
HAL Id: hal-00456538
https://hal.science/hal-00456538v1

Preprint submitted on 15 Feb 2010 (v1), last revised 27 Apr 2010 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Probabilistic Automata on Finite words: Decidable and
Undecidable Problems

Hugo Gimbert, Youssouf Oualhadj

To cite this version:
Hugo Gimbert, Youssouf Oualhadj. Probabilistic Automata on Finite words: Decidable and Undecid-
able Problems. 2010. �hal-00456538v1�

https://hal.science/hal-00456538v1
https://hal.archives-ouvertes.fr

Probabilistic Automata on Finite Words:

Decidable and Undecidable Problems

Hugo Gimbert1 and Youssouf Oualhadj2

1 LaBRI, CNRS, France
hugo.gimbert@labri.fr

2 LaBRI, Université Bordeaux 1, France
youssouf.oualhadj@labri.fr

Abstract. This paper tackles three algorithmic problems for probabilis-
tic automata on finite words: the Emptiness Problem, the Isolation Prob-
lem and the Value 1 Problem. The Emptiness Problem asks, given some
probability 0 ≤ λ ≤ 1, whether there exists a word accepted with prob-
ability greater than λ, and the Isolation Problem asks whether there
exist words whose acceptance probability is arbitrarily close to λ. Both
these problems are known to be undecidable [8, 2, 3]. About the Empti-
ness problem, we provide a new simple undecidability proof and prove
that it is decidable for automata with one probabilistic transition and
undecidable for automata with as few as two probabilistic transitions.
The Value 1 Problem is the special case of the Isolation Problem when
λ = 1 or λ = 0. The decidability of the Value 1 Problem was an open
question. We show that the Value 1 Problem is undecidable. Moreover,
we introduce a new class of probabilistic automata, "-acyclic automata,
for which the Value 1 Problem is decidable.

Introduction

Probabilistic automata on finite words are a computation model introduced by
Rabin [10]. Like deterministic automata on finite words, a probabilistic automa-
ton reads finite words from a finite alphabet A. Each time a new letter a ∈ A is
read, a transition from the current state s ∈ Q to a new state t ∈ Q occurs. In a
deterministic automaton, t is a function of s and a. In a probabilistic automaton,
a lottery determines the new state, according to transition probabilities which
depend on the current state s and letter a.

Since the seminal paper of Rabin, probabilistic automata on finite words
have been extensively studied, see [4] for a survey of 416 papers and books
about probabilistic automata published in the 60s and 70s.

Quite surprisingly, relatively few algorithmic results are known about prob-
abilistic automata on finite words and almost all of them are undecidability
results. There are two main algorithmic problems for probabilistic automata on
finite words: the Emptiness Problem and the Isolation Problem. The Empti-
ness Problem asks, given some probability 0 ≤ λ ≤ 1, whether there exists
a word accepted with probability greater than λ, while the Isolation Problem

asks whether there exist words whose acceptance probability is arbitrarily close
to λ. Both these problems were shown undecidable, respectively by Paz [8] and
Bertoni [2, 3]. To our knowledge, the known decidability results known for proba-
bilistic automata on finite words are rather straightforward: they either apply to
one-letter probabilistic automata, in other words Markov chains, or to problems
where the probabilistic nature of the automaton is not taken into account.

In contrast, several algorithmic results recently appeared for probabilistic
automata on infinite words. In [1], Baier et al. proved that for probabilistic Büchi
automata, the emptiness problem may be undecidable (when the acceptance
condition is ”positive Büchi”) or decidable (for ”almost-sure Büchi”). In [9] is
presented a class of probabilistic Büchi automata which recognize exactly ω-
regular languages. In this paper, we only consider automata on finite words but
several of our results seem to be extendable to probabilistic automata on infinite
words.

Our contributions are the following.
First, we provide in Section 2.1 a new proof for the undecidability of the

Emptiness Problem.
Second, we strengthen Paz result: the Emptiness Problem is undecidable even

for automata with as few as two probabilistic transitions (Proposition 4) and is
decidable for automata with one probabilistic transition (Proposition 3).

Third, we solve an open problem: Bertoni’s result shows that for any fixed
cut-point 0 < λ < 1, the Isolation Problem is undecidable. However, as stated
by Bertoni himself, the proof seems hardly adaptable to the symmetric cases
λ = 0 and λ = 1. We show that both these cases are undecidable as well, in
other words the Value 1 Problem is undecidable (Theorem 4).

Fourth, we introduce a new class of probabilistic automata, #-acyclic au-
tomata, for which the Value 1 Problem is decidable (Theorem 5). To our knowl-
edge, this is the first non-immediate decidability result for probabilistic automata
on finite words. Moreover, we believe this is a first interesting step towards the
design of classes of stochastic games with partial observation for which the value
1 problem is decidable.

These undecidability results show once again that probabilistic automata are
very different from deterministic and non-deterministic automata on finite of in-
finite words, for which many algorithmic problems are known to be decidable
(e.g. emptiness, universality, equivalence). Surprisingly maybe, we remark that
several natural decision problems about deterministic and non-deterministic au-
tomata are undecidable as well (Corollaries 1 and 2).

1 Probabilistic Automata

A probability distribution onQ is a mapping δ ∈ [0, 1]Q such that
∑

s∈S δ(s) = 1.
The set {s ∈ Q | δ(s) > 0} is called the support of δ and denoted Supp(δ). For
every non-empty subset S ⊆ Q, we denote δS the uniform distribution on S
defined by δ(q) = 0 if q $∈ S and δ(q) = 1

|S| if q ∈ S. We denote D(Q) the set of
probability distributions on Q.

Formally, a probabilistic automaton is a tuple A = (Q,A, (Ma)a∈A, q0, F),
where Q is a finite set of states, A is the finite input alphabet, (Ma)a∈A are
the transition matrices, q0 is the initial state and F is the set of accepting
states. For each letter a ∈ A, Ma ∈ [0, 1]Q×Q defines transition probabilities:
0 ≤ Ma(s, t) ≤ 1 is the probability to go from state s to state t when reading
letter a. Of course, for every s ∈ S and a ∈ A,

∑

t∈S Ma(s, t) = 1, in other word
in the matrix Ma, the line with index s is a probability distribution on Q.

Transition matrices define a natural action of A∗ on D(Q). For every word
a ∈ A we denote δ ·a the probability distribution in D(Q) defined by (δ ·a)(t) =
∑

s∈Q δ(s)·Ma(s, t). This action extends naturally to words of A∗: ∀w ∈ A∗, ∀a ∈
A, δ · (wa) = (δ · w) · a.

The computation of A on an input word w = a0 . . . an ∈ A∗ is the sequence
(δ0, δ1, . . . , δn) ∈ D(Q)n+1 of probability distributions over Q such that δ0 =
δ{q0} and for 0 ≤ i < n, δi+1 = δi · ai.

For every state q ∈ Q and for every set of states R ⊆ Q, we denote PA(q
w
−→

R) =
∑

r∈R(δq · w)(r) the probability to reach the set R from state q when
reading the word w.

Definition 1 (Value and acceptance probability). The acceptance proba-
bility of a word w ∈ A∗ by A is PA(w) = PA(q0

w
−→ F). The value of A, denoted

val(A), is the supremum acceptance probability: val(A) = supw∈A∗ PA(w).

2 The Emptiness Problem

Rabin defined the language recognized by a probabilistic automaton as LA(λ) =
{w ∈ A∗ | PA(w) ≥ λ}, where 0 ≤ λ ≤ 1 is called the cut-point. Hence, a
canonical decision problem for probabilistic automata is:

Problem 1 (Emptiness Problem) Given a probabilistic automaton A and
0 ≤ λ ≤ 1, decide whether there exists a word w such that PA(w) ≥ λ.

The Strict Emptiness Problem is defined the same way except the large in-
equality PA(w) ≥ 1

2 is replaced by a strict inequality PA(w) > 1
2 .

The special cases where λ = 0 and λ = 1 provide a link between proba-
bilistic and non-deterministic automata on finite words. First, the Strict Empti-
ness Problem for λ = 0 reduces to the emptiness problem of non-deterministic
automata, which is decidable in non-deterministic logarithmic space. Second,
the Emptiness Problem for λ = 1 reduces to the universality problem for non-
deterministic automata, which is PSPACE-complete [6]. The two other cases are
trivial: the answer to the Emptiness Problem for λ = 0 is always yes and the
answer to the Strict Emptiness Problem for λ = 1 is always no.

In the case where 0 < λ < 1, both the Emptiness and the Strict Emptiness
Problems are undecidable, this was proved by Paz [8]. The proof of Paz is a re-
duction of the Emptiness Problem to an undecidable problem about free context
grammars. An alternative proof was given by Madani, Hanks and Condon [7],
based on a reduction to the emptiness problem for two counter machines. Since

Paz was focusing on expressiveness aspects of probabilistic automata rather than
on algorithmic questions, his undecidability proof is spread on the whole book [8],
which makes it arguably hard to read. The proof of Madani et al. is easier to
read but quite long and technical.

In the next section, we present a new simple undecidability proof of the
Emptiness Problem.

2.1 New proof of undecidability

In this section we show the undecidability of the (Strict) Emptiness Problem for
the cut-point 1

2 and for a restricted class of probabilistic automata called simple
probabilistic automata:

Definition 2 (Simple automata). A probabilistic automaton is called simple
if every transition probability is in

{

0, 1
2 , 1

}

.

The proof is based on a result of Bertoni [2]: the undecidability of the Equality
Problem.

Problem 2 (Equality problem) Given a simple probabilistic automaton A,
decide whether there exists a word w ∈ A∗ such that PA(w) = 1

2 .

Proposition 1 (Bertoni). The equality problem is undecidable.

The short and elegant proof of Bertoni is a reduction of the Post Correspon-
dence Problem (PCP) to the Equality Problem.

Problem 3 (PCP) Let ϕ1 : A → {0, 1}∗ and ϕ2 : A → {0, 1}∗ two functions,
naturally extended to A∗. Is there a word w ∈ A∗ such that ϕ1(w) = ϕ2(w)?

Roughly speaking, the proof of Proposition 1 consists in encoding the equality
of two words in the decimals of transition probabilities of a well-chosen prob-
abilistic automaton. While the reduction of PCP to the Equality problem is
relatively well-known, it may be less known that there exists a simple reduction
of the Equality problem to the Emptiness and Strict Emptiness problems:

Proposition 2. Given a simple probabilistic automaton A, one can compute
probabilistic automata B and C whose transition probabilities are multiple of 1

4
and such that:

(

∃w ∈ A+,PA(w) =
1

2

)

⇐⇒

(

∃w ∈ A+,PB(w) ≥
1

4

)

(1)

⇐⇒

(

∃w ∈ A+,PC(w) >
1

8

)

. (2)

Proof. The construction of B such that (1) holds is based on a very simple fact:
a real number x is equal to 1

2 if and only if x(1−x) ≥ 1
4 . Consider the automaton

B which is the cartesian product of A with a copy of A whose accepting states

are the non accepting states of A. Then for every word w ∈ A∗, PA1(w) =
PA(w)(1 − PA(w)), thus (1) holds.

The construction of C such that (2) holds is based on the following idea.
Since A is simple, transition probabilities of B are multiples of 1

4 , thus for every
word w of length |w|, PB(w) is a multiple of 1

4|w| . As a consequence, PB(w) ≥ 1
4

if and only if PB(w) > 1
4 − 1

4|w| . Adding three states to B, one obtains easily
a probabilistic automaton C such that for every non-empty word w ∈ A∗ and
letter a ∈ A, PC(aw) =

1
2 · PB(w) +

1
2 · 1

4|w| , thus (2) holds. To build C, simply
add a new initial state that goes with equal probability 1

2 either to the initial
state of B or to a new accepting state qf . From qf , whatever letter is read, next
state is qf with probability 1

4 and with probability 3
4 it is a new non-accepting

absorbing sink state q∗. ,-

As a consequence:

Theorem 1 (Paz). The emptiness and the strict emptiness problems are un-
decidable for probabilistic automata. These problems are undecidable even for
simple probabilistic automata and cut-point λ = 1

2 .

To conclude this section, we present another connection between probabilistic
and non-probabilistic automata on finite words.

Corollary 1. The following problem is undecidable. Given a non-deterministic
automaton on finite words, does there exist a word such that at least half of the
computations on this word are accepting?

At first, there is no obvious connection between this automata-theoretic deci-
sion problem and probabilities. However we do not know a simple undecidability
proof for this problem that does not make use of probabilistic automata.

2.2 Probabilistic automata with few probabilistic transitions

Hirvensalo showed that the emptiness problem is undecidable for probabilistic
automata which have as few as 2 input letters and 25 states [5] .

On the other hand, the emptiness problem is decidable for deterministic
automata. This holds whatever be the number of states, as long as there are no
probabilistic transition in the automaton. Formally, a probabilistic transition is
a couple (s, a) of a state s ∈ S and a letter a ∈ A such that for at least one state
t ∈ S, 0 < Ma(s, t) < 1.

This motivates the following question: what is the minimal number of prob-
abilistic transitions for which the emptiness problem is undecidable?

The answer to this question is somewhat surprising: the emptiness problem
is decidable for automaton with one probabilistic transition (Proposition 3) but
undecidable for automaton with as few as two probabilistic transitions (Propo-
sition 5).

Proposition 3. The emptiness problem for automata with one probabilistic tran-
sition is decidable and PSPACE-complete. It is decidable in PTIME for au-
tomata with bounded outdegree.

A slight variant of the emptiness problem for probabilistic automata with
one probabilistic transition is undecidable:

Proposition 4. The following problem is undecidable: given a simple probabilis-
tic automaton over an alphabet A with one probabilistic transition and given a
rational language of finite words L ⊆ A∗, decide whether PA(w) ≥ 1

2 for some
word w ∈ L.

A simple corollary of Proposition 4 is the following undecidability result:

Proposition 5. The emptiness problem is undecidable for probabilistic automata
with two probabilistic transitions.

Thus, the undecidability border is easily crossed when working with proba-
bilistic automata.

3 The Value 1 Problem

In this section like in the previous one we give yet another way to cross the
undecidability border, this time we follow the road of the value 1-problem.

3.1 Undecidability of the Value 1 problem

In his seminal paper about probabilistic automata [10], Rabin introduced the
notion of isolated cut-points.

Definition 3. A real number 0 ≤ λ ≤ 1 is an isolated cut-point with respect to
a probabilistic automaton A if:

∃ε > 0, ∀w ∈ A∗, |PA(w) − λ| ≥ ε .

Rabin motivates the introduction of this notion by the following theorem:

Theorem 2 (Rabin). Let A a probabilistic automaton and 0 ≤ λ ≤ 1 a cut-
point. If λ is isolated then the language LA(λ) = {u ∈ A∗ | PA(u) ≥ λ} is
rational.

This result suggests the following decision problem.

Problem 4 (Isolation Problem) Given a probabilistic automaton A and a
cut-point 0 ≤ λ ≤ 1, decide whether λ is isolated with respect to A.

Bertoni [2] proved that the Isolation Problem is undecidable in general:

Theorem 3 (Bertoni). The Isolation Problem is undecidable for probabilistic
automata with five states.

A closer look at the proof of Bertoni shows that the Isolation Problem is
undecidable for a fixed λ, provided that 0 < λ < 1.

However the same proof does not seem to be extendable to the cases λ = 0
and λ = 1. This was pointed out by Bertoni in the conclusion of [2]:

”Is the following problem solvable: ∃δ > 0, ∀x, (p(x) > δ)? For au-
tomata with 1-symbol alphabet, there is a decision algorithm bound with
the concept of transient state [8]. We believe it might be extended but
have no proof for it”.

The open question mentioned by Bertoni is the Isolation Problem for λ = 0. The
case λ = 1 is essentially the same, since 0 is isolated in an automaton A if and
only if 1 is isolated in the automaton obtained from A by turning final states to
non-final states and vice-versa. When λ = 1, the Isolation Problem asks whether
there exists some word accepted by the automaton with probability arbitrarily
close to 1. We use the game-theoretic terminology and call this problem the
Value 1 Problem.

The open question of Bertoni can be rephrased as the decidability of the
following problem:

Problem 5 (Value 1 Problem) Given a probabilistic automaton A, decide
whether A has value 1.

Unfortunately,

Theorem 4. The Value 1 Problem is undecidable.

The proof of Theorem 4 is a reduction of the Strict Emptiness Problem to the
Value 1 Problem. It is similar to the proof of undecidability of the Emptiness
Problem for probabilistic Büchi automata of Baier et al. [1]. The core of the
proof is the following proposition.

Proposition 6. Let 0 < x < 1 and Ax be the probabilistic automaton depicted
on Fig. 1. Then Ax has value 1 if and only if x > 1

2 .

The proof of Theorem 4 relies on the fact that there is a natural way to
combine Ax with an arbitrary automaton B so that the resulting automaton
has value 1 if and only if some word is accepted by B with probability strictly
greater than 1

2 .
The value 1 problem for simple probabilistic automata can be straigntfor-

wardly rephrased as a ”quantitative” decision problem about non-deterministic
automaton on finite words, which shows that:

Corollary 2. This decision problem is undecidable: given a non-deterministic
automaton on finite words, does there exists words such that the proportion of
non-accepting computation pathes among all computation pathes is arbitrarily
small?

4 The class of !-acyclic probabilistic automata

In this section, we introduce a new class of probabilistic automata, #-acyclic
probabilistic automata, for which the value 1 problem is decidable.

0

1

2

34

5

6

b, 1
2

b, 1
2

a, 1 − x
a, x

b

a

b

a, b

a, x
a, 1 − x b

a

b

a, b

Fig. 1. This automaton has value 1 if and only if x > 1

2
.

To get a decision algorithm for the value 1 problem, our starting point is the
usual subset construction for non-deterministic automata, defined by mean of
the natural action of letters on subsets of Q. However the quantitative aspect of
the Value 1 Problem stressed in Corollary 2 suggests that the subset construction
needs to be customized. Precisely, we use not only the usual action S · a of a
letter a on a subset S ⊆ Q of states but consider also another action a!. Roughly
speaking, a! deletes states that are transient when reading letter a forever.

Definition 4 (Actions of letters and #-reachability). Let A a probabilistic
automaton with alphabet A and set of states Q. Given S ⊆ Q and a ∈ A, we
denote:

S · a = {t ∈ Q | ∃s ∈ S,Ma(s, t) > 0} .

A state t ∈ Q is a-reachable from s ∈ Q if for some n ∈ N, PA(s
an

−−→ t) > 0.
A state s ∈ Q is a-recurrent if for any state t ∈ Q,

(t is a-reachable from s) =⇒ (s is a-reachable from t) .

A set S ⊆ Q is a-stable if S = S · a. If S is a-stable, we denote:

S · a! = {s ∈ S | s is a-recurrent} .

The support graph GA of a probabilistic automaton A with alphabet A and
set of states Q is the directed graph whose vertices are the non-empty subsets of
Q and whose edges are the pairs (S, T) such that for some letter a ∈ A, either
(S · a = T) or (S · a = S and S · a! = T).

Reachability in the support graph of A is called #-reachability in A.

The class of #-acyclic probabilistic automata is defined as follows.

Definition 5 (#-acyclic probabilistic automata). A probabilistic automaton
is #-acyclic if the only cycles in its support graph are self-loops.

Obviously, this acyclicity condition is quite strong. However, it does not for-
bid the existence of cycles in the transition table, see for example the automaton
depicted on Fig. 2. Note also that the class of #-acyclic automata enjoys good
properties: it is closed under cartesian product and parallel composition.

1 2

3 4

b
b

b
b

a

a

a

a

b
b

b
b

a

a

a

a

{1} {2}

{3} {4}

{1, 2}

{1, 3}

{3, 4}

{2, 4}{1, 2, 3, 4}

a

a

b b

b

a

b

a

b!

a!

b!

a!

a!, b!

a

b

a

b

Fig. 2. A "-acyclic automaton (on the left) and its support graph (on the right). All
transition probabilities are equal to 1

2
.

4.1 The value 1 problem is decidable for !-acyclic automata

For #-acyclic probabilistic automata, the value 1 problem is decidable:

Theorem 5. Let A be a probabilistic automaton with initial state q0 and final
states F . Suppose that A is #-acyclic . Then A has value 1 if and only if F is
#-reachable from {q0} in A.

The support graph can be computed on the fly in polynomial space thus
deciding whether a probabilistic automaton is #-acyclic and whether an #-acyclic
automaton has value 1 are PSPACE decision problems.

The rest of this section is dedicated to the proof of Theorem 5. This proof
relies on the notion of limit-pathes.

Definition 6 (Limit paths and limit-reachability). Let A be a probabilistic
automaton with states Q and alphabet A. Given two subsets S, T of Q, we say that
T is limit-reachable from S in A if there exists a sequence w0, w1, w2, . . . ∈ A∗

of finite words such that for every state s ∈ S:

PA(s
wn−−→ T) −−−−→

n→∞
1 .

The sequence w0, w1, w2, . . . is called a limit path from S to T , and T is said to
be limit-reachable from S in A.

In particular, an automaton has value 1 if and only if F is limit-reachable
from {q0}.

To prove Theorem 5, we show that in #-acyclic automata, #-reachability and
limit-reachability coincide. The following proposition shows that #-reachability
always imply limit-reachability, may the automaton be #-acyclic or not.

Proposition 7. Let A be a probabilistic automaton with states Q and S, T ⊆ Q.
If T is #-reachable from S in A then T is limit-reachable from S in A.

The converse implication is not true in general. For example, consider the
automaton depicted on Fig. 3. There is only one final state, state 3. The initial
state is not represented, it leads with equal probability to states 1, 2 and 3. The
transitions from states 1, 2 and 3 are either deterministic or have probability 1

2 .

1 2 3

a
a

b
a a

b

b

a

b

a

{1}{2}

{3}

{1, 2}{1, 2, 3}

{2, 3}

{1, 3}

aa

b a

a

a, b

a, a#, b b, b#

b, b# b

b#

b#

b# a

b, b#

Fig. 3. This automaton has value 1 and is not "-acyclic .

It turns out that the automaton on Fig. 3 has value 1, because ((bna)n)n∈N

is a limit-path from {1, 2, 3} to {3}. However, {3} is not reachable from {1, 2, 3}
in the support graph. Thus, limit-reachability does not imply #-reachability in
general. This automaton is not #-acyclic , because his support graph contains a
cycle of length 2 between {1, 2, 3} and {1, 3}. It is quite tempting to add an edge
labelled (ab!)! between {1, 3} and {3}.

Now we prove that for #-acyclic automata, limit-reachability implies #-reachability.

Definition 7 (Stability and #-stability). Let A be a probabilistic automaton
with states Q. The automaton A is stable if for every letter a ∈ A, Q is a-stable.
A stable automaton A is #-stable if for every letter a ∈ A Q · a! = Q.

The proof relies on the blowing, the flooding and the leaf lemmatas.

Lemma 1 (Blowing lemma). Let A be a #-acyclic probabilistic automaton
with states Q and S ⊆ Q. Suppose that A is #-acyclic and #-stable. If Q is
limit-reachable from S in A, then Q is #-reachable from S as well.

Proof (of the blowing lemma). If S = Q there is nothing to prove. If S $= Q,
we prove that there exists S1 ⊆ Q such that (i) S1 is #-reachable from S, (ii)
S ! S1, and (iii) Q is limit-reachable from S1. Since S ! Q and since there
exists a limit-path from S to Q there exists at least one letter a such that S is
not a-stable, i.e. S · a $⊆ S. Since A is subset-acyclic, there exists n ∈ N such
that S · an+1 = S · an i.e. S · an is a-stable. Let S1 = (S · an) · a!. Then (i) is
obvious.

To prove (ii), we prove that S1 contains both S and S · a. Let s ∈ S. By
definition, every state t of S · an is a-accessible from s. Since A is #-stable,
state s is a-recurrent and by definition of a-recurrence, s is a-accessible from
t. Since t ∈ S · an and S · an is a-stable, s ∈ S · an and since s is a-recurrent
s ∈ (S · an) · a! = S1. The proof that S · a ⊆ S1 is similar.

If S1 = Q the proof is complete, because (i) holds. If S1 ! Q, then (iii) holds
because S ⊆ S1 thus Q is limit-reachable not only from S but from S1 as well,
using the same limit-path. As long as Sn $= Q, we use (iii) to build inductively an
increasing sequence S ! S1 ! S2 ! . . . ! Sn = Q such that for every 1 ≤ k < n,
Sk+1 is #-reachable from Sk. Since #-reachability is transitive this completes the
proof of the blowing lemma. ,-

Second, in a #-stable and #-acyclic automata, once a computation has flooded
the whole state space, it cannot shrink back.

Lemma 2 (Flooding lemma). Let A be a probabilistic automaton with states
Q. Suppose that A is #-acyclic and #-stable. Then Q is the only set of states
limit-reachable from Q in A.

Now, we turn our attention to leaves of the acyclic support graph.

Definition 8. Let A be a probabilistic automaton with states Q. A non-empty
subset R ⊆ Q is called a leaf if for every letter a ∈ A, R · a = R and R · a! = R.

In a stable #-acyclic automaton, there is a unique leaf:

Lemma 3 (Leaf lemma). Let A be a probabilistic automaton with states Q.
Suppose that A is #-acyclic and stable. Then there exists a unique leaf #-accessible
from Q. Every set limit-reachable from Q contains this leaf.

Proof (of the leaf lemma). Since A is #-acyclic , there exists at least one leaf S
which is #-reachable from Q.

We prove that every set limit-reachable from Q contains the leaf S. Let R
limit-reachable from Q and (un)n∈N a limit-path from Q to R. Since for every
a ∈ A, S is a-stable, then a fortiori (un)n∈N is a limit-path from S to R∩S. Since
S is a leaf, the restriction A[S] of the automaton A to S is #-stable. According to
the flooding lemma applied to A[S], S = R∩S, thus S ⊆ R. Since #-reachability
imply limit-reachability, this implies unicity of the leaf reachable from Q. ,-

To prove that limit-reachability implies #-reachability, we proceed by induc-
tion on the depth in the support graph. The inductive step is:

Lemma 4 (Inductive step). Let A be a probabilistic automaton with states
Q and S0, T ⊆ Q. Suppose that A is #-acyclic and T is limit-reachable from S0.
Then either S0 = T or there exists S1 $= S0 such that S1 is #-reachable from S0

in A and T is limit-reachable from S1 in A.

Repeated use of Lemma 4 gives:

Proposition 8. Let A be a probabilistic automaton with states Q and S0, T ⊆
Q. Suppose that A is #-acyclic. If T is limit-reachable from S0 in A, then T is
#-reachable from S0 as well.

Thus, limit-reachability and #-reachability coincide in #-acyclic automata and
Theorem 5 holds.

Is the maximal distance between two #-reachable sets in the support graph
bounded by a polynomial function of |A| and |Q|? The answer to this question
could lead to a simpler proof and/or algorithm.

Conclusion

The class of #-acyclic automata can be probably extended to a larger class of
automata for which the value 1 problem is still decidable. Another interesting
research direction is to find classes of automata for which the emptiness problem
is decidable, unfortunately this is not the case for #-acyclic automata.

References

1. Christel Baier, Nathalie Bertrand, and Marcus Größer. On decision problems for
probabilistic büchi automata. In Poc. of FoSSaCS’08, pages 287–301. Springer,
2008.

2. A. Bertoni. The solution of problems relative to probabilistic automata in the frame
of the formal languages theory. In Proc. of the 4th GI Jahrestagung, volume 26 of
LNCS, pages 107–112. Springer, 1974.

3. Alberto Bertoni, Giancarlo Mauri, and Mauro Torelli. Some recursive unsolvable
problems relating to isolated cutpoints in probabilistic automata. In Proceedings of
the Fourth Colloquium on Automata, Languages and Programming, pages 87–94,
London, UK, 1977. Springer-Verlag.

4. R. G. Bukharaev. Probabilistic automata. Journal of Mathematical Sciences,
13(3):359–386, 1980.

5. Mika Hirvensalo. Improved undecidability results on the emptiness problem of
probabilistic and quantum cut-point languages. In Proc. of SOFSEM ’07, pages
309–319, Berlin, Heidelberg, 2007. Springer-Verlag.

6. Dexter Kozen. Lower bounds for natural proofs systems. In Proc. of 18th Symp.
Foundations of Comp Sci., pages 254–266. IEEE Computer Society, 1977.

7. Omid Madani, Steve Hanks, and Anne Condon. On the undecidability of prob-
abilistic planning and related stochastic optimization problems. Artificial Intelli-

gence, 147:5–34, 2003.
8. Azaria Paz. Introduction to probabilistic automata. Academic Press, Inc., Orlando,

FL, USA, 1971.

9. A. Sistla R. Chadha and M. Viswanathan. Power of randomization in automata
on infinite strings. In Proc. of CONCUR’09, volume 5710, pages 229–243, 2009.

10. Michael O. Rabin. Probabilistic automata. Information and Control, 6(3):230–245,
1963.

Appendix

Proof (of Proposition 1). Given any instance ϕ1, ϕ2 : A → {0, 1}∗ of the PCP
problem, we build an automaton A which accepts some word with probability 1

2
if and only if PCP has a solution. Let ψ : {0, 1}∗ → [0, 1] the injective mapping
defined by:

ψ(a0 . . . an) =
an
2

+ · · ·+
a0
2n

,

and let θ1 = ψ ◦ϕ1 and θ2 = ψ ◦ϕ2. Let A1 = (Q,A,M, q10 , q
1
F) the probabilistic

automaton with two states Q = {q10 , q
1
F } and transitions:

∀a ∈ A,M(a) =

[

1− θ1(a) θ1(a)
1− θ1(a)− 2−|ϕ1(a)| θ(a) + 2−|ϕ1(a)|

]

.

A simple computation shows that:

∀w ∈ A∗, PA1(w) = θ1(w) . (3)

A very similar construction produces a two-states automaton A2 such that:

∀w ∈ A∗, PA2(w) = 1− θ2(w) . (4)

Let A be the disjoint union of these two automata A1 and A2 plus a new initial
state that leads with equal probability 1

2 to one of the initial states q10 and q20 of
A1 and A2. Then for every word w ∈ A∗ and every letter a ∈ A,

(

∃w ∈ A∗, PA(aw) =
1

2

)

⇐⇒

(

∃w ∈ A∗,
1

2
PA1(w) +

1

2
PA2(w) =

1

2

)

⇐⇒ (∃w ∈ A∗, θ1(w) = θ2(w))

⇐⇒ (∃w ∈ A∗, ϕ1(w) = ϕ2(w))

⇐⇒ PCP has a solution,

where the first equivalence is by definition of A, the second is by (3) and (4), the
third holds because ψ is injective and the fourth is by definition of PCP. This
completes the proof of Proposition 1. ,-

Proof. According to Proposition 1 and Proposition 2 the emptiness and the
strict emptiness problems are undecidable for cut-point 1

2 and automata whose
transition probabilities are multiples of 1

8 . The transformation of such automata
into simple automata is easy.

5 Proof of Proposition 3

Proof. We first assume that the set of accepting states F is absorbant. Let
(q, a) ∈ S×A be the unique couple of states and action such that 0 < Ma(s, t) <
1 for some states s, t. Without loss of generality, we can suppose that q is the
initial state. Let n ≥ 1 and {s0, · · · , sn} be the set of states si such that 0 <

Ma(q, si). Let Ai be the deterministic automaton on finite words obtained from
A by choosing si as initial state, removing the transition (q, a) and keeping the
same final states. Denote Lsi→F ⊆ A∗ the language accepted by Ai and Lsi→q

the set of words labeling a path from si to q for every 0 ≤ i ≤ n.
We prove that :

valA = max
I×J⊆{s0,··· ,sn}2

{

∑

si∈I Ma(q, si)

1−
∑

sj∈J Ma(q, sj)

}

, (5)

under the constraint:














(

⋂

si∈I

Lsi→F

)

∩





⋂

sj∈J

Lsj→q



 $= ∅ ,

I ∩ J = ∅ .

We first prove the direct inequality. Let I, J ⊆ {s0, · · · , sn} for wich the
maximum is reached in (5). Let x1 =

∑

si∈I Ma(q, si) and x2 =
∑

si∈J Ma(q, sj).

Let w ∈
(
⋂

si∈I Lsi→F

)

∩
(

⋂

sj∈J Lsj→q

)

. We have (δ0 · aw)(q) = x2 and (δ0 ·

aw)(F) = x1. Since F is absorbant reading this word n times leads the following
distribution (δ0 · (aw)n)(F) =

∑n
i=0 x1 ·xi

2. Hence valA is greater than the right
hand-side of (5).

We prove the converse inequality. Let w ∈ A∗ a word accepted by A with
probability p. If w is the empty string. Since w is accepted then q is accepting and
p = 1. Assume now that w is different from the empty string. w = au for some u ∈
A∗. Let I = {i | u ∈ Lsi→F } and J = {j | u $∈ Lsj→F }, for i and j in {0, · · · , n}.
Let K1 and K2 a partition of J such that K1 = {j ∈ J | u ∈ Lsj→q} and K2 =
{j ∈ J | u $∈ Lsj→q}. We have PA(w) =

∑

i∈I Ma(q, si)+
∑

j∈K2
M(q, sj)·PA(w),

thus:

PA(w) =

∑

i∈I Ma(q, si)

1−
∑

j∈K2
M(q, sj)

.

Since we are maximizing this quantity, it is clear that PA(w) is less than the
right hand-side of (5).

If the set of accepting states is not absorbant. We construct a new automaton
A! so that the value of valA = valA!

. We add a new letter # and a new absorbant
state f! to A such that M!(s, s) = 1 if s is not accepting in A (# has no effect on
the automaton) and M!(s, f!) = 1 if s is accepting in A. The unique accepting
state in A! is f!. It is easy to see that valA = valA!

once we notice that for every
word w ∈ A∗ accepted by A with probability p, the word w# is accepted by A!

with same probability.
To prove the PSPACE completeness we reduce the problem of deciding the

intersection of n Automata on finite words which is known to be PSPACE com-
plete [6]. Given n deterministic automata denoted Ai = (Qi, A, δi, q

i
0, Fi) and

i ∈ {1, · · · , n}, we construct the probabilistic automaton B by adding a new
state q0 and a new letter # to the alphabet such that M!(q0, qi0) =

1
n
. The letter

has no effect on the other states. If this probabilistic automaton has the value
one, there exists then a word w ∈ A∗ such that for every i ∈ {1, · · · , n} we
have w ∈ LAi . Otherwise the intersection of all the Ai is empty. This shows the
PSPACE completeness. ,-

6 Proof of Proposition 4

Proof. To prove Proposition 4, we provide an algorithm which takes as input a
simple probabilistic automaton A on an alphabet A (with an arbitrary number
of probabilistic transitions) and outputs a simple automaton A′ over an alphabet
A′ with only one probabilistic transition and a rational language L′ ⊆ (A′)∗ such
that:

(

∃w ∈ A∗,PA(w) ≥
1

2

)

⇐⇒

(

∃w ∈ L′,PA′(w′) ≥
1

2

)

. (6)

According to Theorem 1, the Emptiness Problem for simple probabilistic au-
tomata and cut-point 1

2 is undecidable, hence (6) proves Proposition 4.
The intuition for the construction of A′, L′ and A′ is as follows. In the sim-

ple probabilistic automaton A, after a word u has been read, the probability
distribution on states is δq0 · u. Then, when a letter a is read, for every state
p a coin toss is made to choose which of the successors q0 and q1 of p should
be the next state (with q0 = q1 if the transition (p, a) is deterministic). Then,
the probability (δq0 · u)(p) is split in twice 1

2 (δq0 · u)(p), moved to q0 and q1 and
added to probabilities that result of other simultaneous coin tosses.

To simulate this phenomenon with only one probabilistic state, we realize
the coin tosses one by one, rather than simultaneously. The introduction of new
letters in the alphabet allows the automaton to toss coins state by state, while
freezing the other states. Hence, while the original automaton would realize
|Q| simultaneous transitions, the new automaton realizes 3|Q| + 1 sequential
transitions.

When the coin toss on p is simulated, the probability in p is moved to a new
state s∗, then split by a coin toss and then moved to two new states s0 and s1.
For the result of the coin toss not to interfere with subsequent coin tosses over
q0 and q1, the result is then stored in two new copy states q0,! and q1,!, until all
coin tosses have been realized and the simulation round is over. At the end of
the simulation round, a “flushing letter” a! sends the results stored in new copy
states q! ∈ Q! back to the original states q ∈ Q, and a new simulation round
begins.

To implement this new automaton, only one probabilistic transition is needed:
the transition from s∗ to s0 and s1. Other transitions are deterministic.

The rational constraint L′ checks that coin tosses are realized in the right
order and that the flushing letter is played at the end of each simulation round.

Now we give the formal description of the automaton. The alphabet A′,
the automaton A′ and the rational language L′ are computed as folllows. If
A = (Q,A,M, q0, F) then A′ = (Q′, A′,M′, q0, F) is defined by:

1. The alphabet A′ is made of two new letters a∗ (the coin toss letter) and a!
(the flushing letter) plus, for each letter a ∈ A and state s ∈ Q, two new
letters α(a, s) and β(a, s) so that:

A′ = {a∗, a!} ∪
⋃

a∈A,s∈Q

{α(a, s), β(a, s)} .

2. The set of states of A′ is obtained from Q by addition of three new states
s∗, s0, s1, plus a copy q! of each state q ∈ Q so that:

Q′ = Q ∪Q! ∪ {s∗, s0, s1} .

3. The initial state q0 and the set of final states F are left unchanged.
4. The transitions of A′ are as follows. For every letter a ∈ A and state s ∈ Q,

the new letter α(a, s) has no effect on states u $= s (i.e.Mα(a,s)(u) = u), while
from state s the transition is deterministic to state s∗ i.e. Mα(a,s)(s) = s∗.

5. The new letter a∗ has no effect on states u $= s∗, while from state s∗ this is
the only probabilistic transition of A′, defined by Ma∗(s∗) =

1
2s0 +

1
2s1.

6. For every letter a ∈ A and state s ∈ Q, the new letter β(a, s) has no effect
on states u $∈ {s0, s1}. Transitions on letter β(a, q) from states s0 and s1 are
deterministic and depend on Ma(s). If the transition Ma(s) is deterministic,
i.e. if Ma(s, r) = 1 for some state r then Mβ(a,s)(s0) = r! and Mβ(a,s)(s1) =
r!. If the transition Ma(s) is probabilistic i.e. if Ma(s) =

1
2r +

1
2r

′ for some
states r, r′ then Mβ(a,s)(s0) = r! and Mβ(a,s)(s1) = r′!.

7. The new letter a! has no effect on states that are not in Q!. For every state
q! ∈ Q! which is a copy of a state q ∈ Q, the letter a! sends deterministically
state q! to q.

Now we define the rational language L′. Choose some enumeration {s0, s1, . . . , sn} =
Q of states of A and for each letter a, define the word

ua = α(a, s0)a∗β(a, s0)α(a, s1)a∗β(a, s1) · · ·α(a, sn)a∗β(a, sn)a! ∈ A′∗ ,

and let L′ = {ua, a ∈ A}∗.
Then (6) holds because for every word a0a1a2 · · · ∈ A∗,

PA(a0a1a2 · · ·) = PA′(ua0ua1ua2 . . .) .

Since automaton A′ has only one probabilistic transition, this completes the
proof of Proposition 4. ,-

7 Proof of Proposition 5

Proof. The undecidable problem described in Proposition 4 reduces to the empti-
ness problem for simple probabilistic automata with two probabilistic transitions:
given A and L, add a new initial state to A and from this new initial state, pro-
ceed with probability 1

2 either to the original initial state of A to the initial state
of a deterministic automaton that checks whether the input word is in L. This
new automaton accepts a word with probability more than 3

4 if and only if the
original automaton accepts a word with probability more than 1

2 . ,-

8 Proof of Proposition 6

Proof (of Proposition 6). We shall prove:

(

x >
1

2

)

⇐⇒ (∀ε > 0, ∃w ∈ A∗,PAx(w) ≥ 1− ε) . (7)

In order to prove this equivalence we notice that: PAx(1
anb
−−→ 3) = xn and

PAx(4
anb
−−→ 6) = (1 − x)n. Let (nk)k∈N an increasing sequence of integers. By

reading the word w = an0ban1b . . . anib, we get:



























PAx(1
w
−→ 3) = 1−

∏

k≥0

(

1− xnk
)

PAx(4
w
−→ 6) = (1 − x)n1 + (1 − (1− x)n1)(1 − x)n2 + . . .

= 1−
∏

k≥0

(1− (1− x)nk) ≤
∑

k≥0

(1 − x)nk

If x ≤ 1
2 then PAx(1

w
−→ 3) ≤ PAx(4

w
−→ 6) therefore no word w can be accepted

with arbitrarily high probability if x ≤ 1
2 what proves the converse implication

on (7). Assume that x > 1
2 , we exhibit an increasing sequence of integers (nk)k∈N

such that for every ε > 0 we have:


















∑

k≥0

xnk = ∞

∑

k≥0

(1− x)nk ≤ ε
(8)

Let C ∈ R and nk = lnx(
1
k) +C, notice that

∑

k≥0(x)
nk = xC .

∑

k≥0
1
k = ∞. In

the other hand we have:

1− x = xlnx(1−x)

= x
ln(1−x)

ln x

There exists β > 1 such that: 1− x = xβ , hence
∑

k≥0(1− x)nk =
∑

k≥0 x
βnk .

So:
∑

k≥0 x
βnk = xβC

∑

k≥0 x
β lnx(1

k) = xβC
∑

k≥0
1
kβ . Since this series converge,

we satisfy (8) by choosing a suitable constant. It is easy to see that a sequence of
finite words (an0ban1b . . . anib)i∈N is accepted with probability arbitrarily close
to 1. ,-

9 Proof of Theorem 4

Proof (of Theorem 4). Given a probabilistic automaton B with alphabet A such
that a, b $∈ B, we combine B and the automaton Ax on Fig.1 to obtain an
automaton C which has value 1 if and only if there exists a word w such that

PA(w) > 1
2 . The input alphabet of C is A∪{b} plus a new letter #. C is computed

as follows. First, the transitions in Ax on letter a are deleted. Second, we make
two copies A4 and A1 of the automaton B, such that the initial state of A4 is 4
and the initial state of A1 is 1. From states of A4 and A1 other than the initial
states, reading letter b leads to the sink state 6. Third, from a state s of A4 the
transition on the new letter # is deterministic and leads to 5 if s is a final state
and to 4 if s is not a final state. Fourth, from a state s of A1 the transition on
the new letter # is deterministic and leads to 1 if s is a final state and to 2 if s
is not a final state. Fifth, the final states of C are 5 and 3. Sixth, states 0, 3, 6, 5
and 2 are absorbing for letters in A.

Then suppose there exists w such that PA(w) > 1
2 and let us show that C

has value 1. Let ε > 0 and let uε = bai0bai1bai2b · · ·aik be a word accepted by B
with probability 1− ε. Then by construction of C,

PC(b(w#)i0 b(w#)i1b(w#)i2b · · · (w#)ik) ≥ PA(uε) ≥ 1− ε,

thus C has value 1.
Now suppose that for every w ∈ A∗,PAw ≤ 1

2 and let us show that C has not
value 1. Let w′ ∈ (A∪{b, #})∗. Factorize w′ in w′ = u0v0#u1v1#ukvk · · · such that
ui ∈ b∗ and vi ∈ A∗. Then by construction of C and by hypothesis, PC(w′) ≤
PA 1

2

(u0au1au2a · · ·uka) ≤ val(A 1
2
). Thus val(C) ≤ val(A 1

2
) and according to

Proposition 6, val(C) < 1. ,-

10 Proof of Theorem 5

Proof (of Proposition 7). Proposition 7 is a consequence of the two following
facts.

First, if there is an edge from S to T in the support graph of A, then T is
limit reachable from S: let S, T ⊆ Q and a ∈ A. If S · a = T , then the sequence
constant equal to a is a limit path from S to T . If S · a = S and S · a! = T then
by definition of S · a!, (an)n∈N is a limit path from S to T .

Second, limit-reachability is a transitive relation: let S0, S1, S2 ⊆ Q such that
S1 is limit-reachable from S0 and S2 is limit-reachable from S1. Let (un)n∈N a
limit-path from S0 to S1 and (vn)n∈N a limit-path from S1 to S2. Then (unvn)n∈N

is a limit-path from S0 to S2. ,-

Proof (of the Flooding lemma). Let (un)n∈N be a limit path from Q to some set
of states T ! Q. We shall prove that T = Q.

First, we prove that for every letter a ∈ AT , Q \ T is a-stable. Otherwise
there would be a ∈ AT and t ∈ T such that t is a-reachable from some state
s ∈ Q \ T . Since A is #-stable, s and t are both a-recurrent, and by definition
of a-recurrence, since t is a-reachable from s, s would be a-reachable from t as
well. But s ∈ Q \ T and t ∈ T , which contradicts the a-stability of T .

Second, we prove that un ∈ A∗
T for only finitely many n ∈ N. Since for every

a ∈ AT , Q \ T is a-stable, then during the computation δQ = δ0, δ1, . . . , δ|un| on

the word un,
∑

s∈Q\T δk(s) is constant. Thus, for every n ∈ N,

PA(s
un−−→ T) =

∑

s∈Q\T

(δQ · un)(s) =
∑

s∈Q\T

δQ(s) =
|Q| − |T |

|Q|
> 0.

Since (un)n∈N is a limit-path from Q to T , PA(s
un−−→ T) converges to 0 hence

the inequality can hold only for finitely many n ∈ N.
Now we show that there exists T1 ⊆ Q such that:

(i) T1 $= T ,
(ii) T is #-reachable from T1 in A,
(iii) and T1 is limit-reachable from Q in A.

Since any infinite subsequence of a limit-path is a limit-path, and since we proved
that un ∈ A∗

T for only finitely many n ∈ N, we can assume w.l.o.g. that for every
n ∈ N, un $∈ A∗

T . Thus for every n ∈ N, there exists vn ∈ A∗, an ∈ A \ AT and
wn ∈ A∗

T such that un = vnanwn. W.l.o.g. again, since A is finite and D(Q) is
compact, we can assume that (an)n∈N is constant equal to a letter a ∈ A \ AT

and that (δQ · vn)n∈N converges to a probability distribution δ ∈ D(Q).
The choice of T1 such that (i),(ii) and (iii) hold depends on Supp(δ) · a.
If Supp(δ) · a = T then we choose T1 = Supp(δ). Then (i) holds because

a $∈ AT , (ii) holds because T = T1 · a and (iii) holds because (vn)n∈N is a
limit-path from Q to T1.

If Supp(δ) ·a $= T then we choose T1 = Supp(δ) ·a. Then (i) clearly holds and
(iii) holds because (vna)n∈N is a limit path from Q to T1 in A. To prove that (ii)
holds, consider the restriction A[T,AT] of automaton A to states T and alphabet
AT . Then (wn)n∈N is a limit-path from T1 to T in A[T,AT]. Moreover, since A
is #-acyclic and #-stable, A[T,AT] also is. Thus, we can apply the blowing lemma
to A[T,AT] and T1, which proves that T is #-reachable from T1 in A[T,AT], thus
in A as well.

If T1 = Q, the proof is complete. Otherwise, as long as Tn $= Q, we use
condition (iii) to build inductively a sequence T = T0, T1, T2, · · ·Tn such that for
every 0 ≤ k < n, Tk $= Tk+1 (condition (i))and Tk is #-reachable from Tk+1 in A
(condition (ii)). Since A is #-acyclic , Tn = Q after at most 2Q inductive steps.

Since #-reachability is transitive, this proves that T is #-reachable from Q.
Since A is #-stable, the only set #-reachable from Q is Q thus T = Q, which
completes the proof of the flooding lemma. ,-

Proof (of Lemma 4). Let (un)n∈N be a limit-path from S0 to T . Let A0 = {a ∈
A | S0 · a = S0}. For every n ∈ N, let vn be the longuest prefix of un in A∗

0.
Since every infinite subsequence of a limit-path is a limit-path, and since D(Q) is
compact, we can suppose without loss of generality that (δS0 · vn)n∈N converges
to some distribution δ ∈ D(Q).

Suppose first that Supp(δ) = S0. If un ∈ A∗
0 for infinitely many n ∈ N then

T = S0. Otherwise, since A is finite we can suppose w.l.o.g. that there exists a
letter a ∈ A \ A0 such that for every n ∈ N, vna is a prefix of un. Let also wn

such that un = vnawn. Let S1 = S0 · a. Then S1 $= S0 because a $∈ A0 and S1

is clearly #-reachable from S0. Moreover (wn)n∈N is a limit-path from S1 to T ,
this completes the proof.

Suppose now that Supp(δ) $= S0. Let A[S0, A0] the probabilistic automaton
obtained from A by restriction to the alphabet A0 and to the state space S0. By
definition of A0, A[S0, A0] is stable and it is #-acyclic because A is. According
to the leaf lemma, A[S0, A0] has a unique leaf. Let S1 be this unique leaf. Since
Supp(δ) is limit-reachable from S0 in A[S0, A0], according to the leaf lemma
again, S1 ⊆ Supp(δ) hence S1 $= S0. Moreover, since it is the unique leaf, S1 is
#-reachable from S0 in A[S0, A0] hence in A as well. For every n ∈ N, let wn such
that un = vnwn. Then (wn)n∈N is a limit-path from S1 to T . This completes the
proof. ,-

Proof (of Proposition 8). Apply again and again Lemma 4 to build a sequence
S0, S1, S2, . . . such that for every k, Sk $= Sk+1, Sk+1 is #-reachable from Sk

and T is limit-reachable from Sk+1. As long as Sk $= T , Lemma 4 is used to
build Sk+1. Since A is subset-acyclic, the sequence has length at most 2Q thus
for some k, Sk = T . Since #-reachability is transitive, this proves that T is #-
reachable from S0. ,-

