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About the characterization of some residue currents

∂ j ∂z j δ 0 where res 0 (ω) = a -1 is the Cauchy residue. We remark that δ 0 is the integration current on the subvariety {0} of U , that D = k-1 j=0 b j ∂ j ∂z j and that b j = λ j a -j where the λ j are universal constants. Conversely, given the subvariety {0} and the differential operator D, then the meromorphic differential form ω is equal to gdz, up to holomorphic form; hence the residue current Res[ω] = Dδ 0 , can be constructed.

1.2. Characterization of holomorphic chains. P. Lelong (1957) proved that a complex analytic subvariety V in a complex analytic manifold X defines an integration current ϕ →

[V ](ϕ) = RegV ϕ on X. More generally, a holomorphic p-chain is a current l∈L n l [V l ] where n l ∈ Z Z, [V l ]
is the integration current defined by an irreductible p-dimensional complex analytic subvariety V l , the family (V l ) l∈L being locally finite.

During more than twenty years, J. King [K 71], Harvey-Shiffman [HS 74], Shiffman [S 83], H. Alexander [A 97] succeeded in proving the following structure theorem: Holomorphic p-chains on a complex manifold X are exactly the rectifiable d-closed currents of bidimension (p, p) on X.

1

In the case of section 1.1, Res [ω] is the holomorphic chain with complex coefficients 2πi res 0 (ω)δ 0 if and only if 0 is a simple pole of ω.

1.3. Our aim is to characterize residue currents using rectifiable currents with coefficients that are principal values of meromorphic differential forms and holomorphic differential operators acting on them.

We present a few results in this direction. The structure theorem of section 1.2 concerns complex analytic varieties and closed currents. So, after generalities on residue currents of semi-meromorphic differential forms, we will concentrate on residue currents of closed meromorphic forms.

2. Preliminaries: local description of a residue current ([D 93], section 6) 2.1. We will consider a finite number of holomorphic functions defined on a small enough open neighborhood U of the origin 0 of C n , with coordinates (z 1 , . . . , z n ). For convenient coordinates, any semi-meromorphic differential form, for U small enough, can be written α f , where α ∈ E . (U )), f ∈ O(U ) and

f = u j k j ρ r k k ,
where the j ρ k are irreducible distinct Weierstrass polynomials in z j and the r k ∈ IN are independent of j, moreover u j is a unit at 0, i.e., for U small enough, u j does not vanish on U . Let B j be the discriminant of the polynomial j ρ = k j ρ k and let

Y k = Z( j ρ k ); it is clear that Y k is independent of j. Let Y = ∪ k Y k and Z = Sing Y .
After shrinkage of (0 ∈) U , the following expressions of 1 f are valid on U : for every j ∈ [1, . . . , n],

1 f = u -1 j k r k µ=1 j c k µ 1 j ρ µ k where j c k µ is a meromorphic function whose polar set, in Y k , is contained in Z(B j ).
Notice that B j is a holomorphic function of (z 1 , . . . , z j , . . . , z n ). In the following, for simplicity, we omit the unit u -1 j .

Let

ω = 1 f , V p[ω](ψ) = lim ǫ→0 [f ]≥ǫ ω ∧ ψ; ψ ∈ D n,n (U ). The residue of ω is Res[ω] = (dV p -V pd)[ω] = (d ′′ V p -V pd ′′ )[ω]
For every ϕ ∈ D n,n-1 (U ), let ϕ = n j=1 ϕ j with

ϕ j = ψ j dz 1 ∧ . . . ∧ dz 1 ∧ . . . ∧ dz j ∧ . . .
Then, from Herrera-Lieberman [HL 71], and the next lemma about B j , we have:

Res[ω](ϕ) = n j=1 k r k µ=1 lim δ→0 lim ǫ→0 |Bj |≥δ|j ρ k |=ǫ j c k µ 1 j ρ µ k ϕ j .
The lemma we have used here is the following: Lemma 2.1. ([D 93], Lemma 6.2.2).

Res

[ω](ϕ j ) = lim δ→0 lim ǫ→0 |Bj |≥δ|f |=ǫ ωϕ j .
Outside Z(B j ), for | j ρ k | small enough (since

∂ j ρ k ∂z j = 0), we take (z 1 , . . . , z j-1 , j ρ k , z j+1 , . . . , z n ) as local coordinates.
2.3. Notations. For the sake of simplicity, until the end of this section, we assume j = 1 and write

ρ k , c k µ instead of 1 ρ k , 1 c k µ . Outside Z(B 1
), we take (ρ k , z 2 , . . . , z n ) as local coordinates; then, for every C ∞ function h and every s ∈ IN , we have

∂ s h ∂ρ s k = 1 ( ∂ρ k ∂z1 ) 2s-1 D s h, for s ≥ 1,
where

D s = s α=1 β s α ∂ α ∂z α 1 , β s α is a holomorphic function determined by ρ k and D 0 = ∂ρ k ∂z 1 -1 . Let g µ l = µ -1 l 1 ∂ρ k ∂z1 2µ-4 D l c k µ ∂ρ k ∂z1 , (0 ≤ l ≤ µ -2); g µ µ-1 = 1 ∂ρ k ∂z1 2µ-3 D µ-1 c k µ ∂ρ k ∂z1 Let V p 1 Y k ,B1 [g µ l ] also denote the direct image, by the inclusion Y k → U , of the Cauchy principal value V p Y k ,B1 [g µ l ] of g µ l | Y k ; D µ,l 1,k = µ-1-l α=1 (-1) α β µ-1-l α ∂ α ∂z α 1 , and D µ,µ-1 1,k = id.

Final expression of the residue.

All what has been done for j = 1 is valid for any j ∈ {1, . . . , n}:

the principal value V p j (k, µ, l) = V p j Y k ,Bj [g µ l ]
defined on Y k and the holomorphic differential operator D µ,l j,k . We also denote V p j (k, µ, l) the direct image of the principal value by the canonical injection Y ֒→ U . Then, denoting L the inner product, we have:

( * ) Res[ω](ϕ) = 2πi n j=1 k r k µ=1 1 (µ -1)! µ-1 l=0 D µ,l j,k V p j (k, µ, l) ∂ ∂z j Lϕ j
3. The case of simple poles.

3.1. The case ω = 1 f .

Lemma 3.1. For a simple pole and for every k, j c k 1 is holomorphic. Proof. Let w = z j and y = (z 1 , . . . , ẑj , . . . , z n ). At points z ∈ U where B j (z) = 0, for given y, let w ks , s = 1, . . . , s k , be the zeros of ρ k . For given y, ρ k =

s k s=1 (w -w ks ), 1 f = u j k s k s=1 j C k,s 1 (w -w ks ) -1 where j C k,s 1 = 1 ∂ ∂w f (w ks , y)
; let s σ denote the product for all σ = s,

s k s=1 j C k,s 1 (w -w ks ) -1 = s k s=1 j C k,s 1 s σ (w -w kσ ) σ (w -w kσ ) = j c k 1 (w, y)ρ -1 k , with j c k 1 (w, y) = s k s=1 s σ (w -w kσ ) ∂ ∂w f (w ks , y) ([D 57], IV.B.3 et C.1).
Here j c k 1 (w, y) holomorphically extends to points of U where the w s are not all distinct because: if w s appears m times in σ (w -w kσ ), it appears (m -1) times in the numerator and the denominator of

s σ (w -w kσ ) ∂ ∂w f (w ks , y) . ⊔ ⊓
All the poles of ω are simple, i.e. for every k, r k = 1; then µ = 1, l = 0.

Res[ω](ϕ) = 2πi n j=1 k D 1,0 j,k V p j (k, 1, 0) ∂ ∂z j Lϕ j But D 1,0 1,k = id; D 0 = ∂ρ k ∂z 1 -1 ; g µ µ-1 = 1 ∂ρ k ∂z1 2µ-3 D µ-1 c k µ ∂ρ k ∂z1 ; g 1 0 = 1 ∂ρ k ∂z1 -1 D 0 c k 1 ∂ρ k ∂z1 = 1 ∂ρ k ∂z1 -1 ∂ρ k ∂z 1 -1 c k 1 ∂ρ k ∂z1 = ∂ρ k ∂z 1 -1 c k 1 ; V p j (k, 1, 0) = V p j Y k ,Bj [g 1 0 ] = V p j Y k ,Bj ∂ρ k ∂z j -1 j c k 1 , hence Res[ω](ϕ) = 2πi n j=1 k V p j Y k ,Bj [ ∂ρ k ∂z j -1 j c k 1 ] ∂ ∂z j Lϕ j where j c k 1 is holomorphic. 3.2. The case of any degree. Let ω = α f . Then Res [ω] = α∧ Res( 1 f ). Moreover, d Res [ω] = ±Res[dω], then Res [ω] is d-closed if ω is d-closed.
4. Expression of the residue current of a closed meromorphic differential form.

In this section and a part of the following one, we give statements on residue currents according to the general hypotheses and proofs of sections 2 and 3. Proofs in a particular case where the polar set is equisingular and the singularity of the polar set is a 2-codimensional smooth submanifold are given in ([D 57], IV.D). for every j = 1, . . . , n. We have

j c k µ = j a k µ (z 1 , . . . , z n ) j b k µ (z 1 , . . . , z j , . . . , z n ) ,
where a and b are holomorphic. Then dω = dω k and dω k is the quotient of a holomorphic form by a product of j b k µ (z 1 , . . . , z j , . . . , z n ) and j ρ r k +1 k (see [D 57], IV,D.1). As at the end of section 2.2, using the local coordinates (z 1 , . . . , z j-1 , ρ k , z j+1 , . . . , z n ), we have (4.1)

ω k = r k µ=1 [ j A k µ ∧ j ρ -µ k d j ρ k + j ρ -µ k B ′ k ],
where the coefficients are meromorphic.

Let R j be the ring of meromorphic forms on U whose coefficients are quotients of holomorphic forms on U by products of powers of ∂ j ρ k ∂z j and j b k µ . Lemma 4.1 ([ D 57], Lemme 4.10). Assume that dω k ∈ R j . Then

ω k = j ρ -1 k d j ρ k ∧ a k j + β k j + dR k j with R k j = r k -1 ν=1 j e k ν j ρ -ν k and da k j = d j ρ k ∧ k a ′ j + C k j j ρ k ,
where a k j , β k j , j e k ν , k a ′ j , C j ∈ R j and are independent of dz j . 4.1.2. Let ϕ be of type (n -p, n -1). Then ϕ = ϕ j , with ϕ j = ψ l1,...,ln-p dz l1 ∧ . . . ∧ dz ln-p ∧ . . . ∧ dz j ∧ . . . Proposition 4.2. Let ω = α f be a d-closed meromorphic p-form on U . Given a coordinate system on U , and with notations of section 2.1, there exists a current S p-1,1 j such that d ′′ S j | U\Z = 0, suppS j = Y and, for every k, j, a d-closed meromorphic (p -1)-form A k j on Y k with polar set Z such that

Res[ω](ϕ) = n j=1 2πi k V p Y k ,Bj A k j + d ′ S j ( ∂ ∂z j Lϕ j ).
When the coordinate system is changed, the first term of the parenthesis is modified by addition of

2πi k d ′ V p Y k ,Bj [F k j ] where F k j is a meromorphic (p -2)-form on Y k with polar set Z. Here 2πi n j=1 k V p Y k ,Bj A k j (. j
) will be called the reduced residue of ω. Proof. Apply the proof of (*) (section 2) to the meromorphic form of Lemma 4.1.

We shall use the expression of Res[ω](ϕ) of section 2.2, for ω closed.

For k and j fixed, we consider

J kj = lim δ→0 lim ǫ→0 |Bj |≥δ,|jρ k |=ǫ ω k (ϕ j ). Then Res[ω](ϕ) = k,j J kj . lim δ→0 lim ǫ→0 |Bj |≥δ,|jρ k |=ǫ dR k j ∧ ϕ j = (-1) p lim δ→0 lim ǫ→0 |Bj |≥δ,|jρ k |=ǫ R k j ∧ dϕ j .
Let S k j be the current defined by

S k j (ψ j ) = -lim δ→0 lim ǫ→0 |Bj |≥δ,|jρ k |=ǫ R k j ∧ ψ j .
By Lemme 4.1. R k j is independent of dz j . Let ψ j = dz j ∧ η j + ξ j , where ξ j is independent of dz j , then η j = ∂ ∂zj Lψ j . After change of coordinates:

(4.2) S k j (ψ j ) = -lim δ→0 lim ǫ→0 |Bj |≥δ,|jρ k |=ǫ ∂ j ρ k ∂z j -1 R k j ∧ d j ρ k ∧ η j = (-1) p 2πi lim δ→0 ν Y k |Bj |≥δ (ν -1)! -1 ∂ ν-1 j e k ν ∧ η j ∂j ρ k ∂zj -1 ∂ j ρ k ν-1 j ρ k =0 We have S j (ψ j ) = k S k j . lim δ→0 lim ǫ→0 |Bj |≥δ,|jρ k |=ǫ j ρ k -1 d j ρ k ∧ a k j + β k j = 2πi lim δ→0 |Bj |≥δ a k j | Y k = 2πiV p Y k ,Bj A k j , with A k j = a k j | Y k
The last alinea is proved as in ([D 57], IV.D.4). ⊔ ⊓

Corollary 4.3. The current S j is obtained by application of holomorphic differential operators to currents principal values of meromorphic forms supported by the irreducible components of Y .

Proof. The corollary follows from the above expression for S j and the computations in section 2. ⊔ ⊓ We remark that d ′ itself is a holomorphic differential operator.

Particular cases.

4.2.1. The case p = 1. With the notations of Proposition 4.2, the forms A k are of degree 0 and are d-closed, hence constant and unique: the reduced residue is a divisor with complex coefficients.

4.2.2.

With the hypotheses and the notations of section 2.1, if all the multiplicities r k are equal to 1, the reduced residue is uniquely determined and the current S = 0.

Comparison with the expression of Res

[ω] in section 2, when ω is d-closed.
The reduced residue is equal to

2πi n j=1 k V p j Y k ,Bj [ ∂ρ k ∂z j -1 j c k 1 ] ∂ ∂z j L(α ∧ .) j .
It is well defined if all the poles of ω are simple.

5. Generalization of a theorem of Picard. Structure of residue currents of closed meromorphic forms.

5.1. The theorem of Picard [P 01] characterizes the divisor with complex coefficients associated to a dclosed differential form, of degree 1 of the third kind, on a complex projective algebraic surface; this result has been generalized by S. Lefschetz (1924): "the divisor has to be homologous to 0", then by A. Weil (1947).

Locally, one of its assertions is a particular case of the theorem of Dickenstein-Sessa ([DS 85], Theorem 7.1): Analytic cycles are locally residual currents (see section 5.5), with a variant by D. Boudiaf ([B 92], Ch.1, sect.3).

Main results.

Theorem 5.1. Let X be a complex manifold which is compact Kähler or Stein, and Y be a complex hypersurface of X, then Y = ∪ ν Y ν is a locally finite union of irreducible hypersurfaces. Let Z = Sing Y , and let

A ν be a d-closed meromorphic (p -1)-form on Y ν with polar set Y ν ∩ Z such that the current t = 2πi ν V p Yν A ν is d-closed.
Then the following two conditions are equivalent: (i) t is the residue current of a d-closed meromorphic p-form on X having Y as polar set with multiplicity one.

(ii) t = dv on X, where v is a current, i.e., is cohomologous to 0 on X.

Proof. From section 4 locally, and a sheaf cohomology machinery globally; detailed proof will be given later for the more general theorem 5.5.

⊔ ⊓

For p = 1, the A ν are complex constants, then t is the divisor with complex coefficients 2πi ν A ν Y ν .

Corollary 5.1.1. Under the hypotheses of Theorem 5.1, every residue current of a closed meromorphic p-form appears as a divisor, homologous to 0, whose coefficients are principal values of meromorphic (p -1)forms on the irreducible components of the support of the divisor and conversely.

Let R loc q,q (X) be the vector space of locally rectifiable currents of bidimension (q, q) on the complex manifold X and R locC q,q (X) = R loc q,q ⊗ Z Z C(X) .

Theorem 5.2. Let T ∈ R locC q,q (X), dT = 0. Then T is a holomorphic q-chain with complex coefficients. This is the structure theorem of holomorphic chains of Harvey-Shiffman-Alexander for complex coefficients; thanks to it, divisors will be translated into rectifiable currents.

Theorem 5.3. Let X be a Stein manifold or a compact Kähler manifold. Then the following conditions are equivalent:

(i) T is the residue current of a d-closed meromorphic 1-form on X having supp T as polar set with multiplicity 1;

(ii) T ∈ R locC n-1,n-1 (X), T = dV . In the same way, we can reformulate the Theorem 5.1 with rectifiable currents: Theorem 5.4. Let X be a Stein manifold or a compact Kähler manifold. Then the following conditions are equivalent:

(

i) T = ν a ν T ν , with T ν ∈ R locC n-1,n-1 (X), d-closed
, and a ν the principal value of a d-closed meromorphic (p -1)-form on supp T ν , such that T = dV ;

(ii) T is the residue current of a d-closed meromorphic p-form on X having ∪ l T l as polar set with multiplicity 1. 5.4. Generalization. 5.4.1. With the notations of section 4.1, what has been done with the current 2πi ν V p Yν A ν is also possible in the general case. The current S is defined as follows: let ψ = j ψ j , then S(ψ) = j k S k j (ψ j ). From (4.2), we have:

(5.3) S k j (ψ j ) = 2πi r k µ=1 µ-1 l=0 ∆ µ,l j,k V p j Y k ,Bj [γ µj k,l ] ∂ ∂z j Lψ j
where γ µj k,l is a meromorphic form on Y k , with polar set contained in Y k ∩ {B j = 0}, and where ∆ µ,l j,k is a holomorphic differential operator in the neighborhood of Y k . In the global case, for Y = ∪ ν Y ν locally finite, we take k = ν, the sum ν S ν j being locally finite. Then we will get generalizations of the results in sections 5.2 and 5.3 completing the programme of section 1.3. Lemma 5.1. Let m p be the sheaf of closed meromorphic differential forms. Let m p be the image by Vp of m p in the sheaf of germs of currents on X. Then, for X Stein or compact Kähler manifold, we have the commutative diagram

H 0 (X, m p ) → H 0 (X, m p ) → H 0 (X, m p /E p ) → H 1 (X, E p ) Res ↓ ↓ H 0 (X, d ′′ m p ) → H p+1 (X, C)
(from [D 57], IV.D.7) 5.4.2. The residue current of a d-closed meromorphic p-form is globally written t = 2πi ν V p Yν A ν + d ′ S, where S = ν j S ν j , with dt = 0, from the local Proposition 4.2. Theorem 5.5. If X is a complex manifold which is compact Kähler, or Stein, and Y is a complex hypersurface of X, then Y = ∪ ν Y ν is a locally finite union of irreducible hypersurfaces. Let Z= SingY ; for every ν, let A ν be a d-closed meromorphic (p -1)-form on Y ν , and, in the notations of (5.3) with k = ν, γ µj ν,l be meromorphic (p -2)-forms on Y ν , with polar set Y ν ∩ Z such that the current t = 2πi ν V p Yν A ν + d ′ S, with S = ν j S ν j , be d-closed. Locally, one of the assertions of the theorem of Picard is valid for any p, from the result of Dickenstein-Sessa quoted in section 5.1. So generalizations of theorems in sections 5.2 to 5.4, for residual currents, seem valid.
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4. 1 .

 1 Closed meromorphic differential forms. 4.1.1. Let ω = α f be a d-closed meromorphic differential p-form on a small enough open neighborhood U of the origin 0 of C n . From section 2.1, we get ω = ω k with ω k =

  5.3. Remark. The global Theorem 5.1 gives also local results since any open ball centered at 0 in C n is a Stein manifold.

5. 5 .

 5 Remarks. The Theorems of the sections 5.2 and 5.4 and their Corollaries are valid for locally residue currents in the terminology of[DS 85]. Results are also valid for any complex analytic manifold, using less natural cohomology (cf [D 57], IV.D.7).6. Remarks about residual currents [CH 78], [DS 85].In the classical definition and notations, we consider residual currents R p [µ] = R p P 0 [µ], where µ is a semi-meromorphic form α f1.....fp , and α a differential (p, 0)-form. Then, R p [µ] satisfies a formula analogous to (*) of section 2.4.([D 93] , section 8).

Then the following two conditions are equivalent: (i) t is the residue current of a d-closed meromorphic p-form on X having Y as polar set.

(ii) t = dv on X, where v is a current, i.e. t is cohomologous to 0 on X.

Proof.

(i) ⇒ (ii): From Lemma 5.1, the cohomology class of a residue current is 0; it is the case of t.

(ii) ⇒ (i): t = dv on X; t of type (p, 1) implies:

Y be the sheaf of closed meromorphic p-forms with polar set Y ; the Lemma 5.1 is valid for m p Y instead of m p . At a point O ∈ Y , Y is defined by Π k ρ k = 0 (omitting the index j); the r k being the integers in (5.3), then

where B ν and T are of the same nature as A ν and S.

Proof. We have:

(5.4)

Let O 1 be a non singuler point of Y ; there exists k such that: O 1 ∈ { j ρ k = 0}, (j = 1, . . . , n); in the neighborhood of O 1 , j ρ k can be used as local coordinate. We have: M = M j where M j is written with the local coordinates (. . . , z j-1 , j ρ k , z j+1 , . . .);

M j is of type (p, 0), therefore without term in d j ρ k and in dz l , l = j.

From (5.5), ∂M j ∂z l = 0, then (5.6)

d ′′ M j is a differential form with distribution coefficients supported by Y k , therefore, outside Z, from the structure theorem of distributions supported by a submanifold ([Sc 50], ch. III, théorème XXXVII), and from (5.6), the coefficients of d ′′ M j being those of ∂M j ∂ j ρ k , then d ′′ M j contains transversal derivatives with respect j ρ k or j ρ k of order at least equal to r k + 1, what is incompatible with the initial expression (5.4) of d ′′ M j , except if d ′′ M j = 0 outside Z. From (5.4) the Vp Y k (A ν -B ν ) and (S -T ) being defined as limits of integrals of forms vanishing on Y \ Z, we have:

⊔ ⊓ Corollary 5.5.1. Under the hypotheses of Theorem 5.5, the current S is a sum of currents obtained by application of holomorphic differential operators to principal values of meromorphic forms on the irreducible components Y ν of Y .

Corollary 5.5.2. Under the hypotheses of Theorem 5.5, the residue current of a d-closed meromorphic differential p-form is the sum, cohomologous to 0, of currents obtained by application of holomorphic differential operators to currents ν a ν T ν , with T ν ∈ R locC n-1,n-1 (X), d-closed, and a ν the principal value of a meromorphic (p -1)-form on supp T ν .