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Probabilistic Automata on Finite Words: Decidable and Undecidable Problems

. About the Emptiness problem, we provide a new simple undecidability proof and prove that it is undecidable for automata with as few as two probabilistic transitions. The Value 1 Problem is the special case of the Isolation Problem when λ = 1 or λ = 0. The decidability of the Value 1 Problem was an open question. We show that the Value 1 Problem is undecidable. Moreover, we introduce a new class of probabilistic automata, ♯-acyclic automata, for which the Value 1 Problem is decidable.

Introduction

Probabilistic automata on finite words are a computation model introduced by Rabin [START_REF] Michael | Probabilistic automata[END_REF]. Like deterministic automata on finite words, a probabilistic automaton reads finite words from a finite alphabet A. Each time a new letter a ∈ A is read, a transition from the current state s ∈ Q to a new state t ∈ Q occur. In a deterministic automaton, t is a function of s and a. In a probabilistic automaton, a lottery determines the new state, according to transition probabilities which depend on the current state s and letter a.

Since the seminal paper of Rabin, probabilistic automata on finite words have been extensively studied, see [START_REF] Bukharaev | Probabilistic automata[END_REF] for a survey of 416 papers and books about probabilistic automata published in the 60s and 70s.

Quite surprisingly, relatively few algorithmic results are known about probabilistic automata on finite words and almost all of them are undecidability results. There are two main algorithmic problems for probabilistic automata on finite words: the Emptiness Problem and the Isolation Problem. The Emptiness Problem asks, given some probability 0 ≤ λ ≤ 1, whether there exists a word accepted with probability greater than λ, while the Isolation Problem asks whether there exist words whose acceptance probability is arbitrarily close to λ. Both these problems were shown undecidable, respectively by Paz [START_REF] Paz | Introduction to probabilistic automata[END_REF] and Bertoni [START_REF] Bertoni | The solution of problems relative to probabilistic automata in the frame of the formal languages theory[END_REF][START_REF] Bertoni | Some recursive unsolvable problems relating to isolated cutpoints in probabilistic automata[END_REF]. To our knowledge, most decidability results known for probabilistic automata on finite words are rather straightforward: they either apply to one-letter probabilistic automata, in other words Markov chains, or to problems where the probabilistic nature of the automaton is not taken into account. A notable exception is the decidability of language equality [START_REF] Tzeng | A polynomial-time algorithm for the equivalence of probabilistic automata[END_REF].

In contrast, several algorithmic results were proved for probabilistic automata on infinite words. The existence of an infinite word accepted with probability 1 is decidable [START_REF] Alur | Distinguishing tests for nondeterministic and probabilistic machines[END_REF]. For probabilistic Büchi automata [START_REF] Baier | On decision problems for probabilistic büchi automata[END_REF], the emptiness problem may be decidable or not depending on the acceptance condition. A class of probabilistic Büchi automata which recognize exactly ω-regular languages was presented in [START_REF] Chadha | Power of randomization in automata on infinite strings[END_REF]. In this paper, we only consider automata on finite words but several of our results seem to be extendable to probabilistic automata on infinite words.

Our contributions are the following. First, we provide in Section 2.1 a new proof for the undecidability of the Emptiness Problem.

Second, we strengthen the result of Paz: the Emptiness Problem is undecidable even for automata with as few as two probabilistic transitions (Proposition 4).

Third, we solve an open problem: Bertoni's result shows that for any fixed cut-point 0 < λ < 1, the Isolation Problem is undecidable. However, as stated by Bertoni himself, the proof seems hardly adaptable to the symmetric cases λ = 0 and λ = 1. We show that both these cases are undecidable as well, in other words the Value 1 Problem is undecidable (Theorem 4).

Fourth, we introduce a new class of probabilistic automata, ♯-acyclic automata, for which the Value 1 Problem is decidable (Theorem 5 in Section 4). To our opinion, this is the main contribution of the paper. Moreover, this result is a first step towards the design of classes of stochastic games with partial observation for which the value 1 problem is decidable.

These undecidability results show once again that probabilistic automata are very different from deterministic and non-deterministic automata on finite of infinite words, for which many algorithmic problems are known to be decidable (e.g. emptiness, universality, equivalence). Surprisingly maybe, we remark that several natural decision problems about deterministic and non-deterministic automata are undecidable as well (Corollaries 1 and 2).

Due to space restrictions most proofs are omitted, they can be found in [?].

1 Probabilistic Automata

A probability distribution on Q is a mapping δ ∈ [0, 1] Q such that s∈S δ(s) = 1.
The set {s ∈ Q | δ(s) > 0} is called the support of δ and denoted Supp(δ). For every non-empty subset S ⊆ Q, we denote δ S the uniform distribution on S defined by δ(q) = 0 if q ∈ S and δ(q) = 1 |S| if q ∈ S. We denote D(Q) the set of probability distributions on Q.

Formally, a probabilistic automaton is a tuple A = (Q, A, (M a ) a∈A , q 0 , F ), where Q is a finite set of states, A is the finite input alphabet, (M a ) a∈A are the transition matrices, q 0 is the initial state and F is the set of accepting states. For each letter a ∈ A, M a ∈ [0, 1] Q×Q defines transition probabilities: 0 ≤ M a (s, t) ≤ 1 is the probability to go from state s to state t when reading letter a. Of course, for every s ∈ S and a ∈ A, t∈S M a (s, t) = 1, in other word in the matrix M a , the line with index s is a probability distribution on Q.

Transition matrices define a natural action of A * on D(Q). For every word a ∈ A and δ ∈ D(S), we denote δ • a the probability distribution in D(Q) defined by (δ • a)(t) = s∈Q δ(s) • M a (s, t). This action extends naturally to words of

A * : ∀w ∈ A * , ∀a ∈ A, δ • (wa) = (δ • w) • a.
The computation of A on an input word w = a 0 . . . a n ∈ A * is the sequence

(δ 0 , δ 1 , . . . , δ n ) ∈ D(Q) n+1 of probability distributions over Q such that δ 0 = δ {q0} and for 0 ≤ i < n, δ i+1 = δ i • a i .
For every state q ∈ Q and for every set of states R ⊆ Q, we denote P A (q w -→ R) = r∈R (δ q • w)(r) the probability to reach the set R from state q when reading the word w.

Definition 1 (Value and acceptance probability). The acceptance probability of a word w ∈ A * by A is P A (w) = P A (q 0 w -→ F ). The value of A, denoted val(A), is the supremum acceptance probability: val(A) = sup w∈A * P A (w).

The Emptiness Problem

Rabin defined the language recognized by a probabilistic automaton as L A (λ) = {w ∈ A * | P A (w) ≥ λ}, where 0 ≤ λ ≤ 1 is called the cut-point. Hence, a canonical decision problem for probabilistic automata is: Problem 1 (Emptiness Problem) Given a probabilistic automaton A and 0 ≤ λ ≤ 1, decide whether there exists a word w such that P A (w) ≥ λ.

The Strict Emptiness Problem is defined the same way except the large inequality P A (w) ≥ λ is replaced by a strict inequality P A (w) > λ.

The special cases where λ = 0 and λ = 1 provide a link between probabilistic and non-deterministic automata on finite words. First, the Strict Emptiness Problem for λ = 0 reduces to the emptiness problem of non-deterministic automata, which is decidable in non-deterministic logarithmic space. Second, the Emptiness Problem for λ = 1 reduces to the universality problem for nondeterministic automata, which is PSPACE-complete [START_REF] Kozen | Lower bounds for natural proofs systems[END_REF]. The two other cases are trivial: the answer to the Emptiness Problem for λ = 0 is always yes and the answer to the Strict Emptiness Problem for λ = 1 is always no.

In the case where 0 < λ < 1, both the Emptiness and the Strict Emptiness Problems are undecidable, which was proved by Paz [START_REF] Paz | Introduction to probabilistic automata[END_REF]. The proof of Paz is a reduction from an undecidable problem about free context grammars. An alternative proof was given by Madani, Hanks and Condon [START_REF] Madani | On the undecidability of probabilistic planning and related stochastic optimization problems[END_REF], based on a reduction from the emptiness problem for two counter machines. Since Paz was focusing on expressiveness aspects of probabilistic automata rather than on algorithmic questions, his undecidability proof is spread on the whole book [START_REF] Paz | Introduction to probabilistic automata[END_REF], which makes it arguably hard to read. The proof of Madani et al. is easier to read but quite long and technical.

In the next section, we present a new simple undecidability proof of the Emptiness Problem.

New proof of undecidability

In this section we show the undecidability of the (Strict) Emptiness Problem for the cut-point 1 2 and for a restricted class of probabilistic automata called simple probabilistic automata: Definition 2 (Simple automata). A probabilistic automaton is called simple if every transition probability is in 0, 1 2 , 1 . The proof is based on a result of Bertoni [START_REF] Bertoni | The solution of problems relative to probabilistic automata in the frame of the formal languages theory[END_REF]: the undecidability of the Equality Problem.

Problem 2 (Equality problem) Given a simple probabilistic automaton A, decide whether there exists a word w ∈ A * such that P A (w) = 1 2 .

Proposition 1 (Bertoni). The equality problem is undecidable.

The short and elegant proof of Bertoni is a reduction of the Post Correspondence Problem (PCP) to the Equality Problem.

Problem 3 (PCP) Let ϕ 1 : A → {0, 1} * and ϕ 2 : A → {0, 1} * two functions, naturally extended to A * . Is there a word w ∈ A * such that ϕ 1 (w) = ϕ 2 (w)?

Roughly speaking, the proof of Proposition 1 consists in encoding the equality of two words in the decimals of transition probabilities of a well-chosen probabilistic automaton. While the reduction of PCP to the Equality problem is relatively well-known, it may be less known that there exists a simple reduction of the Equality problem to the Emptiness and Strict Emptiness problems: Proposition 2. Given a simple probabilistic automaton A, one can compute probabilistic automata B and C whose transition probabilities are multiple of 1 4 and such that:

∃w ∈ A + , P A (w) = 1 2 ⇐⇒ ∃w ∈ A + , P B (w) ≥ 1 4 (1) 
⇐⇒ ∃w ∈ A + , P C (w) > 1 8 . ( 2 
)
Proof. The construction of B such that (1) holds is based on a very simple fact: a real number x is equal to 1 2 if and only if x(1-x) ≥ 1 4 . Consider the automaton B which is the cartesian product of A with a copy of A whose accepting states are the non accepting states of A. Then for every word w ∈ A * , P A1 (w) = P A (w)(1 -P A (w)), thus (1) holds.

The construction of C such that (2) holds is based on the following idea. Since A is simple, transition probabilities of B are multiples of 1 4 , thus for every word w of length |w|, P B (w) is a multiple of 

(aw) = 1 2 • P B (w) + 1 2 • 1 4 |w| , thus (2) 
holds. To build C, simply add a new initial state that goes with equal probability 1 2 either to the initial state of B or to a new accepting state q f . From q f , whatever letter is read, next state is q f with probability 1 4 and with probability 3 4 it is a new non-accepting absorbing sink state q * . ⊓ ⊔

As a consequence:

Theorem 1 (Paz). The emptiness and the strict emptiness problems are undecidable for probabilistic automata. These problems are undecidable even for simple probabilistic automata and cut-point λ = 1 2 .

To conclude this section, we present another connection between probabilistic and non-probabilistic automata on finite words.

Corollary 1. The following problem is undecidable. Given a non-deterministic automaton on finite words, does there exists a word such that at least half of the computations on this word are accepting?

We do not know a simple undecidability proof for this problem which does not make of use of probabilistic automata.

Probabilistic automata with few probabilistic transitions

Hirvensalo [START_REF] Hirvensalo | Improved undecidability results on the emptiness problem of probabilistic and quantum cut-point languages[END_REF] showed that the emptiness problem is undecidable for probabilistic automata which have as few as 2 input letters and 25 states, see also [START_REF] Blondel | Undecidable problems for probabilistic automata of fixed dimension[END_REF] for similar result about the isolation problem.

On the other hand, the emptiness problem is decidable for deterministic automata. This holds whatever the number of states, as long as there are no probabilistic transition in the automaton. Formally, a probabilistic transition is a couple (s, a) of a state s ∈ S and a letter a ∈ A such that for at least one state t ∈ S, 0 < M a (s, t) < 1.

This motivates the following question: what is the minimal number of probabilistic transitions for which the emptiness problem is undecidable?

The following undecidability result is a rather surprising answer:

Proposition 3. The emptiness problem is undecidable for probabilistic automata with two probabilistic transitions.

Moreover, a slight variant of the emptiness problem for probabilistic automata with one probabilistic transition is undecidable: Proposition 4. The following problem is undecidable: given a simple probabilistic automaton over an alphabet A with one probabilistic transition and given a rational language of finite words L ⊆ A * , decide whether P A (w) ≥ 1 2 for some word w ∈ L.

For probabilistic automata with a unique probabilistic transition, we do not know whether the emptiness problem is decidable or not.

Undecidability of the Value 1 problem

In his seminal paper about probabilistic automata [START_REF] Michael | Probabilistic automata[END_REF], Rabin introduced the notion of isolated cut-points.

Definition 3. A real number 0 ≤ λ ≤ 1 is an isolated cut-point with respect to a probabilistic automaton A if: ∃ε > 0, ∀w ∈ A * , |P A (w) -λ| ≥ ε .
Rabin motivates the introduction of this notion by the following theorem:

Theorem 2 (Rabin). Let A a probabilistic automaton and 0 ≤ λ ≤ 1 a cut- point. If λ is isolated then the language L A (λ) = {u ∈ A * | P A (u) ≥ λ} is rational.
This result suggests the following decision problem.

Problem 4 (Isolation Problem) Given a probabilistic automaton A and a cut-point 0 ≤ λ ≤ 1, decide whether λ is isolated with respect to A.

Bertoni [START_REF] Bertoni | The solution of problems relative to probabilistic automata in the frame of the formal languages theory[END_REF] proved that the Isolation Problem is undecidable in general: Theorem 3 (Bertoni). The Isolation Problem is undecidable for probabilistic automata with five states.

A closer look at the proof of Bertoni shows that the Isolation Problem is undecidable for a fixed λ, provided that 0 < λ < 1.

However the same proof does not seem to be extendable to the cases λ = 0 and λ = 1. This was pointed out by Bertoni in the conclusion of [START_REF] Bertoni | The solution of problems relative to probabilistic automata in the frame of the formal languages theory[END_REF]: "Is the following problem solvable: ∃δ > 0, ∀x, (p(x) > δ)? For automata with 1-symbol alphabet, there is a decision algorithm bound with the concept of transient state [START_REF] Paz | Introduction to probabilistic automata[END_REF]. We believe it might be extended but have no proof for it".

The open question mentioned by Bertoni is the Isolation Problem for λ = 0. The case λ = 1 is essentially the same, since 0 is isolated in an automaton A if and only if 1 is isolated in the automaton obtained from A by turning final states to non-final states and vice-versa. When λ = 1, the Isolation Problem asks whether there exists some word accepted by the automaton with probability arbitrarily close to 1. We use the game-theoretic terminology and call this problem the Value 1 Problem.

The open question of Bertoni can be rephrased as the decidability of the following problem: The proof of Theorem 4 relies on the fact that there is a natural way to combine A x with an arbitrary automaton B so that the resulting automaton has value 1 if and only if some word is accepted by B with probability strictly greater than The value 1 problem for simple probabilistic automata can be straigntforwardly rephrased as a "quantitative" decision problem about non-deterministic automaton on finite words, which shows that:

Corollary 2. This decision problem is undecidable: given a non-deterministic automaton on finite words, does there exists words such that the proportion of of non-accepting computation pathes among all computation pathes is arbitrarily small?

In this section, we introduce a new class of probabilistic automata, ♯-acyclic probabilistic automata, for which the value 1 problem is decidable.

To get a decision algorithm for the value 1 problem, our starting point is the usual subset construction for non-deterministic automata, defined by mean of the natural action of letters on subsets of Q. However the quantitative aspect of the Value 1 Problem stressed in Corollary 2 suggests that the subset construction needs to be customized. Precisely, we use not only the usual action S • a of a letter a on a subset S ⊆ Q of states but consider also another action a ♯ . Roughly speaking, a ♯ deletes states that are transient when reading letter a forever.

Definition 4 (Actions of letters and ♯-reachability).

Let A a probabilistic automaton with alphabet A and set of states Q. Given S ⊆ Q and a ∈ A, we denote:

S • a = {s ∈ Q | ∃s ∈ S, M a (s, t) > 0} . A state t ∈ Q is a-reachable from s ∈ Q if for some n ∈ N, P A (s a n --→ t) > 0. A state s ∈ Q is a-recurrent if it

is in a bottom strongly connected component of the graph of states and a-transitions i.e. if for any state

t ∈ Q, (t is a-reachable from s) =⇒ (s is a-reachable from t) . A set S ⊆ Q is a-stable if S = S • a. If S is a-stable, we denote: S • a ♯ = {s ∈ S | s is a-recurrent} .
The support graph G A of a probabilistic automaton A with alphabet A and set of states Q is the directed graph whose vertices are the non-empty subsets of Q and whose edges are the pairs (S, T ) such that for some letter a ∈ A, either (S • a = T ) or (S • a = S and S • a ♯ = T ).

Reachability in the support graph of A is called ♯-reachability in A.

The class of ♯-acyclic probabilistic automata is defined as follows.

Definition 5 (♯-acyclic probabilistic automata). A probabilistic automaton is ♯-acyclic if the only cycles in its support graph are self-loops.

Obviously, this acyclicity condition is quite strong. However, it does not forbid the existence of cycles in the transition table, see for example the automaton depicted on Fig. 2. Note also that the class of ♯-acyclic automata enjoys good properties: it is closed under cartesian product and parallel composition.

The value 1 problem is decidable for ♯-acyclic automata

For ♯-acyclic probabilistic automata, the value 1 problem is decidable: Theorem 5. Let A be a probabilistic automaton with initial state q 0 and final states F . Suppose that A is ♯-acyclic . Then A has value

1 if and only if F is ♯-reachable from {q 0 } in A.
The support graph can be computed on the fly in polynomial space thus deciding whether a probabilistic automaton is ♯-acyclic and whether an ♯-acyclic automaton has value 1 are PSPACE decision problems.

The rest of this section is dedicated to the proof of Theorem 5. This proof relies on the notion of limit-paths. Definition 6 (Limit paths and limit-reachability). Let A be a probabilistic automaton with states Q and alphabet A. Given two subsets S, T of Q, we say that T is limit-reachable from S in A if there exists a sequence w 0 , w 1 , w 2 , . . . ∈ A * of finite words such that for every state s ∈ S:

P A (s wn --→ T ) ----→ n→∞ 1 .
The sequence w 0 , w 1 , w 2 , . . . is called a limit path from S to T , and T is said to be limit-reachable from S in A.

In particular, an automaton has value 1 is and only if F is limit-reachable from {q 0 }.

To prove Theorem 5, we show that in ♯-acyclic automata, ♯-reachability and limit-reachability coincide. The following proposition shows that ♯-reachability always imply limit-reachability, may the automaton be ♯-acyclic or not. Proposition 6. Let A be a probabilistic automaton with states Q and S, T ⊆ Q.

If T is ♯-reachable from S in A then T is limit-reachable from S in A.
The converse implication is not true in general. For example, consider the automaton depicted on Fig. 3. There is only one final state, state 3. The initial state is not represented, it leads with equal probability to states 1, 2 and 3. The transitions from states 1, 2 and 3 are either deterministic or have probability 1 2 . It turns out that the automaton on Fig. 3 has value 1, because ((b n a) n ) n∈N is a limit-path from {1, 2, 3} to {3}. However, {3} is not reachable from {1, 2, 3} in the support graph. Thus, limit-reachability does not imply ♯-reachability in general. This automaton is not ♯-acyclic , because his support graph contains a cycle of length 2 between {1, 2, 3} and {1, 3}. It is quite tempting to add an edge labelled (ab ♯ ) ♯ between {1, 3} and {3}. Now we prove that for ♯-acyclic automata, limit-reachability implies ♯-reachability.

Definition 7 (Stability and ♯-stability). Let A be a probabilistic automaton with states Q. The automaton A is stable if for every letter a ∈ A, Q is a-stable.

A stable automaton A is ♯-stable if for every letter a ∈ A Q • a ♯ = Q.
The proof relies on the three following lemmatas.

Lemma 1 (Blowing lemma). Let A be a ♯-acyclic probabilistic automaton with states Q and S ⊆ Q. Suppose that A is ♯-acyclic and ♯-stable.

If Q is limit-reachable from S in A, then Q is ♯-reachable from S as well.
Proof (of the blowing lemma). If S = Q there is nothing to prove. If S = Q, we prove that there exists S 1 ⊆ Q such that (i) S 1 is ♯-reachable from S, (ii) S S 1 , and (iii) Q is limit-reachable from S 1 . Since S Q and since there exists a limit-path from S to Q there exists at least one letter a such that S is not a-stable, i.e. S • a ⊆ S. Since A is subset-acyclic, there exists n ∈ N such that S • a n+1 = S • a n i.e. S • a n is a-stable. We choose S 1 = (S • a n ) • a ♯ and prove (i),(ii) and (iii) First, (i) is obvious.

To prove (ii), we prove that S 1 contains both S and S • a. Let s ∈ S. By definition, every state t of S • a n is a-accessible from s. Since A is ♯-stable, state s is a-recurrent and by definition of a-recurrence, s is a-accessible from t. Since t ∈ S • a n and S • a n is a-stable, s ∈ S • a n and since s is a-recurrent s ∈ (S • a n ) • a ♯ = S 1 . The proof that S • a ⊆ S 1 is similar.

If S 1 = Q the proof is complete, because (i) holds. If S 1 Q, then (iii) holds because S ⊆ S 1 thus Q is limit-reachable not only from S but from S 1 as well, using the same limit-path. As long as S n = Q, we use (iii) to build inductively an increasing sequence S S 1 S 2 . . . S n = Q such that for every 1 ≤ k < n, S k+1 is ♯-reachable from S k . Since ♯-reachability is transitive this completes the proof of the blowing lemma.

⊓ ⊔

Next lemma shows that in a ♯-stable and ♯-acyclic automata, once a computation has flooded the whole state space, it cannot shrink back.

Lemma 2 (Flooding lemma). Let A be a probabilistic automaton with states Q. Suppose that A is ♯-acyclic and ♯-stable. Then Q is the only set of states limit-reachable from Q in A. Now, we turn our attention to leaves of the acyclic support graph.

Definition 8. Let A be a probabilistic automaton with states

Q. A non-empty subset R ⊆ Q is called a leaf if for every letter a ∈ A, R • a = R and R • a ♯ = R.
In a stable ♯-acyclic automaton, there is a unique leaf: Lemma 3 (Leaf lemma). Let A be a probabilistic automaton with states Q. Suppose that A is ♯-acyclic .Then there exists a unique leaf ♯-accessible from Q. Every set limit-reachable from Q contains this leaf.

To prove that limit-reachability implies ♯-reachability, we proceed by induction on the depth in the support graph. The inductive step is: Lemma 4 (Inductive step). Let A be a probabilistic automaton with states Q and S 0 , T ⊆ Q. Suppose that A is ♯-acyclic and T is limit-reachable from S 0 . Then either S 0 = T or there exists S 1 = S 0 such that S 1 is ♯-reachable from S 0 in A and T is limit-reachable from S 1 in A.

Repeated use of Lemma 4 gives:

Proposition 7. Let A be a probabilistic automaton with states Q and S 0 , T ⊆ Q. Suppose that A is ♯-acyclic. If T is limit-reachable from S 0 in A, then T is ♯-reachable from S 0 as well. Proof. To prove Proposition 4, we provide an algorithm which takes as input a simple probabilistic automaton A on an alphabet A (with an arbitrary number of probabilistic transitions) and outputs two objects:

• a simple automaton A ′ over an alphabet A ′ with only one probabilistic transition and • |A| words {u a , a ∈ A} on the alphabet A ′ , each word u a of length 3|Q|, such that:

∃w ∈ A * , P A (w) ≥ 1 2 ⇐⇒ ∃w ∈ {u a , a ∈ A} * , P A ′ (w ′ ) ≥ 1 2 . ( 6 
)
According to Theorem 1, the Emptiness Problem for simple probabilistic automata and cut-point 1 2 is undecidable, hence (6) proves Proposition 4. The alphabet A ′ , the automaton A ′ and the words (u a ) a∈A are defined as follows. If A = (Q, A, M, q 0 , F ) then A ′ = (Q ′ , A ′ , M ′ , q 0 , F ) is defined by: 1. The alphabet A ′ is made of a new letter a * plus, for each letter a ∈ A and state s ∈ Q, two new letters α(a, s) and β(a, s) so that:

A ′ = {a * } ∪ a∈A,s∈Q
{α(a, s), β(a, s)} .

2. The set of states of A ′ is obtained from Q by addition of three new states s * , s 0 , s 1 , so that: Q ′ = Q ∪ {s * , s 0 , s 1 } . 3. The initial state q 0 and the set of final states F are left unchanged. 4. The transitions of A ′ are as follows. For every letter a ∈ A and state s ∈ Q, the new letter α(a, s) has no effect on states u = s (i.e. M α(a,s) (u) = u), while from state s the transition is deterministic to state s * i.e. M α(a,s) (s) = s * . 5. The new letter a * has no effect on states u = s * , while from state s * this is the only probabilistic transition of A ′ , defined by M a * (s * ) = 1 2 s 0 + 1 2 s 1 . 6. For every letter a ∈ A and state s ∈ Q, the new letter β(a, s) has no effect on states u ∈ {s 0 , s 1 }. Transitions on letter β(a, s) from states s 0 and s 1 are deterministic and depend on M a (s). If the transition M a (s) is deterministic, i.e. if M a (s, r) = 1 for some state r then M β(a,s) (s 0 ) = r and M β(a,s) (s 1 ) = r.

If the transition M a (s) is probabilistic i.e. if M a (s) = 1 2 r+ 1 2 r ′ for some states r, r ′ then M β(a,s) (s 0 ) = r and M β(a,s) (s 1 ) = r ′ . Now we define the words u a , a ∈ A. Choose some enumeration {s 0 , s 1 , . . . , s n } = Q of states of A and for each letter a, define the word u a = α(a, s 0 )a * β(a, s 0 )α(a, s 1 )a * β(a, s 1 ) • • • α(a, s n )a * β(a, s n ) ∈ A ′ * . Then (6) holds because for every word a 0 a 1 a 2 • • • ∈ A * , P A (a 0 a 1 a 2 • • • ) = P A ′ (u a0 u a1 u a2 . . .) .

Since automaton A ′ has only one probabilistic transition, this completes the proof of Proposition 4.

⊓ ⊔

Problem 5 (Theorem 4 .

 54 Value 1 Problem) Given a probabilistic automaton A, decide whether A has value 1. Unfortunately, The Value 1 Problem is undecidable. The proof of Theorem 4 is a reduction of the Strict Emptiness Problem to the Value 1 Problem. It is similar to the proof of undecidability of the Emptiness Problem for probabilistic Büchi automata of Baier et al. [2]. The core of the proof is the following proposition. Proposition 5. Let 0 < x < 1 and A x be the probabilistic automaton depicted on Fig. 1. Then A x has value 1 if and only if x > 1 2 .

Fig. 1 .

 1 Fig.1. This automaton has value 1 if and only if x >1 2 .

Fig. 2 .

 2 Fig.2. A ♯-acyclic automaton (on the left) and its support graph (on the right). All transition probabilities are equal to1 2 .

Fig. 3 .

 3 Fig.3. This automaton has value 1 and is not ♯-acyclic .

  1 4 |w| . As a consequence, P B (w) ≥1 4 if and only if P B (w) > 1 4 -1 4 |w| . Adding three states to B, one obtains easily a probabilistic automaton C such that for every non-empty word w ∈ A * and letter a ∈ A, P C
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Thus, limit-reachability and ♯-reachability coincide in ♯-acyclic automata and Theorem 5 holds.

Is the maximal distance between two ♯-reachable sets in the support graph bounded by a polynomial function of |A| and |Q|? The answer to this question could lead to a simpler proof and/or algorithm.

Conclusion

Whether the emptiness problem is decidable for probabilistic automata with a unique probabilistic transition is an open question.

The class of ♯-acyclic automata can be probably extended to a larger class of automata for which the value 1 problem is still decidable.

Appendix

Proof (of Proposition 1). Given any instance ϕ 1 , ϕ 2 : A → {0, 1} * of the PCP problem, we build an automaton A which accepts some word with probability 1 2 if and only if PCP has a solution. Let ψ : {0, 1} * → [0, 1] the mapping defined by:

and let θ 1 = ψ • ϕ 1 and θ 2 = ψ • ϕ 2 . Without loss of generality, by insertion of 1's in words of the PCP instance, we can suppose that ϕ 1 , ϕ 2 : A → {10, 11} * . That way, since Φ is injective on 1{0, 1} * :

Let A 1 = (Q, A, M, q 1 0 , q 1 F ) the probabilistic automaton with two states Q = {q 1 0 , q 1 F } and transitions:

A simple computation shows that:

A very similar construction produces a two-states automaton A 2 such that:

Let A be the disjoint union of these two automata A 1 and A 2 plus a new initial state that leads with equal probability 1 2 to one of the initial states q 1 0 and q 2 0 of A 1 and A 2 . Then for every word w ∈ A * and every letter a ∈ A,

where the first equivalence is by definition of A, the second is by ( 4) and ( 5), the third holds by (3) and the fourth is by definition of PCP. This completes the proof of Proposition 1.

⊓ ⊔

Proof (of Theorem 1). According to Proposition 1 and Proposition 2 the emptiness and the strict emptiness problems are undecidable for cut-point 1 2 and automata whose transition probabilities are multiples of 1 8 . The transformation of such automata into simple automata is easy.

Proof. The undecidable problem described in Proposition 4 reduces to the emptiness problem for simple probabilistic automata with two probabilistic transitions: given A and L, add a new initial state to A and from this new initial state, proceed with probability 1 2 either to the original initial state of A to the initial state of a deterministic automaton that checks whether the input word is in L. This new automaton accepts a word with probability more than 3 4 if and only if the original automaton accepts a word with probability more than 1 2 . ⊓ ⊔ 7 Proof of Proposition 5

Proof (of Proposition 5). We shall prove:

In order to prove this equivalence we notice that: P Ax (1

) k∈N an increasing sequence of integers. By reading the word w = a n0 ba n1 b . . . a ni b, we get:

no word w can be accepted with probability greater than 1 2 , in particular the automaton does not have value 1. This proves the converse implication in [START_REF] Chadha | Power of randomization in automata on infinite strings[END_REF]. Assume that x > 1 2 and let ε > 0, we exhibit an increasing sequence of integers (n k ) k∈N such that we have:

In the other hand we have:

There exists β > 1 such that:

Since this series converges, we satisfy [START_REF] Chadha | Power of randomization in automata on infinite strings[END_REF] by choosing a suitable constant c.

Suppose now that ( 7) is satisfied for some sequence n 0 , n 1 , n 2 . . .. Then according to [START_REF] Hirvensalo | Improved undecidability results on the emptiness problem of probabilistic and quantum cut-point languages[END_REF], for every i ∈ N the word a n0 ba n1 b . . . a ni b is accepted by A x with probability

According to , when i goes to ∞, the left operand converges to 1 2 and the right operand is asymptotically larger than 1 2 (1-ε). This proves the implication in [START_REF] Chadha | Power of randomization in automata on infinite strings[END_REF]. ⊓ ⊔

8 Proof of Theorem 4

Proof (of Theorem 4). Given a probabilistic automaton B with alphabet A such that a, b ∈ B, we combine B and the automaton A x on Fig. 1 to obtain an automaton C which has value 1 if and only if there exists a word w such that

C is computed as follows. First, the transitions in A x on letter a are deleted. Second, we make two copies A 4 and A 1 of the automaton B, such that the initial state of A 4 is 4 and the initial state of A 1 is 1. From states of A 4 and A 1 other than the initial states, reading letter b leads to the sink state 6. Third, from a state s of A 4 the transition on the new letter ♯ is deterministic and leads to 5 if s is a final state and to 4 if s is not a final state. Fourth, from a state s of A 1 the transition on the new letter ♯ is deterministic and leads to 1 if s is a final state and to 2 if s is not a final state. Fifth, the final states of C are 5 and 3. Sixth, states 0, 3, 6, 5 and 2 are absorbing for letters in A.

Then suppose there exists w such that P A (w) > 1 2 and let us show that C has value 1. Let ǫ > 0 and let u ǫ = ba i0 ba i1 ba i2 b • • • a i k be a word accepted by B with probability 1ǫ. Then by construction of C,

Now suppose that for every w ∈ A * , P A w ≤ 1 2 and let us show that C has not value 1. Let

Then by construction of C and by hypothesis,

2 ). Thus val(C) ≤ val(A 1 2 ) and according to Proposition 5, val(C) < 1.

⊓ ⊔ 9 Proof of Theorem 5

Proof (of Proposition 6). Proposition 6 is a consequence of the two following facts. First, if there is an edge from S to T in the support graph of A, then T is limit reachable from S: let S, T ⊆ Q and a ∈ A. If S • a = T , then the sequence constant equal to a is a limit path from S to T . If S • a = S and S • a ♯ = T then by definition of S • a ♯ , (a n ) n∈N is a limit path from S to T .

Second, limit-reachability is a transitive relation: let S 0 , S 1 , S 2 ⊆ Q such that S 1 is limit-reachable from S 0 and S 2 is limit-reachable from S 1 . Let (u n ) n∈N a limit-path from S 0 to S 1 and (v n ) n∈N a limit-path from S 1 to S 2 . Then (u n v n ) n∈N is a limit-path from S 0 to S 2 .

⊓ ⊔ Proof (of the leaf lemma). Since A is ♯-acyclic , there exists at least one leaf S which is ♯-reachable from Q. We prove that every set limit-reachable from Q contains the leaf S. Let R limit-reachable from Q and (u n ) n∈N a limit-path from Q to R. Since S is a leaf then for every a ∈ A, S is a-stable, hence (u n ) n∈N is a fortiori a limit-path from S to R ∩ S. Since S is a leaf, the restriction A[S] of the automaton A to S is ♯-stable. According to the flooding lemma applied to A[S], S = R ∩ S, thus S ⊆ R. Since ♯-reachability imply limit-reachability, this implies unicity of the leaf reachable from Q.

⊓ ⊔ Proof (of the Flooding lemma). Let (u n ) n∈N be a limit path from Q to some set of states T Q. We shall prove that

First, we prove that for every letter a ∈ A T , Q\T is a-stable. Otherwise there would be s ∈ Q \ T , a ∈ A T and t ∈ T such that t is a-reachable from s. Since A is ♯-stable, s and t are both a-recurrent, and by definition of a-recurrence, since t is a-reachable from s, s would be a-reachable from t as well. But s ∈ Q \ T and t ∈ T , which contradicts the a-stability of T .

Second, we prove that u n ∈ A * T for only finitely many n ∈ N. Since for every a ∈ A T , Q \ T is a-stable, then during the computation δ Q = δ 0 , δ 1 , . . . , δ |un| on the word u n , s∈Q\T δ k (s) is constant. Thus, for every n ∈ N,

Since (u n ) n∈N is a limit-path from Q to T , P A (s un --→ T ) converges to 0 hence the inequality can hold only for finitely many n ∈ N. Now we show that there exists T 1 ⊆ Q such that:

Since any infinite subsequence of a limit-path is a limit-path, and since we proved that u n ∈ A * T for only finitely many n ∈ N, we can assume w.l.o.g. that for every n ∈ N, u n ∈ A * T . Thus for every n ∈ N, there exists

The choice of T 1 such that (i), (ii) and (iii) hold depends on Supp(δ) • a.

If Supp(δ) • a = T then we choose T 1 = Supp(δ). Then (i) holds because a ∈ A T , (ii) holds because T = T 1 • a and (iii) holds because (v n ) n∈N is a limit-path from Q to T 1 .

If Supp(δ) • a = T then we choose T 1 = Supp(δ) • a. Then (i) clearly holds and (iii) holds because (v n a) n∈N is a limit path from Q to T 1 in A. To prove that (ii) holds, consider the restriction A[T, A T ] of automaton A to states T and alphabet A T . Then (w n ) n∈N is a limit-path from T 1 to T in A[T, A T ]. Moreover, since A is ♯-acyclic and ♯-stable, A[T, A T ] also is. Thus, we can apply the blowing lemma to A[T, A T ] and T 1 , which proves that T is ♯-reachable from T 1 in A[T, A T ], thus in A as well.

If T 1 = Q, the proof is complete. Otherwise, as long as T n = Q, we use condition (iii) to build inductively a sequence

Since ♯-reachability is transitive, this proves that T is ♯-reachable from Q. Since A is ♯-stable, the only set ♯-reachable from Q is Q thus T = Q, which completes the proof of the Flooding lemma.

⊓ ⊔ Proof (of Lemma 4). Let (u n ) n∈N be a limit-path from S 0 to T . Let A 0 = {a ∈ A | S 0 • a = S 0 }. For every n ∈ N, let v n be the longuest prefix of u n in A * 0 . Since every infinite subsequence of a limit-path is a limit-path, and since D(Q) is compact, we can suppose without loss of generality that (δ

Suppose first that Supp(δ) = S 0 . If u n ∈ A * 0 for infinitely many n ∈ N then T = S 0 . Otherwise, since A is finite we can suppose w.l.o.g. that there exists a letter a ∈ A \ A 0 such that for every n ∈ N, v n a is a prefix of u n . Let also w n such that u n = v n aw n . Let S 1 = S 0 • a. Then S 1 = S 0 because a ∈ A 0 and S 1 is clearly ♯-reachable from S 0 . Moreover (w n ) n∈N is a limit-path from S 1 to T , this completes the proof.

Suppose now that Supp(δ) = S 0 . Let A[S 0 , A 0 ] the probabilistic automaton obtained from A by restriction to the alphabet A 0 and to the state space S 0 . By definition of A 0 , A[S 0 , A 0 ] is stable and it is ♯-acyclic because A is. According to the leaf lemma, A[S 0 , A 0 ] has a unique leaf. Let S 1 be this unique leaf. Since Supp(δ) is limit-reachable from S 0 in A[S 0 , A 0 ], according to the leaf lemma again, S 1 ⊆ Supp(δ) hence S 1 = S 0 . Moreover, since it is the unique leaf, S 1 is ♯-reachable from S 0 in A[S 0 , A 0 ] hence in A as well. For every n ∈ N, let w n such that u n = v n w n . Then (w n ) n∈N is a limit-path from S 1 to T . This completes the proof.

⊓ ⊔ Proof (of Proposition 7). Apply again and again Lemma 4 to build a sequence S 0 , S 1 , S 2 , . . . such that for every k, S k = S k+1 , S k+1 is ♯-reachable from S k and T is limit-reachable from S k+1 . As long as S k = T , Lemma 4 is used to build S k+1 . Since A is subset-acyclic, the sequence has length at most 2 Q thus for some k, S k = T . Since ♯-reachability is transitive, this proves that T is ♯reachable from S 0 . ⊓ ⊔