresponding to a class in a metamodel (FlatsComma!Problem, GecodeJ!Problem). In the target part of the rule the name attribute of the Flat s-COMMA problem is assigned to the Gecode/J name (name <-s.name), this is just an string assignment. However, the following two statement are assignments between concepts that are defined as reference in the metamodel. So, they need a specific rule to carry out the transformation. For instance, the Flat s-COMMA KM3 metamodel defines that the reference variables is composed by a set of Variable elements. Thus, the statement (variables <-s.variables) calls implicitly the rule Variable2Variable, which defines the match between each element of objects Variable. It can be highlighted that the ATL engine requires a unique name for each rule and a unique matching case: from and to blocks. When several rules can be applied a guard (the boolean test in line 20) over the from statement must remove choice ambiguities.

The Variable2Variable rule matches three elements. The first two statements are simple string assignments and the last one is a reference assignment. Let us remark that a second rule to process array variables has been defined (but not presented here) which includes an additional statement for the array element. These two rules are distinguished according to complementary guards over the source block using the helper isArrayVariable. Guards act as filter on the source variable instances to process. The presented helper isArrayVariable applies on variable instances in Flat s-COMMA models and returns true when the instance contains an array element. ATL inherits from OCL [22] syntax and semantics; and most OCL functions and types are available within ATL.

Although the rules used here are not complex, ATL is able to perform more difficult rules. For instance, the most difficult rule we defined, was the transformation rule from Flat s-COMMA matrix containing sets, which must be unrolled in the ECL i PS e models (since set matrix are not supported). This unroll process is carried out by defining a single set in ECL i PS e for each cell in the matrix. The name of each single variable is composed by the name of the matrix, and the corresponding row and column index. Figure 11 shows the rule Problem2Problem defined for ECL i PS e , this rule has a condition (line 4) to check whether set matrix are defined in the model. If the condition is true, name, constraints and enumTypes are matched normally, but variables has a special procedure to decompose the set matrix.

This procedure begins at line 12 with a do block. In this block, the collect loop iterates over the variables. Then, each of these variables (e) is checked to determine whether it has been defined as a set matrix (line 14). If this occurs, the helper getMatrixCells(e) calculates the set of tuples corresponding to all the cells of the matrix (thisModule is used to call explicitly helpers or rules). Each tuple is composed of the Flat s-COMMA variable (f.var), a row index (f.i) and a column index (f.j). Then, the rule SetMatrixVariable2Variable is applied to each tuple in order to generate the ECL i PS e variables. This rule does not contain a source block since the source elements are the input parameters. The rule sets to the attribute name, the concatenation of the name of the matrix with the respective row (i.toString()) and column (j.toString()). Attributes type and domain are also matched. Finally, flatten() is an OCL inherited method used to match the generated set of variables with t.variables.

ATL is also used to generate the solver target file. This is possible by defining a new ATL file (called generically ATL2Text) where we can embed the concepts of the metamodel in the syntax of the target file. This is done by means of a querying facility that enables to specify requests onto models.

Figure 12. GecodeJ2Text file

Figure 12 shows a fragment of the GecodeJ2Text definition to generate the Gecode/J file. Lines 1-4 states the query on the Problem concept and defines the target file. Queries are able to call helpers, which allow us to build the string to be written in the target solver file. This query calls the helper toString2() defined for the concept Problem. This helper is stated at line 6 and it creates first the string corresponding to the headers (package and import statements) of a Gecode/J model. Then, at lines 12-13 the string corresponding to the variables declarations is created. This is done by iterating the collection of variables and calling the corresponding toString2() helper for the Variable instances. This helper is declared at line 18, it defines three possible variable declarations, single variable (IntVar), a one dimension array (VarArray<IntVar>), and a two dimension array (VarMatrix<IntVar>). The alternatives are chosen by means of an if-else statement. The condition self.array.oclIsUndefined() checks whether the concept array is undefined. If this occurs, the variable corresponds to a single variable. The string representing this declaration uses self.name which refers to the name of the variable, self.domain.toString2() calls a helper to get the string representing the domain of the variable. The next alternative tests if the attribute col of the array is undefined, in this case the variable is a one dimension array, otherwise it is a two dimension array. The call self.array.toString2() is used in the two last alternatives, it returns the string corresponding to the size of arrays.

Figure 13 depicts an extract of the Gecode/J file generated for the stable marriage problem. Lines 1-3 states the headers. Line 6 declares the array called man wife. which is initialized with size 5 and domain [1,5]. At line 8 the array is added to a global array called vars for performing the labeling process. Lines 14-19 illustrate some constraints, which are stated by means of the post method.

Figure 13. Gecode/J model for the stable marriage problem.

TCS

TCS [START_REF] Jouault | Kurtev KM3: A DSL for Metamodel Specification[END_REF] (Textual Concrete Syntax) is another language provided by the AMMA platform. TCS is not mandatory to add a new translator but it is involved in the process since it is the language used to parse the Flat s-COMMA file. TCS is able to perform this task by bridging the Flat s-COMMA metamodel with the Flat s-COMMA grammar.

1. template Problem 2.

: "variables" ":" variables 3.

"constraints" ":" constraints 4.

"enum-types" ":" enumTypes 5. ; 6. 7. template Variable 8.

: type name (isDefined(array) ? array) "in" domain ";" 9. ; 10. 11. template Array 12. : "[" row (isDefined(col) ? "," col ) "]" 13. ; Figure 14 shows an extract of the TCS file for Flat s-COMMA. Each class of the Flat s-COMMA metamodel has a dedicated template declared with the same name. Within templates, words between double quotes are tokens in the grammar (e.g. "variables", ":"). Words without double quotes are used to introduce the corresponding list of concepts. For instance variables is defined as a reference to objects Variable in the class Problem of the metamodel. Thus, variables is used to call their associate template i.e., the Variable template. This template defines the syntactic structure of a variable declaration. It has a conditional structure ((isDefined(array) ? array)), which means that the template Array is only called if the variable is defined as an array.

Transformation process

TCS and KM3 work together and their compilation generates a Java package (which includes lexers, parsers and code generators) for Flat s-COMMA (FsC), which is then used by the ATL files to generate the target model. Figure 15 depicts the complete transformation process. The Flat s-COMMA file is the output of the s-COMMA GUI, this file is taken by the Java package which generates a XMI 3(XML Metadata Interchange) for Flat s-COMMA, this file includes an organized representation of models in terms of their concepts in order to facilitate the task of transformation rules. Over this file ATL rules act and generate a XMI file for Gecode/J. Finally this file is taken by the Gecode/J2Text which builds the solver file. The complete process involves TCS, KM3 and ATL. But, the integration of a new translator just requires KM3 and ATL (the mapping tool only needs one TCS file). As we mention in Section 4.2, solver metamodels are almost equivalents, and ATL rules are mainly one to one mappings. As a consequence, the development of KM3 and ATL rules for new solver-translators should not be a hard task. So, we could say that the concrete work for plugging a new solver is reduced to the definition of the ATL2Text file.

Currently, There are two versions of our mapping tool, one with AMMA translators and one with translators written by hand (in Java), which we got from a preliminary development phase of the system. Comparing both approaches, let us make the following concluding remarks.

• The development of hand-written translators is in general a hard task. Their creation, modification and reuse require to have a deep insight in the code and in the architecture of the platform, even more if they have a specific and/or complex design. For instance, the developer may be forced to directly use lexers and parsers, or a given library which provides specific methods to generates the target files. • The development of AMMA translators does not require advanced language implementation skills. We show that the use of KM3 and ATL is not really a hard task. Moreover, AMMA is supported by a set of tools [START_REF]Eclipse Model-to-model transformation[END_REF] which provide a great framework to create and manipulate KM3, ATL and TCS models, and also for project handling. An independent definition of syntax concerns (ATL2Text) from metamodel concepts (KM3) is another advantage which gives us a more organized view that facilitates the creation and reuse of translators.

Direct code generation

There is another approach to develop translators using the AMMA platform. For instance, if we want to use just the Flat s-COMMA features that are supported by the solver, we can omit the transformation rules and we can apply the ATL2Text directly on the source metamodel. Figure 16 shows this direct code generation process. Although this approach is simpler, it is less flexible since we lose the possibility of using interesting rules transformations such as the set matrix decomposition explained in Section 4.2.

Experiments

We have carried out a set of tests in order to first compare the performance of AMMA translators (using transformation rules) with translators written by hand, and second, to show that the automatic generation of solver files does not lead to a loss of performance in terms of solving time. Tests have been performed on a 3GHz Pentium 4 with 1GB RAM running Ubuntu 6.06, and benchmarks used are the following [28]:

• Send: The cryptoarithmetic puzzle Send + More = Money.

• Stable: The stable marriage problem presented.

• Queens: The N-Queens problem (n=10 and n=18).

• Packing: Packing 8 squares into a square of area 25.

• Production: A production-optimization problem.

• Ineq20: 20 Linear Inequalities.

• Engine: The assembly of a car engine subject to design constraints.

• Sudoku: The Sudoku logic-based number placement puzzle.

• Golfers: To schedule a golf tournament. Table 1 shows preliminary results comparing AMMA translators with translators written by hand (in Java). Column 3 and 4 give the translation times using Java and AMMA translators, from Flat s-COMMA (FsC) to Gecode/J and from Flat s-COMMA to ECL i PS e , respectively. Translation times from s-COMMA (sC) to optimizations can be done especially on the parsing process of the source file (more than 60% of the time is consumed by this process). Although our primary scope is not focused on performance, we expect to improve this using the next AMMA version. However, despite of this speed difference, we believe translation times using AMMA are acceptable and this loss of performance is a reasonable price to pay for using a generic approach.

In Table 2 we compare the solver files generated by AMMA translators 4 with native solver files version written by hand. The data is given in terms of solving time(seconds)/model size(tokens). Results show that generated solver files are in general bigger than solver versions written by hand. This is explained by the loop unrolling and flattening composition processes presented in Section 3.3. However, this increase in terms of code size does not cause a negative impact on the solving time. In general, generated solver versions are very competitive with hand-written versions.

Table 2 also shows that Gecode/J files are bigger than ECL i PS e files, this is because the Java syntax is more verbose than the ECL i PS e syntax.

Related Work

s-COMMA is as related to solver-independent languages as objectoriented languages. In the next paragraphs we compare our approach to languages belonging to these groups.

Solver-Independent Constraint Modeling

Solver-independence in constraint modeling languages is a recent trend. Just a few languages have been developed under this principle. One example is MiniZinc, which is mainly a subset of constructs provided by Zinc, its syntax is closely related to OPL and its solver-independent platform allows to translate models into Gecode and ECL i PS e solver code. This model transformation is performed by a rule-based system called Cadmium [5] which can be regarded as an extension of Term-Rewriting (TR) [START_REF] Baader | Term rewriting and all that[END_REF] and Constraint Handling Rules (CHR) [11]. This process also involves an intermediate model called FlatZinc, which plays a similar role than Flat s-COMMA, to facilitate the translation.

The implementation of our approach is quite different to Cadmium. While Cadmium is supported by CHR and TR, our approach is based on standard model transformation techniques, which we believe give us some advantages. For instance, ATL and KM3 are strongly supported by the model engineering community. A considerable amount of documentation and several examples are available at the Eclipse IDE site [START_REF]Eclipse Model-to-model transformation[END_REF]. Tools such as Eclipse plug-ins are also available for developing and debugging applications. It is not less important to mention that ATL is considered as a standard solution for model transformation in Eclipse.

On the technical side, the Cadmium system is strongly tied to MiniZinc. This is a great advantage since the rules operate directly on Zinc expression, so transformation rules are often compact. However, this integration forces to merge the metamodel concepts of MiniZinc with the MiniZinc syntax. This property makes Cadmium programs more compact but less modular than our approach, where the syntax is defined independently from the metamodel (as we have presented in Section 4).

Essence is another solver-independent language. Its syntax is addressed to users with a background in discrete mathematics, this style makes Essence a specification language rather than a modeling language. The Essence execution platform allows to map specifications into ECL i PS e and Minion solver [13]. A model transformation system called Conjure has been developed, but the integration of solver translators is not its scope. Conjure takes as input an Essence specification and transform it to an intermediate OPL-like language called Essence'. Translators from Essence' to solver code are written by hand.

From a language standpoint, s-COMMA is as expressive as MiniZinc and Essence, in fact these approaches provide similar constructs and modeling features. However, a main feature of s-COMMA that strongly differences it from aforementioned languages is the object-oriented framework provided and the possibility of modeling problems using a visual language.

Object-Oriented Constraint Modeling and Visual Environments

The capability of defining constraints in an object-oriented modeling language is the base of the object-oriented constraint modeling paradigm. The first attempt in performing this combination was on the development of ThingLab [3]. This approach was designed for interactive graphical simulation. Objects were used to represent graphical elements and constraints defined the composition rules of these objects. COB [START_REF] Jayaraman | Modeling Engineering Structures with Constrained Objects[END_REF] is another object-oriented language, but its framework is not purely based on this paradigm. In fact, the language is a combination of objects, first order formulas and CLP (Constraint Logic Programming) predicates. A GUI tool is also provided for modeling problems using CUML, a UML-like language. The focus of this language was the engineering design. Modelica [START_REF] Fritzson | Modelica -A Unified Object-Oriented Language for System Modeling and Simulation[END_REF] is another object-oriented approach for modeling problems from the engineering field, but it is mostly oriented towards simulation.

Gianna [START_REF] Paltrinieri | A Visual Constraint-Programming Environment[END_REF] is a precursor visual environment for modeling CSP. But its modeling style is not object-oriented and the level of abstraction provided is lower than in UML-like languages. In this tool, CSPs are stated as constraint graphs where nodes represent the variables and the edges represent the constraints.

Although these approaches do not have a system to plug-in new solvers and were developed for a specific application domain, we believe it is important to mention them.

It is important to clarify too, that object-oriented capabilities are also provided by languages such as CoJava [START_REF] Brodsky | CoJava: Optimization Modeling by Nondeterministic Simulation[END_REF]; and in libraries such as Gecode or ILOG SOLVER. The main difference here is that the host language provided is a programming language but not a high-level modeling language. As we have explained in Section 1, advanced programming skills may be required to deal with these tools.

Conclusions and Future Work

In this work we have presented s-COMMA, an extensible MDD platform for modeling CSPs. The whole system is composed by two main parts: A modeling tool and a mapping tool, which provide to the users the following three important facilities:

• A visual modeling language that combines the declarative aspects of constraint programming with the useful features of object-oriented languages. The user can state modular models in an intuitive way, where the compositional structure of the problem can be easily maintained through the use of objects under constraints. • Models are stated independently from solver languages. Users are able to design just one model and to target different solvers. This clearly facilitates experimentation and benchmarking. • A model transformation system supported by the AMMA platform which follows the standards of the software engineering field. The system allows users to plug-in new solvers without writing translators by hand.

Currently, we do not use s-COMMA as our source model, because its metamodel is quite large and defining generic mappings to different solver metamodels will be a serious challenge. However we believe that this task will lead to an interesting future work, for instance to perform reverse engineering (e.g. Gecode/J to s-COMMA or ECL i PS e to s-COMMA). The use of AMMA for model optimization will be useful too, for instance to eliminate redundant or useless constraints. The definition of selective mappings is also an interesting task, for instance to decide, depending on the solver used, whether loops must be unrolled or the composition must be flattened.
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 26 Figure 6. An s-COMMA model for the stable marriage problem.

Figure 7 .

 7 Figure 7. Flat s-COMMA Metamodel.

  (a ⇒ b) ∧ (a ∨ c). • Logic formulas transformation: Some logic operators are not supported by solvers. For example, logical equivalence (a ⇔ b) and reverse implication (a ⇐ b). We transform logical equivalence expressing it in terms of logical implication ((a ⇒ b) ∧ (b ⇒ a)). Reverse implication is simply inverted (b ⇒ a).
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 8 Figure 8. The Flat s-COMMA model of the stable marriage problem.
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 9 Figure 9. An extract of the Flat s-COMMA KM3 metamodel.
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 10 Figure 10. ATL rules for transformation from Flat s-COMMA to Gecode/J.
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 15 Figure 15. The AMMA model-driven process on the example of Flat s-COMMA (FsC) to Gecode/J.
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 16 Figure 16. Direct code generation.

•

  Enumeration substitution: In general solvers do not support non-numeric types. So, enumerations are replaced by integer values. However, enumeration values are stored to show the results in the correct format. • Data substitution: Data variables stated in the model file are replaced by their corresponding values i.e., the value defined in the data file. • Loop unrolling: Loops are not widely supported by solvers, hence we generate an unrolled version of the forall loop. • Flattening composition: The hierarchy generated by composition is flattened. This process is done by expanding each object declared in the main class adding its attributes and constraints in the Flat s-COMMA file. The name of each attribute has a prefix corresponding to the concatenation of the names of objects of origin in order to avoid name redundancy. • Conditional removal: Conditional statements are transformed to logical formulas. For instance, if a then b else c is replaced by

Table 1 .

 1 Translation times (seconds)

		sC to	FsC to Gecode/J	FsC to ECL i PS e
	Benchmark	FsC	Java	AMMA Java	AMMA
	Send	0.237	0.052	0.688	0.048	0.644
	Stable	0.514	0.137	1.371	0.143	1.386
	10-Queens	0.409	0.106	1.301	0.115	1.202
	18-Queens	0.659	1.122	3.194	0.272	2.889
	Packing	0.333	0.172	1.224	0.133	1.246
	Production	0.288	0.071	0.887	0.066	0.783
	20 Ineq.	0.343	0.072	0.895	0.072	0.891
	Engine	0.285	0.071	0.815	0.071	0.844
	Sudoku	3.503	1.290	4.924	0.386	4.196
	Golfers	0.380	0.098	1.166	0.111	1.136

Table 2 .

 2 Solving times(seconds) and model sizes (number of tokens)Flat s-COMMA are given for reference in column 2 (This process involves syntactic and semantic checking, and the transformations explained in Section 3.3). The results show that AMMA translators are slower than Java translators, this is unsurprising since Java translators have been designed specifically for s-COMMA. They take as input a Flat s-COMMA definition and generate the solver file directly. The transformation process used by AMMA translators is not direct, it performs intermediate phases (XMI to XMI). Moreover, the AMMA tools are under continued development and many

		Gecode/J		ECL i PS e	
	Benchmark	hand	AMMA	hand	AMMA
	Send	0.002/	0.002/	0.01/	0.01/
		590	615	231	329
	Stable	0.005/	0.005/	0.01/	0.01/
		1898	8496	1028	4659
	10-Queens	0.003/	0.003/	0.01/	0.01/
		460	9159	193	1958
	18-Queens	0.008/	0.008/	0.02/	0.02/
		460	30219	193	6402
	Packing	0.009/	0.009/	0.49/	0.51/
		663	12037	355	3212
	Production	0.026/	0.028/	0.014/ 0.014/
		548	1537	342	703
	20 Ineq	13.886/	14.652/	10.34/ 10.26/
		1576	1964	720	751
	Engine	0.012/	0.012/	0.01/	0.01/
		1710	1818	920	1148
	Sudoku	0.007/	0.007/	0.21/	0.23/
		1551/	33192/	797/	11147/
	Golfers	0.005/	0.005/	0.21/	0.23/
		618/	4098/	980/	1147/

Let us note that we use standard modeling variable-assignments, that is, assignments are performed respecting the order of the class' attributes: the first element of the variable-assignment is matched with the first attribute of the class, the second element of the variable-assignment with the second attribute of the class and so on.

XMI is the standard used for exchanging metadata in MDD architectures.• The development of hand-written translators requires more code lines. In our implementation, the source files of Java translators are approximately 60% bigger than the AMMA translators source files (ATL+KM3).

In the comparison, we do not consider solver files generated by Java translators. They do not have relevant differences compared to solver files generated by AMMA translators.
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