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In a context of multiple hypothesis testing, we provide several new exact calculations related to the false discovery proportion (FDP) of step-up and step-down procedures. For step-up procedures, we show that the number of erroneous rejections conditionally on the rejection number is simply a binomial variable, which leads to explicit computations of the c.d.f., the s-th moment and the mean of the FDP, the latter corresponding to the false discovery rate (FDR). For step-down procedures, we derive what is to our knowledge the first explicit formula for the FDR valid for any alternative c.d.f. of the p-values. We also derive explicit computations of the power for both step-up and step-down procedures. These formulas are "explicit" in the sense that they only involve the parameters of the model and the c.d.f. of the order statistics of i.i.d. uniform variables. The p-values are assumed either independent or coming from an equicorrelated multivariate normal model and an additional mixture model for the true/false hypotheses is used. This new approach is used to investigate new results which are of interest in their own right, related to least/most favorable configurations for the FDR and the variance of the FDP.

1. Introduction. When testing simultaneously m null hypotheses, the false discovery proportion (FDP) is defined as the proportion of errors among all the rejected hypotheses and the false discovery rate (FDR) is defined as the average of the FDP. Since its introduction by [START_REF] Benjamini | Controlling the false discovery rate: a practical and powerful approach to multiple testing[END_REF] [START_REF] Benjamini | Controlling the false discovery rate: a practical and powerful approach to multiple testing[END_REF], the FDR has become a widely used type I error criterion, because it is adaptive to the number of rejected hypotheses. However, the randomness of the denominator in the FDP expression makes the study of the FDP and of the FDR mathematically challenging.

There is a considerable number of papers that deal with the FDR control under different dependency conditions between the p-values (see for instance [START_REF] Benjamini | Controlling the false discovery rate: a practical and powerful approach to multiple testing[END_REF][START_REF] Benjamini | The control of the false discovery rate in multiple testing under dependency[END_REF][START_REF] Blanchard | Two simple sufficient conditions for FDR control[END_REF][START_REF] Blanchard | Adaptive FDR control under independence and dependence[END_REF][START_REF] Sarkar | On methods controlling the false discovery rate[END_REF]). In the latter, the goal is, given a prespecified level α, to provide a procedure with a FDR smaller than α (for any value of the data law in a given distribution subspace, e.g. for some dependency assumptions). For instance, the famous linear step-up procedure (LSU), also called the Benjamini-Hochberg procedure [START_REF] Benjamini | Controlling the false discovery rate: a practical and powerful approach to multiple testing[END_REF] (based on the Simes's line [START_REF] Simes | An improved Bonferroni procedure for multiple tests of significance[END_REF]), has been proved to control the FDR under inde-pendence and under a positive dependence assumption (see [START_REF] Benjamini | Controlling the false discovery rate: a practical and powerful approach to multiple testing[END_REF][START_REF] Benjamini | The control of the false discovery rate in multiple testing under dependency[END_REF]). While controlling the FDR, one wants to maximize the power of the procedure, the power being generally defined as the averaged number of correct rejections divided by the number of false hypotheses.

In this paper, we deal with the "reversed" approach: given the procedure, we aim to compute the corresponding FDR, or more generally the s-th moment and the c.d.f. of the FDP, and the Power. For procedures using a constant thresholding and under a mixture model assuming independence between the p-values, [START_REF] Storey | The positive false discovery rate: a Bayesian interpretation and the q-value[END_REF] [START_REF] Storey | The positive false discovery rate: a Bayesian interpretation and the q-value[END_REF] addressed theses questions, while introducing the positive false discovery rate (pFDR) (see also Chi and Tan [START_REF] Chi | Positive false discovery proportions: intrinsic bounds and adaptive control[END_REF]). Considering step-up or step-down methods requires more efforts: when the p-values are all i.i.d. uniform, the exact distribution of the rejection number has been computed by [START_REF] Finner | Multiple hypotheses testing and expected number of type I errors[END_REF] for step-up and step-down procedures, which leads to a computation of the FDR in the degenerate case where all the hypotheses are true [START_REF] Finner | Multiple hypotheses testing and expected number of type I errors[END_REF]. When the p-values follow the particular "Dirac-uniform" configuration, that is, when the p-values associated to false hypotheses are equal to 0 and when the p-values associated to true hypotheses are i.i.d. uniform, the FDP distribution has been computed by [START_REF] Dickhaus | False Discovery Rate and Asymptotics[END_REF] for general step-up-down procedures (see Section 3.7 in [START_REF] Dickhaus | False Discovery Rate and Asymptotics[END_REF]). For an arbitrary distribution of the p-values under the alternative, [START_REF] Ferreira | On the Benjamini-Hochberg method[END_REF] gave a first exact expression for the moment of the FDP of the LSU procedure under independence [START_REF] Ferreira | On the Benjamini-Hochberg method[END_REF]. Together with other recent approaches (see, e.g. [START_REF] Blanchard | Two simple sufficient conditions for FDR control[END_REF][START_REF] Roquain | Exceptional motifs in heterogeneous sequences. Contributions to theory and methodology of multiple testing[END_REF][START_REF] Roquain | Optimal weighting for false discovery rate control[END_REF][START_REF] Sarkar | On methods controlling the false discovery rate[END_REF]), this puts forward a connection between the FDR expression and the rejection number distribution in the step-up case, under independence of the p-values. Additionally, [START_REF] Sarkar | Some results on false discovery rate in stepwise multiple testing procedures[END_REF] found an exact formula for the FDR, which is valid for any step-up-down procedure [START_REF] Sarkar | Some results on false discovery rate in stepwise multiple testing procedures[END_REF]. However, it involves the c.d.f. of ordered components of dependent variables, by contrast with [START_REF] Dickhaus | False Discovery Rate and Asymptotics[END_REF][START_REF] Finner | Multiple hypotheses testing and expected number of type I errors[END_REF] and present paper, using c.d.f. of ordered components of i.i.d. uniform variables, so obtaining substantially more explicit formulas.

Meanwhile, some of these approaches have also been investigated from the asymptotic point of view, when the number of hypotheses m tends to infinity; [START_REF] Chi | On the performance of FDR control: constraints and a partial solution[END_REF] computed the asymptotic rejection number distribution of the LSU procedure by introducing the criticality phenomenon [START_REF] Chi | On the performance of FDR control: constraints and a partial solution[END_REF], while [START_REF] Finner | Dependency and false discovery rate: asymptotics[END_REF] computed the limiting FDR of the LSU procedure for positively correlated p-values (following an equicorrelated multivariate normal model) in the particular Dirac-uniform configuration [START_REF] Finner | Dependency and false discovery rate: asymptotics[END_REF]. In this paper, the point of view will be mainly nonasymptotic.

The new contributions of the present paper are as follows:

• For a step-up procedure using a threshold (t k ) k , we proved that the distribution of the number of erroneous rejections conditionally on k rejections is a binomial variable of parameters k and pFDR(t k ) = π 0 t k /G(t k ), where π 0 is the (averaged) proportion of true nulls and G is the c.d.f. of the p-values. This provides new explicit formulas for the c.d.f. of the FDP, the s-th moment of the FDP (providing a correction with respect to [START_REF] Ferreira | On the Benjamini-Hochberg method[END_REF] for s ≥ 3) and for the FDR, for any alternative distribution of the p-values. We also give an expression for the power, which yields a considerably less complex calculation than in [START_REF] Glueck | Exact calculations of average power for the benjamini-hochberg procedure[END_REF], see Section 3.1. • Considering a step-down procedure, a new explicit formula for the FDR and the power is imsart-aos ver. 2007/09/18 file: RV_AoS.hyper12071.tex date: April 2, 2010 presented under any alternative distribution of the p-values. To our knowledge, this expression is the first one that clearly relates the FDR to (joint) rejection number distribution in the case of a step-down procedure and that is valid under any alternative, see Section 3.1.

• All the previous results, valid under independence between the p-values, can be easily extended to the case where the p-value family follows an equicorrelated multivariate normal model, by using a simple modification, see Section 3.2. However, this requires the use of a nonnegative correlation. The case of a possibly negative correlation is considered when only two hypotheses are tested, see Section 3.3. • Our formulas corroborate the classical multiple testing results while they give rise to several new results. The two main corollaries hold under independence and are as follows. First, in Section 4.1.1, for the linear step-down procedure, we prove that a p-value configuration maximizing the FDR, i.e. a least favorable configuration (LFC) for the FDR, is the Diracuniform configuration. Additionally, considering a general step-down procedure, we define a new condition on the threshold ensuring that the Dirac-uniform configuration is still a LFC. As discussed in Section 4.1.1, this condition is different from the one of the stepup case. Second, we found an exact expression of the minimum and the maximum of the variance of the FDP of the LSU, these extrema being taken over some p-value configuration sets of interest. The latter allows to better understand the behavior of the FDP around the FDR. In particular, this puts forward that the convergence of the FDP towards the FDR is particularly slow in the sparse case, see Section 4.2.

All our formulas are valid nonasymptotically, that is, they hold for each m ≥ 2. As a counterpart, they inevitably have a general form that can appear somewhat complex at first sight. For instance, denoting by Ψ m the c.d.f. of the order statistics of m i.i.d. uniform variables on (0, 1), the FDR formula for step-up procedures requires the computation of Ψ m at a given point of R m (at most), while the FDR formula for step-down procedures requires the computation of Ψ m at 2m different points of R m (at most). However, let us underline what are to our opinion the two main interests of this exact approach:

-For some model parameter configurations and after possible simplifications, the formulas are usable for further theoretical studies (monotonicity with respect to a parameter, convergence when m tends to infinity,...), as in Theorem 4.1 and Theorem 4.3. -For m not too large (say m ≤ 1000), these formulas can be fully computed numerically, e.g. plotting exact graphs. Thus, they avoid using cumbersome and less accurate simulation experiments (extensively used in multiple testing literature), see for instance Section 4.1.2.

Preliminaries.

2.1. Models for the p-value family. On a given probability space, we consider a finite set of m ≥ 2 null hypotheses, tested by a family of m p-values p = (p i , i ∈ {1, ..., m}). In this paper, for simplicity, we skip somewhat the formal definition of p-values by defining directly a p-value model, that is, by specifying the joint distribution of p.

In what follows, we denote by F the set containing c.d.f.'s from [0, 1] into [0, 1] that are continuous and by F 0 (t) = t the c.d.f. of the uniform distribution over [0, 1] (we restricted our attention to the case where F 0 (t) = t only for simplicity, all our formulas will be valid for an arbitrary F 0 ∈ F). Definition 2.1 (Conditional p-value models).

• The p-value family p follows the conditional independent model with parameters H = (H i ) 1≤i≤m ∈ {0, 1} m and F 1 ∈ F, that we denote by p ∼ P I (H,F 1 ) , if p = (p i , i ∈ {1, ..., m}) is a family of mutually independent variables and for all i,

p i ∼ F 0 if H i = 0 F 1 if H i = 1 .
• The p-value family p follows the conditional equicorrelated multivariate normal model (say for short, conditional EMN model) with parameters

H = (H i ) 1≤i≤m ∈ {0, 1} m , ρ ∈ [-(m - 1) -1 , 1]
, and µ > 0, that we denote by p ∼ P N (H,ρ,µ) , if for all i, p i ∼ Φ(X i + µH i ), where the vector (X i ) 1≤i≤m is distributed as a R m -valued Gaussian vector with zero means and a covariance matrix having 1 on the diagonal and ρ elsewhere and where Φ denotes the standard Gaussian distribution tail, that is, Φ(z) = P [Z ≥ z] for Z ∼ N (0, 1). In that model, the marginal distributions of the p-values are thus given by:

p i ∼ F 0 if H i = 0 F 1 (t) = Φ Φ -1 (t) -µ if H i = 1 .
The two above models are said "conditional" because the distribution of the p-values are defined conditionally on the value of the parameter H = (H i ) 1≤i≤m ∈ {0, 1} m . The latter determines which hypotheses are true or false: H i = 0 (resp. 1) if the i-th null hypothesis is true (resp. false). We then denote by H 0 (H) := {i ∈ {1, ..., m} | H i = 0} the set corresponding to the true null hypotheses and by m 0 (H) := |H 0 (H)| its cardinal. Analogously, we define

H 1 (H) := {i ∈ {1, ..., m} | H i = 1} and m 1 (H) := |H 1 (H)| = m -m 0 (H).
To each one of the above models, we associate the "unconditional" version in which we endow the parameter H with the prior distribution B(1π 0 ) ⊗m , making (H i ) 1≤i≤m ∈ {0, 1} m being a sequence of i.i.d. Bernoulli with parameter 1π 0 . On an intuitive point of view, this means that each hypothesis is true with probability π 0 , independently from the other hypotheses. We thus define the following models for p (or more precisely for (H, p)): Definition 2.2 (Unconditional p-value models).

• The couple (H, p) follows the unconditional independent model with parameters π 0 ∈ [0, 1] and F 1 ∈ F, that we denote by (H, p) ∼ P

I (π 0 ,F 1 ) if H ∼ B(1 -π 0 ) ⊗m and the distribution of p conditionally to H is P I (H,F 1 )
, that is, conditionally on H, p follows the conditional independent model with parameters H and F 1 . In that model, the p-values are i.i.d. with common c.d.f. An important point is that the quantities m 0 (H) and m 1 (H) are deterministic in the conditional models P I , P N , while they become random in the unconditional models P I , P N with

G(t) = π 0 F 0 (t) + (1 -π 0 )F 1 (t
m 0 (H) ∼ B(m, π 0 ) and m 1 (H) ∼ B(m, 1 -π 0 ).
The conditional independent model is one of the most standard p-value models and was for instance considered in the original paper of [START_REF] Benjamini | Controlling the false discovery rate: a practical and powerful approach to multiple testing[END_REF] [START_REF] Benjamini | Controlling the false discovery rate: a practical and powerful approach to multiple testing[END_REF]. Its unconditional version, also called the "random effects model", is very convenient and has been widely used since its introduction by [START_REF] Efron | Empirical Bayes analysis of a microarray experiment[END_REF] [START_REF] Efron | Empirical Bayes analysis of a microarray experiment[END_REF], see for instance [START_REF] Genovese | A stochastic process approach to false discovery control[END_REF][START_REF] Storey | The positive false discovery rate: a Bayesian interpretation and the q-value[END_REF].

The conditional EMN model is a simple instance of model introducing dependencies between the p-values. It corresponds to a one-sided testing on the mean of X i +µH i , simultaneously for all 1 ≤ i ≤ m. It has become quite standard in recent FDR multiple testing literature; for instance, it was used in [START_REF] Finner | Dependency and false discovery rate: asymptotics[END_REF] with µ = ∞ and it has been considered in [START_REF] Benjamini | Adaptive linear step-up procedures that control the false discovery rate[END_REF][START_REF] Blanchard | Adaptive FDR control under independence and dependence[END_REF] for numerical experiments. Furthermore, [START_REF] Efron | Correlated z -values and the accuracy of large-scale statistical estimates[END_REF] recently showed that the EMN model may also be viewed as an approximation for some non-equicorrelated models, which reinforces its interest for a practical use [START_REF] Efron | Correlated z -values and the accuracy of large-scale statistical estimates[END_REF]. In this model, provided that ρ ≥ 0, the p-values are positively regression dependent on each one on the subset H 0 (H) (PRDS on H 0 (H)) which is one dependency condition that suffices for FDR control (see [START_REF] Benjamini | The control of the false discovery rate in multiple testing under dependency[END_REF]). The unconditional version of this model is convenient because it provides exchangeable p-values (although not independent when ρ = 0).

Additionally, we will sometimes consider the "Dirac-uniform configuration" for the above models. In that configuration, all the p-values corresponding to false nulls (H i = 1) are equal to zero, that is, F 1 is constantly equal to 1 for the independent models and µ = ∞ for the EMN models. This configuration was introduced in [START_REF] Finner | Dependency and false discovery rate: asymptotics[END_REF] to increase the FDR as much as possible for the linear step-up procedures which thus appears as a "least favorable configuration" for the FDR (see also Section 4.1).

Multiple testing procedures, FDP, FDR and power.

A multiple testing procedure R is defined as an algorithm which, from the data, aims to reject part of the null hypotheses. Below, we will consider, as is usually the case, multiple testing procedures which can be written as a function of the p-value family p = (p i , i ∈ {1, ..., m}). More formally, we define a multiple testing procedure as a measurable function R, which takes as input a realization of the p-value family p ∈ [0, 1] m and which returns a subset R(p) of {1, ..., m}, corresponding to the rejected hypotheses (i.e. i ∈ R(p) means that the i-th hypothesis is rejected by R for the observed p-values p).

Particular multiple testing procedures are step-up and step-down procedures. First define a threshold as any nondecreasing sequence t = (t k ) 1≤k≤m ∈ [0, 1] m (with t 0 = 0 by convention).

Next, for any threshold t, the step-up procedure of threshold t, denoted here by SU(t), rejects the i-th hypothesis if p i ≤ t k, with k = max{k ∈ {0, 1, ..., m} | p (k) ≤ t k }, where p (1) ≤ p (2) ≤ ... ≤ p (m) denote the ordered p-values (with the convention p (0) = 0). In particular, the procedure SU(t) using t k = αk/m corresponds to the standard linear step-up procedure of [START_REF] Benjamini | Controlling the false discovery rate: a practical and powerful approach to multiple testing[END_REF] [START_REF] Benjamini | Controlling the false discovery rate: a practical and powerful approach to multiple testing[END_REF], denoted here by LSU. A less rejecting procedure uses a step-down algorithm; for any threshold t, the step-down procedure of threshold t, denoted here by SD(t), rejects the i-th hypothesis if p i ≤ t k, with k = max{k ∈ {0, 1, ..., m} | ∀k ′ ≤ k, p (k ′ ) ≤ t k ′ }. Analogously to the step-up case, the procedure SD(t) using t k = αk/m is called the linear step-down procedure and is denoted here by LSD.

Next, associated to any multiple testing procedure R and any configuration of true/false hypotheses H ∈ {0, 1} m , we introduce the false discovery proportion (FDP) of R as the proportion of true hypotheses in the set of the rejected hypotheses, that is,

FDP(R, H) = |H 0 (H) ∩ R| |R| ∨ 1 , (1) 
where | • | denotes the cardinality function. Then, while for any multiple testing procedure R, the false discovery rate (FDR) is defined as the mean of the FDP (see [START_REF] Benjamini | Controlling the false discovery rate: a practical and powerful approach to multiple testing[END_REF]), the power is (generally) defined as the expected number of correctly rejected hypotheses divided by the number of false hypotheses. Of course, the FDR and the power depend on the distribution that generates the p-values, and we may use the models defined in Section 2.1. Formally, for any distribution P coming from a conditional model using parameter H ∈ {0, 1} m , we let

FDR(R, P ) = E p∼P [FDP(R(p), H)], (2) 
Pow(R, P ) = m 1 (H) -1 E p∼P |H 1 (H) ∩ R(p)| . (3) 
Similarly, for any p-value distribution P coming from an unconditional model, the FDR and the Power use an additional averaging over H ∼ B(1π 0 ) ⊗m and are defined by:

FDR(R, P ) = E (H,p)∼P [FDP(R(p), H)], (4) 
Pow(R, P ) = (π 1 m) -1 E (H,p)∼P |H 1 (H) ∩ R(p)| . (5) 
Remark that, for convenience, ( 5) is not exactly defined as the expectation of (3), because of the denominator. It corresponds precisely to the expected number of correctly rejected hypotheses divided by the expected number of false hypotheses.

In the paper, to simplify the notation, we sometimes drop the explicit dependency in p, H or P , writing e.g. R instead of R(p), H 0 instead of H 0 (H), FDP(R) instead of FDP(R, H) and FDR(R) instead of FDR(R, P ).

Some notation and useful results.

For any k ≥ 0 and any threshold t = (t 1 , ..., t k ), we denote where (U i ) 1≤i≤k is a sequence of k variables i.i.d. uniform on (0, 1) and with the convention Ψ 0 (•) = 1. In practice, quantity (6) can be evaluated using Bolshev's recursion Ψ k [START_REF] Shorack | Empirical processes with applications to statistics[END_REF], p. 366-369). Additionally, the following relation holds (see Lemma 2.1 in [START_REF] Finner | Multiple hypotheses testing and expected number of type I errors[END_REF]): for all k ∈ N and

(6) Ψ k (t) = Ψ k (t 1 , ..., t k ) = P U (1) ≤ t 1 , ..., U (k) ≤ t k . imsart-
(t) = 1 -k i=1 k i (1 -t k-i+1 ) i Ψ k-i (t 1 , ..., t k-i ) or Steck's recursion Ψ k (t) = (t k ) k -k-2 j=0 k j (t k - t j+1 ) k-j Ψ j (t 1 , ..., t j ) (see
ν 1 , ν 2 ∈ R such that 0 ≤ ν 1 + ν 2 ≤ ν 1 + kν 2 ≤ 1, (7) Ψ k (ν 1 + ν 2 , ..., ν 1 + kν 2 ) = (ν 1 + ν 2 )(ν 1 + (k + 1)ν 2 ) k-1 .
From the Ψ k 's, we define the following useful quantities: for any threshold t = (t k ) 1≤k≤m and k ≥ 0, k ≤ m, we let

D m (t, k) = m k (t k ) k Ψ m-k 1 -t m , ..., 1 -t k+1 , (8) 
D m (t, k) = m k (1 -t k+1 ) m-k Ψ k t 1 , ..., t k . (9) Above, note that (t k ) k and (1 -t k+1 ) m-k are correct when k = 0 and k = m, even if (t j ) j is only defined for 1 ≤ j ≤ m. Note that Bolshev's recursion provides m k=0 D m (t, k) = m k=0 D m (t, k) = 1 for any threshold t.
Finally, we will use the so-called Stirling numbers of the second kind, defined as coefficients s ℓ for s, ℓ ≥ 1 by s 0 = 0, s ℓ = 0 for ℓ > s, 1 1 = 1 and the recurrence relation: for all 1 ≤ ℓ ≤ s+1,

s+1 ℓ = ℓ s ℓ + s ℓ-1 . For instance, 3 1 = 1, 3 2 = 3, 3 3 = 1, 4 1 = 1, 4 2 = 7, 4 3 = 6, 4 4 = 1.
From a combinatorial point of view, the coefficient s ℓ counts the number of ways to partition a set of s elements into ℓ (nonempty) subsets. The latter is useful to compute the s-th moment of a binomial distribution: if X ∼ B(n, q), we have ∀s ≥

1, E[X s ] = s∧n ℓ=1 n! (n-ℓ)! s ℓ q ℓ .
3. New formulas.

3.1.

Unconditional independent model, m ≥ 2.

3.1.1.

Step-up case. Let us consider the unconditional independent model. [START_REF] Finner | Multiple hypotheses testing and expected number of type I errors[END_REF] derived the exact distribution of the rejection number of any step-up procedure in the case of i.i.d. uniform p-values (i.e., when all the hypotheses are true) [START_REF] Finner | Multiple hypotheses testing and expected number of type I errors[END_REF]. In the unconditional model, the latter can be generalized as follows: denoting

G(t) = π 0 F 0 (t) + (1 -π 0 )F 1 (t) the common c.d.f. of the p-values, we have for 0 ≤ k ≤ m that (10) P [|SU(t)| = k] = D m [G(t j )] 1≤j≤m , k .
(this is straightforward from [START_REF] Finner | Multiple hypotheses testing and expected number of type I errors[END_REF] because G is continuous increasing).

Next, for the procedure distribution B k, π 0 F 0 (t)/G(t) (see proof of Theorem 1 in [START_REF] Storey | The positive false discovery rate: a Bayesian interpretation and the q-value[END_REF], see also Proposition 2.1 in [START_REF] Chi | Positive false discovery proportions: intrinsic bounds and adaptive control[END_REF]). Later, [START_REF] Chi | On the performance of FDR control: constraints and a partial solution[END_REF] proved that the distribution of |H 0 (H) ∩ LSU| conditionally on |LSU| = k is asymptotically binomial (in a particular "supercritical" framework), see [START_REF] Chi | On the performance of FDR control: constraints and a partial solution[END_REF]. Here, we show that the latter holds non-asymptotically, for any step-up procedure, which, by using [START_REF] Efron | Correlated z -values and the accuracy of large-scale statistical estimates[END_REF], gives exact formulas for the c.d.f. of the FDP, the s-th moment of the FDP, the FDR and the Power.

R(t) = {i | p i ≤ t} using a constant threshold t ∈ [0, 1], Storey (2003) proved that the distribution of |H 0 (H) ∩ R(t)| conditionally on |R(t)| = k is a binomial imsart-
Theorem 3.1. When testing m ≥ 2 hypotheses, consider a step-up procedure SU(t) with threshold t and the notation of Section 2.3. Then for any parameter π 0 ∈ [0, 1] and

F 1 ∈ F, denoting G(t) = π 0 F 0 (t) + π 1 F 1 (t), we have under the generating distribution (H, p) ∼ P I (π 0 ,F 1 )
of the unconditional independent model, for any k ≥ 1,

|H 0 (H) ∩ SU(t)| conditionally on |SU(t)| = k ∼ B k, π 0 F 0 (t k ) G(t k ) . ( 11 
)
In particular, we derive the following formulas, for any x ∈ (0, 1), for any s ≥ 1, denoting by s ℓ the Stirling number of second kind and by ⌊z⌋ the largest integer smaller than or equal to z,

P[FDP(SU(t), H) ≤ x] = m k=0 ⌊xk⌋ j=0 k j π 0 F 0 (t k ) G(t k ) j π 1 F 1 (t k ) G(t k ) k-j D m [G(t j )] 1≤j≤m , k (12) 
E[FDP(SU(t), H) s ] = s∧m ℓ=1 m! (m -ℓ)! s ℓ π ℓ 0 m k=ℓ F 0 (t k ) ℓ k s D m-ℓ [G(t j+ℓ )] 1≤j≤m-ℓ , k -ℓ (13) FDR(SU(t), P I (π 0 ,F 1 ) ) = π 0 m m k=1 F 0 (t k ) k D m-1 [G(t j+1 )] 1≤j≤m-1 , k -1 (14) Pow(SU(t), P I (π 0 ,F 1 ) ) = m k=1 F 1 (t k ) D m-1 [G(t j+1 )] 1≤j≤m-1 , k -1 . ( 15 
)
We can apply Theorem 3.1 in the case where t k = αk/m, to deduce the following results for the LSU procedure of [START_REF] Benjamini | Controlling the false discovery rate: a practical and powerful approach to multiple testing[END_REF] [START_REF] Benjamini | Controlling the false discovery rate: a practical and powerful approach to multiple testing[END_REF]: first, ( 14) leads to FDR(LSU) = π 0 α, recovering the well known result of Benjamini and Yekutieli [START_REF] Benjamini | The control of the false discovery rate in multiple testing under dependency[END_REF] in the unconditional model. Second, [START_REF] Finner | Multiple hypotheses testing and expected number of type I errors[END_REF] provides the exact expression

Pow(LSU) = m k=1 F 1 (αk/m) m -1 k -1 (G(αk/m)) k-1 Ψ m-k 1-G(αm/m), ..., 1-G(α(k + 1)/m) .
Glueck et al. ( 2008) have obtained an exact expression for the power of the LSU under independence (in the conditional model) [START_REF] Glueck | Exact calculations of average power for the benjamini-hochberg procedure[END_REF], but the corresponding formula was reported to have a complexity exponential in m, which is intractable for large m. Here, we obtained a much less complex formula, requiring (at most) the computation of the function Ψ m at one point of R m . Third, formula [START_REF] Finner | On the false discovery rate and an asymptotically optimal rejection curve[END_REF] which a formula for the s-th moment of the FDP of the LSU was investigated (in the conditional model). Our formula (13) uses additional factors s ℓ . As soon as s ≥ 3, they are definitely needed and they seem forgotten in [START_REF] Ferreira | On the Benjamini-Hochberg method[END_REF]; for instance, taking α = 1, the corresponding linear step-up procedure rejects all the hypotheses and ( 13) reduces to the computation of the s-th moment of a binomial distribution, which uses at least one s ℓ > 1, see Section 2.3. Fourth, expression (12) used with t k = αk/m yields what is to our knowledge the first exact expression for the c.d.f. of FDP(LSU), valid for any m ≥ 2 and for any alternative c.d.f. F 1 . For instance, taking a typical Gaussian setting where F 1 (t) = Φ Φ -1 (t)µ , we are able to evaluate the probability P(FDP(LSU) ≤ c α) for c ≥ 1; for µ = 3, α = 0.05, As m tends to infinity while the model parameters stay constant with m, the FDP converges to the FDR and the latter effect vanishes (see e.g. [START_REF] Neuvial | Asymptotic properties of false discovery rate controlling procedures under independence[END_REF]). However, we show in Section 4.2 that the convergence can be slow in the sparse case. Alternatively, some authors are interested in procedures R controlling the FDP, i.e. satisfying P[FDP(R) ≤ α] ≥ 1γ, see e.g. [START_REF] Genovese | A stochastic process approach to false discovery control[END_REF][START_REF] Lehmann | Generalizations of the familywise error rate[END_REF]. As a matter of fact, by using [START_REF] Efron | Empirical Bayes analysis of a microarray experiment[END_REF], we directly deduce that the latter FDP control is satisfied by the step-up procedure SU(t ⋆ ) using the oracle threshold defined by t ⋆ m+1 = 1 (by convention) and for any 1

π 0 = 1 -1/ √ m, expression ( 
≤ k ≤ m, t ⋆ k = max{t ∈ [0, t ⋆ k+1 ] | P[X ≤ αk] ≥ 1 -γ for X ∼ B(k, π 0 t/G(t))}, with t ⋆ k = 0 if
the above set is empty. However, the latter threshold is unknown in practice, because it depends on the c.d.f. G and an interesting issue is to estimate it. [START_REF] Chi | Positive false discovery proportions: intrinsic bounds and adaptive control[END_REF] introduced the threshold

t CT k = max{t ∈ [0, t CT k+1 ] | P[X ≤ αk] ≥ 1 -γ for X ∼ B(k, 1 ∧ (mt/k))} (with the convention t CT m+1 = 1)
. As a matter of fact, the latter can be seen as the empirical substitute of t ⋆ k , because G(t k ) ≃ G m (t k) = k/m for any step-up procedure rejecting k hypotheses (G m denoting the e.c.d.f. of the p-values). Using the latter threshold, they established an asymptotic FDP control (as m tends to infinity). Here, a plausible explanation is that their procedure correctly mimics the oracle SU(t ⋆ ) (asymptotically).

3.1.2.

Step-down case. In that section, we still consider the unconditional independent model, but we focus on the step-down case. By contrast with the step-up case, for a step-down procedure, the distribution of |H 0 (H) ∩ SD(t)| conditionally on |SD(t)| = k is not binomial, in general. For instance, we prove in Section 6.

3 that for k ≥ 1, k ≤ m, P[|H 0 (H) ∩ SD(t)| = k | |SD(t) = k] = π k 0 Ψ k F 0 (t 1 ), ..., F 0 (t k )) Ψ k G(t 1 ), ..., G(t k )) =: a k (16) P[|H 0 (H) ∩ SD(t)| = 0 | |SD(t) = k] = π k 1 Ψ k F 1 (t 1 ), ..., F 1 (t k )) Ψ k G(t 1 ), ..., G(t k )) =: (1 -b) k , ( 17 
)
imsart-aos ver. 2007/09/18 file: RV_AoS.hyper12071.tex date: April 2, 2010 and it turns out that a = b only for particular situations, such as t 1 = ... = t k , F 1 (x) = x or π 0 ∈ {0, 1}. Also, in the Dirac-uniform configuration F 1 = 1 (an thus G(t) = π 0 t + π 1 ), we establish in Section 6.3 that, for 1 ≤ j ≤ k,

P[|H 0 (H) ∩ SD(t)| = j | |SD(t) = k] = k j π j 0 π k-j 1 Ψ j t k-j+1 , ..., t k ) Ψ k π 0 t 1 + π 1 , ..., π 0 t k + π 1 ) , ( 18 
)
which is not binomial in general (see also Remark 3.3 below).

An exact expression for

P[|H 0 (H) ∩ SD(t)| = j | |SD(t)| = k]
only involving functions of the type Ψ i and valid for any j, t and F 1 seems considerably more difficult to derive. As a consequence, we now only focus on the calculation of the FDR and of the power. For this, let us recall the exact formula for the distribution of |SD(t)|: for all k ∈ {0, ..., m},

P [|SD(t)| = k] = D m [G(t j )] 1≤j≤m , k . (19) 
(see formula (4) p.344 of [START_REF] Shorack | Empirical processes with applications to statistics[END_REF] and [START_REF] Finner | Multiple hypotheses testing and expected number of type I errors[END_REF] which can be directly generalized in the unconditional independent model because G is continuous increasing). The next result, based on the calculation of the distribution of |SD(t ′ )| conditionally on |SD(t)| = k (with t ′ j = t j+1 ), connects the FDR to distributions of the type [START_REF] Guo | On control of the false discovery rate under no assumption of dependency[END_REF] (see the proof in Section 6.2). Theorem 3.2. For m ≥ 2 hypotheses, consider the unconditional independent model P I (π 0 ,F 1 ) , a step-down procedure SD(t) with threshold t and the notation of Section 2.3. Then for any parameter π 0 ∈ [0, 1] and

F 1 ∈ F (denoting G(t) = π 0 F 0 (t) + π 1 F 1 (t)), we have FDR(SD(t), P I (π 0 ,F 1 ) ) =π 0 m m k=1 m k ′ =k F 0 (t k ) k ′ D m-1 (G(t j )) 1≤j≤m-1 , k -1 × D m-k G(t k+j ) -G(t k ) 1 -G(t k ) 1≤j≤m-k , k ′ -k , (20) 
Pow(SD(t), P

I (π 0 ,F 1 ) ) = m k=1 F 1 (t k ) D m-1 [G(t j )] 1≤j≤m-1 , k -1 . (21) 
To the best of our knowledge, [START_REF] Lehmann | Generalizations of the familywise error rate[END_REF] is the first exact expression for a step-down procedure that relies the FDR to the (joint) distribution of rejection numbers, for any p-value alternative distribution. The main tool to get this result is Lemma A.2.

One straightforward consequence of ( 20)

is that π 0 m m k=1 t k k D m-1 [G(t j )] 1≤j≤m-1 , k -1 is an upper-bound of FDR(SD(t))
, which in particular proves that FDR(SD(t)) is always smaller than FDR(SU(t)), as soon as t k /k is nondecreasing in k. While the latter result should probably be considered as well known, it is not trivial because when increasing the rejection number, both numerator and denominator are increasing within the FDP expression (for further developments on this issue, see Theorem 2 in [START_REF] Zeisel | Fdr control with adaptive procedures and fdr monotonicity[END_REF]). To illustrate [START_REF] Lehmann | Generalizations of the familywise error rate[END_REF], we may consider the case where t k = αk/m, that is, we may compute exactly the FDR of the LSD procedure. In the Dirac-uniform model F 1 = 1 and using [START_REF] Chi | Positive false discovery proportions: intrinsic bounds and adaptive control[END_REF], we deduce the following expression: FDR(LSD, P

I (π 0 ,F 1 =1) ) =π 0 α 2 m π 1 + π 0 α m m k=1 m j=k k j m -1 k -1 m -k j -k π m-k 0 × π 1 + π 0 αk m k-2 α(j -k + 1) m j-k-1 1 - α(j + 1) m m-j . ( 22 
)
Finally, let us emphasize that expression [START_REF] Lehmann | Generalizations of the familywise error rate[END_REF] is also useful to investigate least favorable configurations for the FDR of step-down procedures (see Section 4.1.1).

Remark 3.3. If we only focus on the Dirac-uniform configuration, the FDP distribution of a given procedure R (rejecting any p-value equals to 0) only depends on the distribution of

|R ∩ H 0 (H)| (conditionally on H), because |R ∩ H 0 (H)| = |R| -m 1 (H).
As done in Section 3.7 of [START_REF] Dickhaus | False Discovery Rate and Asymptotics[END_REF], this leads to exact computations of the FDR for step-up, step-down and more general stepup-down procedures, in the particular Dirac-uniform configuration. In comparison, our approach is valid for an arbitrary alternative c.d.f. F 1 , while it intrinsically uses the exchangeability of the p-values (which requires to use an unconditional model).

3.2.

Unconditional EMN model with nonnegative correlation, m ≥ 2. In this subsection, our goal is to obtain results similar to Theorem 3.1 and Theorem 3.2, but this time in the unconditional EMN model of parameters π 0 , ρ and µ, with a nonnegative correlation ρ ∈ [0, 1]. In that case, we easily see that the joint distribution of the p-values can be realized as follows: for all i, p i = Φ(

√ ρ Φ -1 (U ) + √ 1 -ρ Φ -1 (U i ) + µH i )
, where U , (U i ) i are all i.i.d. uniform on (0, 1) (and independent of (H i ) i ). This idea can be traced back to [START_REF] Stuart | Equally correlated variates and the multinormal integral[END_REF] [START_REF] Stuart | Equally correlated variates and the multinormal integral[END_REF] and Owen and Steck (1962) [START_REF] Owen | Moments of order statistics from the equicorrelated multivariate normal distribution[END_REF]. As a consequence, conditionally on U = u, the p-values follow the unconditional independent model of parameters π 0 , F 0 (• | u, ρ) and F 1 (• | u, ρ) where we let

F 0 (t | u, ρ) = Φ Φ -1 (t) - √ ρ Φ -1 (u) √ 1 -ρ , F 1 (t | u, ρ) = Φ Φ -1 (t) - √ ρ Φ -1 (u) -µ √ 1 -ρ (23) for ρ ∈ [0, 1) and F 0 (t | u, 1) = 1{u ≤ t}, F 1 (t | u, 1) = 1{u ≤ Φ(Φ -1 (t) -µ)} for ρ = 1.
As a result, to obtain formulas valid in the unconditional EMN model, we may directly use formulas holding in the unconditional independent model (with the above modified c.d.f.'s) and using an additional integration over u ∈ (0, 1). Hence, we deduce from Theorem 3.1 and Theorem 3.2 the following result (the formulas are not fully written for short):

Corollary 3.4. For m ≥ 2 hypotheses, consider the unconditional EMN model P N (π 0 ,ρ,µ)
with parameters π 0 ∈ [0, 1], µ > 0 and ρ ∈ [0, 1] and let G(t|u, ρ) = π 0 F 0 (t|u, ρ)+π 1 F 1 (t|u, ρ) using notation [START_REF] Reiner-Benaim | FDR control by the BH procedure for two-sided correlated tests with implications to gene expression data analysis[END_REF]. 

(•) by F 0 (• | u, ρ), F 1 (•) by F 1 (• | u, ρ) and G(•) by G(• | u, ρ
), and by integrating over u with respect to the Lebesgue measure on (0, 1).

Additionally, a similar result holds for step-down procedures using [START_REF] Lehmann | Generalizations of the familywise error rate[END_REF] and [START_REF] Neuvial | Asymptotic properties of false discovery rate controlling procedures under independence[END_REF].

In particular, applying Corollary 3.4 for the LSU procedure, we obtain that FDR(LSU, P N (π 0 ,ρ,µ) ) equals: [START_REF] Roquain | Exceptional motifs in heterogeneous sequences. Contributions to theory and methodology of multiple testing[END_REF] 

π 0 m k=1 m k 1 0 F 0 (αk/m|u, ρ)G(αk/m|u, ρ) k-1 Ψ m-k (1 -G(α(m -j + 1)/m|u, ρ)) 1≤j≤m-k du.
An expression for lim m FDR(LSU, P N (π 0 ,ρ,µ) ) was provided by [START_REF] Finner | Dependency and false discovery rate: asymptotics[END_REF], by considering the asymptotic framework where m tends to infinity [START_REF] Finner | Dependency and false discovery rate: asymptotics[END_REF]. We compared the latter to the formula [START_REF] Roquain | Exceptional motifs in heterogeneous sequences. Contributions to theory and methodology of multiple testing[END_REF] by plotting the graph corresponding to their Figure 3 (not reported here). The results are qualitatively the same for π 0 < 1, but present major differences when π 0 = 1 and ρ is small. This is in accordance with the simulations reported in the concluding remarks of Section 5 in [START_REF] Finner | Dependency and false discovery rate: asymptotics[END_REF]. Hence, the asymptotic analysis may not reflect what happens for a realistically finite m, which can be seen as a limitation with respect to our non-asymptotic approach. As illustration, when π 0 = 1, Finner et al. (2007) proved that lim ρ→0 lim m FDR(LSU) = Φ( √ -2 log α) < α whereas we have lim ρ→0 FDR(LSU) = α, as remarked in [START_REF] Finner | Dependency and false discovery rate: asymptotics[END_REF] using simulations and as proved formally in the next result.

Corollary 3.5. For any m ≥ 2 and for any threshold t, the quantities FDR(SU (t), P N (π 0 ,ρ,µ) ) and FDR(SD(t), P N (π 0 ,ρ,µ) ) are continuous in any π 0 ∈ [0, 1], any ρ ∈ [0, 1] and any µ > 0. Corollary 3.5 is a straightforward consequence of Corollary 3.4; to prove the continuity in ρ = 1, we may remark that for any u outside the set

S = {t k , 1 ≤ k ≤ m} ∪ {Φ(Φ -1 (t k ) -µ), 1 ≤
k ≤ m} of zero Lebesgue measure, the functions F 0 (t | u, ρ) and F 1 (t | u, ρ) are continuous in ρ = 1. In particular, Corollary 3.5 shows that the limit of the FDR when ρ tends to 1 is given by the degenerated case ρ = 1. In the latter case, the FDR is particularly easy to compute because only one Gaussian variable is effective: for step-up procedures, FDR(SU(t)) = π 0 t m ; and for stepdown procedures, FDR(SD(t

)) = m k=1 m k π k 0 π m-k 1 k m min{t m-k+1 , Φ(Φ -1 (t 1 )-µ)} (the proof is
left to the reader). For instance, under the special p-value configuration where ρ = 1 and π 0 = 1, the above FDR expressions yield FDR(SU(t)) = t m and FDR(SD(t)) = t 1 . Thus, as ρ ≃ 1, the FDR value may considerably change as one considers a step-up or a step-down algorithm. Going back to Corollary 3.4, let us mention that the latter can be used in order to evaluate the FDR control robustness under Gaussian equicorrelated positive dependence for any procedure (step-up or step-down) that controls the FDR under independence. For instance, the adaptive procedures of [START_REF] Blanchard | Two simple sufficient conditions for FDR control[END_REF] [START_REF] Blanchard | Adaptive FDR control under independence and dependence[END_REF] (step-up using t k = α min{1, (1α)k/(mk + imsart-aos ver. 2007/09/18 file: RV_AoS.hyper12071.tex date: April 2, 2010 1)}) and [START_REF] Finner | On the false discovery rate and an asymptotically optimal rejection curve[END_REF] [START_REF] Finner | On the false discovery rate and an asymptotically optimal rejection curve[END_REF] (step-up based upon t k = αk/(m -(1α)k)) have been proved to control the FDR at level α under independence (asymptotically for [START_REF] Finner | On the false discovery rate and an asymptotically optimal rejection curve[END_REF]). A simulation study was done in [START_REF] Blanchard | Adaptive FDR control under independence and dependence[END_REF] in order to check if their respective FDR is still below α (or at least close to α) in the EMN model. Using our exact approach, we are able to reproduce their analysis without the errors due to the Monte-Carlo approximation. However, we underline that our approach uses non-random thresholds t; this is not always the case for adaptive procedures (see e.g. [START_REF] Benjamini | Adaptive linear step-up procedures that control the false discovery rate[END_REF][START_REF] Blanchard | Adaptive FDR control under independence and dependence[END_REF]).

3.3.

EMN model with a general correlation and m = 2. When the correlation ρ is negative, the approach presented in the last section is not valid anymore and the problem seems considerably more difficult to tackle. We propose in this section to focus on the case where only two hypotheses are tested, which should hopefully give some hints concerning the behavior of the FDR under negative correlations for larger m. The next result follows from elementary integration and does not require the use of an unconditional model. 

with parameters H = (H 1 , H 2 ) ∈ {0, 1} 2 (generating m 0 ∈ {1, 2} true null hypotheses), ρ ∈ [-1, 1] and µ > 0. Consider a threshold t = (t 1 , t 2 ). Let z 1 = Φ -1 (t 2 ) and z 2 = Φ -1 (t 1 ). Then FDR(SU(t), P N (H,ρ,µ)
) is given by and FDR(SD(t), P N (H,ρ,µ) ) is given by

(25) ρ ∈ (-1, 1), m 0 = 1 1 2 Φ(z1-µ) 0 Φ z1-ρΦ -1 (w) √ 1-ρ 2 dw + 1 Φ(z1-µ) Φ z2-ρΦ -1 (w) √ 1-ρ 2 dw ρ ∈ (-1, 1), m 0 = 2 t 1 + t2 t1 Φ z1-ρΦ -1 (w) √ 1-ρ 2 dw + 1 t2 Φ z2-ρΦ -1 (w) √ 1-ρ 2 dw ρ = -1, m 0 = 1    t 1 if 0 < µ ≤ 2z 1 t 1 + 1 2 t 2 -1 2 Φ(µ -z 1 ) if 2z 1 < µ < z 1 + z 2 1 2 t 2 + 1 2 Φ(µ -z 1 ) if µ ≥ z 1 + z 2 ρ = -1, m 0 = 2    2t 1 if 1/2 ≥ t 2 2(t 1 + t 2 ) -1 if 1/2 < t 2 , t 1 + t 2 ≤ 1 1 if 1/2 < t 2 , t 1 + t 2 > 1 ρ = 1, m 0 = 1 1 2 t 2 ρ = 1, m 0 = 2 t 2 , imsart-
(26) ρ ∈ (-1, 1), m 0 = 1 1 2 Φ(z2-µ) 0 Φ z1-ρΦ -1 (w) √ 1-ρ 2 dw + 1 2 Φ(z1-µ) Φ(z2-µ) Φ z2-ρΦ -1 (w) √ 1-ρ 2 dw + 1 Φ(z1-µ) Φ z2-ρΦ -1 (w) √ 1-ρ 2 dw ρ ∈ (-1, 1), m 0 = 2 t 1 + 1 t1 Φ z2-ρΦ -1 (w) √ 1-ρ 2 dw ρ = -1, m 0 = 1    t 1 if 0 < µ ≤ z 1 + z 2 1 2 (t 1 + t 2 ) -1 2 Φ(µ -z 2 ) + 1 2 Φ(µ -z 1 ) if z 1 + z 2 < µ < 2z 2 1 2 t 2 + 1 2 Φ(µ -z 1 ) if µ ≥ 2z 2 ρ = -1, m 0 = 2 min(2t 1 , 1) ρ = 1, m 0 = 1 1 2 min(t 2 , Φ(z 2 -µ)) ρ = 1, m 0 = 2 t 1 .
4. Application to least/most favorable configurations.

Least favorable configurations for the FDR.

In order to study the FDR control, an interesting multiple testing issue is to determine which are the values of the model parameter F 1 (or µ) for which the FDR is maximum. The latter is called a least favorable configuration (LFC) for the FDR. and E 0 denotes the expectation with respect to m -1 i.i.d. uniform p-values). This shows that the behavior of the function k → t k /k is crucial to determine the LFC's of the FDR. Namely, if F 1 and F ′ 1 are two c.d.f.'s such that for all t ∈ [0, 1], F 1 (t) ≤ F ′ 1 (t), then we have FDR(SU(t), P I (π 0 ,F 1 ) ) ≤ FDR(SU(t), P I (π 0 ,F ′ 1 ) ) when t k /k is nondecreasing, while we have FDR(SU(t), P I (π 0 ,F 1 ) ) ≥ FDR(SU(t), P I (π 0 ,F ′ 1 ) ) when t k /k is nonincreasing. The latter recovers a well known result of [START_REF] Benjamini | The control of the false discovery rate in multiple testing under dependency[END_REF] which was initially established in the conditional model, see Theorem 5.3 in [START_REF] Benjamini | The control of the false discovery rate in multiple testing under dependency[END_REF]. As a consequence, the LFC for the FDR is either F 1 = 1 (Dirac-uniform) when t k /k is nondecreasing, or F 1 = 0 (F 1 (x) = x if we only look at concave c.d.f.'s) when t k /k is nonincreasing. In the border case of a linear threshold, the FDR does not depend on F 1 (e.g. it is equal to π 0 α for the LSU), hence any configuration is a LFC.

An open problem is to determine the LFC's of a step-down procedure using a given threshold t = (t j ) 1≤j≤m . Here, we introduce a new condition on the threshold t which provides that the Dirac-uniform configuration is a LFC for the FDR of the corresponding step-down procedure. We define for any threshold t = (t j ) 1≤j≤m the following condition:

k ∈ {1, ..., m} → m-k i=0 t k k + i D m-k t k+j -t k 1 -t k 1≤j≤m-k , i is nondecreasing. (A)
We now present the main result of this section, which uses Theorem 3.2 and is proved in Section 6.5.

Theorem 4.1. For m ≥ 2 hypotheses, consider the unconditional independent model P

I (π 0 ,F 1 )
and a step-down procedure SD(t) with a threshold t = (t j ) 1≤j≤m satisfying (A). Then for any π 0 ∈ [0, 1] and concave c.d.f. F 1 ∈ F, we have FDR(SD(t), P I (π 0 ,F 1 ) ) ≤ FDR(SD(t), P I (π 0 ,F 1 =1) ), [START_REF] Sarkar | On methods controlling the false discovery rate[END_REF] meaning that the Dirac-uniform distribution is a least favorable configuration for the FDR of SD(t). Moreover, for α ∈ (0, 1), the linear threshold t = (αj/m) 1≤j≤m satisfies (A) and thus [START_REF] Sarkar | On methods controlling the false discovery rate[END_REF] holds for the linear step-down procedure LSD.

While condition (A) may be somehow difficult to state formally, it is very easy to check numerically because it only involves a finite set of real numbers. For instance, considering the threshold of [START_REF] Gavrilov | An adaptive step-down procedure with proven fdr control under independence[END_REF] 

t k = αk/(m + 1 -(1 -α)k) (
for which the stepdown procedure controls the FDR, see [START_REF] Gavrilov | An adaptive step-down procedure with proven fdr control under independence[END_REF]), we may see that (t k ) k satisfies (A) for each (α, m) ∈ {0.01, 0.05, 0.1, 0.2, 0.5, 0.9} × {5, 10, 50, 100}, for instance. In fact, we were not able to find a value of (α, m) for which the corresponding threshold does not satisfy (A) (unfortunately, we have yet no formal argument proving (A) for any value of (α, m)). As a consequence, Theorem 4.1 states that the LFC for the procedure of [START_REF] Gavrilov | An adaptive step-down procedure with proven fdr control under independence[END_REF] is still the Diracuniform configuration (over the class of concave c.d.f.'s), at least for the previously listed values of (α, m), which is a new interesting finding.

In comparison with the step-up case, for which the standard condition "k → t k /k nondecreasing" provides that the Dirac-uniform configuration is a LFC, the new sufficient condition (A) in the step-down case may be written as " k → t k /k . Ψ(t, k) is nondecreasing", where

Ψ(t, k) = m-k i=0 k k+i D m-k t k+j -t k 1-t k 1≤j≤m-k
, i . It turns out that the additional function Ψ has a quite complex behavior, not necessarily connected to the one of t k /k, so that there is no general relation between (A) and "k → t k /k nondecreasing"; for instance, on the one hand, (A) does not hold for the piecewise linear threshold defined by t k = αpk/m for 1 ≤ k ≤ a and by

t k = α(pa -m)((a -m)m) -1 k + α(1 -(pa -m)(a -m) -1
) for a + 1 ≤ k ≤ m (using e.g. m = 50, p = 0.6, a = 4, α = 0.5), while t k /k is nondecreasing. On the other hand, (A) holds for t k = 0.9 (k/m) 9/10 (using e.g. m = 50) while t k /k is decreasing. In particular, for the latter threshold and considering only the set of concave c.d.f.'s, a LFC for FDR(SU(t)) is F 1 (x) = x while a LFC for FDR(SD(t)) is F 1 = 1 (and we checked numerically using Gaussian models that F 1 (x) = x is not a LFC for FDR(SD(t)) ). This puts forward the complexity of the issue: whether we consider a step-up or a step-down procedure, the LFC's for the FDR may be different for some thresholds (e.g. t k = 0.9 (k/m) 9/10 , m = 50) and they may coincide for some other thresholds (e.g. the one of [START_REF] Gavrilov | An adaptive step-down procedure with proven fdr control under independence[END_REF] for suitable (α, m)). 2007) conjectured that a LFC for the FDR of the LSU is still the Dirac-uniform distribution (see Section 1 in [START_REF] Finner | Dependency and false discovery rate: asymptotics[END_REF]). Here, we support this conjecture when ρ ≥ 0 but we disprove it when ρ < 0.

In order to investigate this issue, we reported on Figure 1 the FDR of the LSU procedure against µ in the EMN model when ρ > 0 (left) and when ρ < 0 (right), by using Corollary 3.4 and Proposition 3.6. Under positive correlation, although each curve is not necessarily nondecreasing (e.g. for ρ = 0.2), the case µ = ∞, close to the right most point of Figure 1, seems to be a LFC. A challenging problem is to state the latter formally. Under negative correlation and m = 2, however, µ = ∞ is not a LFC anymore. As a matter of fact, in the case where m = 2, m 0 = 1 and µ = ∞, the two p-values are independent (one p-value equals 0), so that the FDR equals α/2 = αm 0 /m which is not a maximum for the FDR, as we will show below. Qualitatively, we observed the same behavior concerning the FDR of the LSD procedure.

Under negative correlation, the Dirac-uniform is not a LFC for the FDR and we can therefore legitimately ask what are the LFC's in that case. Here, we propose to solve this problem when m = 2 in the conditional EMN model. Let (ρ, µ) = (-1, z 1 + z 2 ) is a LFC because applying [START_REF] Roquain | Optimal weighting for false discovery rate control[END_REF], the corresponding FDR is 3α/4, which equals the Benjamini-Yekutieli's (BY) upper-bound (1 + 1/2 + ... + 1/m)αm 0 /m [3] (valid under any dependency). Interestingly, in general, [START_REF] Guo | On control of the false discovery rate under no assumption of dependency[END_REF] states that the BY bound can be fulfilled using very specific dependency structures between the p-values (not necessarily including those coming from a EMN model) [START_REF] Guo | On control of the false discovery rate under no assumption of dependency[END_REF]. Here, we remark that the maximum value of the FDR still equals the BY bound for m 0 = 1, even for p-values coming from a EMN model. Next, for m 0 = 2, we may differentiate the corresponding expression in [START_REF] Roquain | Optimal weighting for false discovery rate control[END_REF] in order to obtain that, assuming α ≤ 1/2, the FDR (that does not depend on µ) attains its maximum in

z 1 = Φ -1 (α) and z 2 = Φ -1 (α/2)
ρ = (-z 1 (z 1 -z 2 ) -{(z 2 1 -z 1 z 2 ) 2 + 2 log(2)(z 2 1 -z 2 2 ) + 4 log(2)} 1/2 )/(2 log(2)) ∈ (-1, 0
). Second, we consider the LSD procedure, whose FDR is plotted in Figure 2 (bottom). In the case where m 0 = 2, by differentiating the corresponding expression in [START_REF] Roquain | Optimal weighting for false discovery rate control[END_REF] (that does not depend on µ), we are able to state that the FDR attains its maximum at ρ = -1 and that the value of the maximum is α. In particular, the FDR of the LSD procedure is always smaller than or equal to α when m = 2, in the conditional EMN model (for any m 0 ) and thus also in the unconditional EMN model, even for a negative correlation. An interesting open problem is to know whether this holds for larger m. 2007) also studied the value of µ maximizing the FDR in the case m = 2 in the (conditional) EMN model with possibly negative correlation [START_REF] Reiner-Benaim | FDR control by the BH procedure for two-sided correlated tests with implications to gene expression data analysis[END_REF]. The latter work focused on the two-sided testing with ρ ∈ {-1, 1}, m 0 = 1 and m = 2. 4.2. Least/most favorable configurations for the variance of the FDP. We focus here on the unconditional independent model and on the LSU procedure. Using [START_REF] Finner | On the false discovery rate and an asymptotically optimal rejection curve[END_REF] with s = 2, we easily derive the following expression for the variance of the FDP:

V[FDP(LSU)] = απ 0 m k=1 1 k D m-1 [G(α(j + 1)/m)] 1≤j≤m-1 , k -1 -(απ 0 ) 2 /m. ( 28 
)
As a consequence, by contrast with the FDR which is constantly equal to π 0 α in that case, the variance of the FDP depends on the alternative p-value c.d.f. F 1 . Moreover, since the sum in [START_REF] Shorack | Empirical processes with applications to statistics[END_REF] 

equals E 0 [(|SU([G(α(j + 1)/m)] 1≤j≤m-1 )| + 1) -1 ]
(where E 0 denotes the expectation with respect to m -1 i.i.d. uniform p-values), the smaller F 1 (point-wise), the larger the variance. Therefore, over the set F 1 ∈ F, the least favorable configuration for the variance (that is, the configuration where the variance is the largest) is given by F 1 = 0 while the most favorable configuration (that is, the configuration where the variance is the smallest) is the Dirac-uniform configuration F 1 = 1. Over the more "realistic" c.d.f. sets

F ′ = {F 1 ∈ F | ∀x ∈ (0, 1), F 1 (x) ≥ x} and F ε = {F 1 ∈ F | ∀x ∈ (0, 1), F 1 (x) ≥ ε}, 0 < ε ≤ 1 the
least favorable configurations for the variance are given respectively by F 1 (x) = x and F 1 (x) = ε. For these extreme configurations, the expression of the variance (28) can be simplified by using the next formula (proved in Section 6.6): for any threshold of the form

t k = β + kγ, 1 ≤ k ≤ m, with β, γ ≥ 0, (29) E 0 [(|SU(t)| + 1) -1 ] = 1 γ -β (1 + γ -β) m+1 -1 m + 1 -γ (1 + γ -β) m -1
for γ = β and E 0 [(|SU(t)| + 1) -1 ] = 1mγ otherwise (where E 0 denotes the expectation with respect to m i.i.d. uniform p-values) This leads to the following result.

Theorem 4.3. Consider the linear step-up procedure LSU in the unconditional independent model with parameters π 0 and F 1 . Then for any m ≥ 2, α ∈ (0, 1), π 0 ∈ [0, 1] and ε ∈ (0, 1], under the generating distribution (H, p) ∼ P I (π 0 ,F 1 ) , the following holds: The proof is made in Section 6.6. Using Theorem 4.3, we are able to investigate the following asymptotic multiple testing issue: does the FDP converge to the FDR as m grows? Establishing the latter is crucial because when one establishes FDR ≤ γ, one implicitly wants that for the observed realization ω, the control FDP(ω) ≤ γ ′ still holds for γ ′ ≃ γ (at least with high probability and when m is large). Here, the variance measure the L 2 distance between the FDP and the FDR, and since FDP ∈ [0, 1] the latter distance tends to zero if and only if the FDP converges to the FDR in probability. First, if π 0 ∈ (0, 1) does not depend on m, the convergence holds over the set of c.d.f.'s F ε , with a distance (E(FDP -FDR) 2 ) 1/2 converging to zero at rate 1/ √ m. This corroborates previous asymptotic studies in the so-called "subcritical" case (see e.g. [START_REF] Chi | On the performance of FDR control: constraints and a partial solution[END_REF][START_REF] Neuvial | Asymptotic properties of false discovery rate controlling procedures under independence[END_REF]). By contrast, when considering the classes F and F ′ the convergence does not hold in the least favorable configurations F 1 (x) = 0 and F 1 (x) = x, respectively. The latter is quite intuitive because the denominator in the FDP does not converge to infinity anymore in that cases (see e.g. [START_REF] Finner | Multiple hypotheses testing and expected number of type I errors[END_REF]), so these configurations can probably be considered as "marginal". Second, our non-asymptotic approach allows to make π 0 depends on m in the following way 1π 0 = 1π 0,m ∼ m -β with 0 < β ≤ 1, which corresponds to a classical "sparse" setting (see e.g. [START_REF] Donoho | Higher criticism for detecting sparse heterogeneous mixtures[END_REF]). Expression [START_REF] Storey | The positive false discovery rate: a Bayesian interpretation and the q-value[END_REF] implies that, in this sparse case, the variance is always larger than a quantity of order 1/m 1-β . In particular, when 1π 0,m ∼ 1/m, for any alternative c.d.f. F 1 , the FDP does not converge to the FDR, and when 1π 0,m ∼ m -β with 0 < β < 1, for all F 1 , the convergence of the FDP towards the FDR is of order slower than 1/m (1-β)/2 (in L 2 norm). As illustration, for m = 10000, 1π 0 = 1/100 and α = 0.05, expression [START_REF] Storey | The positive false discovery rate: a Bayesian interpretation and the q-value[END_REF] gives (E(FDP -FDR) 2 ) 1/2 ≥ 0.0217, so the FDP has a distribution quite spread around the FDR = π 0 α ≃ 0.05. As a conclusion, considering a sparse signal slows down the convergence of the FDP to the FDR, so any FDR control should be interpreted with cautious, even in this very standard framework (independent p-values with the LSU procedure).

min F 1 ∈F {V[FDP(LSU)]} = min F 1 ∈F ′ {V[FDP(LSU)]} = min F 1 ∈Fε V[FDP(LSU)]} = απ 0 m 1 -π m 0 1 -π 0 - (απ 0 ) 2 m 1 -π m-1 0 1 -π 0 + 1 (30) max F 1 ∈F {V[FDP(LSU)]} = απ 0 (1 -απ 0 ) max F 1 ∈F ′ {V[FDP(LSU)]} = απ 0 (1 -α) + (1 -π 0 ) π 0 α 2 m max F 1 ∈Fε {V[FDP(LSU)]} = απ 0 m 1 -(1 -(1 -π 0 )ε) m (1 -π 0 )ε - (απ 0 ) 2 m 1 -(1 -(1 -π 0 )ε) m-1 (1 -π 0 )ε + 1 . imsart-

Extensions.

Our approach is also useful to study the false non-discovery proportion (FNDP), that is, the proportion of false hypotheses among the non-rejected hypotheses, and in particular the false non-discovery rate (FNR), defined as the average of the FNDP. For this, we use the following duality property between step-up and step-down procedures: pointwise, the hypotheses rejected by SD(t, p) are exactly the hypotheses non-rejected by SU(t, p) with p i = 1p i and t r = 1t m-r+1 . Hence the distribution of the FNDP of a step-down procedure can be deduced from the distribution of the FDP of a step-up procedure. Precisely, for 0 ≤ k ≤ m -1, the property [START_REF] Efron | Empirical Bayes analysis of a microarray experiment[END_REF] implies that the distribution of the erroneous non-rejection number

|H 1 (H) ∩ (SD(t)) c | conditionally on |SD(t)| = k is binomial with parameters m -k and π 1 (1 -F 1 (t k+1 ))/(1 -G(t k+1 )).
In particular, this leads to FNR(SD(t),

P I π 0 ,F 1 ) = mπ 1 m-1 k=0 1 -F 1 (t k+1 ) m -k D m-1 ((G(t j )) 1≤j≤m-1 , k).
Moreover, applying once more the duality property between step-up and step-down, we deduce from Section 3.1.2 that for a step-up procedure, the distribution of the erroneous non-rejection number conditional on the rejection number is not binomial, in general, while we can still obtain an explicit expression for the FNR. Finally, since our formulas depend on the true parameters of the model, which are in general unknown in a statistical approach, one may formulate the concern of estimating these quantities in our formulas. We did not investigate in detail this issue as it would exceed the scope of this paper. Here, we simply notice that plugging convergent estimators of the parameters in our formulas will lead to convergent estimators for the corresponding quantity (e.g. P(FDP ≤ x), FDR or Power), because our formulas are continuous in all the model parameters. Therefore, where we used the independence between the (H i , p i ) in the second equality. This leads to [START_REF] Efron | Empirical Bayes analysis of a microarray experiment[END_REF] and then to [START_REF] Ferreira | On the Benjamini-Hochberg method[END_REF]. For (13), we use the Stirling numbers of second kind and the formula of the s-th moment of a binomial distribution of Section 2.3. Expression ( 14) is a direct consequence of ( 13) for s = 1. For the power computation, from [START_REF] Efron | Empirical Bayes analysis of a microarray experiment[END_REF] 

P[|H 0 (H) ∩ SU(t)| = j, |SU(t)| = ℓ] = ℓ j m ℓ P[p 1 ≤ t ℓ , ..., p ℓ ≤ t ℓ , k′ (ℓ) = 0, H 1 = ... = H j = 0, H j+1 = ... = H ℓ = 1] = ℓ j m ℓ P[p 1 ≤ t ℓ , ..., p j ≤ t ℓ , H 1 = ... = H j = 0] × P[p j+1 ≤ t ℓ , ..., p ℓ ≤ t ℓ , H j+1 = ... = H ℓ = 1] P[ k′ (ℓ) = 0] = ℓ j m ℓ (π 0 F 0 (t ℓ )) j (π 1 F 1 (t ℓ )) ℓ-j Ψ m-ℓ 1 -G(t m ), ..., 1 -G(t ℓ+1
FDR(R) = m i=1 E 1{p i ≤ t k} k ∨ 1 1{H i = 0} = mE 1{p 1 ≤ t k} k ∨ 1 1{H 1 = 0} = mE 1{p 1 ≤ t k(1) +1 } k′ (1) + 1 1{H 1 = 0} = π 0 mE F 0 (t k(1) +1 ) k′ (1) + 1 .
Therefore, expression (20) will be proved as soon as we state that for any k, k ′ with 0 ≤ k ≤ m and k ≤ k ′ ≤ m, that we have

P |SD(t)| = k, |SD(t ′ )| = k ′ = D m (G(t j )) 1≤j≤m , k D m-k G(t k+1+j ) -G(t k+1 ) 1 -G(t k+1 ) 1≤j≤m-k , k ′ -k , (31) 
for any threshold (t j ) 1≤j≤m+1 and letting t = (t j ) 1≤j≤m and t ′ = (t j+1 ) 1≤j≤m . To prove [START_REF] Stuart | Equally correlated variates and the multinormal integral[END_REF], remark that we may assumed that G(x) = x up to replace (t j ) j by (G(t j )) j (because G is continuous increasing). Next, assume k < k ′ < m and denote L(r) = m i=1 1{p i ≤ t r }. By definition of a step-down procedure, the probability P where we used that the p-values are i.i.d. Simple computations give that

[|SD(t)| = k, |SD(t ′ )| = k ′ ] is equal to P ∀j ≤ k, L(j) ≥ j, L(k + 1) = k, ∀j, k + 1 ≤ j ≤ k ′ , L(j + 1) ≥ j, L(k ′ + 2) = k ′ = m k m -k k ′ -k P ∀j ≤ k, L(j) ≥ j, ∀j, k + 1 ≤ j ≤ k ′ , L(j + 1) ≥ j, p 1 , ..., p k ≤ t k+1 < p k+1 , ..., p k ′ ≤ t k ′ +2 < p k ′ +1 , ..., p m = m k m -k k ′ -k P p 1 , ..., p k ≤ t k+1 < p k+1 , ..., p k ′ ≤ t k ′ +2 < p k ′ +1 , ..., p m , ∀j ≤ k, k i=1 1{p i ≤ t j } ≥ j, ∀j, k + 1 ≤ j ≤ k ′ , k ′ i=k+1 1{p i ≤ t j+1 } ≥ j -k = m k m -k k ′ -k P p (1) ≤ t 1 , ..., p (k) ≤ t k (1 -t k ′ +2 ) m-k ′ × P t k+1 < p (1) ≤ t k+2 , ..., p (k ′ -k) ≤ t k ′ +1 , imsart-
P t k+1 < p (1) ≤ t k+2 , ..., p (k ′ -k) ≤ t k ′ +1 = P p (1) ≤ t k+2 -t k+1 , ..., p (k ′ -k) ≤ t k ′ +1 -t k+1 .
This leads to [START_REF] Stuart | Equally correlated variates and the multinormal integral[END_REF]. The cases k < k ′ = m and k = k ′ are similar.

6.3. Proof of ( 16), ( 17) and [START_REF] Glueck | Exact calculations of average power for the benjamini-hochberg procedure[END_REF]. Let us state the following general expression: for 1

≤ j ≤ k ≤ m, P[|H 0 (H) ∩ SD(t)| = j, |SD(t)| = k] = k j π j 0 π k-j 1 P[U (1) ≤ t 1 , ..., U (k) ≤ t k | H 1 = ... = H j = 0, H j+1 = ... = H k = 1] Ψ k G(t 1 ), ..., G(t k )) , (32) 
where (H i , U i ) 1≤i≤k is a sequence of i.i.d. variables following the unconditional independent model (for k hypotheses). Then, applying [START_REF] Zeisel | Fdr control with adaptive procedures and fdr monotonicity[END_REF] in the case j = k, j = 0 and F 1 = 1 will lead to ( 16), ( 17) and ( 18), respectively. To state [START_REF] Zeisel | Fdr control with adaptive procedures and fdr monotonicity[END_REF], we use that (H i , p i ) i is a i.i.d. sequence:

P[|H 0 (H) ∩ SD(t)| = j, |SD(t)| = k] = k j m k P[SD(t) = {1, ..., k}, H 1 = ... = H j = 0, H j+1 = ... = H k = 1] = k j m k P[∀ℓ ≤ k, k i=1 1{p i ≤ t ℓ } ≥ ℓ, ∀i ≥ k + 1, p i > t k+1 , H 1 = ... = H j = 0, H j+1 = ... = H k = 1] = k j π j 0 π k-j 1 P[∀ℓ ≤ k, k i=1 1{p i ≤ t ℓ } ≥ ℓ | H 1 = ... = H j = 0, H j+1 = ... = H k = 1] × m k (1 -G(t k+1 )) m-k ,
which leads to (32) by applying [START_REF] Guo | On control of the false discovery rate under no assumption of dependency[END_REF].

6.4. Proof of Theorem 3.6. We focus on the step-up case, when ρ ∈ (-1, 1) and m 0 = 1 (the remaining cases are left to the reader). Without loss of generality, we may assume that the first coordinate correspond to the true null, that is, H = (0, 1). In this context, the FDP takes one of the three values: 0, 1 2 , 1, according to the location of the tests statistics Y i = X i + µH i with respect to the critical values z 1 and z 2 . From the definition of a step-up procedure, we may define the two regions for i ∈ {1, 2},

D i = {(y 1 , y 2 ) ∈ R 2 | FDP(y 1 , y 2 ) = i/2}
, where FDP(y 1 , y 2 ) denotes the FDP of SU(t) taken in the p-values p = (Φ(y 1 ), Φ(y 2 )). The regions D i are represented on Figure 3(a). Next, since (Y 1 , Y 2 ) follows the EMN model, we may write for i ∈ {1, 2}, 

P(FDP(Y 1 , Y 2 ) = i/2) = (2π 1 -ρ 2 ) -1 D i exp{-1 2(1-ρ 2 ) y 1 - imsart-
ρ(y 2 -µ) 2 -1 2 (y 2 -µ) 2 } dy 1 dy 2 = (2π) -1 Di exp{-1 2 (u 2 + v 2
)} dudv by using the substitution u = ( 1ρ 2 ) -1 y 1ρ(y 2µ) and v = y 2µ, and where the resulting integration domain Di is represented on Figure 3(b). Therefore, we obtain

P(FDP = 1/2) = ( √ 2π) -1 ∞ z 1 -µ exp{-v 2 /2}Φ (z 1 -ρv)/ 1 -ρ 2 dv
, and P(FDP = 1) = ( √ 2π) -1 z 1 -µ -∞ exp{-v 2 /2}Φ (z 2and the final expression results by using the substitution w = Φ(v). 6.5. Proof of Theorem 4.1 . For any t ∈ [0, 1], let G(t) = π 0 t + π 1 F 1 (t) and G 1 (t) = π 0 t + π 1 . First, since F 1 is concave, we have for t < t ′ ≤ 1, that (F 1 (t ′ )-F 1 (t))/(t ′ -t) ≥ (1-F 1 (t))/(1-t) and thus for t ≤ t ′ , we obtain the inequality (33) (G(t ′ ) -G(t))/(1 -G(t)) ≥ (G 1 (t ′ ) -G 1 (t))/(1 -G 1 (t))

(by convention, the LHS (resp. RHS) of ( 33) is equal to 0 if G(t) = 1 (resp. G 1 (t) = 1)). From expression [START_REF] Lehmann | Generalizations of the familywise error rate[END_REF], we obtain that FDR(LSD, P I (π 0 ,F ) ) equals where the inequality comes from (33) and because for a fixed k, the sum over i can be seen as the expectation of t k /(k + I) where I is the rejection number of a step-down procedure (point-wise nondecreasing in the threshold). Next, considering this time the sum over k as an expectation, since G ≤ G 1 and since a step-down procedure is point-wise nondecreasing in the threshold, the proof is finished by using assumption (A). Consider now the case where t j = αj/m and let us prove that this threshold satisfies (A). We now finally state (34). Let for 1 ≤ j ≤ mk, t j = αj/m 1-αk/m and t ′ j = 1t m-k-j+1 , so that

π 0 m m k=1 D m-1 ((G(t j )) 1≤j≤m-1 , k -1) m-k i=0 t k k + i D m-k G(t k+j ) -G(t k ) 1 -G(t k ) 1≤j≤m-k , i ≤ π 0 m m k=1 D m-1 ((G(t j )) 1≤j≤m-1 , k -1) m-k i=0 t k k + i D m-k G 1 (t k+j ) -G 1 (t k ) 1 -G 1 (t k ) 1≤j≤m-k , i = π 0 m m k=1 D m-1 ((G(t j )) 1≤j≤m-1 , k -1) m-k i=0 t k k + i D m-k t k+j -t k 1 -t k 1≤j≤m-k , i ,
S m,k = E 0 k k + |SD((t j ) 1≤j≤m-k )| = E 0 k m -|SU((t ′ j ) 1≤j≤m-k )|
, where E 0 denotes the expectation with respect to i.i.d. uniform p-values. Hence, denoting t ′ j = β + jγ with β = m-mα-α m-αk and γ = α m-αk , we obtain 

S m,k k = 1 m + 1 m E 0 |SU((t ′ j ) 1≤j≤m-k )| m -|SU((t ′ j ) i≤j≤m-k )| = 1 m + 1 m m-k j=1 j m -j m -k j (t ′ j ) j Ψ m-k-j 1 -t ′ m-k , ..., 1 -t ′ j+1 = 1 m + m -k m m-k j=1 t ′ j m -j m -k -1 j -1 (t ′ j ) j-1 Ψ m-k-j 1 -t ′ m-k , ...,
(t ′ j+1 ) j m -1 -j m -1 -k j Ψ m-1-k-j 1 -t ′ m-k , ..., 1 -t ′ j+2 = 1 m -γ m -k m + m -k m (β + mγ)E 0 1 m -1 -|SU((t ′ j+1 ) 1≤j≤m-1-k )| = 1 m -γ m -k m + m -k m (β + mγ) S m-1,k k ,
and the recursion (34) is proved.

6.6. Proofs for Section 4.2. Let us first prove (29): denote for any 0 ≤ i ≤ m -1, u i = E 0 [(|SU((t j ) i+1≤j≤m )|+i+1) -1 ] (where E 0 denotes the expectation with respect to i.i.d. uniform p-values) and u m = 1/(m + 1), u m+1 = 0, so that u 0 equals the quantity in [START_REF] Simes | An improved Bonferroni procedure for multiple tests of significance[END_REF]. We may prove the following recursion relation: for any 0 ≤ i ≤ m,

(35) (i + 1)u i = (1 -(m -i)γ) -(m -i)(β -γ)u i+1 .
Expression (35) is proved as follows: for i < m, Next, we obtain that the solution of the recursion (35) is given by 

(i + 1)u i =1 -E 0 |SU((t j ) i+1≤j≤m )| |SU((t j ) i+1≤j≤m )| + i + 1 =1 - m-i k=1 k k + i + 1 m -i k (t k+i ) k Ψ m-i-k 1 -t m , ..., 1 -t k+i+1 =1 -(m -i) m-i k=1 t k+i k + i + 1 m -i -1 k -1 (t k+i ) k-1 Ψ m-i
u i = m-i j=0 1 -(m -(i + j))γ m -(i + j) (m -i) × • • • × (m -(i + j)) (i + 1) × • • • × (i + j + 1) (γ -β)
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 36 For m = 2 hypotheses, consider the conditional EMN model P N (H,ρ,µ)

4. 1 . 1 .

 11 Independent model. Let us focus on the unconditional independent model. For a stepup procedure, expression (14) can be seen as π 0 mE 0 [t k/ k] (where k = |SU([G(t j+1 )] 1≤j≤m-1 )|+1
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4. 1 . 2 .

 12 EMN model. When the p-values follow the EMN model, Finner et al. (

Fig 1 .

 1 Fig 1. FDR(LSU) against the mean µ. Left: ρ ≥ 0 unconditional EMN model m = 100 and π0 = 0.5. Right: ρ < 0 conditional EMN model with m = 2 and m0 = 1. α = 0.05.

Fig 2 .

 2 Fig 2. FDR against the covariance -1 ≤ ρ ≤ 1 in the conditional EMN model. m = 2; α = 0.2. Left: m0 = 1, right: m0 = 2. Top: LSU, bottom: LSD.

6. Proofs. 6 . 1 .

 61 Proof of Theorem 3.1. Let us first prove[START_REF] Efron | Empirical Bayes analysis of a microarray experiment[END_REF] by computing the joint distribution of |H 0 (H) ∩ SU(t)| and |SU(t)|. In the independent unconditional model, we may use the exchangeability of (H i , p i ) i to obtain for any 0 ≤ j ≤ ℓ ≤ m,P[|H 0 (H) ∩ SU(t)| = j, |SU(t)| = ℓ] 0 (H) ∩ SU(t) = {1, ..., j}, SU(t) = {1, ..., ℓ}] (t) = {1, ..., ℓ}, H 1 = ... = H j = 0, H j+1 = ... = H ℓ = 1].Next, by definition of a step-up procedure, we have SU(t) = {i | p i ≤ t k} with k = |SU(t)| (expression related to the "self-consistency" condition introduced in[START_REF] Blanchard | Two simple sufficient conditions for FDR control[END_REF]). Using Lemma A.1, if k′ (ℓ) denotes the number of rejections of the step-up procedure of threshold (t j+ℓ ) 1≤j≤m-ℓ over mℓ hypotheses and using the p-values p ℓ+1 , ..., p m , we have SU(t) = {1, ..., ℓ} ⇐⇒ p 1 ≤ t ℓ , ..., p ℓ ≤ t ℓ , k = ℓ ⇐⇒ p 1 ≤ t ℓ , ..., p ℓ ≤ t ℓ , k′ (ℓ) = 0.

Fig 3 .

 3 Fig 3. Left: Di. Right: Di. For i = 1(double cross-hatch) and i = 2 (simple cross-hatch). Graph for ρ < 0.
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For any m ≥ 2 and 1 ≤ 1 =

 11 k ≤ m, let us denote S m,k = m-k i=0 k k+i D m-k αj/m 1-αk/m 1≤j≤m-k , i . Letting a m,k = k m 1α m-k m-αk (increasing in k) and b m,k = m-α m m-km-αk (decreasing in k), we may prove the following recursion (see the proof below):(34) S m,k = a m,k + b m,k S m-1,k .Using (34) we propose to state that (t k ) k satisfies (A), that is,"k ∈ {1, ..., m} → S m,k is nondecreasing" by a recurrence on m ≥ 2: the property is obviously true for m = 2. Assuming the property true for m -1, we obtain for any 2≤ k ≤ m -1, S m,k -S m,k-1 = a m,ka m,k-1 + b m,k S m-1,kb m,k-1 S m-1,k-a m,ka m,k-1 + (b m,kb m,k-1 )S m-1,k + b m,k-1 (S m-1,k -S m-1,k-1 ) ≥ (a m,k + b m,k ) -(a m,k-1 + b m,k-1 ), because S m-1,k ≤ 1. Hence, since a m,k +b m,k = 1-α m m-k m-αk, the quantity a m,k +b m,k is increasing in k and S m,k -S m,k-1 ≥ 0. Also, we obviously have S m,m = 1 ≥ S m,m-1 , and the recurrence is completed.

-k 1 -

 1 t m , ..., 1t k+i+1 =1 -(mi) m-(i+1) k=0 γ + βγ k + (i + 1) + 1 m -(i + 1) k (t k+(i+1) ) k × Ψ m-(i+1)-k 1t m , ..., 1t k+(i+1)+1 .

j , which leads to u 0 = m j=0 1 -

 1 (m-j)γ j+1 m j (γβ) j and (29) results. To prove Theorem 4.3, we combine (28) and (29), the latter using m -1 hypotheses and special values for β and γ:β = γ = π 0 α/m for F 1 (x) = 0 ; β = γ = α/m for F 1 (x) = x ; β = π 0 α/m + (1π 0 )ε and γ = π 0 α/m for F 1 (x) = ε.imsart-aos ver. 2007/09/18 file: RV_AoS.hyper12071.tex date: April 2, 2010

  ).

	• The couple (H, p) follows the unconditional equicorrelated multivariate normal model (say for short, unconditional EMN model) with parameters π 0 ∈ [0, 1], ρ ∈ [-(m -1) -1 , 1], and µ > 0, that we denote by (H, p) ∼ P N (π 0 ,ρ,µ) , if H ∼ B(1 -π 0 ) ⊗m and the distribution of p conditionally on H is P N (H,ρ,µ) , that is, conditionally on H, p follows the conditional EMN model with parameters H, ρ and µ.
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  used with t k = αk/m is similar to expression (2.1) in Theorem 2.1 of[START_REF] Ferreira | On the Benjamini-Hochberg method[END_REF], in

	imsart-aos ver. 2007/09/18 file: RV_AoS.hyper12071.tex date: April 2, 2010

  [START_REF] Ferreira | On the Benjamini-Hochberg method[END_REF] provides P(FDP(LSU) ≤ α) ≃ 0.724, P(FDP(LSU) ≤ 2α) ≃ 0.787 for m = 100 and P(FDP(LSU) ≤ α) ≃ 0.557, P(FDP(LSU) ≤ 2α) ≃ 0.826 for m = 1000. This means that the LSU procedure, designed to control the FDR at level α, can have a FDP larger than 2α with a "non-negligible" probability, for some admittedly quite standard values of the model parameters.

  Then, for any threshold t, under the generating distribution (H, p) ∼ P

	N (π 0 ,ρ,µ) ,
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the quantity P[FDP(SU(t)) ≤ x] (resp. E[FDP(SU(t)) s ]; FDR(SU(t)); Pow(SU(t))

) is given by the RHS of (12) (resp.(

13

);

[START_REF] Finner | Dependency and false discovery rate: asymptotics[END_REF]

;

[START_REF] Finner | Multiple hypotheses testing and expected number of type I errors[END_REF]

), by replacing F 0

  and first consider the LSU procedure. Its FDR is plotted in Figure2(top). When m 0 = 1, we can check that
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  ) ,
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  , the distribution of |H 1 (H) ∩ SU(t)| conditionally on k = |SU(t)| is binomial with parameters k and π 1 F 1 (t k)/G(t k ). Therefore, E[|H 1 (H) ∩ SU(t)|] = E[π 1 kF 1 (t k)/G(t k )] and (15) follows.6.2. Proof of Theorem 3.2. Let us prove the FDR expression (the proof for the power is similar). Define k = |SD(t)| and k(1) , k′[START_REF] Benjamini | Controlling the false discovery rate: a practical and powerful approach to multiple testing[END_REF] as in Lemma A.2. We get by exchangeability of (H i , p i ) i and independence of the p-values,
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Appendix APPENDIX A: USEFUL LEMMAS

The following lemma is related to the proof of Theorem 2.1 in [START_REF] Ferreira | On the Benjamini-Hochberg method[END_REF] and to Lemma 8.1 (i) in [START_REF] Roquain | Optimal weighting for false discovery rate control[END_REF].

Lemma A.1. Consider a step-up procedure SU(t) using a given threshold t testing m null hypotheses with p-values p 1 , ..., p m and rejecting k = |SU(t)| hypotheses. For a given 1 ≤ ℓ ≤ m, denote by k′ (ℓ) the number of rejections of the step-up procedure of threshold (t j+ℓ ) 1≤j≤m-ℓ over mℓ hypotheses and using the p-values p ℓ+1 , ..., p m . Then we have point-wise

Proof. First note that since k is nondecreasing in each coordinate of (p 1 , ..., p m ), we always have k ≤ k′

, by definition of k′ (ℓ) . As a consequence, since k is a maximum and since k ≤ k′ (ℓ) + ℓ, the latter is equivalent to k′ (ℓ) + ℓ = k. This establishes the second equivalence. The first equivalence easily comes from the second equivalence and using that t k ≤ t k′ (ℓ) +ℓ because (t k ) k is a nondecreasing sequence.
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For step-down procedures, we use the next lemma.

Lemma A.2. Consider a step-down procedure SD(t) using a given threshold t testing m null hypotheses with p-values p 1 , ..., p m and rejecting k = |SD(t)| hypotheses. Denote by k(1) (resp. k′ [START_REF] Benjamini | Controlling the false discovery rate: a practical and powerful approach to multiple testing[END_REF] ) the number of rejections of the step-up procedure of threshold (t j ) 1≤j≤m-1 (resp. (t j+1 ) 1≤j≤m-1 ) over m -1 hypotheses and using the p-values p 2 , ..., p m . Then we have pointwise

In the above lemma, we underline that the assertion

Proof. Similarly to the step-up case, the rejection number of SD(t) can be defined as k = max{k ∈ {0, 1, ..., m}

Also remark that we always have k′

(1) + 1 ≥ k and, by definition of k, for any j we have p j ≤ t k ⇔ p j ≤ t k+1 . First prove that p 1 ≤ t k ⇔ k = k′

(1) + 1: using the definitions of k and k′ (1) we obtain