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Abstract

In this paper, we provide the O(ε) corrections to the hydrodynamic model de-
rived by Degond &Motsch from a kinetic version of the model by Vicsek & coauthors
describing flocking biological agents. The parameter ε stands for the ratio of the
microscopic to the macroscopic scales. The O(ε) corrected model involves diffusion
terms in both the mass and velocity equations as well as terms which are quadratic
functions of the first order derivatives of the density and velocity. The derivation
method is based on the standard Chapman-Enskog theory, but is significantly more
complex than usual due to both the non-isotropy of the fluid and the lack of mo-
mentum conservation.
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1 Introduction

This paper is a development of a previous work [26, 27] about continuum models of self-
propelled particles subject to alignment interaction. This class of models describes swarm-
ing behaviour among biological species and attempts at providing a simplified theoretical
framework to experimental observations (see recent observations in Refs. [3, 5, 8, 32, 40]).

The starting point is a particle model (or Individual-Based Model (IBM)) discussed
in e.g. Refs. [2, 16, 39, 41], where the interaction between biological agents such as fish
or birds is described by three interaction ranges: a close range where repulsion occurs,
a long range where attraction prevails and a medium range where agents tend to align
with each other. In the Vicsek model,[53] the alignment interaction is singled out and
analyzed. More precisely, each particle moves with a constant and uniform speed and
aligns with the average direction of all neighbours within an interaction distance R, up
to some angular fluctuation. Vicsek and co-authors[53] show that phase transitions from
disorder to order appear as the noise intensity decreases or the density increases. This
model has triggered a wealth of publications[1, 4, 13, 22, 33, 34] and given rise to various
variants[14, 50].

The task of deriving kinetic (Boltzmann-like) or continuum (fluid-like) models from
this model has been undertaken by various approaches (see Refs. [6, 46] for kinetic models
and Refs. [6, 21, 23, 46, 47] for fluid models). However, these models are based on physical
arguments and the mathematical approach of Ref. [26, 27] leads to a different type of
model: indeed, this model is not of diffusive nature like in Refs. [6, 21, 23, 46] and is
local, by contrast to Ref. [47]. The differences arise because the model of Refs. [26, 27] is
derived in the large time and space scale limit in which, at leading order, the interactions
are local and the diffusivities, negligible.

The goal of this paper is to investigate how the model of Ref. [26, 27] must be
adapted to account for small but finite nonlocality and diffusivity. We will see that the
resulting model involves complex effects due to the non-isotropy of the fluid (by contrast
to standard fluids). This point will be further developed in section 2. Similar to the
rarefied gas dynamics case (see e.g. Refs. [9, 12, 24, 49]), the derivation is based on
the Chapman-Enskog expansion method. However, in the present case, the computations
are significantly more complex because of the non-isotropy of the fluid and of the lack of
momentum conservation.

The model derived in Ref. [26, 27] has been extended in Ref. [31] to account for
anisotropic vision and density-dependent interaction frequency. Its numerical resolution
is performed in Ref. [44].

Other Individual-Based Models involving attraction-repulsion interactions can be found
in Refs. [28, 30, 43, 45] and continuum models, in Refs. [7, 10, 15, 20, 25, 42, 51, 52].
The existence of flocking or non-flocking behaviour for the Cucker-Smale model[17, 18, 19]
(which is similar to the Vicsek model but without noise nor speed constraint) has received
a great deal of attention[11, 29, 35, 36, 37, 38, 48].
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2 Position of the problem and main result

In Refs. [26, 27] the following continuum model of self-driven particles with alignment
interaction has been derived:

∂tρ+∇ · (c1ρΩ) = 0, (2.1)

ρ (∂tΩ + c2(Ω · ∇)Ω) + c3 (Id− Ω⊗ Ω)∇ρ = 0, (2.2)

where ρ = ρ(x, t) is the number density of the particles and Ω(x, t) is the direction of their
average velocity, which satisfies |Ω| = 1. c1, c2 and c3 are constants which are computed
from the underlying microscopic dynamics, where c2 < c1 < 1 and c1, c2, c3 > 0. The
matrix (Id−Ω⊗Ω) denotes the orthogonal projection matrix onto the plane orthogonal
to Ω. The notations Id and ⊗ respectively refer to the identity matrix and to the tensor
product.

The derivation of this model, according to Ref. [27], proceeds through several (formal)
asymptotic limits. The starting point is a time-discrete particle model proposed by Vicsek
and co-authors[53]. In the Vicsek model, the particles move with a constant speed and,
at discrete times, align their velocities to the mean velocity of their neighbours, up to
some small noise. In Ref. [27], a continuous in time version of this particle model is first
proposed in which the alignment interaction is modeled through a relaxation term and
the noise, by a Brownian motion on the particle velocities. The formal mean-field limit
of this time-continuous particle model (as the number of particles tends to infinity) leads
to the following nonlinear Fokker-Planck model:

∂tf + ω · ∇f +∇ω · (Ff) = d∆ωf, (2.3)

F (x, ω, t) = ν(cos θ̄) (Id− ω ⊗ ω)ω̄(x, ω, t), (2.4)

ω̄(x, ω, t) =
J(x, t)

|J(x, t)|
, J(x, t) =

∫

y∈R3, υ∈S2
K(|x− y|) υ f(y, υ, t) dy dυ . (2.5)

Here f(x, ω, t) is the particle distribution function depending on the space variable x ∈ R3,
the velocity direction ω ∈ S2 and the time t. d is a scaled diffusion constant associated with
the Brownian noise, and F (x, ω, t) is the mean-field interaction force between the particles
which depends on an interaction frequency ν. This force tends to align the particles to the
direction ω̄ which is the direction of the particle flux J in a neighbourhood of x weighted
by the kernel K. Typically, if K is the indicator function of the ball centered at 0 and
of radius R then J is the particle flux integrated over a ball centered at x and of radius
R. The matrix (Id− ω ⊗ ω) is the projection matrix onto the normal plane to ω and we
assume that the collision frequency may depend on cos θ̄ = (ω · ω̄), i.e. on the cosine of
the angle between ω and ω̄.

Notation convention: The ∇ (and below, ∆) symbols indicate the nabla and Laplacian
operators with respect to x while ∇ω and ∆ω denote the nabla and Laplace-Beltrami
operators with respect to ω. Expressions of ∇ω and ∆ω in spherical coordinates will be
recalled later.
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System (2.3)-(2.5) is written in a scaled form: the time and space scales have been
chosen such that the particle speed |ω| is exactly 1 and that both d and ν are of order
unity. With these so-called microscopic scales, the typical time and distance between two
particle interactions are both O(1). We refer to Ref. [27] for a discussion of this point.

By contrast, model (2.1), (2.2) is designed to capture the large scale dynamics only,
while averaging out the microscopic scales. Therefore, the passage from model (2.3)-(2.5)
to model (2.1), (2.2) requires a change of scales. Let ε ≪ 1 be a measure of the ratio
of the microscopic length scale to the size of the observation domain. Here, the relevant
scaling is a hydrodynamic scaling, which means that ε is also equal to the ratio of the
microscopic time scale to the macroscopic observation time. To express model (2.3)-(2.5)
in terms of the macroscopic time and space scales, we perform the change of variables
x̃ = εx, t̃ = εt. In doing so, we must assign a scale to the interaction kernel K (i.e. to the
interaction range R). A key assumption in the present work, following Ref. [27], is that
this interaction range is microscopic, and therefore of order ε when using the macroscopic
scales. This change of variables leads to (dropping the tildes for clarity):

ε(∂tf
ε + ω · ∇f ε) = −∇ω · (F εf ε) + d∆ωf

ε, (2.6)

F ε(x, ω, t) = ν(cos θε) (Id− ω ⊗ ω)ω̄ε, cos θε = ω · ω̄ε, (2.7)

ω̄ε(x, t) =
Jε(x, t)

|Jε(x, t)|
, Jε(x, t) =

∫

y∈R3, υ∈S2
K

(
∣

∣

∣

∣

x− y

ε

∣

∣

∣

∣

)

υ f ε(y, υ, t) dy dυ . (2.8)

It is an easy matter to see that ω̄ε has the following expansion:

ω̄ε = Ωε + ε2ω̄ε
2 +O(ε4) , (2.9)

Ωε(x, t) =
jε(x, t)

|jε(x, t)|
, jε(x, t) =

∫

υ∈S2
υ f ε(x, υ, t) dυ , (2.10)

ω̄ε
2 = K(Id− Ωε ⊗ Ωε)

∆jε

|jε|
. (2.11)

Ωε is the direction of the local flux jε and the constant K depends on the interaction
kernel K through:

K =
K2

6K0
, Kp =

∫

R3

K(|ξ|) |ξ|p dξ .

Accordingly, F ε can be expanded:

F ε = F ε
0 + ε2F ε

2 +O(ε4) , F ε
2 = F ε1

2 + F ε2
2 , (2.12)

F ε
0 = ν(cos θε)(Id− ω ⊗ ω)Ωε, cos θε = ω · Ωε, (2.13)

F ε1
2 = ν(cos θε)(Id− ω ⊗ ω)ω̄ε

2, F ε2
2 = ν ′(cos θε) (ω · ω̄ε

2) (Id− ω ⊗ ω)Ωε , (2.14)

where ν ′(cos θ) is the derivative of ν(cos θ) with respect to cos θ. Because of the depen-
dence of K upon the distance |x − y| only, all odd powers of ε vanish in the expansion.
This would not be the case if we considered more general kernels such as those[31] de-
pending on the angle between ω and x− y . The consideration of more general kernels is
left to future work.
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Consequently, we will consider the following expanded Fokker-Planck model

∂tf
ε + ω · ∇f ε + ε∇ω · (F ε

2 f
ε) =

1

ε
(−∇ω · (F ε

0 f
ε) + d∆ωf

ε) +O(ε2), (2.15)

where the terms F ε
0 and F ε

2 are defined by (2.13) and (2.14) We note that, at leading
order, the interaction force F ε

0 only depends on the local flux jε and that the corrections
due to the nonlocality of the interaction force appear in the O(ε) terms only. This is due
to the assumption that the radius of the interaction region is very small (of order ε) in
the macroscopic variables.

In Ref. [27], it has been proved that model (2.1), (2.2) is the formal hydrodynamic
limit ε→ 0 of the mean-field model (2.15). Additionally, Ref. [27] provides the connection
between the coefficients c1, c2 and c3 of the macroscopic model to the coefficients ν and d
of the microscopic one. The goal of this paper is to investigate what diffusive corrections
are obtained when keeping the O(ε) corrections in the Chapman-Enskog expansion of f ε.
These terms describe the response of the system to the appearence of gradients of the
state variables ρ and Ω. Here, because the fluid is anisotropic, and has only invariance
through rotations about Ω, these gradients must be split into their components parallel
and perpendicular to Ω.

To this aim, we denote by

O⊥ = Id− Ω⊗ Ω, O‖ = Ω⊗ Ω, (2.16)

the orthogonal projection matrices onto the plane normal to Ω and onto the line spanned
by Ω respectively. For a given vector X ∈ R3, we recall that

O⊥X = X − (X · Ω)Ω = Ω× (X × Ω), O‖X = (X · Ω)Ω.

Using these projections, any vector field A and tensor field B can be decomposed into
parallel and transverse components according to:

A = A⊥ + A‖, B = B⊥,⊥ +B⊥,‖ +B‖,⊥ +B‖,‖, (2.17)

defined by

A⊥ = O⊥A, A‖ = O‖A,

B⊥,⊥ = O⊥BO⊥, B⊥,‖ = O⊥BO‖, B‖,⊥ = O‖BO⊥, B‖,‖ = O‖BO‖.

Now, we decompose gradient fields according to their parallel and normal components
to Ω. For a scalar function f , we define the normal and parallel gradients as

∇⊥f = (∇f)⊥, ∇‖f = (∇f)‖.

Similarly, we may decompose the gradient of a vector field u into

∇u = ∇⊥,⊥u+∇⊥,‖u+∇‖,⊥u+∇‖,‖u,
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using the tensor decomposition (2.17). Applying this decomposition to ∇Ω itself, we find:

∇⊥,⊥Ω = ∇Ω− Ω⊗ (Ω · ∇)Ω , ∇‖,⊥Ω = Ω⊗ (Ω · ∇)Ω, (2.18)

∇⊥,‖Ω = 0 , ∇‖,‖Ω = 0. (2.19)

The last line is a consequence of (∇Ω)Ω = 0, which is found by taking the derivative of
the relation |Ω|2 = 1.

In compressible Navier-Stokes equations[24], the diffusion terms can be expressed as
functions of only two quantities constructed with the gradient of the velocity field u: the
traceless rate of strain tensor σ(u) = ∇u + (∇u)T − (2/3)(∇ · u)Id, and the divergence
field ∇ · u (the exponent T denotes the matrix transpose). Here, the anisotropy of the
problem gives rise to different diffusivities in the directions parallel or normal to Ω and
we need to split the matrix ∇Ω into a larger number of separate entities. To this aim, we
note that

∇ · Ω = Tr(∇Ω) = Tr(∇⊥,⊥Ω), (2.20)

where ’Tr’ denotes the trace of a tensor. The traceless tensor ∇⊥,⊥Ω− (1/2)(∇ ·Ω)O⊥ is
decomposed in its symmetric and anti-symmetric parts σ(Ω) and Γ(Ω):

σ(Ω) = ∇⊥,⊥Ω + (∇⊥,⊥Ω)
T − (∇ · Ω)O⊥

= O⊥ (∇Ω + (∇Ω)T − (∇ · Ω) Id)O⊥, (2.21)

Γ(Ω) = ∇⊥,⊥Ω− (∇⊥,⊥Ω)
T = O⊥ (∇Ω− (∇Ω)T )O⊥. (2.22)

These relations will be used in the form:

∇⊥,⊥Ω =
1

2
(σ(Ω) + Γ(Ω)) +

1

2
(∇ · Ω)O⊥, (2.23)

(∇⊥,⊥Ω)
T =

1

2
(σ(Ω)− Γ(Ω)) +

1

2
(∇ · Ω)O⊥. (2.24)

The non-zero block of σ(Ω) is a 2 by 2 symmetric traceless tensor and the non-zero block
of Γ(Ω) is a 2 by 2 anti-symmetric tensor. We note that, for a given vector X ∈ R3:

Γ(Ω)X = −(Γ(Ω))TX = ((∇× Ω) · Ω)X × Ω. (2.25)

Similarly, through (2.18), ∇⊥,‖Ω depends only on (Ω · ∇)Ω and we have:

(Ω · ∇)Ω = (∇Ω)TΩ = (∇× Ω)× Ω, (2.26)

where ∇ × Ω denotes the curl of Ω. Physically, (Ω · ∇)Ω describes the rate of tilt of Ω
as one moves along the flow lines (see figure 1). The other quantities describe elementary
flow patterns in the plane normal to Ω: ∇ · Ω refers to convergent or divergent flows in
the direction normal to Ω while Γ(Ω) refers to swirling patterns around Ω (see figure 2)
and σ(Ω) to shear patterns with one converging and one diverging orthogonal directions.
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y

Ω(s)

Ω(s + ds)

x

Ω(s)

x

y

Ω(s + ds)

Figure 1: (Ω · ∇)Ω describes the rate of tilt of Ω as one moves from one point s to the
neighbouring point s + ds on the flow lines. In the left figure, (Ω · ∇)Ω will be aligned
with the x axis ; in the right figure, with the y axis.

Ω
Ω

Figure 2: ∇ · Ω refers to converging (or diverging) flow patterns in the plane normal
to Ω (left picture) while Γ(Ω) refers to swirling patterns around Ω (right picture). Ω is
directed across the plane of the picture and pointing towards the observer (represented
by the circled point at the origin).

Ω Ω

Figure 3: σ(Ω) describes shear in the plane normal to Ω. The left picture depicts the case
associated to σ1 and the right picture, the case associated to σ2. Ω is directed across the
plane of the picture and pointing towards the observer (represented by the circled point
at the origin).
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Restricted to the plane normal to Ω, σ(Ω) is a symmetric traceless 2×2 matrix. Therefore,
it can be expressed as a linear combination of the two elementary matrices:

σ1 =

(

1 0
0 −1

)

, σ2 =

(

0 1
1 0

)

,

each corresponding to an elementary flow pattern (see figure 3).
In the compressible Navier-Stokes equations, there are no diffusion terms in the mass

equation and diffusion terms in the energy equation are expressed in terms of the temper-
ature gradient ∇T as a whole. Here, the temperature is constant (it is fixed by the noise
level) but, because of the lack of momentum conservation, the diffusion terms in the mass
conservation equation are not zero. Additionally, both the mass and velocity diffusions
depend on ∇ρ as well as on ∇Ω. Therefore, similar to ∇Ω, we decompose ∇ρ into its
parallel and normal components (respectively (Ω · ∇)ρ and ∇⊥ρ).

Finally, the diffusion terms are composed of two parts: the first one is a quadratic
form of the gradients in the set {∇⊥ρ, (Ω · ∇)ρ, (Ω · ∇)Ω, σ(Ω), Γ(Ω), ∇ ·Ω} with coeffi-
cients depending on (ρ,Ω) ; the second one is a linear combination of second derivatives
constructed by taking parallel derivatives Ω · ∇ or perpendicular derivatives ∇⊥ of the
gradients in the above list. This is precisely stated in the following theorem, which con-
stitutes the main result of this paper:

Theorem 2.1 (formal) The following model

∂tρ+∇ · (c1ρΩ) = εR1, (2.27)

ρ (∂tΩ + c2(Ω · ∇)Ω) + c3∇⊥ρ = εR2, (2.28)

where R1 and R2 given below, provides a second order approximation of the moments of
the solution ρε and Ωε of the initial model (2.15). The right-hand-sides are given by:

R1 = β∇ · ((Ω · ∇ρ)Ω) + γ∇ · (ρ(∇ · Ω)Ω), (2.29)

R2 = Q+D, (2.30)

Q = +Q1 (Ω · ∇ρ)∇⊥ρ + Q2 (∇ · Ω)∇⊥ρ + Q3 σ(Ω)∇⊥ρ

+Q4 Γ(Ω)∇⊥ρ + Q5 (Ω · ∇ρ)(Ω · ∇)Ω + Q6 (∇ · Ω)(Ω · ∇)Ω

+Q7 σ(Ω)(Ω · ∇)Ω + Q8 Γ(Ω)(Ω · ∇)Ω, (2.31)

D = D1O⊥(Ω · ∇)∇⊥ρ + D2O⊥(Ω · ∇)((Ω · ∇)Ω) + D3∇⊥(∇ · Ω)

+D4O⊥∇ · σ(Ω) + D5O⊥∇ · Γ(Ω), (2.32)

where β, γ, Qj for j = 1, . . . , 8, Dj for j = 1, . . . , 5 are coefficients, possibly depending
on ρ, which are given below. Additionally, we have β > 0.

The structure of R2 is as announced: it is decomposed into a term Q which is a
quadratic function of the gradients and a term D which consists of derivatives of these
gradients. Both terms involve coefficients which may depend on ρ. The quadratic part
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combines products of the parallel gradient of ρ, Ω · ∇ρ, with the perpendicular gradient
of ρ, ∇⊥ρ, and similarly for Ω (the parallel gradient of Ω being Ω ·∇Ω, the perpendicular
ones being defined as any of gradients in the list {∇ ·Ω, σ(Ω),Γ(Ω)}) and products of the
perpendicular gradient of ρ with the perpendicular gradients of Ω or parallel gradients
of ρ with parallel gradients of Ω. The diffusive part involves only parallel gradients of
the parallel gradient of Ω, or perpendicular gradients of perpendicular gradients of Ω,
and finally a parallel gradient of a perpendicular gradient of ρ. In spite of its complex
expression, R2 has a lot of structure, since a general function of this form would have 21
different terms in the quadratic part and 10 in the diffusion part, instead of respectively
8 and 5.

The main objective of this paper is the proof of this theorem. In future work, the
properties of this system will be analyzed. In particular, the question of the well-posedness
of the system under the sole condition β > 0 will be investigated, at least on a simpler
model. Indeed, the other diffusion coefficients have no definite signs, but the constraint
|Ω| = 1 should prevent the formation of singularities, by contrast to the usual backwards
heat equation.

The organization of the proof is as follows. In section 3, we recall the main properties
of the collision operator Q that are proved in Ref. [27] and provide additional prop-
erties of the linearized operator Q about an equilibrium. This prepares the terrain for
the Chapman-Enskog expansion which is performed in section 4. We start section 4 by
an exposition of the main steps to be accomplished. Then, we successively examine the
solvability condition for the existence of the first order correction to the equilibrium, the
finding of an analytical expression of it as a function of elementary solutions of the lin-
earized collision operator, and finally, the computations of the moments of this correction
which precisely give rise to the expressions of R1 and R2. We begin with the properties
of Q in the next section.

3 Properties of the collision operator and of its lin-

earization

3.1 Preliminaries

We recall the expressions of the gradient and divergence operator on the sphere. Let
x = (x1, x2, x3) be a cartesian coordinate system associated with an orthonormal basis
(e1, e2, e3) and let (θ, φ) be a spherical coordinate system associated with this basis, i.e.
x1 = sin θ cosφ, x2 = sin θ sin φ, x3 = cos θ. Let also (eθ, eφ) be the local basis associated
with the spherical coordinate system ; the vectors eθ and eφ have the following coordinates
in the cartesian basis: eθ = (cos θ cosφ, cos θ sinφ,− sin θ), eφ = (− sin φ, cosφ, 0). Let
f(ω) be a scalar function and A = Aθeθ + Aφeφ be a tangent vector field. Then:

∇ωf = ∂θf eθ +
1

sin θ
∂φf eφ, ∇ω ·A =

1

sin θ
∂θ(Aθ sin θ) +

1

sin θ
∂φAφ.
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∆ω denotes the Laplace-Belltrami operator on the sphere:

∆ωf = ∇ω · ∇ωf =
1

sin θ
∂θ(sin θ∂θf) +

1

sin2 θ
∂φφf.

We write Ffε for F ε
0 . We introduce the ’collision’ operator, which corresponds to the

leading order term of (2.15):

Q(f) = −∇ω · (Fff) + d∆ωf, (3.1)

Ff = ν (Id− ω ⊗ ω)Ωf , (3.2)

Ωf =
jf

| jf |
, and jf =

∫

ω∈S2
ω f dω . (3.3)

We note that Q(f) is a non linear operator. From now on, we assume that f is as smooth
and integrable as necessary. We note that Q acts as an operator on functions of ω only and
that the possible dependence of these functions on (x, t) can be ignored. The properties
of Q have been demonstrated in Ref. [27] are developed in the next section.

3.2 Properties of Q

3.2.1 Null-space of Q

For Ω ∈ S2, let µ = cos θ = (ω · Ω). We denote by σ(µ) an antiderivative of ν(µ), i.e.
(dσ/dµ)(µ) = ν(µ). We define

MΩ(ω) = C exp(
σ(ω · Ω)

d
),

∫

MΩ(ω) dω = 1 . (3.4)

The constant C is set by the normalization condition (second equality of (3.4)) ; it depends
only on d and on the function σ but not on Ω. We note that, when ν is constant,
σ(cos θ) = ν cos θ and that MΩ is the so-called Von-Mises distribution. The Von-Mises
distribution extends the notion of Gaussian for functions defined on the sphere and is
also known as the circular Gaussian. In the present case, the Von-Mises distribution is
centered at (or peaked at) Ω.

The following lemma states what are the elements of the null-space of Q, i.e. what
are the equilibria of the problem (see Ref. [27] for the proof):

Lemma 3.1 (i) The operator Q can be written as

Q(f) = d ∇ω ·

[

MΩf
∇ω

(

f

MΩf

)]

, (3.5)

and we have

H(f) :=

∫

ω∈S2
Q(f)

f

MΩf

dω = −d

∫

ω∈S2
MΩf

∣

∣

∣

∣

∇ω

(

f

MΩf

)
∣

∣

∣

∣

2

dω ≤ 0. (3.6)
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(ii) The equilibria, i.e. the functions f(ω) such that Q(f) = 0 form a three-dimensional
manifold E given by

E = {ρMΩ(ω) | ρ ∈ R+, Ω ∈ S
2} , (3.7)

and ρ is the total mass while Ω is the direction of the flux of ρMΩ(ω), i.e.
∫

ω∈S2
ρMΩ(ω) dω = ρ, (3.8)

Ω =
jρMΩ

| jρMΩ
|
, jρMΩ

=

∫

ω∈S2
ρMΩ(ω)ω dω. (3.9)

Furthermore, H(f) = 0 if and only if f ∈ E .

An elementary computation shows that the flux can be written

jρMΩ
= c1ρΩ, c1 = 〈cos θ〉MΩ

, (3.10)

where for any function g(cos θ), the symbol 〈g(cos θ)〉M denotes the average of g over the
probability distribution MΩ, i.e.

〈g(cos θ)〉M =

∫

MΩ(ω)g(ω · Ω) dω =

∫ π

0
g(cos θ) exp(σ(cos θ)

d
) sin θ dθ

∫ π

0
exp(σ(cos θ)

d
) sin θ dθ

. (3.11)

(3.10) defines the constant c1 appearing in (2.1).

3.2.2 Generalized collision invariants

The second set of lemmas state what are the generalized collision invariants of f . Indeed,
we recall that the collision invariants are classically defined as the functions ψ(ω) such
that

∫

ω∈S2
Q(f)ψ dω = 0, ∀f. (3.12)

However, it is readily seen that the linear vector space of collision invariants is of dimension
one, while the hydrodynamic limit requires that its dimension be equal to the dimension
of E , which is 3 in the present case. To find the missing collision invariants, we slightly
weaken the definition. We fix Ω ∈ S2 arbitrarily, and we define a Generalized Collision
Invariant (or GCI) associated to Ω as a function ψ which satisfies (3.12) only for functions
f with direction Ωf = Ω. This constraint is linear and can be resolved by the introduction
of a Lagrange multiplier. This leads to the following definition:

Definition 3.2 Let Ω ∈ S2 be given. ψ(ω) is a Generalized Collision Invariant (or GCI)
associated to Ω if and only if

∫

ω∈S2
Q(f)ψ dω = 0, ∀f such that Ωf = Ω, (3.13)

11



It is shown in Ref. [27] that, using (3.5) and Green’s formula, (3.13) leads to the
following problem defining the GCI’s associated to a direction Ω: ∃β ∈ R3, such that
β · Ω = 0 and

∇ω · (MΩ∇ωψ) = β · (Ω× ω)MΩ. (3.14)

This problem is obviously linear, so that the set CΩ of GCI’s associated to Ω is a linear
vector space. In a cartesian basis (e1, e2,Ω) and the associated spherical coordinates (θ, φ),
we have β ·(Ω×ω) = (−β1 sinφ+β2 cosφ) sin θ with βk = β ·ek, k = 1, 2. Therefore, we can
successively solve for ψ1 and ψ2, the solutions of (3.14) with right-hand sides respectively
equal to − sinφ sin θMΩ and cosφ sin θMΩ. The following lemma provides the framework
for solving (3.14). It is based on Lax-Milgram theorem and is proved in Ref. [27]:

Lemma 3.3 Let χ ∈ L2(S2) such that
∫

χ dω = 0. The problem

∇ω · (MΩ∇ωψ) = χ, (3.15)

has a unique weak solution in the space
◦

H1(S2), the quotient of the space H1(S2) by the
space spanned by the constant functions, endowed with the quotient norm.

So, to each of the right-hand sides χ1 = − sinφ sin θMΩ or χ2 = cosφ sin θMΩ which
have zero average on the sphere, there exist solutions ψ1 and ψ2 respectively (unique up
to constants) of problem (3.15). We single out unique solutions by requesting that ψ1

and ψ2 have zero average on the sphere:
∫

ψk dω = 0, k = 1, 2. Then, we have, as a
consequence of Lemma 3.3:

Proposition 3.4 The set CΩ of generalized collisional invariants associated with the vec-
tor Ω which belong to H1(S2) is a three dimensional vector space CΩ = Span{1, ψ1, ψ2}.

More explicit forms for ψ1 and ψ2 can be found. By expanding in Fourier series with
respect to φ, we easily see that

ψ1 = −g(cos θ) sin φ, ψ2 = g(cos θ) cosφ, (3.16)

where g(µ) is a solution of the elliptic problem on [−1, 1]:

−(1− µ2)∂µ(e
σ(µ)/d(1− µ2)∂µg) + eσ(µ)/dg = −(1 − µ2)3/2eσ(µ)/d. (3.17)

To solve this problem, we apply the following lemma:

Lemma 3.5 Let X = {g | (1 − µ2)−1/2g ∈ L2(−1, 1)}, V = {g ∈ X | (1 − µ2)1/2∂µg ∈
L2(−1, 1)}. Let α(µ) belong to L∞(−1, 1) such that there exists α0 > 0 and α(µ) > α0.
Then, for any f ∈ X, there exists a unique solution g ∈ V of the problem

−(1 − µ2)∂µ(e
σ(µ)/d(1− µ2)∂µg) + α(µ)g = f. (3.18)

Additionally, the maximum principle holds: if f is non-positive (respectively non-negative),
then, so is g.

12



The next lemma, in the spirit of the previous one, will prove useful in the sequel:

Lemma 3.6 Let X = L2(−1, 1), V = {g ∈ X | (1 − µ2)1/2∂µg ∈ L2(−1, 1)},
◦

X= {f ∈

X |
∫ 1

−1
f dµ = 0},

◦

V= V/R. Then, for any f ∈
◦

X , there exists a unique solution g ∈
◦

V
of the problem

−∂µ(e
σ(µ)/d(1− µ2)∂µg) = f. (3.19)

Both lemma are direct consequences of Lax-Milgram’s theorem. The first one is proved
in Ref. [27]. For the second Lemma, thanks to a Poincaré inequality we note that the

semi-norm of V is equivalent to the norm of V on the quotient
◦

V. For both problems, no
boundary conditions at ±1 need to be prescribed. This is due to the degeneracy of the
elliptic operator at these points.

Applying Lemma 3.5 shows that the function g, solution of (3.17), is uniquely defined
in the space V . For convenience, we introduce h(µ) = (1 − µ2)−1/2g ∈ L2(−1, 1) or
equivalently h(cos θ) = g(cos θ)/ sin θ. We then define

~ψΩ(ω) = (Ω× ω) h(µ) = ψ1e1 + ψ2e2, µ = (ω · Ω) . (3.20)

~ψΩ is the vector generalized collisional invariant associated to the direction Ω and is
uniquely defined by the problem

∇ω · (MΩ∇ω
~ψΩ) = (Ω× ω)MΩ,

∫

S2

~ψΩ dω = 0. (3.21)

We note that, by the maximum principle, h ≤ 0.

3.3 Linearization about the equilibrium state

We introduce a macro-micro decomposition of f :

f = ρfMΩf
+ ϕ, (3.22)

ρf and Ωf being the density and mean velocity direction of f , i.e.

ρf =

∫

S2

f dω, (3.23)

and Ωf given by (3.3). These definitions of ρf and Ωf are equivalent to saying that ϕ
belongs to the space:

ΦΩf
=

{

ϕ ∈ L1(S2) |

∫

S2

ϕdω = 0 and Ωf ×

∫

S2

ϕω dω = 0

}

. (3.24)
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For any given Ω ∈ S2, we define the following linear operator operating on ΦΩ:

LΩϕ = d ∇ω ·

[

MΩ∇ω

(

ϕ

MΩ

)]

. (3.25)

Inserting (3.22) into (3.5) yields that

Q(f) = LΩf
(ϕ).

We now precise the functional setting. Let XΩ = {ϕ |
∫

|ϕ|2M−1
Ω dω < ∞}, VΩ =

{ϕ ∈ XΩ |
∫

MΩ | ∇ω(M
−1
Ω ϕ) |2 dω < ∞},

◦

XΩ= XΩ/(MΩR),
◦

VΩ= VΩ/(MΩR). We
perform the usual identification of XΩ with its dual X′

Ω. The following lemma states the
properties of LΩ.

Lemma 3.7 Consider LΩ as an operator from VΩ into its dual V′
Ω, defined by the bilinear

form on VΩ:

〈LΩϕ, χ〉〈V′

Ω
,VΩ〉 = −d

∫

S2

MΩ∇ω

(

ϕ

MΩ

)

· ∇ω

(

χ

MΩ

)

dω. (3.26)

Then,
(i) The null-space of LΩ is the linear space spanned by MΩ.
(ii) Let ζ ∈ XΩ. The equation LΩϕ = ζ has a solution ϕ in VΩ if and only if ζ satisfies
the solvability condition:

∫

S2

ζ dω = 0. (3.27)

And ϕ is unique if it additionally satisfies (3.27). This unique solution is written ϕ = L−1
Ω ζ

and L−1
Ω is called the pseudo-inverse of LΩ.

(iii) The solution ϕ belongs to ΦΩ if and only if ζ satisfies
∫

S2

ζ ~ψΩ dω = 0, (3.28)

where ~ψΩ is the GCI (3.20).

Proof: Statement (i) is obvious. To prove (ii), we note that the bilinear form (3.26)

defines a bilinear form on the quotient space
◦

VΩ. The solvability condition (3.27) is the

necessary and sufficient condition for an element of XΩ to belong to the dual space (
◦

XΩ)
′.

Then, the proof of (ii) follows from the application of Lax-Milgram theorem. Indeed, by

Poincare’s lemma, the bilinear form (3.26) defines a norm on
◦

VΩ which is equivalent to

the norm of VΩ. Therefore, there exists a unique solution ϕ ∈
◦

VΩ of the problem

d

∫

S2

MΩ∇ω

(

ϕ

MΩ

)

· ∇ω

(

χ

MΩ

)

dω = −

∫

S2

ζ χ
dω

MΩ
, (3.29)
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which uniquely defines a solution in VΩ provided the cancellation condition (3.27) is

imposed on ϕ. Finally, inserting χ =MΩ
~ψΩ in (3.29) and using (3.21), we deduce that

∫

S2

ζ ~ψΩ dω = −d

∫

S2

MΩ∇ω

(

ϕ

MΩ

)

· ∇ω
~ψΩ dω =

= d

∫

S2

ϕ

MΩ
∇ω · (MΩ∇ω

~ψΩ) dω = d Ω×

∫

S2

ϕω dω.

Property (iii) is an immediate consequence of this identity.

3.4 Coefficients of the hydrodynamic model

We finish these preliminaries by recalling the expressions of the coefficients c1, c2 and c3
as they were derived in Ref. [27]. For any functions g(cos θ), h(cos θ) with h ≥ 0, we
denote by 〈g〉h the average of g over the probability distribution defined by h:

〈g(cos θ)〉h =

∫

g(ω · Ω) h(ω · Ω) dω
∫

h(ω · Ω) dω
=

∫ π

0
g(cos θ) h(cos θ) sin θ dθ
∫ π

0
h(cos θ) sin θ dθ

. (3.30)

Then, the constants c1, c2 and c3 of model (2.1), (2.2) are given by:

c1 = 〈cos θ〉M , c2 = 〈cos θ〉(sin2 θ)νhM , c3 = d

〈

1

ν

〉

(sin2 θ)νhM

. (3.31)

With simple computations, one can check that these definitions are equivalently expressed
by the following relations:

∫

S2

((ω · Ω)− c1)MΩ dω = 0, (3.32)
∫

S2

ν

d
((ω · Ω)− c2) (1− (ω · Ω)2) hMΩ dω = 0, (3.33)

∫

S2

(

1−
νc3
d

)

(1− (ω · Ω)2) hMΩ dω = 0. (3.34)

4 The Chapman-Enskog expansion

4.1 Setting up the expansion

We introduce the macro-micro decomposition (3.22) in a scaled form:

f ε = ρεMΩε + εGε, (4.1)

where ρε = ρfε and Ωε = Ωfε are the density and velocity direction of the solution f ε of
the kinetic model (2.15) and where Gε ∈ ΦΩε . This leads to:

(∂t + ω · ∇)(ρεMΩε + εGε) + ε∇ω · (F ε
2 ρ

εMΩε) = LΩε
(Gε) +O(ε2). (4.2)
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This justifies the scaling (4.1) because Gε appears as an O(1) quantity, showing that the
correction to equilibrium εGε is O(ε).

Integrating (4.2) and using Lemma 3.7 (ii), we find:
∫

S2

(∂t + ω · ∇)(ρεMΩε + εGε) dω = O(ε2). (4.3)

The contribution of the term ρεMΩε has been computed in Ref. [27] and we get:

∂tρ
ε +∇ · (c1ρ

εΩε) = εRε
1 +O(ε2), Rε

1 = −∇ ·

∫

S2

Gε ω dω. (4.4)

Indeed, since Gε ∈ ΦΩε , we have
∫

S2

∂tG
ε dω = ∂t

(
∫

S2

Gε dω

)

= 0.

Now, multiplying (4.2) by the GCI ~ψΩ(ω) = (Ω×ω) h(Ω ·ω), integrating with respect
to ω and using Lemma 3.7 (iii) and that Gε ∈ ΦΩε , we find:

Ωε ×

{
∫

S2

[(∂t + ω · ∇)(ρεMΩε + εGε) + ε∇ω · (F ε
2ρ

εMΩε)] hω dω

}

= O(ε2). (4.5)

Now, thanks to the computations of Ref. [27], we have:

Ωε ×

{
∫

S2

(∂t + ω · ∇)ρεMΩε hω dω

}

=
〈sin2 θνh〉MΩε

2d
Ωε × {ρε (∂tΩ

ε+

+c2(Ω
ε · ∇)Ωε) + c3( Id − Ωε ⊗ Ωε)∇ρε} ,

from which we deduce that

ρε (∂tΩ
ε + c2(Ω

ε · ∇)Ωε) + c3( Id − Ωε ⊗ Ωε)∇ρε = εR2 +O(ε2), (4.6)

R2 = −
2d

〈sin2 θνh〉MΩε

(Id− Ωε ⊗ Ωε)

∫

S2

[ ∂tG
ε + ω · ∇Gε +

+∇ω · (F ε
2ρ

εMΩε) ] hω dω. (4.7)

If we omit the O(ε2) remainders in eqs (4.4) and (4.7), we find a macroscopic model
which approximates the moments of the Fokker-Planck model (2.15) up to O(ε2) terms.
The goal is now to compute R1 and R2 and to show that, up to O(ε) terms, they have
the expressions given by Theorem 2.1. Obviously, this requires the computation of Gε.

From (4.2), we find that Gε = G̃ε +O(ε) where G̃ε is a solution of the problem

LΩε
(G̃ε) = (∂t + ω · ∇)(ρεMΩε). (4.8)

Therefore, replacing Gε by G̃ε in the expressions of R1 and R2 will not change the order of
the approximation. From now on, we will omit the tildes and consider Gε as the solution
of (4.8).

Now, the plan is as follows
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1. Show that (4.8) has a unique solution Gε belonging to the space ΦΩε . This means
proving that the right-hand side of (4.8) satisfies the solvability conditions (3.27)
and (3.28).

2. Compute the expression of Gε, i.e. invert (4.8).

3. Insert the expression of Gε in the definitions of R1 and R2 and compute them.

We now successively perform these tasks. In the following, we will omit the exponents ε
to make the expressions lighter.

4.2 Preliminary lemmas

We will have to deal with the integrals over ω of expressions involving tensor products of
O⊥ and O‖. To this aim, we use a spherical coordinate system associated with a cartesian
basis whose third basis vector coincides with Ω. We denote by (θ, φ) the associated angular
coordinates as defined in section 3.1. For a function u(ω), we define

(u)φ =
1

2π

∫ 2π

0

u(θ, φ) dφ,

the average of u over the angle φ. The proof of the following lemma is easy and omitted:

Lemma 4.1 (i) For all odd tensor powers p, we have

( (O⊥ω)
⊗p )φ = 0. (4.9)

(ii) The first even tensor powers of O⊥ω are given by:

( (O⊥ω)
⊗2 )φ =

1

2
sin2 θO⊥, (4.10)

( (O⊥ω)
⊗4 )φ =

1

8
sin4 θO⊥, (4.11)

where we define the fourth order tensor O⊥:

O⊥ = (O⊥)
⊗2 +

(

(O⊥)
⊗4
)

[26],[48]
+
(

(O⊥)
⊗4
)

[28],[46]
, (4.12)

and the subscript [ij] denotes contraction with respect to indices i and j. Restricted to the
plane normal to Ω, O⊥ can be written:

(O⊥)ijkl = δijδkl + δikδjl + δilδjk, (4.13)

where (δij)i,j∈{1,2} is the two-dimensional Kronecker tensor. We note that O⊥ is invariant
under all rotations of the plane normal to Ω, i.e. it satisfies

(O⊥)ijklRii′Rjj′Rkk′Rll′ = (O⊥)i′j′k′l′,

for all rotations Rii′ of the plane normal to Ω, where Einstein’s repeated index summation
rule is assumed.
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4.3 Sovability of the equation for G

We state the first lemma:

Lemma 4.2 We have:

(∂t + ω · ∇)(ρMΩ) = A‖ · ∇‖ρ+ A⊥ · ∇⊥ρ

+ ρ(B⊥,⊥ : ∇⊥,⊥Ω +B‖,⊥ : ∇‖,⊥Ω) +O(ε), (4.14)

where

A⊥ =MΩ

(

1−
νc3
d

)

O⊥ω , (4.15)

A‖ =MΩ((ω · Ω)− c1)Ω , (4.16)

B⊥,⊥ =MΩ

(ν

d
(O⊥ω)⊗ (O⊥ω)− c1O⊥

)

, (4.17)

B‖,⊥ =MΩ
ν

d
((ω · Ω)− c2)Ω⊗ (O⊥ω) , (4.18)

and where ‘:’ denotes the contracted product of two tensors.

Proof: We have

(∂t + ω · ∇)(ρMΩ) =MΩ

(

(∂t + ω · ∇)ρ+ ρ
∂(lnMΩ)

∂Ω
(∂t + ω · ∇)Ω

)

.

Classically, in the Chapman-Enskog procedure, time derivatives are replaced by space
derivatives, using the following identities

∂tρ = −∇ · (c1ρΩ) +O(ε),

ρ∂tΩ = −c2ρ(Ω · ∇)Ω− c3O⊥∇ρ+O(ε),

which are deduced from (4.4) and (4.6). For any tangent vector Ω̇ to S2 at Ω, we have:

∂(lnMΩ)

∂Ω
Ω̇ =

ν

d
(ω · Ω̇).

Then, we note that:

ω · ∇ρ = O⊥ω · ∇⊥ρ+ (ω · Ω)Ω · ∇‖ρ,

∇ · Ω = O⊥ : (∇⊥,⊥Ω),

ω · (Ω · ∇)Ω = (Ω⊗O⊥ω) : ∇‖,⊥Ω,

ω · (ω · ∇)Ω = (O⊥ω ⊗O⊥ω) : ∇⊥,⊥Ω+ (ω · Ω) (Ω⊗O⊥ω) : ∇‖,⊥Ω. (4.19)

Collecting these identities, we find expressions (4.15) to (4.18).
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Lemma 4.3 The quantities A⊥, A‖ B⊥,⊥, B‖,⊥ satisfy (separately) conditions (3.27) and
(3.28). As vectors or tensors, this means that they satisfy these conditions componentwise.

Proof: We summarize the main arguments and leave the computational details to the
reader.
(i) A⊥ satisfies (3.27) because of (4.9) and (3.28) as a consequence of (3.34).
(ii) A‖ satisfies (3.27) as a consequence of (3.32) and (3.28) because of (4.9).
(iii) B⊥,⊥ satisfies (3.27) as a consequence of (3.32) (after an integration by parts with
respect to θ) and (3.28) because of (4.9).
(iv) B‖,⊥ satisfies (3.27) because of (4.9) and (3.28) as a consequence of (3.33).

4.4 Computation of G

We have shown that the right-hand side of (4.8) can be decomposed into four different
terms, corresponding to derivatives of ρ and Ω in the directions normal or parallel to Ω,
and that each of these four components satisfies the solvability conditions (3.27) and (3.28)
separately. We now compute the pseudo inverse L−1

Ω applied to these four components.

Lemma 4.4 We have:

Ã⊥ := −L−1
Ω A⊥ =MΩ a⊥O⊥ω , (4.20)

Ã‖ := −L−1
Ω A‖ =MΩ a‖ Ω , (4.21)

B̃⊥,⊥ := −L−1
Ω B⊥,⊥ =MΩ {b1 (O⊥ω)⊗ (O⊥ω) + b2 O⊥} , (4.22)

B̃‖,⊥ := −L−1
Ω B‖,⊥ =MΩ b‖ Ω⊗ (O⊥ω) , (4.23)

where a⊥, a‖, b1, b2 and b‖ are functions of ω · Ω. They are defined by the following
relations (letting µ = ω · Ω):

1. ã⊥ = a⊥(µ)
√

1− µ2 is the unique solution of (3.18) with

α(µ) = e
σ
d , f(µ) =

1

d
e

σ
d

(

1−
c3ν(µ)

d

)

(1− µ2)3/2. (4.24)

2. a‖ is the unique (up to an additive constant) solution of (3.19) with

f(µ) =
1

d
e

σ
d (µ− c1), (4.25)

and the constant is adjusted in such a way that
∫

S2
Ã‖ dω = 0.

3. b̃1 = b1(1− µ2) is the unique solution of (3.18) with

α(µ) = 4e
σ
d , f(µ) =

ν

d2
e

σ
d (1− µ2)2. (4.26)
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4. b2 is the unique (up to an additive constant) solution of (3.19) with

f(µ) = e
σ
d (2b1 −

c1
d
), (4.27)

and the constant is adjusted in such a way that
∫

S2
B̃⊥ dω = 0.

5. b̃‖ = b‖
√

1− µ2 is the unique solution of (3.18) with

α(µ) = e
σ
d , f(µ) =

ν

d2
e

σ
d (µ− c2)(1− µ2)3/2. (4.28)

Proof: Preliminaries: using spherical coordinates, we check that if ϕ is of the form
ϕ =MΩ Ck(cos θ) cos kφ, then,

−
1

MΩ
LΩϕ =

de−σ/d

1− µ2
cos kφ

[

−(1− µ2)∂µ(e
σ/d(1− µ2)∂µCk) + k2eσ/dCk

]

, (4.29)

with µ = cos θ. Similarly, if ϕ = MΩ Sk(cos θ) sin kφ, then Sk satisfies the same identity
with cos kφ replaced by sin kφ.

Proof of (i): It is a matter of computation to show that Ã⊥ defined by (4.20) is
a solution of −LΩÃ⊥ = A⊥ provided that ã⊥ satisfies (3.18) with data α and f given
by (4.24) (use (4.29) with k = 1). Now, it is clear that Ã⊥ satisfies the normalization
condition (3.27), because of (4.9). Therefore, Ã⊥ is the unique solution called −L−1

Ω A⊥.
(ii) Using (4.29) with k = 0, we show that Ã‖ defined by (4.21) is a solution of−LΩÃ‖ = A‖

provided that ã‖ satisfies (3.19) with data f given by (4.25). ã‖ is defined up to an additive

constant, which means that Ã‖ is defined up to the addition of a function proportional to
MΩΩ. The coefficient can be chosen in such a way that condition (3.27) is satisfied. This
solution is the unique solution called −L−1

Ω A‖.
(iii) We proceed similarly. Using (4.29) successively with k = 2 and k = 0 we show
that −LΩB̃⊥,⊥ = B⊥,⊥ provided that b1 and b2 are specified as stated in the theorem.
Additionally, with (4.10), we have

(B̃⊥,⊥)φ = (b1
sin2 θ

2
+ b2)O⊥,

and since b2 is defined up to a constant, we can adjust this constant to satisfy the nor-
malization condition (3.27). The so-defined B̃⊥,⊥ is the unique −L−1

Ω B⊥,⊥. Note that,
because of the factor 1− µ2 in the expression of f in (4.26), it is an easy matter to show
that b1 = b̃1/(1−µ

2) belongs to L2 and that the assumptions for the application of lemma
3.6 are satisfied.
(iv) We proceed exactly in the same way for B̃‖,⊥. Using (4.29) with k = 1, we find that

B̃‖,⊥ is a solution of −LΩB̃‖,⊥ = B‖,⊥ provided that b̃‖ satisfies (4.28). The normalization

condition (3.27) is satisfied because of (4.9) which proves that the so-defined B̃‖,⊥ is the
unique −L−1

Ω B‖,⊥.
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Lemma 4.5 The following relations are satisfied:

〈a⊥ sin2 θ〉MΩ
= 0, 〈a‖〉MΩ

= 0, (4.30)

〈
1

2
b1 sin

2 θ + b2〉MΩ
= 0, 〈b‖ sin

2 θ〉MΩ
= 0. (4.31)

Proof: Since Ã⊥, Ã‖, . . . belong to the space ΦΩ, their integral against 1 and Ω× ω over
ω ∈ S2 vanishes (see definition (3.24)). Using lemma 4.1, this leads to the above listed
relations.

Finally, as a consequence of lemma 4.4, we can summarize:

Lemma 4.6 we have:

−G = −L−1
Ω ((∂t + ω · ∇)(ρMΩ))

= Ã‖ · ∇‖ρ+ Ã⊥ · ∇⊥ρ+ ρ(B̃⊥,⊥ : ∇⊥,⊥Ω + B̃‖,⊥ : ∇‖,⊥Ω) +O(ε) . (4.32)

We can decompose G into even and odd powers of O⊥ω and write

G = Ge +Go +O(ε), (4.33)

−Ge = Ã‖ · ∇‖ρ+ ρB̃⊥,⊥ : ∇⊥,⊥Ω

=MΩ

{

a‖ Ω · ∇ρ+ ρ [b1 ((O⊥ω)⊗ (O⊥ω)) : ∇Ω + b2 O⊥ : ∇Ω]
}

, (4.34)

−Go = Ã⊥ · ∇⊥ρ+ ρB̃‖,⊥ : ∇‖,⊥Ω

=MΩ

{

a⊥ O⊥ω · ∇ρ+ ρb‖ (Ω⊗ (O⊥ω)) : ∇Ω
}

. (4.35)

In the sequel, we will omit to mention the O(ε) remainder. It should be understood that
all results are up to a term of this order.

4.5 Computation of the O(ε) corrections

4.5.1 Computation of R1 (4.4)

In this section, we compute R1, the right-hand side of (4.4). Its expression is given in the
following statement:

Lemma 4.7 R1 is given by formula (2.29) with

β = 〈a‖ cos θ〉MΩ
, γ = 〈(

1

2
b1 sin

2 θ + b2) cos θ〉MΩ
. (4.36)
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Note: compared with (4.30) and (4.31), there is an additional factor cos θ inside the
brackets.

Proof: We multiply (4.32) by ω and integrate over ω. But, because G ∈ ΦΩ, the normal
component of

∫

S2
Gω dω to Ω vanishes and the projection upon Ω is the only non-zero

component. It is obtained by multiplying (4.32) by (Ω · ω)Ω and integrating upon ω. In
this integration, the contribution of the odd part Go vanishes by (4.9). The contribution
of the even part Ge is readily found to be β(Ω · ∇‖ρ)Ω + γρ(O⊥ : (∇Ω)⊥,⊥) Ω. The proof
is ended by using (4.19).

Lemma 4.8 We have β > 0.

Proof: We can write:

β =

∫

S2

a‖MΩ (ω · Ω) dω =

∫

S2

a‖MΩ ((ω · Ω)− c1) dω

=

∫

S2

(a‖MΩ) (((ω · Ω)− c1)MΩ)M
−1
Ω dω

= −

∫

S2

(a‖MΩ)LΩ(a‖MΩ)M
−1
Ω dω ≥ 0,

by the non-positivity of LΩ (see (3.26)). In the second equality, we have used that a‖MΩ

satisfies (3.27) (see also (4.30)). The third equality is obvious and the fourth one is just
using the definition of a‖MΩ (see (4.21)). β is strictly positive, otherwise, a‖MΩ would
belong to the kernel which of LΩ, which is spanned by MΩ. Since, besides that, a‖MΩ

satisfies (3.27), it would be identically zero. But, applying LΩ to it, then ((ω ·Ω)− c1)MΩ

would also be identically zero, which is obviously not the case. This concludes the proof
by contradition.

4.5.2 Computation of R2 (4.7)

Lemma 4.9 R2 is given by (2.30). The coefficients are given by (4.49), (4.49), (4.50).

Proof: We first compute the term involving ∂tG:

T = −O⊥

∫

S2

∂tGhω dω.

We have

T = −O⊥ ∂t

(
∫

S2

Ghω dω

)

+O⊥

(
∫

S2

Gh′ ω ⊗ ω dω

)

∂tΩ = T1 + T2,
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where h′ denotes the derivative of h with respect to µ = ω · Ω. For T1, we decompose ω
according to transverse and normal components:

T1 = −O⊥ ∂t

(
∫

S2

Go hO⊥ω dω

)

−O⊥ ∂t

(
∫

S2

Ge h (ω · Ω)Ω dω

)

= T 1
1 + T 2

1 ,

where we have used (4.33) and (4.9) to introduce the even and odd parts of G. Thanks
to (4.10) and (4.19), we find

T 1
1 = λ111O⊥ ∂t(O⊥∇ρ) + λ112O⊥ ∂t(ρ(Ω · ∇)Ω),

T 2
1 = λ211O⊥ ∂t((Ω · ∇ρ)Ω) + λ212O⊥ ∂t(ρ(∇ · Ω)Ω),

with

λ111 = 〈
1

2
sin2 θ a⊥ h〉MΩ

, λ112 = 〈
1

2
sin2 θ b‖ h〉MΩ

,

λ211 = 〈cos θ a‖ h〉MΩ
, λ212 = 〈(

1

2
sin2 θ cos θ b1 + cos θ b2) h〉MΩ

.

We proceed similarly for T2. Since ω · ∂tΩ = (O⊥ω) · ∂tΩ, we find:

T2 =

(
∫

S2

Ge h
′ (O⊥ω ⊗O⊥ω) dω

)

∂tΩ.

And thanks to (4.10), (4.11) and (4.13), we find

T2 = −λ21 (Ω · ∇ρ) ∂tΩ− λ22 ρ(∇ · Ω)∂tΩ− λ23 ρ σ(Ω)∂tΩ, (4.37)

with

λ21 = 〈
1

2
sin2 θ a‖ h

′〉MΩ
, λ22 = 〈(

1

4
sin4 θ b1 +

1

2
sin2 θ b2) h

′〉MΩ
,

λ23 = 〈
1

8
sin4 θ b1 h

′〉MΩ
,

where we have used that

(O⊥)ijkl∂kΩl = (∇⊥,⊥Ω+ (∇⊥,⊥Ω)
T + (∇ · Ω)O⊥)ij

= (σ(Ω) + 2(∇ · Ω)O⊥)ij . (4.38)

Now, we note the following relations:

O⊥(∂tO⊥∇ρ) = O⊥∂t∇ρ− (Ω · ∇ρ)∂tΩ ,

O⊥(∂t(ρ(Ω · ∇)Ω)) = ∂tρ(Ω · ∇)Ω + ρ(∂tΩ · ∇)Ω + ρO⊥(Ω · ∇)∂tΩ ,

(∂tΩ · ∇)Ω = (∇Ω)T∂tΩ = (∇Ω)T⊥,⊥∂tΩ

=
1

2
(σ(Ω)− Γ(Ω))∂tΩ+

1

2
(∇ · Ω)∂tΩ ,

O⊥∂t((Ω · ∇ρ)Ω) = (Ω · ∇ρ)∂tΩ ,

O⊥∂t(ρ(∇ · Ω)Ω) = ρ(∇ · Ω)∂tΩ .
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Collecting all these identities, we get:

T = λ′1O⊥ ∇∂tρ + λ′2 (Ω · ∇ρ) ∂tΩ + λ′3 ((Ω · ∇)Ω) ∂tρ + λ′4 ρ σ(Ω)∂tΩ

+ λ′5 ρΓ(Ω) ∂tΩ + λ′6 ρ (∇ · Ω) ∂tΩ + λ′7 ρO⊥(Ω · ∇) ∂tΩ (4.39)

with

λ′1 = λ111 , λ′2 = −λ111 + λ211 − λ21 , λ′3 = λ112 , λ′4 =
1

2
λ112 − λ23,

λ′5 = −
1

2
λ112 , λ′6 =

1

2
λ112 + λ212 − λ22, λ′7 = λ112.

Now, we use that up to order ε terms, we have:

∂tρ = −∇ · (c1ρΩ),

ρ ∂tΩ = −c2ρ (Ω · ∇)Ω− c3 (Id− Ω⊗ Ω)∇ρ,

and replace the time derivatives appearing in (4.39) by space derivatives. Using that

O⊥(∇Ω)∇ρ = (∇Ω)⊥,⊥∇⊥ρ =
1

2
(σ(Ω) + Γ(Ω))∇⊥ρ+

1

2
(∇ · Ω)∇⊥ρ , (4.40)

O⊥(Ω · ∇)∇ρ = O⊥(Ω · ∇)∇⊥ρ+ (Ω · ∇ρ)(Ω · ∇)Ω , (4.41)

ρO⊥(Ω · ∇)
∇⊥ρ

ρ
= O⊥(Ω · ∇)∇⊥ρ−

1

ρ
(Ω · ∇ρ)∇⊥ρ . (4.42)

We then get:

T = λ′′1 (∇ · Ω)∇⊥ρ + λ′′2 ρ∇⊥(∇ · Ω) + λ′′3 σ(Ω)∇⊥ρ

+ λ′′4 Γ(Ω)∇⊥ρ + λ′′5 O⊥(Ω · ∇)∇⊥ρ + λ′′6 (Ω · ∇ρ)(Ω · ∇)Ω

+ λ′′7
1

ρ
(Ω · ∇ρ)∇⊥ρ + λ′′8 ρ(∇ · Ω)(Ω · ∇)Ω + λ′′9 ρσ(Ω)(Ω · ∇)Ω

+ λ′′10 ρΓ(Ω)(Ω · ∇)Ω + λ′′11 ρO⊥(Ω · ∇)((Ω · ∇)Ω) , (4.43)

with:

λ′′1 = −λ′1
3c1
2

− λ′6c3 , λ′′2 = −λ′1c1 , λ′′3 = −λ′1
c1
2
− λ′4c3 ,

λ′′4 = −λ′1
c1
2
− λ′5c3 , λ′′5 = −λ′1c1 − λ′7c3 , λ′′6 = −λ′1c1 − λ′2c2 − λ′3c1 ,

λ′′7 = −λ′2c3 + λ′7c3 , λ′′8 = −λ′3c1 − λ′6c2 , λ′′9 = −λ′4c2 ,

λ′′10 = −λ′5c2 , λ′′11 = −λ′7c2 .

Now, we turn towards the term involving ω · ∇G:

S = −O⊥

∫

S2

(ω · ∇)Ghω dω.
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We decompose

S = −O⊥∇ ·

(
∫

S2

Ghω ⊗ ω dω

)

+O⊥

(
∫

S2

Gh′ ω ⊗ ω ⊗ ω dω

)

(∇Ω)

= S1 + S2,

where the second term has the following meaning:
((

∫

S2

Gh′ ω ⊗ ω ⊗ ω dω

)

(∇Ω)

)

i

=

(
∫

S2

Gh′ ω ⊗ ω ⊗ ω dω

)

ijk

(∇Ω)jk,

and Einstein’s summation convention is assumed. We again decompose S1 into parallel
and normal components:

S1 = −O⊥∇ ·

(
∫

S2

Ge h (O⊥ω)⊗ (O⊥ω) dω

)

−O⊥∇ ·

(
∫

S2

Go h (ω · Ω)Ω⊗ (O⊥ω) dω

)

−O⊥∇ ·

(
∫

S2

Go h (ω · Ω) (O⊥ω)⊗ Ω dω

)

−O⊥∇ ·

(
∫

S2

Ge h (ω · Ω)2 Ω⊗ Ω dω

)

= S1
1 + . . .+ S4

1 ,

where again, we have used (4.9) to restrict to the even (Ge) or odd (Go) components of
G with respect to (O⊥ω). Using similar computations as for (4.38) and (4.37), we find

−

∫

S2

Ge h (O⊥ω)⊗ (O⊥ω) dω = η111 (Ω · ∇ρ)O⊥ + η112 ρ (∇ · Ω)O⊥ + η113 ρ σ(Ω),

with

η111 = 〈
1

2
sin2 θ a‖ h〉MΩ

, η112 = 〈
1

4
sin4 θ b1 h+

1

2
sin2 θ b2 h〉MΩ

,

η113 = 〈
1

8
sin4 θ b1 h〉MΩ

.

We now note that

O⊥∇ · ((Ω · ∇ρ)O⊥) = O⊥(∇Ω)∇ρ+O⊥(Ω · ∇)∇ρ− (Ω · ∇ρ)(Ω · ∇)Ω,

O⊥∇ · (ρ(∇ · Ω)O⊥) = ∇⊥ρ(∇ · Ω) + ρ∇⊥(∇ · Ω)− ρ(∇ · Ω)(Ω · ∇)Ω,

O⊥∇ · (ρσ(Ω)) = σ(Ω)∇⊥ρ+ ρO⊥(∇ · σ(Ω)). (4.44)

But then, with (4.40) and (4.41), (4.44) gives

O⊥∇ · ((Ω · ∇ρ)O⊥) =
1

2
(σ(Ω) + Γ(Ω))∇⊥ρ+

1

2
(∇ · Ω)∇⊥ρ+O⊥(Ω · ∇)∇⊥ρ.

Collecting the above identities, we find

S1
1 = (

1

2
η111 + η113) σ(Ω)∇⊥ρ+

1

2
η111 Γ(Ω)∇⊥ρ+ (

1

2
η111 + η112) (∇ · Ω)∇⊥ρ

+η111O⊥(Ω · ∇)∇⊥ρ+ η112 ρ∇⊥(∇ · Ω)− η112 ρ(∇ · Ω)(Ω · ∇)Ω + η113 ρO⊥(∇ · σ(Ω)).
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Now, turning to S2
1 we have:

−

∫

S2

Go h (ω · Ω)Ω⊗ (O⊥ω) dω = η211Ω⊗∇⊥ρ+ η212 ρΩ⊗ (Ω · ∇)Ω,

with

η211 = 〈
1

2
sin2 θ cos θ a⊥ h〉MΩ

, η212 = 〈
1

2
sin2 θ cos θ b‖ h〉MΩ

. (4.45)

Noting that

O⊥∇ · (Ω⊗∇⊥ρ) = (∇ · Ω)∇⊥ρ+O⊥(Ω · ∇)∇⊥ρ,

O⊥∇ · (Ω⊗ (Ω · ∇)Ω) = (∇ · Ω)(Ω · ∇)Ω +O⊥(Ω · ∇)((Ω · ∇)Ω),

we get

S2
1 = η211 (∇ · Ω)∇⊥ρ+ η211 O⊥(Ω · ∇)∇⊥ρ

+η212 ρ(∇ · Ω)(Ω · ∇)Ω + η212 ρO⊥(Ω · ∇)((Ω · ∇)Ω).

For S3
1 , we have

−

∫

S2

Go h (ω · Ω) (O⊥ω)⊗ Ω dω = η211∇⊥ρ⊗ Ω + η212 ρ ((Ω · ∇)Ω)⊗ Ω,

with η211 and η212 given by (4.45). With

O⊥∇ · (∇⊥ρ⊗ Ω) = (∇⊥ρ · ∇)Ω = (∇Ω)T∇⊥ρ = (∇Ω)T⊥,⊥∇⊥ρ

=
1

2
σ(Ω)∇⊥ρ−

1

2
Γ(Ω)∇⊥ρ+

1

2
(∇ · Ω)∇⊥ρ,

O⊥∇ · (((Ω · ∇)Ω)⊗ Ω) = O⊥(Ω · ∇)((Ω · ∇)Ω),

we find

S3
1 = η211 (

1

2
σ(Ω)∇⊥ρ−

1

2
Γ(Ω)∇⊥ρ+

1

2
(∇ · Ω)∇⊥ρ) +

+η212 ρO⊥(Ω · ∇)((Ω · ∇)Ω).

Then, for S4
1 , we write:

−

∫

S2

Go h (ω · Ω)2 dω = η411 (Ω · ∇ρ) + η412 ρ (∇ · Ω),

with η411 and η412 given by

η411 = 〈cos2 θ a‖ h〉MΩ
, η412 = 〈(

1

2
sin2 θ b1 + b2) cos

2 θ h〉MΩ
.

26



With

O⊥∇ · ((Ω · ∇ρ)Ω⊗ Ω) = (Ω · ∇ρ)(Ω · ∇)Ω,

O⊥∇ · (ρ (∇ · Ω)Ω⊗ Ω) = ρ(∇ · Ω)(Ω · ∇)Ω,

we find

S4
1 = η411 (Ω · ∇ρ)(Ω · ∇)Ω + η412 ρ(∇ · Ω)(Ω · ∇)Ω.

Now, we turn to S2. Using that (∇Ω)Ω = 0, the decomposition of ω into O⊥ω and (ω ·Ω)Ω
reduces to:

S2 =

(
∫

S2

Go h
′ O⊥ω ⊗O⊥ω ⊗O⊥ω dω

)

ijk

(∇Ω)jk +

+

(
∫

S2

Ge h
′ (ω · Ω)O⊥ω ⊗ Ω⊗O⊥ω dω

)

ijk

(∇Ω)jk = S1
2 + S2

2 ,

(where again, Einstein’s summation convention has been used). Using (4.38), we find

−S1
2 = η121 (σ(Ω)∇⊥ρ+ 2(∇ · Ω)∇⊥ρ) + η122 ρ(σ(Ω)(Ω · ∇)Ω + 2(∇ · Ω)(Ω · ∇)Ω),

−S2
2 = η221 (Ω · ∇ρ)(Ω · ∇)Ω + η222 ρσ(Ω)((Ω · ∇)Ω) + η223ρ(∇ · Ω)(Ω · ∇)Ω,

with

η121 = 〈
1

8
sin4 θ a⊥ h

′〉MΩ
, η122 = 〈

1

8
sin4 θ b‖h

′〉MΩ
,

η221 = 〈
1

2
sin2 θ cos θ a‖ h

′〉MΩ
, η222 = 〈

1

8
sin4 θ cos θ b1 h

′〉MΩ
,

η223 = 〈(
1

4
sin4 θ b1 +

1

2
sin2 θ b2) cos θ h

′〉MΩ
.

Collecting all these identities, we find

S = η′1 (∇ · Ω)∇⊥ρ + η′2 ρ∇⊥(∇ · Ω) + η′3 σ(Ω)∇⊥ρ

+ η′4 Γ(Ω)∇⊥ρ + η′5 O⊥(Ω · ∇)∇⊥ρ + η′6 (Ω · ∇ρ)(Ω · ∇)Ω

+ η′8 ρ(∇ · Ω)(Ω · ∇)Ω + η′9 ρσ(Ω)(Ω · ∇)Ω + η′11 ρO⊥(Ω · ∇)((Ω · ∇)Ω)

+ η′12 ρO⊥∇ · σ(Ω), (4.46)

with

η′1 =
1

2
η111 + η112 +

3

2
η211 − 2η121 , η′2 = η112 , η′3 =

1

2
η111 + η113 +

1

2
η211 − η121 ,

η′4 =
1

2
η111 −

1

2
η211 , η′5 = η111 + η211 , η′6 = η411 − η221 ,

η′8 = −η112 + η212 + η412 − 2η122 − η223 , η′9 = −η122 − η222 , η′11 = 2η212 , η′12 = η113 .
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We now turn to the last term

U = −O⊥

∫

S2

∇ω · (F2ρMΩ) hω dω := O⊥Ũ .

The k-th component Ũ · ek of Ũ in a Cartesian basis (ek)k=1,2,3 can be transformed by
using Stokes theorem on the sphere:

Ũ · ek = −

∫

S2

∇ω · (F2ρMΩ) h (ω · ek) dω =

∫

S2

ρMΩ (F2 · ∇ω)(h(ω · ek)) dω.

An easy computation gives

(F2 · ∇ω)(h(ω · ek)) = (ω · ek)h
′(F2 · Ω) + h(F2 · ek).

Therefore,

U = U1 + U2,

U1 = ρO⊥

∫

S2

MΩ (F2 · Ω) h
′ ω dω, U2 = ρO⊥

∫

S2

MΩ hF2 dω. (4.47)

From (2.12), we can write F2 = F 1
2 +F 2

2 . Introducing this decomposition into the expres-
sions (4.47) of U1 and U2, we get

U1 = U1
1 + U2

1 , U2 = U1
2 + U2

2 ,

where for instance, U2
1 is defined by the first expression (4.47) with F2 substituted by F 2

2 .
In each of the expressions defining U q

p with p, q = 1, 2, we decompose ω into O⊥ω+(ω ·Ω)Ω
and, using (4.9), keep only the even powers of O⊥ω. We find:

U q
p = ξqp ρO⊥ω̄2,

with

ξ11 = −〈
1

2
sin2 θ cos θ ν h′〉MΩ

, ξ21 = 〈
1

2
sin4 θ ν ′ h′〉MΩ

,

ξ12 = 〈(1−
1

2
sin2 θ) ν h〉MΩ

, ξ22 = −〈
1

2
sin2 θ cos θ ν ′ h〉MΩ

,

Therefore, using (2.11) and the fact that j = c1ρΩ (see Ref. [27]), we have:

U = ξO⊥∆(ρΩ), ξ = K(ξ11 + ξ21 + ξ12 + ξ22).

Next, we decompose:

O⊥∆(ρΩ) = O⊥(2(∇Ω)T∇ρ+ ρ∇ · (∇Ω)).
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Now, with (2.23) and (2.18), we have:

O⊥(∇Ω)T∇ρ =
1

2
σ(Ω)∇⊥ρ−

1

2
Γ(Ω)∇⊥ρ+

1

2
(∇ · Ω)∇⊥ρ+ (Ω · ∇ρ)(Ω · ∇)Ω,

O⊥∇ · (∇Ω) =
1

2
O⊥∇ · σ(Ω) +

1

2
O⊥∇ · Γ(Ω) +

1

2
O⊥∇ · ((∇ · Ω)O⊥)

+O⊥∇ · (Ω⊗ (Ω · ∇)Ω),

O⊥∇ · ((∇ · Ω)O⊥) = ∇⊥(∇ · Ω)− (∇ · Ω)(Ω · ∇)Ω,

O⊥∇ · (Ω⊗ (Ω · ∇)Ω) = (∇ · Ω)(Ω · ∇)Ω +O⊥(Ω · ∇)(Ω · ∇)Ω.

Collecting these results, we finally get:

U = ξ1 (∇ · Ω)∇⊥ρ + ξ2 ρ∇⊥(∇ · Ω) + ξ3 σ(Ω)∇⊥ρ

+ ξ4 Γ(Ω)∇⊥ρ + ξ6 (Ω · ∇ρ)(Ω · ∇)Ω + ξ8 ρ(∇ · Ω)(Ω · ∇)Ω

+ ξ11 ρO⊥(Ω · ∇)((Ω · ∇)Ω) , + ξ12 ρO⊥∇ · σ(Ω) + ξ13 ρO⊥∇ · Γ(Ω), (4.48)

with

ξ1 = ξ , ξ2 =
1

2
ξ , ξ3 = ξ , ξ4 = −ξ , ξ6 = 2ξ , ξ8 =

1

2
ξ ,

ξ11 = ξ , ξ12 =
1

2
ξ , ξ13 =

1

2
ξ .

We can now collect (4.43), (4.46), (4.48) and insert them into (2.30) and find

R2 = ζ1 (∇ · Ω)∇⊥ρ + ζ2 ρ∇⊥(∇ · Ω) + ζ3 σ(Ω)∇⊥ρ

+ ζ4 Γ(Ω)∇⊥ρ + ζ5O⊥(Ω · ∇)∇⊥ρ + ζ6 (Ω · ∇ρ)(Ω · ∇)Ω

+ ζ7
1

ρ
(Ω · ∇ρ)∇⊥ρ + ζ8 ρ(∇ · Ω)(Ω · ∇)Ω + ζ9 ρσ(Ω)(Ω · ∇)Ω

+ ζ10 ρΓ(Ω)(Ω · ∇)Ω + ζ11 ρO⊥(Ω · ∇)((Ω · ∇)Ω) + ζ12 ρO⊥∇ · σ(Ω)

+ ζ13 ρO⊥∇ · Γ(Ω),

with

ζj =
2d

〈sin2 θνh〉MΩ

(λ′′j + η′j + ξj), j = 1, . . . 13,

and where we have defined the missing coefficients λ′′j for j = 12, 13, η′j for j = 7, 10, 13
and ξj for j = 5, 7, 9, 10 as zero.

Now, the proof is complete. The expressions of the coefficients Qi and Di are as
follows:

Q1 =
1

ρ
ζ7, Q2 = ζ1, Q3 = ζ3, Q4 = ζ4,

Q5 = ζ6, Q6 = ρζ8, Q7 = ρζ9, Q8 = ρζ10, (4.49)

D1 = ζ5, D2 = ρζ11, D3 = ρζ2, D4 = ρζ12, D5 = ρζ13. (4.50)
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5 Conclusion

In this paper, we have provided the O(ε) corrections to the hydrodynamic model derived
in Refs. [26, 27] from the kinetic description of the Vicsek alignment dynamics[53]. The
O(ε) corrected model involves diffusion terms in both the mass and velocity equations as
well as terms which are quadratic functions of the first order derivatives of the density and
velocity. To express these terms, it is necessary to decompose the density ρ and velocity Ω
and their gradients in the directions parallel and normal to Ω, thereby expressing that the
fluid is non-isotropic about Ω. Future works are concerned with the mathematical theory
of this system at least in a simplified form, with the derivation of asymptotic formula
for the coefficients in the limits of small and large noise and with numerical simulations
and comparisons with the original particle dynamics. In particular, a question to be
examined is whether including the O(ε) corrections in the simulation allows to bypass the
ambiguities of the non-conservative hydrodynamic model (see Ref. [44]) and to yield a
better approximation of the solutions of the original particle model
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[23] A. Czirók, T. Vicsek, Collective behavior of interacting self-propelled particles, Phys-
ica A 281 (2000), 17–29.

[24] P. Degond, Macroscopic limits of the Boltzmann equation: a review, in Model-
ing and computational methods for kinetic equations, P. Degond, L. Pareschi, G.
Russo (eds), Modeling and Simulation in Science, Engineering and Technology Se-
ries, Birkhauser, 2003, 3–57.

[25] P. Degond, S. Motsch, Large scale dynamics of the Persistent Turning Walker model
of fish behavior, J. Stat. Phys., 131 (2008), 989-1021.

[26] P. Degond and S. Motsch, Macroscopic limit of self-driven particles with orientation
interaction, C. R. Acad. Sci. Paris, Ser I, 345 (2007), 555-560.

[27] P. Degond, S. Motsch, Continuum limit of self-driven particles with orientation
interaction, Math. Methods Models Appl. Sci. 18 (2008), 1193–1215.

[28] M. R. D’Orsogna, Y. L. Chuang, A. L. Bertozzi and L. Chayes,Self-propelled parti-
cles with soft-core interactions: patterns, stability and collapse, Phys. Rev. Lett. 96
(2006), 104302.

[29] R. Duan, M. Fornasier, G. Toscani, A Kinetic Flocking Model with Diffusion,
preprint.

[30] E. Forgoston and I. B. Schwartz, Delay-induced instabilities in self-propelling
swarms, Phys. Rev. E 77 (2008), 035203.

[31] A. Frouvelle, A continuous model for alignment of self-propelled particles with
anisotropy and density-dependent parameters, submitted.

[32] J. Gautrais et al, Analyzing fish movement as a persistent turning walker, Journal
of Mathematical Biology 58 (2009), 429–445.

[33] J. Gautrais, C. Jost and G. Theraulaz, Key behavioural factors in a self-organized
fish school environment, Ann. Zool. Fennici 45 (2008), 415–428.
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