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In this paper, we provide the O(ε) corrections to the hydrodynamic model derived by Degond & Motsch from a kinetic version of the model by Vicsek & coauthors describing flocking biological agents. The parameter ε stands for the ratio of the microscopic to the macroscopic scales. The O(ε) corrected model involves diffusion terms in both the mass and velocity equations as well as terms which are quadratic functions of the first order derivatives of the density and velocity. The derivation method is based on the standard Chapman-Enskog theory, but is significantly more complex than usual due to both the non-isotropy of the fluid and the lack of momentum conservation.

Introduction

This paper is a development of a previous work [START_REF] Degond | Macroscopic limit of self-driven particles with orientation interaction[END_REF][START_REF] Degond | Continuum limit of self-driven particles with orientation interaction[END_REF] about continuum models of selfpropelled particles subject to alignment interaction. This class of models describes swarming behaviour among biological species and attempts at providing a simplified theoretical framework to experimental observations (see recent observations in Refs. [START_REF] Ballerini | Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study[END_REF][START_REF] Ch | Experimental evidences of a structural and dynamical transition in fish school[END_REF][START_REF] Buhl | From Disorder to Order in Marching Locusts[END_REF][START_REF] Gautrais | Analyzing fish movement as a persistent turning walker[END_REF][START_REF] Ingham | Swarming and complex pattern formation in Paenibacillus vortex studied by imaging and tracking cells[END_REF]).

The starting point is a particle model (or Individual-Based Model (IBM)) discussed in e.g. Refs. [START_REF] Aoki | A simulation study on the schooling mechanism in fish[END_REF][START_REF] Couzin | Collective Memory and Spatial Sorting in Animal Groups[END_REF][START_REF] Hemelrijk | Density distribution and size sorting in fish schools: an individual-based model[END_REF][START_REF] Mirabet | Spatial structures in simulations of animal grouping[END_REF], where the interaction between biological agents such as fish or birds is described by three interaction ranges: a close range where repulsion occurs, a long range where attraction prevails and a medium range where agents tend to align with each other. In the Vicsek model, [START_REF] Vicsek | Novel type of phase transition in a system of self-driven particles[END_REF] the alignment interaction is singled out and analyzed. More precisely, each particle moves with a constant and uniform speed and aligns with the average direction of all neighbours within an interaction distance R, up to some angular fluctuation. Vicsek and co-authors [START_REF] Vicsek | Novel type of phase transition in a system of self-driven particles[END_REF] show that phase transitions from disorder to order appear as the noise intensity decreases or the density increases. This model has triggered a wealth of publications [START_REF] Aldana | Phase transitions in self-driven many-particle systems and related non-equilibrium models: a network approach[END_REF][START_REF] Barbaro | Discrete and continuous models of the dynamics of pelagic fish: Application to the capelin[END_REF][START_REF] Chaté | Collective motion of self-propelled particles interacting without cohesion[END_REF][START_REF] Czirók | Collective motion of organisms in three dimensions[END_REF][START_REF] Gautrais | Key behavioural factors in a self-organized fish school environment[END_REF][START_REF] Grégoire | Onset of collective and cohesive motion[END_REF] and given rise to various variants [START_REF] Chaté | Minimal model for active nematics: quasi-longrange order and giant fluctuations[END_REF][START_REF] Szabo | Transitions in a self-propelled-particles model with coupling of accelerations[END_REF].

The task of deriving kinetic (Boltzmann-like) or continuum (fluid-like) models from this model has been undertaken by various approaches (see Refs. [START_REF] Bertin | Boltzmann and hydrodynamic description for selfpropelled particles[END_REF][START_REF] Peruani | A mean-field theory for self-propelled particles interacting by velocity alignment mechanisms[END_REF] for kinetic models and Refs. [START_REF] Bertin | Boltzmann and hydrodynamic description for selfpropelled particles[END_REF][START_REF] Czirók | Collective Motion of Self-Propelled Particles: Kinetic Phase Transition in One Dimension[END_REF][START_REF] Czirók | Collective behavior of interacting self-propelled particles[END_REF][START_REF] Peruani | A mean-field theory for self-propelled particles interacting by velocity alignment mechanisms[END_REF][START_REF] Ratushnaya | Collective behaviour of self propelling particles with kinematic constraints ; the relations between the discrete and the continuous description[END_REF] for fluid models). However, these models are based on physical arguments and the mathematical approach of Ref. [START_REF] Degond | Macroscopic limit of self-driven particles with orientation interaction[END_REF][START_REF] Degond | Continuum limit of self-driven particles with orientation interaction[END_REF] leads to a different type of model: indeed, this model is not of diffusive nature like in Refs. [START_REF] Bertin | Boltzmann and hydrodynamic description for selfpropelled particles[END_REF][START_REF] Czirók | Collective Motion of Self-Propelled Particles: Kinetic Phase Transition in One Dimension[END_REF][START_REF] Czirók | Collective behavior of interacting self-propelled particles[END_REF][START_REF] Peruani | A mean-field theory for self-propelled particles interacting by velocity alignment mechanisms[END_REF] and is local, by contrast to Ref. [START_REF] Ratushnaya | Collective behaviour of self propelling particles with kinematic constraints ; the relations between the discrete and the continuous description[END_REF]. The differences arise because the model of Refs. [START_REF] Degond | Macroscopic limit of self-driven particles with orientation interaction[END_REF][START_REF] Degond | Continuum limit of self-driven particles with orientation interaction[END_REF] is derived in the large time and space scale limit in which, at leading order, the interactions are local and the diffusivities, negligible.

The goal of this paper is to investigate how the model of Ref. [START_REF] Degond | Macroscopic limit of self-driven particles with orientation interaction[END_REF][START_REF] Degond | Continuum limit of self-driven particles with orientation interaction[END_REF] must be adapted to account for small but finite nonlocality and diffusivity. We will see that the resulting model involves complex effects due to the non-isotropy of the fluid (by contrast to standard fluids). This point will be further developed in section 2. Similar to the rarefied gas dynamics case (see e.g. Refs. [START_REF] Caflisch | The fluid dynamic limit of the nonlinear Boltzmann equation[END_REF][START_REF] Cercignani | The mathematical theory of dilute gases[END_REF][START_REF] Degond | Macroscopic limits of the Boltzmann equation: a review, in Modeling and computational methods for kinetic equations[END_REF][START_REF] Sone | Kinetic Theory and Fluid Dynamics[END_REF]), the derivation is based on the Chapman-Enskog expansion method. However, in the present case, the computations are significantly more complex because of the non-isotropy of the fluid and of the lack of momentum conservation.

The model derived in Ref. [START_REF] Degond | Macroscopic limit of self-driven particles with orientation interaction[END_REF][START_REF] Degond | Continuum limit of self-driven particles with orientation interaction[END_REF] has been extended in Ref. [START_REF] Frouvelle | A continuous model for alignment of self-propelled particles with anisotropy and density-dependent parameters[END_REF] to account for anisotropic vision and density-dependent interaction frequency. Its numerical resolution is performed in Ref. [START_REF] Motsch | Numerical simulations of a non-conservative hyperbolic system with geometric constraints describing swarming behavior[END_REF].

Other Individual-Based Models involving attraction-repulsion interactions can be found in Refs. [START_REF] D'orsogna | Self-propelled particles with soft-core interactions: patterns, stability and collapse[END_REF][START_REF] Forgoston | Delay-induced instabilities in self-propelling swarms[END_REF][START_REF] Mogilner | Mutual interactions, potentials, and individual distance in a social aggregation[END_REF][START_REF] Peruani | Non-equilibrium clustering of self-proelled rods[END_REF] and continuum models, in Refs. [START_REF] Bertozzi | Blow-up in multidimensional aggregation equations with mildly singular interaction kernels[END_REF][START_REF] Carrillo | Double milling in self-propelled swarms from kinetic theory[END_REF][START_REF] Chuang | State transitions and the continuum limit for a 2D interacting, self-propelled particle system[END_REF][START_REF] Csahók | Hydrodynamics of bacterial motion[END_REF][START_REF] Degond | Large scale dynamics of the Persistent Turning Walker model of fish behavior[END_REF][START_REF] Mogilner | A non-local model for a swarm[END_REF][START_REF] Topaz | Swarming patterns in a two-dimensional kinematic model for biological groups[END_REF][START_REF] Topaz | A nonlocal continuum model for biological aggregation[END_REF]. The existence of flocking or non-flocking behaviour for the Cucker-Smale model [START_REF] Cucker | Emergent Behavior in Flocks[END_REF][START_REF] Cucker | Flocking in noisy environments[END_REF][START_REF] Cucker | On the critical exponent for flocks under hierarchical leadership[END_REF] (which is similar to the Vicsek model but without noise nor speed constraint) has received a great deal of attention [START_REF] Carrillo | Asymptotic Flocking Dynamics for the kinetic Cucker-Smale model[END_REF][START_REF] Duan | A Kinetic Flocking Model with Diffusion[END_REF][START_REF] Ha | From particle to kinetic and hydrodynamic descriptions of flocking[END_REF][START_REF] Ha | A simple proof of the Cucker-Smale flocking dynamics and mean-field limit[END_REF][START_REF] Ha | Emergence of time-asymptotic flocking in a stochastic Cucker-Smale system[END_REF][START_REF] Ha | Flocking Dynamics of Singularly Perturbed Oscillator Chain and the Cucker-Smale System[END_REF][START_REF] Shen | Cucker-Smale flocking under hierarchical leadership[END_REF].

Position of the problem and main result

In Refs. [START_REF] Degond | Macroscopic limit of self-driven particles with orientation interaction[END_REF][START_REF] Degond | Continuum limit of self-driven particles with orientation interaction[END_REF] the following continuum model of self-driven particles with alignment interaction has been derived:

∂ t ρ + ∇ • (c 1 ρΩ) = 0, (2.1) ρ (∂ t Ω + c 2 (Ω • ∇)Ω) + c 3 (Id -Ω ⊗ Ω)∇ρ = 0, (2.2) 
where ρ = ρ(x, t) is the number density of the particles and Ω(x, t) is the direction of their average velocity, which satisfies |Ω| = 1. c 1 , c 2 and c 3 are constants which are computed from the underlying microscopic dynamics, where c 2 < c 1 < 1 and c 1 , c 2 , c 3 > 0. The matrix (Id -Ω ⊗ Ω) denotes the orthogonal projection matrix onto the plane orthogonal to Ω. The notations Id and ⊗ respectively refer to the identity matrix and to the tensor product.

The derivation of this model, according to Ref. [START_REF] Degond | Continuum limit of self-driven particles with orientation interaction[END_REF], proceeds through several (formal) asymptotic limits. The starting point is a time-discrete particle model proposed by Vicsek and co-authors [START_REF] Vicsek | Novel type of phase transition in a system of self-driven particles[END_REF]. In the Vicsek model, the particles move with a constant speed and, at discrete times, align their velocities to the mean velocity of their neighbours, up to some small noise. In Ref. [START_REF] Degond | Continuum limit of self-driven particles with orientation interaction[END_REF], a continuous in time version of this particle model is first proposed in which the alignment interaction is modeled through a relaxation term and the noise, by a Brownian motion on the particle velocities. The formal mean-field limit of this time-continuous particle model (as the number of particles tends to infinity) leads to the following nonlinear Fokker-Planck model:

∂ t f + ω • ∇f + ∇ ω • (F f ) = d∆ ω f, (2.3) F (x, ω, t) = ν(cos θ) (Id -ω ⊗ ω)ω(x, ω, t), (2.4) ω(x, ω, t) = J(x, t) |J(x, t)| , J(x, t) = y∈R 3 , υ∈S 2 K(|x -y|) υ f (y, υ, t) dy dυ . (2.5)
Here f (x, ω, t) is the particle distribution function depending on the space variable x ∈ R 3 , the velocity direction ω ∈ S 2 and the time t. d is a scaled diffusion constant associated with the Brownian noise, and F (x, ω, t) is the mean-field interaction force between the particles which depends on an interaction frequency ν. This force tends to align the particles to the direction ω which is the direction of the particle flux J in a neighbourhood of x weighted by the kernel K. Typically, if K is the indicator function of the ball centered at 0 and of radius R then J is the particle flux integrated over a ball centered at x and of radius R. The matrix (Id -ω ⊗ ω) is the projection matrix onto the normal plane to ω and we assume that the collision frequency may depend on cos θ = (ω • ω), i.e. on the cosine of the angle between ω and ω.

Notation convention: The ∇ (and below, ∆) symbols indicate the nabla and Laplacian operators with respect to x while ∇ ω and ∆ ω denote the nabla and Laplace-Beltrami operators with respect to ω. Expressions of ∇ ω and ∆ ω in spherical coordinates will be recalled later.

System (2.3)-(2.5) is written in a scaled form: the time and space scales have been chosen such that the particle speed |ω| is exactly 1 and that both d and ν are of order unity. With these so-called microscopic scales, the typical time and distance between two particle interactions are both O(1). We refer to Ref. [START_REF] Degond | Continuum limit of self-driven particles with orientation interaction[END_REF] for a discussion of this point.

By contrast, model (2.1), (2.2) is designed to capture the large scale dynamics only, while averaging out the microscopic scales. Therefore, the passage from model (2.3)-(2.5) to model (2.1), (2.2) requires a change of scales. Let ε ≪ 1 be a measure of the ratio of the microscopic length scale to the size of the observation domain. Here, the relevant scaling is a hydrodynamic scaling, which means that ε is also equal to the ratio of the microscopic time scale to the macroscopic observation time. To express model (2.3)-(2.5) in terms of the macroscopic time and space scales, we perform the change of variables x = εx, t = εt. In doing so, we must assign a scale to the interaction kernel K (i.e. to the interaction range R). A key assumption in the present work, following Ref. [START_REF] Degond | Continuum limit of self-driven particles with orientation interaction[END_REF], is that this interaction range is microscopic, and therefore of order ε when using the macroscopic scales. This change of variables leads to (dropping the tildes for clarity):

ε(∂ t f ε + ω • ∇f ε ) = -∇ ω • (F ε f ε ) + d∆ ω f ε , (2.6) F ε (x, ω, t) = ν(cos θ ε ) (Id -ω ⊗ ω)ω ε , cos θ ε = ω • ωε , (2.7) ωε (x, t) = J ε (x, t) |J ε (x, t)| , J ε (x, t) = y∈R 3 , υ∈S 2 K x -y ε υ f ε (y, υ, t) dy dυ . (2.8)
It is an easy matter to see that ωε has the following expansion:

ωε = Ω ε + ε 2 ωε 2 + O(ε 4 ) , (2.9 
)

Ω ε (x, t) = j ε (x, t) |j ε (x, t)| , j ε (x, t) = υ∈S 2 υ f ε (x, υ, t) dυ , (2.10) 
ωε 2 = K(Id -Ω ε ⊗ Ω ε ) ∆j ε |j ε | . (2.11)
Ω ε is the direction of the local flux j ε and the constant K depends on the interaction kernel K through:

K = K 2 6K 0 , K p = R 3 K(|ξ|) |ξ| p dξ .
Accordingly, F ε can be expanded:

F ε = F ε 0 + ε 2 F ε 2 + O(ε 4 ) , F ε 2 = F ε1 2 + F ε2 2 , (2.12 
)

F ε 0 = ν(cos θ ε )(Id -ω ⊗ ω)Ω ε , cos θ ε = ω • Ω ε , (2.13) F ε1 2 = ν(cos θ ε )(Id -ω ⊗ ω)ω ε 2 , F ε2 2 = ν ′ (cos θ ε ) (ω • ωε 2 ) (Id -ω ⊗ ω)Ω ε , (2.14)
where ν ′ (cos θ) is the derivative of ν(cos θ) with respect to cos θ. Because of the dependence of K upon the distance |x -y| only, all odd powers of ε vanish in the expansion. This would not be the case if we considered more general kernels such as those [START_REF] Frouvelle | A continuous model for alignment of self-propelled particles with anisotropy and density-dependent parameters[END_REF] depending on the angle between ω and x -y . The consideration of more general kernels is left to future work.

Consequently, we will consider the following expanded Fokker-Planck model

∂ t f ε + ω • ∇f ε + ε∇ ω • (F ε 2 f ε ) = 1 ε (-∇ ω • (F ε 0 f ε ) + d∆ ω f ε ) + O(ε 2 ), (2.15) 
where the terms F ε 0 and F ε 2 are defined by (2.13) and (2.14) We note that, at leading order, the interaction force F ε 0 only depends on the local flux j ε and that the corrections due to the nonlocality of the interaction force appear in the O(ε) terms only. This is due to the assumption that the radius of the interaction region is very small (of order ε) in the macroscopic variables.

In Ref. [START_REF] Degond | Continuum limit of self-driven particles with orientation interaction[END_REF], it has been proved that model (2.1), (2.2) is the formal hydrodynamic limit ε → 0 of the mean-field model (2.15). Additionally, Ref. [START_REF] Degond | Continuum limit of self-driven particles with orientation interaction[END_REF] provides the connection between the coefficients c 1 , c 2 and c 3 of the macroscopic model to the coefficients ν and d of the microscopic one. The goal of this paper is to investigate what diffusive corrections are obtained when keeping the O(ε) corrections in the Chapman-Enskog expansion of f ε . These terms describe the response of the system to the appearence of gradients of the state variables ρ and Ω. Here, because the fluid is anisotropic, and has only invariance through rotations about Ω, these gradients must be split into their components parallel and perpendicular to Ω.

To this aim, we denote by

O ⊥ = Id -Ω ⊗ Ω, O = Ω ⊗ Ω, (2.16) 
the orthogonal projection matrices onto the plane normal to Ω and onto the line spanned by Ω respectively. For a given vector X ∈ R 3 , we recall that

O ⊥ X = X -(X • Ω)Ω = Ω × (X × Ω), O X = (X • Ω)Ω.
Using these projections, any vector field A and tensor field B can be decomposed into parallel and transverse components according to:

A = A ⊥ + A , B = B ⊥,⊥ + B ⊥, + B ,⊥ + B , , (2.17) 
defined by

A ⊥ = O ⊥ A, A = O A, B ⊥,⊥ = O ⊥ BO ⊥ , B ⊥, = O ⊥ BO , B ,⊥ = O BO ⊥ , B , = O BO .
Now, we decompose gradient fields according to their parallel and normal components to Ω. For a scalar function f , we define the normal and parallel gradients as

∇ ⊥ f = (∇f ) ⊥ , ∇ f = (∇f ) .
Similarly, we may decompose the gradient of a vector field u into ∇u = ∇ ⊥,⊥ u + ∇ ⊥, u + ∇ ,⊥ u + ∇ , u, using the tensor decomposition (2.17). Applying this decomposition to ∇Ω itself, we find:

∇ ⊥,⊥ Ω = ∇Ω -Ω ⊗ (Ω • ∇)Ω , ∇ ,⊥ Ω = Ω ⊗ (Ω • ∇)Ω, (2.18) ∇ ⊥, Ω = 0 , ∇ , Ω = 0. (2.19)
The last line is a consequence of (∇Ω)Ω = 0, which is found by taking the derivative of the relation |Ω| 2 = 1.

In compressible Navier-Stokes equations [START_REF] Degond | Macroscopic limits of the Boltzmann equation: a review, in Modeling and computational methods for kinetic equations[END_REF], the diffusion terms can be expressed as functions of only two quantities constructed with the gradient of the velocity field u: the traceless rate of strain tensor σ(u) = ∇u + (∇u) T -(2/3)(∇ • u)Id, and the divergence field ∇ • u (the exponent T denotes the matrix transpose). Here, the anisotropy of the problem gives rise to different diffusivities in the directions parallel or normal to Ω and we need to split the matrix ∇Ω into a larger number of separate entities. To this aim, we note that

∇ • Ω = Tr(∇Ω) = Tr(∇ ⊥,⊥ Ω), (2.20) 
where 'Tr' denotes the trace of a tensor. The traceless tensor

∇ ⊥,⊥ Ω -(1/2)(∇ • Ω)O ⊥ is
decomposed in its symmetric and anti-symmetric parts σ(Ω) and Γ(Ω):

σ(Ω) = ∇ ⊥,⊥ Ω + (∇ ⊥,⊥ Ω) T -(∇ • Ω)O ⊥ = O ⊥ (∇Ω + (∇Ω) T -(∇ • Ω) Id) O ⊥ , (2.21) 
Γ(Ω) = ∇ ⊥,⊥ Ω -(∇ ⊥,⊥ Ω) T = O ⊥ (∇Ω -(∇Ω) T ) O ⊥ . (2.22) 
These relations will be used in the form:

∇ ⊥,⊥ Ω = 1 2 (σ(Ω) + Γ(Ω)) + 1 2 (∇ • Ω)O ⊥ , (2.23) 
(∇ ⊥,⊥ Ω) T = 1 2 (σ(Ω) -Γ(Ω)) + 1 2 (∇ • Ω)O ⊥ . (2.24) 
The non-zero block of σ(Ω) is a 2 by 2 symmetric traceless tensor and the non-zero block of Γ(Ω) is a 2 by 2 anti-symmetric tensor. We note that, for a given vector

X ∈ R 3 : Γ(Ω)X = -(Γ(Ω)) T X = ((∇ × Ω) • Ω) X × Ω. (2.25)
Similarly, through (2.18), ∇ ⊥, Ω depends only on (Ω • ∇)Ω and we have:

(Ω • ∇)Ω = (∇Ω) T Ω = (∇ × Ω) × Ω, (2.26) 
where ∇ × Ω denotes the curl of Ω. Physically, (Ω • ∇)Ω describes the rate of tilt of Ω as one moves along the flow lines (see figure 1). The other quantities describe elementary flow patterns in the plane normal to Ω: ∇ • Ω refers to convergent or divergent flows in the direction normal to Ω while Γ(Ω) refers to swirling patterns around Ω (see figure 2) and σ(Ω) to shear patterns with one converging and one diverging orthogonal directions. Ω Ω Restricted to the plane normal to Ω, σ(Ω) is a symmetric traceless 2×2 matrix. Therefore, it can be expressed as a linear combination of the two elementary matrices:

σ 1 = 1 0 0 -1 , σ 2 = 0 1 1 0 ,
each corresponding to an elementary flow pattern (see figure 3).

In the compressible Navier-Stokes equations, there are no diffusion terms in the mass equation and diffusion terms in the energy equation are expressed in terms of the temperature gradient ∇T as a whole. Here, the temperature is constant (it is fixed by the noise level) but, because of the lack of momentum conservation, the diffusion terms in the mass conservation equation are not zero. Additionally, both the mass and velocity diffusions depend on ∇ρ as well as on ∇Ω. Therefore, similar to ∇Ω, we decompose ∇ρ into its parallel and normal components (respectively (Ω • ∇)ρ and ∇ ⊥ ρ).

Finally, the diffusion terms are composed of two parts: the first one is a quadratic form of the gradients in the set {∇ ⊥ ρ, (Ω • ∇)ρ, (Ω • ∇)Ω, σ(Ω), Γ(Ω), ∇ • Ω} with coefficients depending on (ρ, Ω) ; the second one is a linear combination of second derivatives constructed by taking parallel derivatives Ω • ∇ or perpendicular derivatives ∇ ⊥ of the gradients in the above list. This is precisely stated in the following theorem, which constitutes the main result of this paper: Theorem 2.1 (formal) The following model

∂ t ρ + ∇ • (c 1 ρΩ) = εR 1 , (2.27) ρ (∂ t Ω + c 2 (Ω • ∇)Ω) + c 3 ∇ ⊥ ρ = εR 2 ,
(2.28)

where R 1 and R 2 given below, provides a second order approximation of the moments of the solution ρ ε and Ω ε of the initial model (2.15). The right-hand-sides are given by:

R 1 = β∇ • ((Ω • ∇ρ)Ω) + γ∇ • (ρ(∇ • Ω)Ω), (2.29) R 2 = Q + D, (2.30) Q = + Q 1 (Ω • ∇ρ)∇ ⊥ ρ + Q 2 (∇ • Ω)∇ ⊥ ρ + Q 3 σ(Ω)∇ ⊥ ρ + Q 4 Γ(Ω)∇ ⊥ ρ + Q 5 (Ω • ∇ρ)(Ω • ∇)Ω + Q 6 (∇ • Ω)(Ω • ∇)Ω + Q 7 σ(Ω)(Ω • ∇)Ω + Q 8 Γ(Ω)(Ω • ∇)Ω, (2.31) D = D 1 O ⊥ (Ω • ∇)∇ ⊥ ρ + D 2 O ⊥ (Ω • ∇)((Ω • ∇)Ω) + D 3 ∇ ⊥ (∇ • Ω) + D 4 O ⊥ ∇ • σ(Ω) + D 5 O ⊥ ∇ • Γ(Ω), (2.32)
where β, γ, Q j for j = 1, . . . , 8, D j for j = 1, . . . , 5 are coefficients, possibly depending on ρ, which are given below. Additionally, we have β > 0.

The structure of R 2 is as announced: it is decomposed into a term Q which is a quadratic function of the gradients and a term D which consists of derivatives of these gradients. Both terms involve coefficients which may depend on ρ. The quadratic part combines products of the parallel gradient of ρ, Ω • ∇ρ, with the perpendicular gradient of ρ, ∇ ⊥ ρ, and similarly for Ω (the parallel gradient of Ω being Ω • ∇Ω, the perpendicular ones being defined as any of gradients in the list {∇ • Ω, σ(Ω), Γ(Ω)}) and products of the perpendicular gradient of ρ with the perpendicular gradients of Ω or parallel gradients of ρ with parallel gradients of Ω. The diffusive part involves only parallel gradients of the parallel gradient of Ω, or perpendicular gradients of perpendicular gradients of Ω, and finally a parallel gradient of a perpendicular gradient of ρ. In spite of its complex expression, R 2 has a lot of structure, since a general function of this form would have 21 different terms in the quadratic part and 10 in the diffusion part, instead of respectively 8 and 5.

The main objective of this paper is the proof of this theorem. In future work, the properties of this system will be analyzed. In particular, the question of the well-posedness of the system under the sole condition β > 0 will be investigated, at least on a simpler model. Indeed, the other diffusion coefficients have no definite signs, but the constraint |Ω| = 1 should prevent the formation of singularities, by contrast to the usual backwards heat equation.

The organization of the proof is as follows. In section 3, we recall the main properties of the collision operator Q that are proved in Ref. [START_REF] Degond | Continuum limit of self-driven particles with orientation interaction[END_REF] and provide additional properties of the linearized operator Q about an equilibrium. This prepares the terrain for the Chapman-Enskog expansion which is performed in section 4. We start section 4 by an exposition of the main steps to be accomplished. Then, we successively examine the solvability condition for the existence of the first order correction to the equilibrium, the finding of an analytical expression of it as a function of elementary solutions of the linearized collision operator, and finally, the computations of the moments of this correction which precisely give rise to the expressions of R 1 and R 2 . We begin with the properties of Q in the next section.

3 Properties of the collision operator and of its linearization

Preliminaries

We recall the expressions of the gradient and divergence operator on the sphere. Let x = (x 1 , x 2 , x 3 ) be a cartesian coordinate system associated with an orthonormal basis (e 1 , e 2 , e 3 ) and let (θ, φ) be a spherical coordinate system associated with this basis, i.e.

x 1 = sin θ cos φ, x 2 = sin θ sin φ, x 3 = cos θ. Let also (e θ , e φ ) be the local basis associated with the spherical coordinate system ; the vectors e θ and e φ have the following coordinates in the cartesian basis: e θ = (cos θ cos φ, cos θ sin φ,sin θ), e φ = (-sin φ, cos φ, 0). Let f (ω) be a scalar function and A = A θ e θ + A φ e φ be a tangent vector field. Then:

∇ ω f = ∂ θ f e θ + 1 sin θ ∂ φ f e φ , ∇ ω • A = 1 sin θ ∂ θ (A θ sin θ) + 1 sin θ ∂ φ A φ .
∆ ω denotes the Laplace-Belltrami operator on the sphere:

∆ ω f = ∇ ω • ∇ ω f = 1 sin θ ∂ θ (sin θ∂ θ f ) + 1 sin 2 θ ∂ φφ f.
We write F f ε for F ε 0 . We introduce the 'collision' operator, which corresponds to the leading order term of (2.15):

Q(f ) = -∇ ω • (F f f ) + d∆ ω f, (3.1) 
F f = ν (Id -ω ⊗ ω)Ω f , (3.2 
)

Ω f = j f | j f |
, and

j f = ω∈S 2 ω f dω . (3.3) 
We note that Q(f ) is a non linear operator. From now on, we assume that f is as smooth and integrable as necessary. We note that Q acts as an operator on functions of ω only and that the possible dependence of these functions on (x, t) can be ignored. The properties of Q have been demonstrated in Ref. [START_REF] Degond | Continuum limit of self-driven particles with orientation interaction[END_REF] are developed in the next section.

3.2 Properties of Q

3.2.1 Null-space of Q For Ω ∈ S 2 , let µ = cos θ = (ω • Ω).
We denote by σ(µ) an antiderivative of ν(µ), i.e.

(dσ/dµ)(µ) = ν(µ). We define

M Ω (ω) = C exp( σ(ω • Ω) d ), M Ω (ω) dω = 1 . (3.4)
The constant C is set by the normalization condition (second equality of (3.4)) ; it depends only on d and on the function σ but not on Ω. We note that, when ν is constant, σ(cos θ) = ν cos θ and that M Ω is the so-called Von-Mises distribution. The Von-Mises distribution extends the notion of Gaussian for functions defined on the sphere and is also known as the circular Gaussian. In the present case, the Von-Mises distribution is centered at (or peaked at) Ω.

The following lemma states what are the elements of the null-space of Q, i.e. what are the equilibria of the problem (see Ref. [START_REF] Degond | Continuum limit of self-driven particles with orientation interaction[END_REF] for the proof):

Q(f ) = d ∇ ω • M Ω f ∇ ω f M Ω f , (3.5) 
and we have

H(f ) := ω∈S 2 Q(f ) f M Ω f dω = -d ω∈S 2 M Ω f ∇ ω f M Ω f 2 dω ≤ 0. (3.6)
(ii) The equilibria, i.e. the functions f (ω) such that Q(f ) = 0 form a three-dimensional manifold E given by

E = {ρM Ω (ω) | ρ ∈ R + , Ω ∈ S 2 } , (3.7)
and ρ is the total mass while Ω is the direction of the flux of ρM Ω (ω), i.e.

ω∈S 2 ρ M Ω (ω) dω = ρ, (3.8 
)

Ω = j ρM Ω | j ρM Ω | , j ρM Ω = ω∈S 2
ρM Ω (ω) ω dω.

(3.9)

Furthermore, H(f ) = 0 if and only if f ∈ E.

An elementary computation shows that the flux can be written

j ρM Ω = c 1 ρΩ, c 1 = cos θ M Ω , (3.10) 
where for any function g(cos θ), the symbol g(cos θ) M denotes the average of g over the probability distribution M Ω , i.e.

g(cos θ)

M = M Ω (ω)g(ω • Ω) dω = π 0 g(cos θ) exp( σ(cos θ) d ) sin θ dθ π 0 exp( σ(cos θ) d ) sin θ dθ . (3.11) 
(3.10) defines the constant c 1 appearing in (2.1).

Generalized collision invariants

The second set of lemmas state what are the generalized collision invariants of f . Indeed, we recall that the collision invariants are classically defined as the functions ψ(ω) such that

ω∈S 2 Q(f ) ψ dω = 0, ∀f. (3.12) 
However, it is readily seen that the linear vector space of collision invariants is of dimension one, while the hydrodynamic limit requires that its dimension be equal to the dimension of E, which is 3 in the present case. To find the missing collision invariants, we slightly weaken the definition. We fix Ω ∈ S 2 arbitrarily, and we define a Generalized Collision Invariant (or GCI) associated to Ω as a function ψ which satisfies (3.12) only for functions f with direction Ω f = Ω. This constraint is linear and can be resolved by the introduction of a Lagrange multiplier. This leads to the following definition:

Definition 3.2 Let Ω ∈ S 2 be given. ψ(ω) is a Generalized Collision Invariant (or GCI) associated to Ω if and only if ω∈S 2 Q(f ) ψ dω = 0, ∀f such that Ω f = Ω, (3.13) 
It is shown in Ref. [START_REF] Degond | Continuum limit of self-driven particles with orientation interaction[END_REF] that, using (3.5) and Green's formula, (3.13) leads to the following problem defining the GCI's associated to a direction Ω: ∃β ∈ R 3 , such that β • Ω = 0 and

∇ ω • (M Ω ∇ ω ψ) = β • (Ω × ω)M Ω . (3.14)
This problem is obviously linear, so that the set C Ω of GCI's associated to Ω is a linear vector space. In a cartesian basis (e 1 , e 2 , Ω) and the associated spherical coordinates (θ, φ), we have β•(Ω×ω) = (-β 1 sin φ+β 2 cos φ) sin θ with β k = β•e k , k = 1, 2. Therefore, we can successively solve for ψ 1 and ψ 2 , the solutions of (3.14) with right-hand sides respectively equal tosin φ sin θM Ω and cos φ sin θM Ω . The following lemma provides the framework for solving (3.14). It is based on Lax-Milgram theorem and is proved in Ref. [START_REF] Degond | Continuum limit of self-driven particles with orientation interaction[END_REF]:

Lemma 3.3 Let χ ∈ L 2 (S 2
) such that χ dω = 0. The problem

∇ ω • (M Ω ∇ ω ψ) = χ, (3.15) 
has a unique weak solution in the space

• H 1 (S 2
), the quotient of the space H 1 (S 2 ) by the space spanned by the constant functions, endowed with the quotient norm.

So, to each of the right-hand sides χ 1 =sin φ sin θM Ω or χ 2 = cos φ sin θM Ω which have zero average on the sphere, there exist solutions ψ 1 and ψ 2 respectively (unique up to constants) of problem (3.15). We single out unique solutions by requesting that ψ 1 and ψ 2 have zero average on the sphere: ψ k dω = 0, k = 1, 2. Then, we have, as a consequence of Lemma 3.3: Proposition 3.4 The set C Ω of generalized collisional invariants associated with the vector Ω which belong to H 1 (S 2 ) is a three dimensional vector space C Ω = Span{1, ψ 1 , ψ 2 }.

More explicit forms for ψ 1 and ψ 2 can be found. By expanding in Fourier series with respect to φ, we easily see that

ψ 1 = -g(cos θ) sin φ, ψ 2 = g(cos θ) cos φ, (3.16) 
where g(µ) is a solution of the elliptic problem on [-1, 1]:

-(1 -µ 2 )∂ µ (e σ(µ)/d (1 -µ 2 )∂ µ g) + e σ(µ)/d g = -(1 -µ 2 ) 3/2 e σ(µ)/d . (3.17)
To solve this problem, we apply the following lemma:

Lemma 3.5 Let X = {g | (1 -µ 2 ) -1/2 g ∈ L 2 (-1, 1)}, V = {g ∈ X | (1 -µ 2 ) 1/2 ∂ µ g ∈ L 2 (-1, 1)}. Let α(µ) belong to L ∞ (-1, 1
) such that there exists α 0 > 0 and α(µ) > α 0 . Then, for any f ∈ X, there exists a unique solution g ∈ V of the problem

-(1 -µ 2 )∂ µ (e σ(µ)/d (1 -µ 2 )∂ µ g) + α(µ)g = f. (3.18)
Additionally, the maximum principle holds: if f is non-positive (respectively non-negative), then, so is g.

The next lemma, in the spirit of the previous one, will prove useful in the sequel:

Lemma 3.6 Let X = L 2 (-1, 1), V = {g ∈ X | (1 -µ 2 ) 1/2 ∂ µ g ∈ L 2 (-1, 1)}, • X = {f ∈ X | 1 -1 f dµ = 0}, • V = V/R. Then, for any f ∈ • X , there exists a unique solution g ∈ • V of the problem -∂ µ (e σ(µ)/d (1 -µ 2 )∂ µ g) = f. (3.19)
Both lemma are direct consequences of Lax-Milgram's theorem. The first one is proved in Ref. [START_REF] Degond | Continuum limit of self-driven particles with orientation interaction[END_REF]. For the second Lemma, thanks to a Poincaré inequality we note that the semi-norm of V is equivalent to the norm of V on the quotient • V . For both problems, no boundary conditions at ±1 need to be prescribed. This is due to the degeneracy of the elliptic operator at these points.

Applying Lemma 3.5 shows that the function g, solution of (3.17), is uniquely defined in the space V . For convenience, we introduce h(µ) = (1 -µ 2 ) -1/2 g ∈ L 2 (-1, 1) or equivalently h(cos θ) = g(cos θ)/ sin θ. We then define

ψ Ω (ω) = (Ω × ω) h(µ) = ψ 1 e 1 + ψ 2 e 2 , µ = (ω • Ω) . (3.20) 
ψ Ω is the vector generalized collisional invariant associated to the direction Ω and is uniquely defined by the problem

∇ ω • (M Ω ∇ ω ψ Ω ) = (Ω × ω)M Ω , S 2 
ψ Ω dω = 0.

(3.21)

We note that, by the maximum principle, h ≤ 0.

Linearization about the equilibrium state

We introduce a macro-micro decomposition of f :

f = ρ f M Ω f + ϕ, (3.22) 
ρ f and Ω f being the density and mean velocity direction of f , i.e.

ρ f = S 2 f dω, (3.23) 
and Ω f given by (3.3). These definitions of ρ f and Ω f are equivalent to saying that ϕ belongs to the space:

Φ Ω f = ϕ ∈ L 1 (S 2 ) | S 2 ϕ dω = 0 and Ω f × S 2 ϕ ω dω = 0 . (3.24)
For any given Ω ∈ S 2 , we define the following linear operator operating on Φ Ω : 

L Ω ϕ = d ∇ ω • M Ω ∇ ω ϕ M Ω . ( 3 
Q(f ) = L Ω f (ϕ).
We now precise the functional setting. Let

X Ω = {ϕ | |ϕ| 2 M -1 Ω dω < ∞}, V Ω = {ϕ ∈ X Ω | M Ω | ∇ ω (M -1 Ω ϕ) | 2 dω < ∞}, • XΩ = X Ω /(M Ω R), • VΩ = V Ω /(M Ω R).
We perform the usual identification of X Ω with its dual X ′ Ω . The following lemma states the properties of L Ω . Lemma 3.7 Consider L Ω as an operator from V Ω into its dual V ′ Ω , defined by the bilinear form on V Ω :

L Ω ϕ, χ V ′ Ω ,V Ω = -d S 2 M Ω ∇ ω ϕ M Ω • ∇ ω χ M Ω dω. (3.26)
Then, (i) The null-space of L Ω is the linear space spanned by

M Ω . (ii) Let ζ ∈ X Ω . The equation L Ω ϕ = ζ has a solution ϕ in V Ω if

and only if ζ satisfies the solvability condition:

S 2 ζ dω = 0. (3.27)
And ϕ is unique if it additionally satisfies (3.27). This unique solution is written

ϕ = L -1 Ω ζ and L -1 Ω is called the pseudo-inverse of L Ω . (iii) The solution ϕ belongs to Φ Ω if and only if ζ satisfies S 2 ζ ψ Ω dω = 0, (3.28)
where ψ Ω is the GCI (3.20).

Proof: Statement (i) is obvious. To prove (ii), we note that the bilinear form (3.26) defines a bilinear form on the quotient space 

M Ω ∇ ω ϕ M Ω • ∇ ω χ M Ω dω = - S 2 ζ χ dω M Ω , (3.29) 
which uniquely defines a solution in V Ω provided the cancellation condition (3.27) is imposed on ϕ. Finally, inserting χ = M Ω ψ Ω in (3.29) and using (3.21), we deduce that

S 2 ζ ψ Ω dω = -d S 2 M Ω ∇ ω ϕ M Ω • ∇ ω ψ Ω dω = = d S 2 ϕ M Ω ∇ ω • (M Ω ∇ ω ψ Ω ) dω = d Ω × S 2
ϕω dω.

Property (iii) is an immediate consequence of this identity.

Coefficients of the hydrodynamic model

We finish these preliminaries by recalling the expressions of the coefficients c 1 , c 2 and c 3 as they were derived in Ref. [START_REF] Degond | Continuum limit of self-driven particles with orientation interaction[END_REF]. For any functions g(cos θ), h(cos θ) with h ≥ 0, we denote by g h the average of g over the probability distribution defined by h:

g(cos θ) h = g(ω • Ω) h(ω • Ω) dω h(ω • Ω) dω = π 0 g(cos θ) h(cos θ) sin θ dθ π 0 h(cos θ) sin θ dθ . (3.30)
Then, the constants c 1 , c 2 and c 3 of model (2.1), (2.2) are given by:

c 1 = cos θ M , c 2 = cos θ (sin 2 θ)νhM , c 3 = d 1 ν (sin 2 θ)νhM . (3.31) 
With simple computations, one can check that these definitions are equivalently expressed by the following relations:

S 2 ((ω • Ω) -c 1 ) M Ω dω = 0, (3.32) S 2 ν d ((ω • Ω) -c 2 ) (1 -(ω • Ω) 2 ) h M Ω dω = 0, (3.33) S 2 1 - νc 3 d (1 -(ω • Ω) 2 ) h M Ω dω = 0. (3.34)
4 The Chapman-Enskog expansion

Setting up the expansion

We introduce the macro-micro decomposition (3.22) in a scaled form:

f ε = ρ ε M Ω ε + εG ε , (4.1)
where ρ ε = ρ f ε and Ω ε = Ω f ε are the density and velocity direction of the solution f ε of the kinetic model (2.15) and where G ε ∈ Φ Ω ε . This leads to:

(∂ t + ω • ∇)(ρ ε M Ω ε + εG ε ) + ε∇ ω • (F ε 2 ρ ε M Ω ε ) = L Ωε (G ε ) + O(ε 2 ). (4.2)
This justifies the scaling (4.1) because G ε appears as an O(1) quantity, showing that the correction to equilibrium εG ε is O(ε). Integrating (4.2) and using Lemma 3.7 (ii), we find:

S 2 (∂ t + ω • ∇)(ρ ε M Ω ε + εG ε ) dω = O(ε 2 ). (4.
3)

The contribution of the term ρ ε M Ω ε has been computed in Ref. [START_REF] Degond | Continuum limit of self-driven particles with orientation interaction[END_REF] and we get:

∂ t ρ ε + ∇ • (c 1 ρ ε Ω ε ) = εR ε 1 + O(ε 2 ), R ε 1 = -∇ • S 2 G ε ω dω. (4.4) Indeed, since G ε ∈ Φ Ω ε , we have S 2 ∂ t G ε dω = ∂ t S 2
G ε dω = 0. Now, multiplying (4.2) by the GCI ψ Ω (ω) = (Ω × ω) h(Ω • ω), integrating with respect to ω and using Lemma 3.7 (iii) and that G ε ∈ Φ Ω ε , we find:

Ω ε × S 2 [(∂ t + ω • ∇)(ρ ε M Ω ε + εG ε ) + ε∇ ω • (F ε 2 ρ ε M Ω ε )] h ω dω = O(ε 2 ). ( 4.5) 
Now, thanks to the computations of Ref. [START_REF] Degond | Continuum limit of self-driven particles with orientation interaction[END_REF], we have:

Ω ε × S 2 (∂ t + ω • ∇)ρ ε M Ω ε h ω dω = sin 2 θνh M Ω ε 2d Ω ε × {ρ ε (∂ t Ω ε + +c 2 (Ω ε • ∇)Ω ε ) + c 3 ( Id -Ω ε ⊗ Ω ε )∇ρ ε } ,
from which we deduce that

ρ ε (∂ t Ω ε + c 2 (Ω ε • ∇)Ω ε ) + c 3 ( Id -Ω ε ⊗ Ω ε )∇ρ ε = εR 2 + O(ε 2 ), (4.6) 
R 2 = - 2d sin 2 θνh M Ω ε (Id -Ω ε ⊗ Ω ε ) S 2 [ ∂ t G ε + ω • ∇G ε + +∇ ω • (F ε 2 ρ ε M Ω ε ) ] h ω dω. (4.7) 
If we omit the O(ε 2 ) remainders in eqs (4.4) and (4.7), we find a macroscopic model which approximates the moments of the Fokker-Planck model (2.15) up to O(ε 2 ) terms. The goal is now to compute R 1 and R 2 and to show that, up to O(ε) terms, they have the expressions given by Theorem 2.1. Obviously, this requires the computation of G ε .

From (4.2), we find that

G ε = Gε + O(ε)
where Gε is a solution of the problem

L Ωε ( Gε ) = (∂ t + ω • ∇)(ρ ε M Ω ε ). (4.8) 
Therefore, replacing G ε by Gε in the expressions of R 1 and R 2 will not change the order of the approximation. From now on, we will omit the tildes and consider G ε as the solution of (4.8). Now, the plan is as follows 1. Show that (4.8) has a unique solution G ε belonging to the space Φ Ω ε . This means proving that the right-hand side of (4.8) satisfies the solvability conditions (3.27) and (3.28).

2. Compute the expression of G ε , i.e. invert (4.8).

3. Insert the expression of G ε in the definitions of R 1 and R 2 and compute them.

We now successively perform these tasks. In the following, we will omit the exponents ε to make the expressions lighter.

Preliminary lemmas

We will have to deal with the integrals over ω of expressions involving tensor products of O ⊥ and O . To this aim, we use a spherical coordinate system associated with a cartesian basis whose third basis vector coincides with Ω. We denote by (θ, φ) the associated angular coordinates as defined in section 3.1. For a function u(ω), we define

(u) φ = 1 2π 2π 0 u(θ, φ) dφ,
the average of u over the angle φ. The proof of the following lemma is easy and omitted: Lemma 4.1 (i) For all odd tensor powers p, we have

( (O ⊥ ω) ⊗p ) φ = 0. (4.9) 
(ii) The first even tensor powers of O ⊥ ω are given by:

( (O ⊥ ω) ⊗2 ) φ = 1 2 sin 2 θ O ⊥ , (4.10) 
( (O ⊥ ω) ⊗4 ) φ = 1 8 sin 4 θ O ⊥ , (4.11) 
where we define the fourth order tensor O ⊥ :

O ⊥ = (O ⊥ ) ⊗2 + (O ⊥ ) ⊗4 [26],[48] + (O ⊥ ) ⊗4 [28],[46] , (4.12) 
and the subscript [ij] denotes contraction with respect to indices i and j. Restricted to the plane normal to Ω, O ⊥ can be written:

(O ⊥ ) ijkl = δ ij δ kl + δ ik δ jl + δ il δ jk , (4.13) 
where (δ ij ) i,j∈{1,2} is the two-dimensional Kronecker tensor. We note that O ⊥ is invariant under all rotations of the plane normal to Ω, i.e. it satisfies

(O ⊥ ) ijkl R ii ′ R jj ′ R kk ′ R ll ′ = (O ⊥ ) i ′ j ′ k ′ l ′ ,
for all rotations R ii ′ of the plane normal to Ω, where Einstein's repeated index summation rule is assumed.

Sovability of the equation for G

We state the first lemma: Lemma 4.2 We have:

(∂ t + ω • ∇)(ρM Ω ) = A • ∇ ρ + A ⊥ • ∇ ⊥ ρ + ρ(B ⊥,⊥ : ∇ ⊥,⊥ Ω + B ,⊥ : ∇ ,⊥ Ω) + O(ε), (4.14) 
where

A ⊥ = M Ω 1 - νc 3 d O ⊥ ω , (4.15) 
A = M Ω ((ω • Ω) -c 1 )Ω , (4.16) 
B ⊥,⊥ = M Ω ν d (O ⊥ ω) ⊗ (O ⊥ ω) -c 1 O ⊥ , (4.17) 
B ,⊥ = M Ω ν d ((ω • Ω) -c 2 )Ω ⊗ (O ⊥ ω) , (4.18) 
and where ':' denotes the contracted product of two tensors.

Proof: We have

(∂ t + ω • ∇)(ρM Ω ) = M Ω (∂ t + ω • ∇)ρ + ρ ∂(ln M Ω ) ∂Ω (∂ t + ω • ∇)Ω .
Classically, in the Chapman-Enskog procedure, time derivatives are replaced by space derivatives, using the following identities

∂ t ρ = -∇ • (c 1 ρΩ) + O(ε), ρ∂ t Ω = -c 2 ρ(Ω • ∇)Ω -c 3 O ⊥ ∇ρ + O(ε),
which are deduced from (4.4) and (4.6). For any tangent vector Ω to S 2 at Ω, we have:

∂(ln M Ω ) ∂Ω Ω = ν d (ω • Ω).
Then, we note that:

ω • ∇ρ = O ⊥ ω • ∇ ⊥ ρ + (ω • Ω)Ω • ∇ ρ, ∇ • Ω = O ⊥ : (∇ ⊥,⊥ Ω), ω • (Ω • ∇)Ω = (Ω ⊗ O ⊥ ω) : ∇ ,⊥ Ω, ω • (ω • ∇)Ω = (O ⊥ ω ⊗ O ⊥ ω) : ∇ ⊥,⊥ Ω + (ω • Ω) (Ω ⊗ O ⊥ ω) : ∇ ,⊥ Ω. (4.19)
Collecting these identities, we find expressions (4.15) to (4.18).

Lemma 4.3

The quantities A ⊥ , A B ⊥,⊥ , B ,⊥ satisfy (separately) conditions (3.27) and (3.28). As vectors or tensors, this means that they satisfy these conditions componentwise.

Proof: We summarize the main arguments and leave the computational details to the reader. (i) A ⊥ satisfies (3.27) because of (4.9) and (3.28) as a consequence of (3.34). (ii) A satisfies (3.27) as a consequence of (3.32) and (3.28) because of (4.9). (iii) B ⊥,⊥ satisfies (3.27) as a consequence of (3.32) (after an integration by parts with respect to θ) and (3.28) because of (4.9). (iv) B ,⊥ satisfies (3.27) because of (4.9) and (3.28) as a consequence of (3.33).

Computation of G

We have shown that the right-hand side of (4.8) can be decomposed into four different terms, corresponding to derivatives of ρ and Ω in the directions normal or parallel to Ω, and that each of these four components satisfies the solvability conditions (3.27) and (3.28) separately. We now compute the pseudo inverse L -1 Ω applied to these four components.

Lemma 4. [START_REF] Barbaro | Discrete and continuous models of the dynamics of pelagic fish: Application to the capelin[END_REF] We have: 1. ã⊥ = a ⊥ (µ) 1 -µ 2 is the unique solution of (3.18) with

Ã⊥ := -L -1 Ω A ⊥ = M Ω a ⊥ O ⊥ ω , (4.20) 
à := -L -1 Ω A = M Ω a Ω , (4.21) B⊥,⊥ := -L -1 Ω B ⊥,⊥ = M Ω {b 1 (O ⊥ ω) ⊗ (O ⊥ ω) + b 2 O ⊥ } , (4.22) B ,⊥ := -L -1 Ω B ,⊥ = M Ω b Ω ⊗ (O ⊥ ω) , (4.23 
α(µ) = e σ d , f (µ) = 1 d e σ d 1 - c 3 ν(µ) d (1 -µ 2 ) 3/2 . (4.24)
2. a is the unique (up to an additive constant) solution of (3.19) with

f (µ) = 1 d e σ d (µ -c 1 ), (4.25)
and the constant is adjusted in such a way that S 2 Ã dω = 0.

3. b1 = b 1 (1 -µ 2 )
is the unique solution of (3.18) with

α(µ) = 4e σ d , f (µ) = ν d 2 e σ d (1 -µ 2 ) 2 . (4.26)
4. b 2 is the unique (up to an additive constant) solution of (3.19) with

f (µ) = e σ d (2b 1 - c 1 d ), (4.27)
and the constant is adjusted in such a way that S 2 B⊥ dω = 0.

5. b = b 1 -µ 2 is the unique solution of (3.18) with

α(µ) = e σ d , f (µ) = ν d 2 e σ d (µ -c 2 )(1 -µ 2 ) 3/2 . ( 4 

.28)

Proof: Preliminaries: using spherical coordinates, we check that if ϕ is of the form ϕ = M Ω C k (cos θ) cos kφ, then,

- 1 M Ω L Ω ϕ = de -σ/d 1 -µ 2 cos kφ -(1 -µ 2 )∂ µ (e σ/d (1 -µ 2 )∂ µ C k ) + k 2 e σ/d C k , (4.29) 
with µ = cos θ. Similarly, if ϕ = M Ω S k (cos θ) sin kφ, then S k satisfies the same identity with cos kφ replaced by sin kφ.

Proof of (i): It is a matter of computation to show that Ã⊥ defined by (4.20) is a solution of -L Ω Ã⊥ = A ⊥ provided that ã⊥ satisfies (3.18) with data α and f given by (4.24) (use (4.29) with k = 1). Now, it is clear that Ã⊥ satisfies the normalization condition (3.27), because of (4.9). Therefore, Ã⊥ is the unique solution called -L -1 Ω A ⊥ . (ii) Using (4.29) with k = 0, we show that à defined by (4.21) is a solution of -L Ω à = A provided that ã satisfies (3.19) with data f given by (4.25). ã is defined up to an additive constant, which means that à is defined up to the addition of a function proportional to M Ω Ω. The coefficient can be chosen in such a way that condition (3.27) is satisfied. This solution is the unique solution called -L -1 Ω A . (iii) We proceed similarly. Using (4.29) successively with k = 2 and k = 0 we show that -L Ω B⊥,⊥ = B ⊥,⊥ provided that b 1 and b 2 are specified as stated in the theorem. Additionally, with (4.10), we have

( B⊥,⊥ ) φ = (b 1 sin 2 θ 2 + b 2 )O ⊥ ,
and since b 2 is defined up to a constant, we can adjust this constant to satisfy the normalization condition (3.27). The so-defined B⊥,⊥ is the unique -L -1 Ω B ⊥,⊥ . Note that, because of the factor 1 -µ 2 in the expression of f in (4.26), it is an easy matter to show that b 1 = b1 /(1 -µ 2 ) belongs to L 2 and that the assumptions for the application of lemma 3.6 are satisfied. (iv) We proceed exactly in the same way for B ,⊥ . Using (4.29) with k = 1, we find that B ,⊥ is a solution of -L Ω B ,⊥ = B ,⊥ provided that b satisfies (4.28). The normalization condition (3.27) is satisfied because of (4.9) which proves that the so-defined B ,⊥ is the unique -L -1 Ω B ,⊥ .

Lemma 4.5 The following relations are satisfied:

a ⊥ sin 2 θ M Ω = 0, a M Ω = 0, (4.30) 1 2 b 1 sin 2 θ + b 2 M Ω = 0, b sin 2 θ M Ω = 0. ( 4 

.31)

Proof: Since Ã⊥ , Ã , . . . belong to the space Φ Ω , their integral against 1 and Ω × ω over ω ∈ S 2 vanishes (see definition (3.24)). Using lemma 4.1, this leads to the above listed relations.

Finally, as a consequence of lemma 4.4, we can summarize:

Lemma 4.6 we have:

-G = -L -1 Ω ((∂ t + ω • ∇)(ρM Ω )) = Ã • ∇ ρ + Ã⊥ • ∇ ⊥ ρ + ρ( B⊥,⊥ : ∇ ⊥,⊥ Ω + B ,⊥ : ∇ ,⊥ Ω) + O(ε) . (4.32)
We can decompose G into even and odd powers of O ⊥ ω and write

G = G e + G o + O(ε), (4.33) 
-G e = Ã • ∇ ρ + ρ B⊥,⊥ : ∇ ⊥,⊥ Ω = M Ω a Ω • ∇ρ + ρ [b 1 ((O ⊥ ω) ⊗ (O ⊥ ω)) : ∇Ω + b 2 O ⊥ : ∇Ω] , (4.34) 
-G o = Ã⊥ • ∇ ⊥ ρ + ρ B ,⊥ : ∇ ,⊥ Ω = M Ω a ⊥ O ⊥ ω • ∇ρ + ρb (Ω ⊗ (O ⊥ ω)) : ∇Ω . (4.35)
In the sequel, we will omit to mention the O(ε) remainder. It should be understood that all results are up to a term of this order. In this section, we compute R 1 , the right-hand side of (4.4). Its expression is given in the following statement:

Lemma 4.7 R 1 is given by formula (2.29) with

β = a cos θ M Ω , γ = ( 1 2 b 1 sin 2 θ + b 2 ) cos θ M Ω . (4.36) 
Note: compared with (4.30) and (4.31), there is an additional factor cos θ inside the brackets.

Proof: We multiply (4.32) by ω and integrate over ω. But, because G ∈ Φ Ω , the normal component of S 2 G ω dω to Ω vanishes and the projection upon Ω is the only non-zero component. It is obtained by multiplying (4.32) by (Ω • ω)Ω and integrating upon ω. In this integration, the contribution of the odd part G o vanishes by (4.9). The contribution of the even part G e is readily found to be β(Ω • ∇ ρ)Ω + γρ(O ⊥ : (∇Ω) ⊥,⊥ ) Ω. The proof is ended by using (4.19). Proof: We can write:

β = S 2 a M Ω (ω • Ω) dω = S 2 a M Ω ((ω • Ω) -c 1 ) dω = S 2 (a M Ω ) (((ω • Ω) -c 1 ) M Ω ) M -1 Ω dω = - S 2 (a M Ω ) L Ω (a M Ω ) M -1 Ω dω ≥ 0,
by the non-positivity of L Ω (see (3.26)). In the second equality, we have used that a M Ω satisfies (3.27) (see also (4.30)). The third equality is obvious and the fourth one is just using the definition of a M Ω (see (4.21)). β is strictly positive, otherwise, a M Ω would belong to the kernel which of L Ω , which is spanned by M Ω . Since, besides that, a M Ω satisfies (3.27), it would be identically zero. But, applying L Ω to it, then ((ω • Ω) -c 1 ) M Ω would also be identically zero, which is obviously not the case. This concludes the proof by contradition.

4.5.2 Computation of R 2 (4.7) Lemma 4.9 R 2 is given by (2.30). The coefficients are given by (4.49), (4.49), (4.50).

Proof: We first compute the term involving ∂ t G:

T = -O ⊥ S 2 ∂ t G h ω dω.
We have

T = -O ⊥ ∂ t S 2 G h ω dω + O ⊥ S 2 G h ′ ω ⊗ ω dω ∂ t Ω = T 1 + T 2 ,
where h ′ denotes the derivative of h with respect to µ = ω • Ω. For T 1 , we decompose ω according to transverse and normal components:

T 1 = -O ⊥ ∂ t S 2 G o h O ⊥ ω dω -O ⊥ ∂ t S 2 G e h (ω • Ω) Ω dω = T 1 1 + T 2 1 ,
where we have used (4.33) and (4.9) to introduce the even and odd parts of G. Thanks to (4.10) and (4.19), we find We proceed similarly for T 2 . Since ω • ∂ t Ω = (O ⊥ ω) • ∂ t Ω, we find:

T 1 1 = λ 1 11 O ⊥ ∂ t (O ⊥ ∇ρ) + λ 1 12 O ⊥ ∂ t (ρ(Ω • ∇)Ω), T 2 
T 2 = S 2 G e h ′ (O ⊥ ω ⊗ O ⊥ ω) dω ∂ t Ω.
And thanks to (4.10), (4.11) and (4.13), we find Now, we note the following relations:

O ⊥ (∂ t O ⊥ ∇ρ) = O ⊥ ∂ t ∇ρ -(Ω • ∇ρ)∂ t Ω , O ⊥ (∂ t (ρ(Ω • ∇)Ω)) = ∂ t ρ(Ω • ∇)Ω + ρ(∂ t Ω • ∇)Ω + ρO ⊥ (Ω • ∇)∂ t Ω , (∂ t Ω • ∇)Ω = (∇Ω) T ∂ t Ω = (∇Ω) T ⊥,⊥ ∂ t Ω = 1 2 (σ(Ω) -Γ(Ω))∂ t Ω + 1 2 (∇ • Ω)∂ t Ω , O ⊥ ∂ t ((Ω • ∇ρ)Ω) = (Ω • ∇ρ)∂ t Ω , O ⊥ ∂ t (ρ(∇ • Ω)Ω) = ρ(∇ • Ω)∂ t Ω .
We decompose

S = -O ⊥ ∇ • S 2 G h ω ⊗ ω dω + O ⊥ S 2 G h ′ ω ⊗ ω ⊗ ω dω (∇Ω) = S 1 + S 2 ,
where the second term has the following meaning:

S 2 G h ′ ω ⊗ ω ⊗ ω dω (∇Ω) i = S 2 G h ′ ω ⊗ ω ⊗ ω dω ijk (∇Ω) jk ,
and Einstein's summation convention is assumed. We again decompose S 1 into parallel and normal components:

S 1 = -O ⊥ ∇ • S 2 G e h (O ⊥ ω) ⊗ (O ⊥ ω) dω -O ⊥ ∇ • S 2 G o h (ω • Ω) Ω ⊗ (O ⊥ ω) dω -O ⊥ ∇ • S 2 G o h (ω • Ω) (O ⊥ ω) ⊗ Ω dω -O ⊥ ∇ • S 2 G e h (ω • Ω) 2 Ω ⊗ Ω dω = S 1 1 + . . . + S 4 1 ,
where again, we have used We now note that 

O ⊥ ∇ • ((Ω • ∇ρ)O ⊥ ) = O ⊥ (∇Ω)∇ρ + O ⊥ (Ω • ∇)∇ρ -(Ω • ∇ρ)(Ω • ∇)Ω, O ⊥ ∇ • (ρ(∇ • Ω)O ⊥ ) = ∇ ⊥ ρ(∇ • Ω) + ρ∇ ⊥ (∇ • Ω) -ρ(∇ • Ω)(Ω • ∇)Ω, O ⊥ ∇ • (ρσ(Ω)) = σ(Ω)∇ ⊥ ρ + ρO ⊥ (∇ • σ(Ω)).
O ⊥ ∇ • ((Ω • ∇ρ)O ⊥ ) = 1 2 (σ(Ω) + Γ(Ω))∇ ⊥ ρ + 1 2 (∇ • Ω)∇ ⊥ ρ + O ⊥ (Ω • ∇)∇ ⊥ ρ.
Collecting the above identities, we find 

Conclusion

In this paper, we have provided the O(ε) corrections to the hydrodynamic model derived in Refs. [START_REF] Degond | Macroscopic limit of self-driven particles with orientation interaction[END_REF][START_REF] Degond | Continuum limit of self-driven particles with orientation interaction[END_REF] from the kinetic description of the Vicsek alignment dynamics [START_REF] Vicsek | Novel type of phase transition in a system of self-driven particles[END_REF]. The O(ε) corrected model involves diffusion terms in both the mass and velocity equations as well as terms which are quadratic functions of the first order derivatives of the density and velocity. To express these terms, it is necessary to decompose the density ρ and velocity Ω and their gradients in the directions parallel and normal to Ω, thereby expressing that the fluid is non-isotropic about Ω. Future works are concerned with the mathematical theory of this system at least in a simplified form, with the derivation of asymptotic formula for the coefficients in the limits of small and large noise and with numerical simulations and comparisons with the original particle dynamics. In particular, a question to be examined is whether including the O(ε) corrections in the simulation allows to bypass the ambiguities of the non-conservative hydrodynamic model (see Ref. [START_REF] Motsch | Numerical simulations of a non-conservative hyperbolic system with geometric constraints describing swarming behavior[END_REF]) and to yield a better approximation of the solutions of the original particle model

Figure 1 :Figure 2 :

 12 Figure 1: (Ω • ∇)Ω describes the rate of tilt of Ω as one moves from one point s to the neighbouring point s + ds on the flow lines. In the left figure, (Ω • ∇)Ω will be aligned with the x axis ; in the right figure, with the y axis.

Figure 3 :

 3 Figure 3: σ(Ω) describes shear in the plane normal to Ω. The left picture depicts the case associated to σ 1 and the right picture, the case associated to σ 2 . Ω is directed across the plane of the picture and pointing towards the observer (represented by the circled point at the origin).

. 25 )

 25 Inserting(3.22) into (3.5) yields that

•

  VΩ . The solvability condition(3.27) is the necessary and sufficient condition for an element of X Ω to belong to the dual space (• XΩ ) ′ .Then, the proof of (ii) follows from the application of Lax-Milgram theorem. Indeed, by Poincare's lemma, the bilinear form (3.26) defines a norm on • VΩ which is equivalent to the norm of V Ω . Therefore, there exists a unique solution ϕ ∈ • VΩ of the problem d S 2

)

  where a ⊥ , a , b 1 , b 2 and b are functions of ω • Ω. They are defined by the following relations (letting µ = ω • Ω):

4. 5

 5 Computation of the O(ε) corrections 4.5.1 Computation of R 1 (4.4)

Lemma 4 . 8

 48 We have β > 0.

T 2 =

 2 -λ 21 (Ω • ∇ρ) ∂ t Ω -λ 22 ρ(∇ • Ω)∂ t Ω -λ 23 ρ σ(Ω)∂ t Ω, b 1 h ′ M Ω ,where we have used that(O ⊥ ) ijkl ∂ k Ω l = (∇ ⊥,⊥ Ω + (∇ ⊥,⊥ Ω) T + (∇ • Ω)O ⊥ ) ij = (σ(Ω) + 2(∇ • Ω)O ⊥ ) ij . (4.38) 

( 4 . 9 ) 2 G

 492 to restrict to the even (G e ) or odd (G o ) components of G with respect to (O ⊥ ω). Using similar computations as for (4.38) and (4.37), we find-S e h (O ⊥ ω) ⊗ (O ⊥ ω) dω = η 1 11 (Ω • ∇ρ) O ⊥ + η 1 12 ρ (∇ • Ω) O ⊥ + η 1 13 ρ σ(Ω), b 1 h M Ω .

(4. 44 )

 44 But then, with (4.40) and (4.41), (4.44) gives

  ∇ • Ω)∇ ⊥ ρ +η 1 11 O ⊥ (Ω • ∇)∇ ⊥ ρ + η 1 12 ρ∇ ⊥ (∇ • Ω) -η 1 12 ρ(∇ • Ω)(Ω • ∇)Ω + η 1 13 ρO ⊥ (∇ • σ(Ω)).

  1 = λ 2 11 O ⊥ ∂ t ((Ω • ∇ρ)Ω) + λ 2 12 O ⊥ ∂ t (ρ(∇ • Ω)Ω), cos θ b 1 + cos θ b 2 ) h M Ω .

	with				
	λ 1 11 =	1 2	sin 2 θ a ⊥ h M Ω , λ 1 12 =	1 2	sin 2 θ b h M Ω ,
	λ 2 11 = cos θ a h M Ω , λ 2 12 = (	1 2	sin 2 θ
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Collecting all these identities, we get:

Now, we use that up to order ε terms, we have:

and replace the time derivatives appearing in (4.39) by space derivatives. Using that

We then get:

with:

Now, we turn towards the term involving ω • ∇G:

Now, turning to S 2 1 we have:

-

Noting that

we get

For S 3 1 , we have

with η 2 11 and η 2 12 given by (4.45). With

we find

Then, for S 4 1 , we write:

with η 4 11 and η 4 12 given by

we find

Now, we turn to S 2 . Using that (∇Ω)Ω = 0, the decomposition of ω into O ⊥ ω and (ω •Ω)Ω reduces to:

(where again, Einstein's summation convention has been used). Using (4.38), we find

with

Collecting all these identities, we find

with

We now turn to the last term

The k-th component Ũ • e k of Ũ in a Cartesian basis (e k ) k=1,2,3 can be transformed by using Stokes theorem on the sphere:

dω.

An easy computation gives

Therefore,

From (2.12), we can write

Introducing this decomposition into the expressions (4.47) of U 1 and U 2 , we get

where for instance, U 2 1 is defined by the first expression (4.47) with F 2 substituted by F 2 2 . In each of the expressions defining U q p with p, q = 1, 2, we decompose ω into O ⊥ ω +(ω •Ω)Ω and, using (4.9), keep only the even powers of O ⊥ ω. We find:

Therefore, using (2.11) and the fact that j = c 1 ρΩ (see Ref. [START_REF] Degond | Continuum limit of self-driven particles with orientation interaction[END_REF]), we have:

Next, we decompose:

Now, with (2.23) and (2.18), we have:

Collecting these results, we finally get:

with

We can now collect (4.43), (4.46), (4.48) and insert them into (2.30) and find (λ ′′ j + η ′ j + ξ j ), j = 1, . . . 13, and where we have defined the missing coefficients λ ′′ j for j = 12, 13, η ′ j for j = 7, 10, 13 and ξ j for j = 5, 7, 9, 10 as zero. Now, the proof is complete. The expressions of the coefficients Q i and D i are as follows: