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Abstract Variational approaches to image motion segmen-
tation has been an active field of study in image processing
and computer vision for two decades. We present a short
overview over basic estimation schemes and report in more
detail recent modifications and applications to fluid flow es-
timation. Key properties of these approaches are illustrated
by numerical examples. We outline promising research di-
rections and point out the potential of variational techniques
in combination with correlation-based PIV methods, for im-
proving the consistency of fluid flow estimation and simula-
tion.
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1 Introduction

This paper provides a synopsis of more than two decades
research on image motion estimation in the field of image
processing and computer vision. It reflects recent collabora-
tions and exchange of ideas between research groups from
this field and partners in experimental fluid dynamics. Ex-
amples of corresponding projects are the European FET-
project “Fluid Image analysis and Description”1, the priority
programme on “Image Measurements in Experimental Fluid
Dynamics” of the German Science Foundation (DFG)2, and

1 http://fluid.irisa.fr/
2 http://www.spp1147.tu-berlin.de/
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an international symposium on “Experimental Fluid Dynam-
ics, Computer Vision and Pattern Recognition” that held at
Schloß Dagstuhl3 in spring 2007.

Rather than making an attempt to comprehensively re-
view the vast literature, we focus on a concise presentation
and classification of essential concepts that we regard as par-
ticularly relevant for image analysis in experimental fluid
dynamics, with a high potential for future common devel-
opments. Likewise, the list of references is by no means ex-
haustive but includes some key papers as well as links to
more recent technical works, containing details that we de-
liberately omit here in order not to disrupt the main threat of
the paper.

The material below complements expositions of estab-
lished PIV methods based on image correlation (Adrian, 2005;
Raffel et al., 2007), and also the recent review (Jähne et al.,
2007) where variational methods are only briefly mentioned.
It also indicates that image processing, visualization and com-
puter vision has become an interdisciplinary field of scien-
tific computing with strong links to various disciplines of
applied and computational mathematics. Recent textbooks
illustrate this trend (Chan & Shen, 2005; Aubert & Korn-
probst, 2006; Paragios et al., 2005).

This latter trend provides the background and underlines
the main message that we intend to convey in this paper.
In our opinion, variational methods for fluid flow estima-
tion from image sequences provide a proper framework for
consistently combining image measurements with structural
constraints due to the underlying continuum mechanics, thus
paving the way for bridging the gap between experiments
and simulation in the future. The latter community (e.g. Berselli
et al. (2006)) utilizes concepts closely related to those em-
ployed in current research on mathematical image analysis.

Organization We first outline in Section 2 the relation be-
tween fluid flow and optical flow. Optical flow models, also
called data terms or observation models, are presented for
three families of experimental configurations. Then an anal-
ysis of the physical assumptions underlying these model-
based measurements techniques compared to classical cor-
relation technique is proposed.

Next, we turn in Section 3 to basic variational schemes
for motion estimation, broadly classified according to the
representation of vector fields: local, parametric, nonpara-
metric. Further issues include the underlying assumptions
that justify a specific representation, discretization, existence
and spatial density of estimates, and complexity of their nu-
merical computation.

Section 4 is devoted to modifications of the basic schemes
that are suitable for estimation of fluid flows. These include
higher-order regularization in order not to penalize too much
high spatial gradients, a basic distributed-parameter control

3 http://www.dagstuhl.de/

setting for directly controlling motion estimation through
physical constraints, an outlier handling through using ro-
bust norms or semi-norms, a multiresolution scheme to han-
dle large displacements, and an hybrid variational estimation
schemes combining the best properties of approaches from
PIV and computer vision. This section also exhibits very
recent developments, exploiting temporal context in terms
of fluid dynamics, for motion estimation. We outline both a
short-time estimation scheme that iteratively alternates re-
spective numerical computations, and a more general es-
timation scheme that embodies in a distributed parameter
setting what is well-known in engineering for the case of
lumped systems. This last approach take a further major step
towards an integrated fluid motion “estimation and simula-
tion” framework.

Numerical experiments illustrating various facets of the
material presented so far, are presented and discussed in
Section 5.

Finally, we conclude in Section 6 and indicate few re-
search directions that show most promise in our opinion: ex-
tensions of variational approaches to three-dimensional PIV,
and the incorporation of turbulence models based on turbu-
lent kinetic energy decay for motion estimation with high
spatial resolution.

Notation. Ω ⊂ R2 denotes the two-dimensional image sec-
tion and x ∈ Ω any point in it. A recorded image sequence
is given in terms of an intensity function

I : Ω × [0, T ]→ I(x, t) .

We denote vector fields with

w : Ω → w(x) =
(
u(x), v(x))> =

(
u(x)
v(x)

)
,

where ·> indicates transposition, i.e. the conversion of row-
vectors to column-vectors, and vice-versa.

This notation reflects the continuous physical origin of
the quantities involved and deliberately ignores the fact that
I is given by samples at discrete locations in Ω as well as
along the time axis t ∈ 0, 1, . . . , T . Bridging this gap be-
tween numerical computations and the physical world amounts
to devise proper discretization schemes that usually do not
emerge from signal sampling itself.

2 Optical flow representation

In computer vision rigid or quasi-rigid body motion estima-
tion methods usually rely on the assumption of the tem-
poral conservation of an invariant derived from the data.
These common photometric invariants used for motion es-
timation are described in §2.1.2. Geometric invariance deals
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with particular geometric configurations of the image func-
tion such as corners, contours, etc. They define local features
that are usually stable over time, but provide only sparse
information for motion estimation in sufficiently structured
images. For fluid images, however, these features are diffi-
cult to define and to extract. Photometric quantities, on the
other hand, are more easy to define and to compute, but are
not always invariants. This raise the problem of the connec-
tion between optical flow and fluid flow. This problem is ad-
dressed in §2.1. The physics-based optical flow equation is
given based on the derivation of the projected motion equa-
tions. An analysis of the physical assumptions underlying
these model-based measurements techniques compared to
classical correlation technique is proposed in §2.2. Optical
flow equations alone do not suffice to compute image mo-
tion. This badly-posed motion estimation problems, called
aperture problem, is defined in §2.3.

2.1 Optical flow and fluid flow

Optical flow is the apparent velocity vector field correspond-
ing to the observed motion of photometric patterns in suc-
cessive image sequences. This motion is described by the
optical flow equation also called observation term or data
term. The optical flow equation establishes precisely the link
between the spatiotemporal radiance variation from an emit-
ting object in three-dimensional space and its projection onto
the image plane. For laser sheet flow visualization the opti-
cal flow equation is the projection of the equation of mo-
tion onto the image plane (see §2.1.1). For volumic flow vi-
sualization of three-dimensional flows or for visualization
of two-dimensional flows, the optical flow equation has the
classical form of the transport equation (see §2.1.2). Finally
for three-dimensional flow with altimetric or transmittance
imagery the optical flow is derived from the integration of
the continuity equation (see §2.1.3).

2.1.1 3D flow with laser-sheet visualization

The relation between fluid flow and optical flow has been
described exhaustively by Liu & Shen (2008). The projected
motion equations for eleven typical flow visualizations have
been carefully derived. Using the underlying governing equa-
tion of flow (phase number equation for particulate flow or
scalar transport equation), they have shown that the optical
flow w is proportional to the path averaged velocity of par-
ticles or scalar across the laser sheet and have proposed the
following physics-based optical flow equation,

∂tI +∇T (Iw) = f(x, I), (1)

where f(x, I) = D∇2I + DcB + cn.(Nu)|Γ+
Γ−

and D is
a diffusion coefficient, c is a coefficient for particle scat-
tering/absorption or scalar absorption, B = −n.∇ψ|Γ+

Γ−
−

∇.(ψ|Γ−∇Γ− + ψ|Γ+∇Γ+) is a boundary term that is re-
lated to the considered transported quantityψ, and its deriva-
tives coupled with the derivatives of the control surfaces
Γ−, Γ+ of the laser sheet illuminated volume. Since the
control surfaces are planar, there is no particle diffusion by
molecular process, and the rate of accumulation of the par-
ticle in laser sheet illuminated volume is neglected, the term
f(x, I) ' 0 and equation (1) reads

∂tI +w ·∇I + Idivw = 0. (2)

In (1) and (2), the optical floww is proportional to the path-
averaged velocity weighted with a field ψ (scalar concen-
tration or particle number par unit total volume) which is
defined as

w ∝

∫ Γ+

Γ−
ψW xydz∫ Γ+

Γ−
ψdz

, (3)

whereW xy is the projection of the fluid or particle velocity
onto the the coordinate plane (x, y).

It should be noted that equation (2) corresponds to the
integrated continuity equation (ICE) originally proposed by
Corpetti et al. (2002) under the assumption that the radi-
ance is proportional to an integral of the fluid density across
the measurement volume (see §2.1.3 for details). Although
the ICE model proposed by Corpetti et al. (2006) is the-
oretically valid only for transmittance imagery, the authors
have obtained accurate results for PIV measurements, which
are now rigorously justified by the recent derivation of the
projected motion equation by Liu & Shen (2008) leading
to equation (2). The experimental evaluation of this method
has shown good agreement with hot-wire measurements for
a mixing layer and the wake of a circular cylinder. The nu-
merical examination of the technique with the VSJ standard
base image has indicated that the ICE equation provides the
best results especially in case of out of plane component
(see §5.1). Close examination of equation (2) shows that
the physics-based optical flow model is composed of a term
∂tI + w ·∇I representing brightness constancy, while the
term Idivw accounts for the non-conservation of the bright-
ness function due to loss of particles caused by non null out
of plane component.

Note that the above physics-based optical flow equa-
tions does not take into account specific phenomenon like
for instance spatiotemporal varying illumination of the laser
which can easily be included with additional models of bright-
ness variation (Haussecker & Fleet, 2001). This issue can
also be tackled with robust cost functions presented in §4.3.

Finally, we point out that the data models described by
equations (1) and (2), or equations (6) and (9) in the fol-
lowing sections, constitute variational models. Their valid-
ity cease to hold for long range displacements. In this case it
is more reliable to use an integrated data model. Assuming a
constant velocity of a point between two successive frames,
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the model defines a first order differential equation that can
be straightforwardly integrated:

dI(x(t), t)
dt

|t=u = −I(x(u), u)divw(x(u), u) ∀u ∈ [t, t+1],

leading to the non-linear data model

∀x, I2(x+ d(x)) exp(divd(x))− I1(x) = 0, (4)

where d(x) denotes the displacement fields between images
I1(x) = I(x, t) and I2(x+d) = I(x+d(x), t+1). These
models are usually linearized around current estimates and
embedded into a multiresolution pyramidal image structure
(see §4.4.1).

2.1.2 3D flow with volumic visualization or 2D flow

For laser sheet visualization of two-dimensional incompress-
ible flows the connection between fluid flow and optical flow
is straithforward under the assumption that the laser sheet is
perfectly aligned with the flow and/or under the assumption
that the field Ψ related to the visualizing medium is constant
across the laser sheet. In this context, the out of plane com-
ponent is zero, the optical flow is proportional to the velocity
w ∝W xy , hence is divergence free divw = 0 and satisfies
the scalar advection-diffusion equation

∂tI +w ·∇I = D∇2I. (5)

For volumic visualization of three-dimensional flows, like
e.g. tomographic reconstruction, the optical floww is a cer-
tain average of the velocity field due to the imperfect recon-
struction of the three-dimensional image. As a consequence
the connection between fluid flow and optical flow is less
straightforward than for the two-dimensional case, and is a
promising direction for further research (see §6.2). With a
three-dimensional perfect visualization of the flow, the esti-
mated three-dimensional optical flow should obviously obey
to the full Navier-Stokes equations, and the evolution of the
three-dimensional images should follow a transport equation
related to the physical transport law of the observed quantity
(e.g. particle, concentration, density, temperature, ...). To a
first approximation we will consider in the following that
the optical flow w, associated to three-dimensional flow or
two-dimensional flow visualized respectively through volu-
mic data or two-dimensional sheets, satisfies (5).

For PIV measurements the diffusion coefficient D = 0
and the physics-based optical flow equation corresponds to
well known optical flow constraint equation (OFC) account-
ing for the brigthness constancy assumption,

∂tI +w ·∇I = 0. (6)

Equation (6) is the linear differential formulation of the match-
ing formulation between two consecutive images also known
as the Displaced Frame Difference (DFD):

∀x, I2(x+ d(x))− I1(x) = 0. (7)

The expression (7) leads to non linear equations which are
always valid irrespective of the displacement range, whereas
equation (6) is locally valid where the linearization of the in-
tensity function provides a good approximation. This is only
the case for small displacements and smooth photometric
gradients. Furthermore, the resulting systems are not solv-
able in photometrically uniform image regions.

In computer vision for the estimation of rigid or quasi-
rigid body motion other photometric invariants, than the in-
tensity itself, have been proposed like the conservation of
the luminance gradient ∇I2(x + d) = ∇I1(x)) (Tretiak
& Pastor, 1984; Brox et al., 2004), or from successive gaus-
sian filtering gσj ∗I2(x+d) = gσj ∗I1(x) (Weber & Malik,
1995), where ∗ stands for the convolution product.

2.1.3 3D flow with altimetric or transmittance imagery

When the observed luminance function relates to the fluid
density, one can rely on the corresponding continuity equa-
tion to obtain a meaningfull brightness variation model. Ne-
glecting mass exchanges via vertical motions at surface bound-
aries, we consider the following ICE model (Integrated Con-
tinuity Equation):

∂t

(∫
ρdz

)
+w·∇

(∫
ρdz

)
+
(∫

ρdz

)
divw = 0, (8)

where w stands now for a density weighted average of the
general 3D motion field along the vertical axis.

This model provides a valid invariance condition for al-
timetric imagery of compressible flows (Héas et al., 2007a)
or for transmittance imagery of compressible fluids (Fitz-
patrick, 1988). In cases where the assumption I ∝

∫
ρdz

holds, the ICE data model provides a way to take into ac-
count mass changes observed in the image plan by associat-
ing two-dimensional divergence to brightness variations and
reads like equation (2). For long range displacements inte-
gration of (2) gives equation (4). This model has been ap-
plied to water-vapor and infrared atmospheric satellite im-
ages (Corpetti et al., 2002) and to particle images (Corpetti
et al., 2006). A similar model has been also defined for
Schlieren images (Arnaud et al., 2006). This technique al-
lows to visualize the variation of the fluid density through
refraction of a light beam.

Recently, for atmospheric wind measurement applica-
tions, this model has been justified –under the assumption of
negligeable vertical velocities at surface boundaries– through
pressure difference image maps (Héas et al., 2007a). The
model has been extended to recover the vertical component
of velocities, w, at the surface boundaries of altimetric at-
mospheric pressure layers (Héas et al., 2008)

dh

dt
+ hdivw = g[ρw]s

+

s− , (9)
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where h corresponds to observed differences of pressure and
the lower and upper surface boundaries are denoted by s−

and s+. For long range displacements integration of (9) yields

h2(x+d)−h1(x) exp(−divd) = g
[ρw]s

+

s−

divd
(exp(divd−1)),

(10)

which for vanishing divergence of the horizontal motion fields
becomes

h2(x+ d(x))− h1(x) = g[ρw]s
+

s− . (11)

2.2 Optical flow and correlation

In this section we analyse the physical assumptions underly-
ing model-based measurements techniques described above
and classical correlation technique. We indicate that the cor-
relation technique involves intrinsic assumptions giving rise
to accuracy limits of the method for motion estimation. To
provide a simple explanation of this behaviour we shall con-
sider, for simplicity, the DFD model embedded in a local es-
timation scheme described in 3.1.

The displacement field between two consecutive images
can be determined by minimizing the square of the DFD

model

d(x) = arg min
d

∑
r∈W(x)

(I2(r + d)− I1(r))2 (12)

whereW(x) is the interrogation window. Since I1 does not
depend on d, the displacement field reads

d(x) = arg min
d

∑
r∈W(x)

(I2(r + d)2 − 2I2(r + d)I1(r)).

(13)

Examination of this equation indicates that the minimiza-
tion of the square of the DFD model includes the correla-
tion between the displaced image I2 and the image I1. The
displacement field estimated with the DFD is thus equiva-
lent to the displacement field obtained through a correlation
maximization when the quantity

∑
r∈W(x) I2(r+d)2 does

not depend on d. This condition assumes a constant bright-
ness energy contained in the displaced interrogation window
whatever the displacement and the point location, i.e.

∀d,
∑

r∈W(x)

I2(r + d)2 ≈ constant. (14)

For PIV images this condition is clearly met for homoge-
neous particle seeding and sufficiently large interrogation
window. Based on a mathematical analysis of the correla-
tion, this conclusion has also been drawn by Gui & Merzkirch

(2000) when comparing the square of the DFD, therein called
MQD method, with several correlation-based algorithms.

Since equation (12) is the ideal physics-consistent mea-
sure of fit of the displacement field to the data image –for
two-dimensional flow or volumic imagery of three-dimensional
flows– the classical correlation provides biased estimations
for non homogeneous particle seeding. The occurrence of
this critical phenomenon is locally strengthened when con-
sidering small interrogation windows, region with large ve-
locity gradients or scalar image. On the contrary the square
of the DFD intrinsically allows to cope with smaller interro-
gations areas, high particle density and scalar images. This
simple analysis clearly shows that the classical correlation
behaves as a poor model which does not take into account
the particle image pattern. As a consequence, a correlation
goodness of fit exhibits accuracy limits. Furthermore, for
laser sheet three-dimensional flows visualization the corre-
lation “model” hides the effect of intensity variations due
to the out-of-plane component leading to limited achiev-
able accuracy (Nobach & Bodenschatz, 2009), whereas the
physics-based model (4) take into account this phenomenon.

2.3 Aperture problem

Unlike the nonlinear equation (4) and (7), the variational lin-
ear equations (2) and (6) does not suffice to compute image
motion. For instance the formulation (6) merely links the
temporal variation of the luminance function to the compo-
nent of the velocity vector normal to the iso-intensity curves
(level lines of the image function)

w(x)⊥ = − ∂tI(x)
‖∇I(x)|

· ∇I(x)
‖∇I(x)‖

.

As a consequence, motion estimation of linear moving struc-
tures is ill-posed (see Figure 1). Motion estimation is thus
intrinsically linked in a way or another to the definition of
windowing functions or to the adjunction of additional spa-
tial constraints or regularization terms. This is referred to
in the literature as the aperture problem. Furthermore, we
point out that non-linear equation (4) and (7), and the varia-
tional equations (2) and (6) do not allow to estimate motion
in homogeneous image regions, and are sensitive to noise.

3 Basic motion estimation schemes

Optical flow equations alone do not suffice to compute im-
age motion. Additional constraints have to be used in or-
der to define well-posed motion estimation problems. The
type of these constraints depends on the way motion is rep-
resented, parametric or nonparametric, leading to different
families of approaches. They include correlation methods
and the Lucas Kanade estimator, and optical flow methods.
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Fig. 1 Schematic illustration of the aperture problem

Both families of approaches are described in §3.1 and in
§3.2.

3.1 Parametric representation and local or semi-local
estimation

Parametric motion representations allow to consider addi-
tional relations linking the luminance function to the param-
eters. These relations are required to hold either on disjoint
local spatial supports, or globally on the whole image do-
main.

3.1.1 Local disjoint spatial supports: correlation, “block
matching” and “Lucas and Kanade”

These methods belong to region-based techniques. Their gen-
eral principle consists in considering a set of windowsW(x)
centered on different points of the image grid. A parametric
motion field is then estimated on each of these windows on
the basis of a criteria defined classically as the minimiza-
tion of the negative cross-correlation or as the minimization
of a metric like the absolute and the squared differences. A
locally constant displacement field is sought over a discrete
state space,

d(x) = arg min
d

∑
r∈W(x)

C(I2(r + d), I1(r)).

The similarity functions, C, used usually are the absolute
value or the square of the DFD, or correlation functions. The
squared differences is commonly used in computer vision
for the motion estimation of rigid or quasi-rigid body. It has
been suggested by Gui & Merzkirch (1996) for PIV mea-
surements and named minimum quadratic difference (MQD)
method. However, as discussed in §2.1.1 the DFD model,
which relies on the brightness constancy assumption, is valid
either for three-dimensional flows visualized through volu-
mic data or for two-dimensional flow. For laser-sheet three-
dimensional flow visualization, this model has to be replaced
by the model (4) accounting for particle loss and three-dimen-
sional effects.

Correlation Efficient implementations of the correlation func-
tions are based on the Fast Fourier transform (FFT) and rely
on the property that the transform of the correlation of two
signals

I1 ◦ I2 ≡
∑

r∈W(x)

I1(r)I2(r + d)

is given by the product of transform of the first signal with
the conjugate transform of the second signal

F(I1 ◦ I2) = F(I1)F∗(I2).

The correlation function is then computed in the Fourier
domain over local windows centered in the same point in
both images. Strictly speaking, this approach is only defined
for periodic signals. For non-periodic signals, these methods
may be sensitive to long-range displacements.

Another correlation method, defined in the phase space,
relies on the shift invariance property of the Fourier trans-
form

F(I(x+w, t)) = F(I(x+w, 0))δ(kTw + φ),

where δ denotes the Dirac mass and k and φ designate re-
spectively the spatial and temporal frequencies. This equa-
tion shows that a feature moving with a velocity w belongs
to a subspace of the Fourier domain. For 2D + t image se-
quences, this is a plane through the origin of the 3D Fourier
domain, given by the argument of the δ function

φ = −kTw.

The slope of the plane defines the velocity vector: w =
−∇kφ. Let us note that the determination of this vector
is ambigous when the signal spectrum does not sufficiently
cover the corresponding plane. This is the case when the
image signal in the spatial domain is either homogeneous or
has a single dominant direction. We retrieve then the aper-
ture problem in the frequency domain.

When both images I1 and I2 are linked by a global trans-
lation and a photometric invariance assumption (i.e., I1(x−
w0) = I2(x)), the Fourier transform of image I2 is given
by : FI2 = Î2(k) = Î1(k) exp(−ikTw0) and therefore:

Î2(k)Î∗1 (k)
|Î1|2

= exp(−ikw0).

The spatial representation of this normalized spectral cor-
relation coefficient (obtained through inverse Fourier trans-
form) is characterized by a displaced dirac mass δ(x−w0),
which allows to determine the displacement w0 (Foroosh
et al., 2002; Jähne, 1993).

Methods based on these principles are largely used for
their rapidity and their simplicity. Applications include im-
age indexing, video compression, velocity measurement in
experimental fluid mechanics (PIV methods (Adrian, 1991)),
and atmospheric wind field estimation in meteorology. In
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experimental fluid mechanics, different challenges from 2001
to 2005 have led to very efficient and reliable variations of
the technique. The main variations concern Gaussian cor-
relation peak approximation for sub-pixel accuracy, and re-
fined multi-pass correlation (Adrian, 2005; Raffel et al., 2007).

Block matching A second family methods is based on mean
squares brightness conservation (6) and a local parametric
motion model of p degrees of freedom defined over a spatial
domain. In the case of a linear motion representation defined
asw(x) = P (x)θ, where P (x) is a 2× p matrix which de-
pends on the chosen parameterization 4, motion estimation
amounts to determine the vector θ̂ such that :

θ̂ = arg min
θ

∫
W(x)

g(x− r)[∂tI(r) +∇I(r)TP (r)θ]2dr

(15)

where g(x) is a windowing function, typically a Gaussian,
which gives more weight to the window center. This expres-
sion may be written as a convolution product in the spatio-
temporal domain :

min
v
vT [gσ ∗ (PT∇3I∇3I

TP )︸ ︷︷ ︸
T

]v, (16)

with v = (u, v, 1)T and where gσ stands here for a (2D+ t)
kernel, and∇3I denotes the spatio-temporal gradients of the
luminance function (∇3I ≡ (∂xI, ∂yI, ∂tI)T ).

Lucas and Kanade For a discrete 2D case and a constant
motion model, the least squares solution of the expression
(15) constitutes the estimator proposed by Lucas & Kanade
(1981) :

w(x) = −T −1

∫
W(x)

gσ(x− r)∂tI(r)∇I(r)dr

with T =
∫
W(x)

g(x− r)∇I(r)∇IT (r)dr.
(17)

It is easy to see that matrix T is ill-conditioned for small
photometric gradients (uniform image regions) or when the
photometric contours are structured along a single direction
in W(x) (∀r ∈ W(x), ∇I(r) ' c). We retrieve here
again the aperture problem (see §2.3).

This local scheme (17) has been applied to flow field
measurements by Okuno & Nakaoka (1991), Sugii et al.
(2000) and Yamamoto & Uemura (2009), and called either
gradient method or spatio-temporal derivative method. The

4 P (s) = Id for a constant model; P (s) =

»
1 x y 0 0 0

0 0 0 1 x y

–
for an

affine model and P (s) =

»
1 x y 0 0 0 x2 xy

0 0 0 1 x y xy y2

–
for a quadratic model.

technique has been extended for the recovery of the veloc-
ity fields and its derivative, and has been assessed on PIV
images by Alvarez et al. (2008).

Solutions to this least squares estimation problem through
an eigenvalue analysis (16) comprises the so called struc-
ture tensor approaches (Bigün et al., 1991; Jähne, 1993).
The matrix T being symmetric, there exists an orthogonal
matrix Q such that

min
v

vTT v = min
y
yTQTT Q y = min

y
yTΛ y, (18)

with y = QTv and Λ = diag(λ1, λ2, λ3), the diagonal ma-
trix containing the eigenvalues. The solution of (18) sub-
ject to the constraint ‖v‖ = 1 is given by the eigenvector
e(λ3) ≡ (e(λ3)

x e
(λ3)
y e

(λ3)
t )T corresponding to the small-

est eigenvalue λ3
5. When the matrix has full rank and is

well conditioned both components of the velocity vector are
given by:

w(x) = (u(x), v(x)) =
e

(λ3)
x

e
(λ3)
t

.

The eigenvalues enable further analysis. For instance, if
all three eigenvalues are close to zero, no motion can be es-
timated. This happens if the spatial support underlying the
least-squares estimation corresponds to a homogeneous im-
age region. A single eigenvalue different from zero indicates
that the luminance gradient has a single dominant spatial di-
rection, and again only the normal velocity vector can be
estimated (aperture problem):

w⊥ = e
(λ1)
t

e
(λ1)
x

‖e(λ1)
x ‖

.

Finally, if three eigenvalues are different from zero, there is
no coherent apparent motion on the considered support due
to a motion discontinuity.

The formulation of the approaches (15) and (17) in the
Fourier domain leads to a plane regression problem. A set of
spatiotemporal directional filters, for instance Gabor filters,
enables a direct estimation of the plane parameters (Fleet &
Jepson, 1990; Heeger, 1988; Jähne, 1993; Simoncelli, 1993;
Yuille & Grzywacz, 1988).

3.1.2 Globalized local smoothing: Ritz method

The previous techniques comprise local independent motion
estimators. While this locality favourably limits error prop-
agation, it prevents taking into account global physical con-
straints. One way to extend the previous approaches consists

5 This corresponds to the total least squares solution. Given a (m×
p) homogeneous linear system Mx = 0, a total least squares solution
minimizes ‖Mx‖2 subject to the constraint ‖x‖ = 1 in order to avoid
the trivial solution.
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in seeking for a solution of the form

wφ(x) ≡
N∑
i=1

ciφi(x),

where the coefficients ci are unknown and the shape func-
tions, φi(x), are fixed. These functions have compact spatial
support and are chosen on a priori grounds of requirements
of given application area. The shape function basis should
be complete, that is the approximation error ‖wφ−w‖ con-
verges toward zero for N →∞.

The method consists in estimating the coefficients ci by
minimizing

J(wφ) =
∫
Ω

F (x,wφ,
∂wφ

∂x
, . . .)dx+

∫
Γ

G(s,wφ, · · · )ds,

(19)

where Ω define the spatial domain with boundary Γ = ∂Ω,
in which one seeks for the solution. In the case of a quadratic
functional, the minimizer of J with respect to c is deter-
mined by the following conditions:

∂J

∂c
=


∂J
∂c1

...
∂J
∂cN

 = Kc+ f = 0.

If the functional degree with respect to wφ and its deriva-
tive is not larger than 2, the so-called stiffness matrix K is
symmetric:

K =


∂2J
∂c21

· · · ∂2J
∂cNc1

...
...

∂2J
∂c1∂cN

· · · ∂2J
∂c2N

 .
This method has been applied for functions F defined ei-
ther from the OFC (Srinivasan & Chellappa, 1998; Wu et al.,
2000) or from the DFD (Musse et al., 1999; Szeliski & Shum,
1996). In the former case, the system to be solved is lin-
ear, and the shape functions are “cosine window” functions
(Srinivasan & Chellappa, 1998) and a particular wavelet func-
tion basis (Cai-Wang waveletts) defined from B-splines of
order 4 (Wu et al., 2000). In the latter case, both meth-
ods make use of hierarchical B-splines. As numerical it-
erative methods were used a Gauss-Newton solver (Musse
et al., 1999), a Conjugate Gradient technique (Srinivasan
& Chellappa, 1998) and the Levenberg-Marquardt method
(Szeliski & Shum, 1996; Wu et al., 2000). Standard bound-
ary conditions (Dirichlet or Neumann) were associated to
those different approaches. Basis functions defined on Thin
plate splines (Duchon, 1977; Wahba, 1990) have been also
intensively used in computer vision registration application
(Arad et al., 1994; Bookstein, 1989) or for medical image
applications (Rohr et al., 1999). The main problem of these

methods consists to determine an adequate spatial subdivi-
sion of the image domain in terms of the basis functions, and
to allow for strong discontinuities of the solution that are im-
portant in some applications of image sequence processing.

For fluid flow image analysis, an estimator of this kind,
relying on the Helmholtz decomposition, has been proposed
in Cuzol & Mémin (2005, 2008). An example of the results
obtained by the latter estimator is shown in figures 12 and
13. The representation on which it relies is further described
in §4.5.2. Let us recall that the Helmholtz decomposition
separates the velocity field into a divergent free and a curl
free component (assuming null boundary conditions at in-
finity), the solenoidal and irrotational motion components

w = wirr +wsol, (20)

where divw = divwirr and curlw = curlwsol. It is well
known that these two fields can be represented by two poten-
tial functions, the stream function and the velocity potential

w =∇ψ +∇⊥φ. (21)

These potential functions are solutions of two Poisson equa-
tions (known for the divergent free component as the Biot-
Savart integral):

∆ψ = −curlw , ∆φ = divw. (22)

As a consequence, they may be expressed by the convolu-
tion with the corresponding Green functions. Taking gra-
dients of these convolution products and slightly mollify-
ing the associated singular kernels with Gaussian convolu-
tion gives rise to appropriate basis functions for the curl and
the divergence, known in the computational fluid dynam-
ics community as vortex particles (Chorin, 1973; Cottet &
Koumoutsakos, 2000; Leonard, 1980). The resulting irrota-
tional and solenoidal motion fields are a linear combination
of these basis functions. The solenoidal components, for in-
stance, reads

wsol(x) ≈
p∑
i=0

γiK
⊥ ∗ gεi (zi − x)

≈
p∑
i=0

γiK
⊥
εi (zi − x) ,

(23)

where K⊥εi is the kernel function obtained by convolving the
orthogonal gradient of the Green kernel, K⊥, with a Gaus-
sian function, gεi . The coordinates, zi, denotes the location
of the ith basis functions. A similar representation of the
irrotational component using likewise, source particles and
the Biot-Savart integral associated to the divergence map
(equ.22) can be readily obtained. Using this parameteriza-
tion together with a photometric model enables to define
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a least squares estimation problem for the unknown coef-
ficients. The estimation of the basis function parameters, on
the other hand, i.e. standard deviation of the gaussian kernel
and location of the basis function, is more involved and leads
to a nonlinear system to be solved numerically. A solution
based on a two-stages process is proposed in Cuzol et al.
(2007). Code corresponding to this estimator is freely avail-
able and can be downloaded on the web site of the FLUID
project (http://fluid.irisa.fr).

For fluid flows analysis and fluid motion estimation from
image sequences spline basis functions minimizing a second
order div-curl constraint (see equation 25 section 4.1) have
been proposed (Amodei & Benbourhim, 1991; Suter, 1994;
Isambert et al., 2008). Compared to vortex particles these
basis functions have the drawback to impose strictly an em-
pirical kinematics constraint that is not built from physical
considerations.

3.2 Nonparametric representation and non-local estimation

A third basic class of motion estimation schemes considers
velocity fieldsw = (u, v)> as general functions, rather than
as individual velocity estimates at discrete locations (Sec-
tion 2.1.2), or as polynomial vector fields defined in a local
region (Section 3.1). These methods are classically called
optical flow or global approaches.

Given an image function I(x, t), we estimate w for an
arbitrary but fixed point of time t by minimizing the func-
tional

E(w) =
∫
Ω

{
(∇I ·w+∂tI)2 +λ

(
‖∇u‖2 +‖∇v‖2

)}
dx .

(24)

The variational approach (24) has been introduced by Horn
& Schunck (1981) in the field of computer vision. The ob-
jective criterion combines two terms: A so-called data term
that enforces the conservation assumption by minimizing
the squared-norm of the linearized DFD (see §2.1.2), and a
so-called smoothness-term or regularizer that enforces spa-
tial smoothness of the minimizing velocity field w, to a de-
gree as specified by the regularization parameter λ weight-
ing the two terms.

Specific properties of the basic variational approach (24)
include:

– Under weak conditions, namely L2-independence of the
two component functions of the spatial image gradient
∇I(x), the functional (24) is strictly convex (Schnörr,
1991). Because the functional additionally is quadratic
in w, discretizing the variational equation

d

dτ
E(w + τw̃)

∣∣∣
τ=0

= 0 , ∀w̃ ,

with piecewise linear finite elements, or the correspond-
ing Euler-Lagrange system of equations with finite dif-
ferences, yields a sparse linear system that is positive
definite. It can be conveniently and efficiently solved us-
ing standard iterative numerical techniques.

– The resulting velocity estimatew is dense even if the im-
age function I is homogeneous, i.e.∇I ≈ 0, in some im-
age regions. As before in the two previous subsections,
imposing smoothness on the solution is necessary here,
too, to obtain a well-defined estimation approach. The
nonparametric approach (24) is less restrictive, however,
than assuming locally constant velocity fields (Section
2.1.2), or than prescribing a polynomial form within lo-
cal regions (Section 3.1).

The application of the basic variational approach (24) to PIV
has been studied in Ruhnau et al. (2005) where more details
on the discretization are given. Moreover, in this paper, a
multi-scale representation of the input image data I obtained
by lowpass-filtering and subsampling was used to compute
long-range motions up to 15 pixels per frame, which is not
possible when working with (24) on the finest sampling grid
only (see §4.4.1 for details on this multi-scale representa-
tion).

Although providing good results with PIV data, the basic
variational approach of Horn & Schunck (1981) was orig-
inally proposed for rigid or quasi-rigid motion. Therefore
some knowledge of the physics of fluid need to be used to
improve the measurement accuracy. For laser-sheet visual-
ization of three-dimensional flow equation (2) must be used
as a data term. Modifications of the regularization term are
adressed in §4 (higher-order and physics-based regulariza-
tion) and in §4.3 robust norms are described for removing
outliers and for preserving discontinuities of the velocity
fields. Concerning numerical approaches relevant to (24),
we refer to Bruhn et al. (2006) and references therein.

4 Specific motion estimation schemes

The motion estimators presented so far combine a physics-
based model of brightness variation related to the observed
flow with additional spatial constraints expressed through
parametric motion models or smoothness functionals. This
last ingredient was mainly designed in the context of rigid
luminance patterns that are typical for image sequences of
natural scenes.

Regarding fluid flow velocity fields, it is natural to ask
for dedicated approches taking into account physically more
plausible smoothing functionals, to provide more accurate
velocity measurements. This section addresses these issues.
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4.1 Higher-order regularization

Regarding the estimation of fluid flows with spatially vary-
ing, strong gradients, an apparent weak point of the basic
variational approach (24) is the use of first-order derivatives
in the regularization term. As a consequence, the value for
the parameter λ has to be chosen quite small in order not
to underestimate gradients of the flow. On the other hand,
this means that data noise influencing the first term in (24)
cannot be effectively suppressed through regularization.

As a remedy, numerous researchers studied higher-order
regularizers, in particular terms involving second-order spa-
tial derivatives of the flow, of the form∫
Ω

{
‖∇divw‖2 + ‖∇curlw‖2

}
dx . (25)

We refer to Corpetti et al. (2002); Yuan et al. (2007) and
references to earlier work therein. Further motivation of (25)
is given by the generalized Helmholtz decomposition of the
space of square-integrable vector fields into gradients and
curls (Girault & Raviart, 1986)

L2(Ω)2 = ∇H1(Ω)⊕∇⊥H1
0 (Ω) , (26)

that is valid in two dimensions Ω ⊂ R2 if the domain Ω
is simply connected. In (26), the symbol ∇⊥ denotes the
vector-valued curl-operator (∂x2 ,−∂x1)> for two-dimensional
scalar fields, andH1(Ω) denotes the Sobolev space of square-
integrable functions whose gradients are square-integrable
as well. H1

0 (Ω) denotes the subspace of those functions of
H1(Ω) that vanish on the boundary ∂Ω.

Using higher-order derivatives has consequences for dis-
cretization. Unlike the approach (24) where standard text-
book schemes apply and lead to numerically stable compu-
tations, the regularizer (25) yields a complex Euler-Lagrange
system of equations and natural boundary conditions whose
proper discretization is far from being trivial. The decom-
position of vector fields w ∈ L2(Ω)2 into an irrotational
and a solenoidal component due to (26) highlights this is-
sue as well. For example, it is well known from compu-
tational fluid dynamics that imposing the incompressibility
constraint divw = 0 in connection with standard discretiza-
tion schemes may result inw = 0, due to the so-called lock-
ing effect (cf., e.g., Brezzi & Fortin (1991)).

As a consequence, more sophisticated discretizaton schemes
have to be applied. Examples include the Mimetic Finite
Differences framework developed by Hyman & Shashkov
(1997b) and Hyman & Shashkov (1997a) or alternatively the
construction of adequate Finite Element spaces, see Hipt-
mair (1999) and references therein to earlier work. The pri-
mary objective of this line of research is to make hold true
orthogonal decompositions of spaces of vector fields and the
basic integral identities of vector analysis after discretiza-
tion. This is an essential prerequisite for stable numerical
computations.

Furthermore, vector field decompositions help to ana-
lyze variational approaches. For example, it is shown in Yuan
et al. (2007) that when using the regularizer (25) together
with the data term in (24), one should include an additional
boundary term in order to remove an inherent sensitivity
against noise in the image data that cannot be regularized
by increasing the weight of (25).

Comparisons of the approaches of Corpetti et al. (2002)
and Yuan et al. (2007) with correlation technique are dis-
cussed in §5.1. Results obtained with these higher-order reg-
ularization techniques are displayed in figures 4 to 7 for par-
ticle and scalar images.

4.2 Physical constraints and controlled estimation

The variational approaches (24) and (25) are unconstrained.
In experimental fluid dynamics, this appears to be unnat-
ural because the flow to be estimated is governed by the
Navier-Stokes equation. Consequently, one may ask for ap-
proaches that combine flow measurements from image se-
quences with the constitutive equations of fluid dynamics.
This basic problem opens a line of long-term research at the
end of which one may expect computational schemes to be
available that consistently combine the evaluation of exper-
imental data and simulations.

The reader may argue that physical constraints are less
useful in the prevailing two-dimensional measurement sce-
narios. For example, even the incompressibility condition
divw = 0 does not strictly hold for flows observed in a
planar section through a volume, due to out-of-plane parti-
cle movements. While this is true, it should not hamper to
clarify this basic problem, that is becoming more and more
relevant as soon as novel measurement techniques delivering
three-dimensional flow measurements become available.

A basic approach that in some sense provides the sim-
plest setting for a meaningful combination of flow measure-
ments with physical constraints has been recently proposed
in Ruhnau & Schnörr (2007). The variational approach com-
prises the objective functional

E(w, p,f , g) =
∫
Ω

{
(∇I ·w + ∂tI)2 + α‖f‖2

}
dx

+ γ

∫
∂Ω

‖∂tg‖
2ds ,

(27)

and the constraint system

−µ∆w +∇p = f in Ω , (28a)

divw = 0 in Ω , (28b)

w = g on ∂Ω . (28c)

Estimated flows w have to satisfy the Stokes system (28)
and to fit the observed image motion by minimizing the data
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term (i.e. the first term) in (27). The connection between
the physical constraints and the objective function is estab-
lished by virtue of distributed vector fields f , g inside Ω
and on the boundary ∂Ω, respectively, that control the esti-
mated flow w through the right-hand side of (28) so as to
minimize (27). Regularization terms of the control variables
are included into the objective function, with small weights
α and γ, in order to render the whole approach mathemati-
cally well-posed. ∂tg denotes the componentwise tangential
derivative of g along the boundary ∂Ω.

The following basic observations can be made:

– The approach (27), (28) is more specific than (25) (com-
plemented with the same data term), due to the con-
straint system (28). This is an advantage if the physical
constraints hold true. In fact, if w is actually governed
by the Stokes equation, the variables p,f become phys-
ically significant: Pressure and forces can be directly es-
timated from the image data I(x, t) (Ruhnau & Schnörr,
2007);

– Using the data term (6) the approach (27) was originally
devised for two-dimensional flows but may also hold in
a physical sense for three-dimensional flow with volu-
mic visualization. In these cases, under the assumptions
described in §2.1.2, the optical flow w can satisfy the
Stokes equation (28);

– In the case of turbulent flow w where the Stokes equa-
tion is inadequate but the constraint (28b) still holds true,
the approach (27), (28) still makes sense. This is be-
cause the control variables f , g are free. While they are
no longer physically significant, they still control the
flow w so as to fit the turbulent measurements observed
through the image data, by minimizing (27). In this con-
nection, we point out that f ∝ ∆w in (28a) is propor-
tional to second-order derivatives of w. As a result, in-
clusion of ‖f‖2 into (27) leads to higher-order flow reg-
ularization as in (25), but in a physically more plausible
way;

– Finally, observe that the equations (28) have the com-
mon form used in numerical simulations, and are kept
separate from the functional (27) involving the data. This
helps to rely on established numerical schemes devel-
oped in both communities.

In Ruhnau & Schnörr (2007), the authors develop a gradi-
ent descent scheme for minimizing (27) subject to the con-
straints (28). To compute the gradient, the dependency of
the variables w, p on the controls f , g has to be taken into
account. This can be done by additionally solving an auxil-
iary system of the same form as (28). A second major issue
is to employ proper discretizations for w and p. We refer to
Ruhnau & Schnörr (2007), Gunzburger (2002) and Brezzi &
Fortin (1991) for details.

4.3 Robust measures

Models of motion estimation described in §2.1 rely on as-
sumptions that do not strictly hold true. Non-Gaussian noise,
changes of illumination, and many other local situations that
do not fit well the underlying model provide examples. To
handle such deviations in the different energy terms of the
functional, it is common to replace the L2 norm by a so
called robust norm∫
Ω

ρ(g(w))dx. (29)

Such cost functions, originally introduced in the context of
robust statistics (Huber, 1981), penalize large residual val-
ues less than quadratic functions do (Fig. 2). Under suit-

Fig. 2 Graph of a robust cost function (ρ(x) = 1−exp( x
2

σ2 )) compared
to a quadratic function.

able conditions (mainly concavity of Φ ≡ ρ(
√
x)), it can

be shown that any multidimensional minimization problem
of the form

arg min
w

∫
ρ[g(w)]dx, (30)

can be turned into a corresponding dual minimization prob-
lem (Huber, 1981; Geman & Reynolds, 1992)

arg min
w,z

∫
[Mzg(w)2 + ψ(z)]dx. (31)

This new optimization problem involves additional auxil-
iary variables acting as weight functions z(x) with value
in the range [0, 1]. Function ψ is a continuously differen-
tiable function, depending on ρ, and M ≡ limv→0+ Φ

′(v).
Optimization is carried out alternating minimizations with
respect to w and z. If the function g is affine, minimiza-
tion with respect to w becomes a standard weighted least
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squares problem. For w being fixed, the best weights have
the following closed form (Geman & Reynolds, 1992):

ẑ(x) =
ρ′[g(w)]
2Mg(w)

=
1
M
Φ′[g(w)2]. (32)

Experimentally, the use of these functions either for the data
model or for the regularization term has led to better perfor-
mance in a range of computer vision application(Black &
Rangarajan, 1996; Mémin & Pérez., 2002). For fluid flows,
such functions have been mainly used for the data term (Cor-
petti et al., 2006; Héas et al., 2007a). They allow to in-
troduce a localized discrepancy measure between the data
model and the actual measurements. At points where such a
deviation occurs, only the remaining terms of the functional
(i.e. regularization) are involved. These functions have been
also used together with a classification map to enable the es-
timation of atmospheric layered data (Héas et al., 2007a). In
that case only data belonging to a predefined layer are taken
into account for motion estimation.

4.4 Multiscale estimation

4.4.1 Multiresolution scheme

Velocity measurements from particle image sequence present
inherent difficulties for variational methods. The variational
formulation is limited to small displacements (smaller than
the shortest wavelength present in the image), and therefore
is typically embedded into a multiresolution scheme to han-
dle large displacements.

These models are usually linearized around current esti-
mates and embedded into a multiresolution pyramidal image
structure obtained from successive low-pass filtering and sub-
sampling of the image sequence (Fig. 3). The estimation
process is then incrementally conducted from “coarse to fine”
along the multiresolution stucture (Bergen et al., 1992; Enkel-
mann, 1988; Mémin & Pérez, 1998; Papenberg et al., 2006).

J0,l

J1,l

J2,l

I0,l

I1,l

I2,l dw2,l

w1 + dw1,l

w0 + dw0,lw0 + dw0,l

Fig. 3 Coarse to fine resolution with multiresolution representation of
the images (Heitz et al., 2008).

4.4.2 Correlation-based variational scheme

As mentioned above, the estimation of long-range displace-
ments with optical flow techniques is usually embedded into
multiresolution data stuctures and successive linearizations
around the current estimate. These incremental schemes al-
low to tackle in a Gauss-Newton type manner the nonlinear
optimization associated with the nonlinear integrated bright-
ness constancy assumption, such as the DFD data model.
In this scheme, major components of the displacements are
computed at coarse resolution levels corresponding to low-
pass filtered and subsampled versions of the original images.
However, when the motion of thin or small structures dif-
fers significantly from the motion of larger regions in their
neighborhood, the estimator most likely fails to correctly
determine the motion of these high frequency photometric
structures. This is particularly true for meteorological im-
ages, where for instance mesoscale structures such as cirrus
filaments may exhibit large displacements that are completly
different from the atmospheric layer motion at a lower alti-
tude. The same problem appears with particle images. Due
to the successive down sampling of the image, small parti-
cles with large velocities are smoothed out, thus leading to
a loss of information and erroneous velocity measurements.
As a result, these problems lead to poor performance of tra-
ditional multiresolution dense motion estimator.

Correlation techniques have proven to be more robust
with respect to the estimation of long-range displacements.
Nevertheless, as they rely on parametric spatial motion mod-
els, these techniques tend to larger estimation errors in re-
gions with a high motion variability. Furthermore, they pro-
vide sparser motion fields that must be interpolated and post-
processed in order to compute dense vorticity maps or re-
lated differential motion quantities.

In order to benefit from the best properties of both vari-
ational dense estimators and correlation techniques, an im-
mediate idea is to combine these two methods. Sugii et al.
(2000) combined sequentially cross correlation technique
and local variational approach (Lucas and Kanade method
see §3.1) to achieve high sub-pixel accuracy with higher
spatial resolution. Seemingly, for three-dimensional motion
estimation, Alvarez et al. (2009) initialized the estimation
with cross correlation and improved the results with a global
variational approach (Horn and Schunck method see §3.2).

To cope with the multiresolution issue, Héas et al. (2007a)
for meteorogical satellite images and Heitz et al. (2008) for
fluid mechanics particle images, proposed a collaborative
correlation-variational approach combining the robustness
of correlation techniques with the high spatial density of
global variational methods. Both techniques can be formal-
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ized as the minimization of the following functional:∫
Ω

F(I,w + w̆)

+β
∫
Ω

p∑
i=1

higσ(xi − x)‖wc(xi)−w‖2dx

+α
∫
Ω

‖∇curl(w + w̆)‖2 + ‖∇div(w + w̆)‖2dx,

(33)

where w denotes the large scale components of the motion,
whereas w̆ represents finer scales. FunctionF stands for any
chosen photometric data model, and wc denotes a finite set
of p correlation vectors located at points xi. Optimization
is carried out in two separate steps. Setting initially to zero
the finer motion component, the large-scale components are
obtained on the basis of (i) a photometric data model, (ii) a
goodness-of-fit term including the correlation vectors that is
weighted both by a Gaussian function to spatially enlarge
the correlation vector’s influence and a correlation confi-
dence factor, and (iii) a second-order div-curl regularizer.
Then, in turn, by freezing the large scale components, the
finer scales are estimated on the basis of the div-curl regu-
larizer and the photometric data model. In this second step,
the correlations vectors are not anymore involved. Unlike
the multiresolution approach, this scheme relies on a single
representation of the full resolution data and avoids the use
of successive lowpass filtering of the image data.

This technique has been evaluated with synthetic images
of particles dispersed in a two-dimensional turbulent flow,
and with real world turbulent wake flow experiments (see
§5.2).

4.5 Utilizing temporal context

The motion estimation techniques described so far only rely
on kinematic constraints and provide independent instanta-
neous motion field measurements for each frame. All these
estimates along the time axis are independant from each
other, hence consistency of spatiotemporal motion field tra-
jectories cannot be enforced.To do this in a physically plau-
sible way, it is essential to consider motion estimation as a
dynamical process along the time-resolved image sequence
and to impose corresponding constraints.

Such a process can be set up in two distinct ways. The
first approach extends the traditional dense estimation method
by adding to the objective functional an additional goodness-
of-fit term comparing the current estimate by the predicted
motion based on previous estimates and a specified evolu-
tion law. The second approach implements the motion esti-
mation issue as a tracking problem. In this case a sequence
of motion fields is estimated using the complete set of image
data available. The estimation is formulated as a dynamical
filtering problem in order to recover complete velocity field

trajectories on the basis of a dynamical law and noisy in-
complete image measurements. This strategy can be imple-
mented through a recursive stochastic technique or in terms
of a global variational formulation.

In the following sections we explore these two alterna-
tives in some more details and give pros and cons of each of
them.

4.5.1 Local temporal context and iterative estimation

A variational approach realizing the first option discussed
above has been recently worked out in Ruhnau et al. (2007)
for three-dimensional flow with volumic visualization or for
the two-dimensional case, in Héas et al. (2007a) for altimet-
ric imagery of three-dimensional flows and in Heitz et al.
(2008) for laser-sheet three-dimensional flow visualization
of particles or scalar.

3D flow with volumic visualization or 2D flow Let [0, T ] de-
note the local time interval between two subsequent frames
of the image sequence I(x, t). The evolution of the flow w
to be estimated from I(x, t) is given by the vorticity trans-
port equation

D

Dt
v = ∂tv +w · ∇v = ν∆v , v(x, 0) = v0 , (34)

where v0 = curlw|t=0 denotes the vorticity of the flow es-
timated for the first image frame. Solving this equation nu-
merically in the time interval [0, T ], that is performing sim-
ulation, we compute vT = v(x, T ) and interpret this as an
prediction of the vorticity of the flow observed through the
second frame of the image sequence I(x, t) at time t = T .

At time t = T , we have again access to image sequence
data. Hence we minimize a motion estimation functional
that takes into account the observed data in terms of equa-
tion (6), and regularizes the flow by comparison with the
predicted vorticity vT .

E(w) =
∫
Ω

{
(∂tI +∇I ·w)2 + λ(v − vT )2 + κ‖∇v‖2

}
dx ,

(35a)

subject to divw = 0 , curlw = v . (35b)

Computing the minimizerw we obtain the initialization v =
curlw for (34), to be solved for the subsequent time interval.
For details of the non-trivial discretization of both (34) and
(35), we refer to Ruhnau et al. (2007).

The following observations can be made:

– Originally proposed for the two-dimensional case this
approach may also hold for volumic three-dimensional
flow visualization. In these configurations, under the as-
sumptions described in §2.1.2, the optical flow w esti-
mated with (35) satisfies the vorticity transport equation
(34);
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– Besides enforcing similarity of v = curlw and the pre-
diction vT in (35), the floww is only regularized through
first-order spatial derivatives of vorticity. As a conse-
quence, the variational approach (35) again generalizes
the higher-order regularization approach (25) in a phys-
ically meaningful way;

– Additionally, the iterative interplay between prediction
(34) and estimation (35) utilizes spatiotemporal context
in an on-line manner, because for each computation just
two frames of the sequence are used. The “memory” of
the overall approach depends on the value of the parame-
ter λ in (35). This on-line property is in sharp contrast to
the commonly employed way in image processing to ex-
ploit spatiotemporal context in a batch-processing mode
by treating the time-axis as a third spatial variable (We-
ickert & Schnörr, 2001);

– Finally, we point out the simulation (34) and estimation
(35) are separate processes from the viewpoint of nu-
merical analysis. This keeps the overall design modular
and avoids re-inventing the wheel.

3D flow with laser sheet visualization or altimetric imagery
A different but related technique has been proposed for the
recovery of atmospherical motion layer by Héas et al. (2007a)
and extended by Heitz et al. (2008) for 2D image sequences
of particles dispersed in 3D turbulent flows. In these works,
the predicted vorticity is replaced by a predicted velocity,
wp, obtained from the numerical integration of a filtered
simplified vorticity-divergence formulation of shallow water
models. For laser-sheet three-dimensional flow visualization
the simplified vorticity-divergence transport equations reads

{
vt +w ·∇v + vζ = (νs + ν)∆v
ζt +w ·∇ζ + ζ2 − 2|J | = (νs + ν)∆ζ,

(36)

where ζ = divw, |J | is the determinant of the Jacobian ma-
trix of variables (u, v), νs = (C∆x)2|ξ| is the the enstrophy-
based subgrid scale model proposed by Mansour et al. (1978),
and C the Lilly’s universal constant equal to 0.17.

Here, we minimize a motion estimation functional that
takes into account the observed data in terms of equation (2),
and regularizes the flow by comparison with the predicted
velocity wp,

E(w) =
∫
Ω

{
(∂tI +∇I ·w + Idivw)2 + λ‖w −wp‖2

+ κ(‖∇v‖2 + ‖∇ζ‖2)
}
dx .

(37)

The prediction term applies here only at a large scale, and
the quadratic goodness of fit term only involves a large scale
component of the unknown velocity field. The small scale
unknown components are computed in an incremental setup

and depends only on the data model and the smoothing term
used in the estimator. This term plays the role of a predictor
of a large scale motion component and thus avoids the use
of a multiresolution scheme in order to cope with long range
displacements. Interested readers will find the implemen-
tation details and experimental comparison results in Héas
et al. (2007a) and in Heitz et al. (2008). The improvements
brought by this spatio-temporal regularization are discussed
in §5.3 and shown in figures 10 and 11.

Note that as indicated in §2.1.1 the optical flow w esti-
mated with (37) is proportional to the path-averaged veloc-
ity of fluid across the laser sheet and hence does not satisfy
exactly the full Navier-Stokes equations. However, in the
present approach, since the Navier-Stokes equations have
been simplified with shallow flow assumption across the laser-
sheet, the optical flow w satisfies (36).

4.5.2 Non-local temporal context

In the following sections we biefly present the two dynamic
filtering alternatives that implement a global dynamical con-
sistency of the estimated velocity fields sequences. The first
one relies on a stochastic methodology whereas the second
one ensues from optimal control theory.

Recursive estimation through stochastic filtering In order to
estimate optimally the complete trajectory of an unknown
state variable from a sequence of past image frames, we for-
mulate the problem as a stochastic filtering problem. Resort-
ing to stochastic filters consists in modeling the dynamic
system to be tracked as an hidden Markov state process.
The goal is to estimate the value of the random Marko-
vian process – also called state process and denoted x0:n =
{xt}t∈[0,n] – from realizations of the observation process.
The set of measurements operated at discrete instants are
denoted z1:n = {z1, z1, ..., zn}. The system is described
by (a) the distribution of the state process at initial time
p(x0), (b) a probability distribution modeling the evolu-
tion (i.e. the dynamics) of the state process p(xk|xt<k) and
(c) a likelihood (representing the measurement equation)
p(zk|xk) that links the observation to the state. In this frame-
work, the posterior distribution, i.e. the law of the state pro-
cess knowing the set of observations, carries the whole in-
formation on the process to be estimated. More precisely,
as tracking is a causal problem, the distribution of interest
is the law of the state given the set of past and present ob-
servations p(xk|z1:k), known as filtering distribution. The
problem of recursively estimating this distribution may be
solved exactly through a Bayesian recursive solution, named
the optimal filter (Gordon et al., 1993). This solution re-
quires to compute integrals of huge dimension. In the case
of linear Gaussian models, the Kalman filter (Anderson &
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Moore, 1979) gives the optimal solution since the distribu-
tion of interest p(xk|z1:k) is Gaussian. In the nonlinear case,
an efficient approximation consists in resorting to sequential
Monte Carlo techniques (Arulampalam et al., 2002; Doucet
et al., 2000; Gordon et al., 1993). These methods consist
in approximating p(xk|z1:k) in terms of a finite weighted
sum of Dirac masses centered in elements of the state space,
named particles. At each discrete instant, the particles are
displaced according to a probability density function named
importance function and the corresponding weights are up-
dated using the system’s equations. A relevant expression
of this function for a given problem is essential to achieve
an efficient and robust particle filter. Interested readers may
found different possible choices in Arnaud & Mémin (2007);
Doucet et al. (2000).

Such a technique has been applied to the tracking of a
solenoidal field described as a combination of vortex par-
ticles (Cuzol & Mémin, 2005, 2008). The motion field in
that work is described through a set of random variables
xi, i = 1, · · · , p:

w(x) ≈
p∑
i=0

γiK
⊥
εsol

i
(xsoli − x), (38)

where K⊥εi is a smoothed Biot-Savart kernel obtained by
convolving the orthogonal gradient of the Green kernel as-
sociated to the Laplacian operator with a smoothing radial
function. The vector x = (xi, i = 1, · · · , p)T represents the
set of vortex particle locations and the coefficient, γi, their
strength. The dynamics of these random variables is defined
through a stochastic interpretation of the vorticity transport
equation Chorin (1973):

dxt = w(xt)dt+ σdBt, (39)

whereB stands for a 2p-dimensional Brownian motion with
independent components, and associated to the diffusion co-
efficent σ =

√
2ν. The evolution of the vortex set, x, beetween

two frame instants k and k + 1 and for a discretization step
∆t, is represented by the following Markov transition equa-
tion:

p(xkj |xkj−∆t) ∼ N (xkj−∆t+w(xkj−∆t)∆t, 2ν∆tI2p), (40)

where I2p denotes the 2p× 2p identity matrix.
A sample of the trajectories generated between two frames

are then weighted according to the likelihood p(zk|xk). In
this work, this density has been defined in terms of a recon-
struction error measurement, zk, computed from the pair of
images (Ik, Ik+1).

The results obtained with this technique for a two-dimen-
sional turbulent flow are discussed in §5.3 and plotted in fig-
ures 12 and 13.

Global estimation control approach In this section, we present
the second alternative for a dynamical filtering of noisy and
incomplete data. This framework ensues from control theo-
rie and has been popularized in geophysical sciences where
it is known as variational assimilation (Le-Dimet & Ta-
lagrand, 1986; Lions, 1971). Opposite to particle filtering,
variational assimilation techniques have the advantage to en-
able a natural handling of high-dimensional state spaces. Be-
fore presenting further the adaptation of such a framework
to motion estimation, let us describe the general notions in-
volved.

As previously, the problem we are dealing with consists
in recovering a system’s state X(x, t) obeying a dynami-
cal law, given some noisy and possibly incomplete measure-
ments of the state. The measurements, in this context also
called observations, are assumed to be available only at dis-
crete points in time. This is formalized, for any location, x,
at time t ∈ [t0, tf ], by the system

∂X

∂t
(x, t) + M(X(x, t), c(t)) = 0 (41)

X(x, t0) = X0(x) + εn(x), (42)

where M is a non-linear dynamical operator depending on a
control parameter c(t). We assume here that c(t) ∈ C and
X(t) ∈ V are square integrable functions. The term X0

is the initial vector at time t0, and εn is an (unknown) ad-
ditive control variable of the initial condition. Furthermore,
we assume that measurements of the unkown state, Y ∈ O,
are available. These observations are measured through the
non-linear operator, H : C → O. The objective consists
then to find an optimal control of low energy that leads to
the lowest discrepancy between the measurements and the
state variable. This leads to the minimization problem

J (c, εn) =
1
2

∫ tf

t0

‖Y −H(X(c(t), εn, t))‖2R−1dt

+
1
2
‖εn‖2B−1 +

1
2

∫ tf

t0

‖c(t)− c0‖2F−1dt,

(43)

where c0 is some expected value of the parameter. The norms
‖.‖R−1 , ‖.‖B−1 and ‖.‖F−1 are induced by the inner prod-
ucts < R−1·, · >O , < B−1·, · >V and < F−1·, · >C , R,
B and F are covariances matrices of the observation space
and state space. They are respectively related to the obser-
vations, the initial condition of the state variable and to the
expected value of the control variable.

Regarding the minimization of the objective function, a
direct numerical evaluation of the functional gradient com-
putationally infeasible, because this would require to com-
pute perturbations of the state variables along all the compo-
nents of the control variables (δc, δεn) – i.e. to integrate the
dynamical model for all pertubed components of the control
variable, which is obviously not possible in practice.
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A solution to this problem consists to rely on an adjoint
formulation (Le-Dimet & Talagrand, 1986; Lions, 1971).
Within this formalism, the gradient functional is obtained
by a forward integration of the dynamical system followed
by a backward integration of an adjoint dynamical model.
This adjoint model is defined by the adjoint of the discrete
scheme associated to the dynamical system.

This technique has been recently applied to the estima-
tion of fluid motion fields (Corpetti et al., 2008; Héas et al.,
2007b; Papadakis & Mémin, 2008b; Papadakis et al., 2007;
Papadakis & Mémin, 2008a), and to the tracking of closed
curves (Papadakis & Mémin, 2008b). These works rely ei-
ther on a shallow water dynamical model or on a vorticity-
velocity formulation. They associate motion measurements
given by external motion estimators (Papadakis & Mémin,
2008b) or incorporates directly luminance data (Papadakis
et al., 2007; Papadakis & Mémin, 2008a). The first case
provides a filtering technique that allows improving signif-
icantly the observed motion fields. The second technique
constitutes a complete autonomous motion estimator that
enforces dynamical coherence and a temporal continuous
trajectory of the solution. Results obtained with this tech-
nique for two-dimensional turbulent flow are shown in fig-
ures 12 and 13. These approaches, compared to traditional
motion estimator, enable to recover accurately a broad range
of motion scales.

This technique has been also used recently to recover the
parameters of a reduced dynamical system obtained from a
POD-Galerkin techniqes (D’Adamo et al., 2007). Compared
to traditional approaches this technique allows an improved
accuracy and stability of the estimated reduced system. For
a flow showing periodic behavior this method allows to de-
noise experimental velocity fields provided by standard PIV
techniques and to reconstruct a continuous trajectory of mo-
tion fields from discrete and unstable measurements.

5 Experimental results

In this section, we illustrate various aspects discussed in
previous sections by experimental results, obtained for both
computer-generated and real datasets. First, in Section 5.1,
we focus on the effect of using higher-order regularization
and robust norms. Next, in Section 5.2, we present first re-
sults of a variational approach that combines correlation mea-
surements and regularization, as outlined below in Section
4.4.2. Finally, in Section 5.3, we present results of the cur-
rently most advances estimation schemes utilizing temporal
context. For further experimental results and their discus-
sion, we refer to the original papers cited in the respective
sections 4.5 and 4.4.2.

Fig. 4 Results from a validation experiment, based on VSJ synthetic
images, comparing different combinations of data terms (OFC and
ICE) associated with regularization term (1st order or 2nd order), and
the influence of using a robust norm. The figure shows the relative
L1 norm error obtained for eight standard configurations: compared to
case 1, cases 2 and 3 yield large and small displacements respectively;
cases 4 and 5 have dense and sparse particle concentration respectively;
cases 6 and 7 contain constant and large particle size respectively;
case 8 exhibits high out of plane velocities. Six algorithms are com-
pared: A1, approach of Quénot et al. (1998); A2 approach of Ruhnau
et al. (2005); A3, robust multiresolution-multigrid Horn & Schunck
approach of Mémin & Pérez (1998); A4, approach of Corpetti et al.
(2006); A5, ICE + 1st order; A6, OFC + 2nd order. The best results
are obtained with the ICE data term together with 2nd order div-curl
regularization (Corpetti et al., 2006).

5.1 First- and second-order regularization, robust norms

Throughout this section, we refer the reader to Sections 2
and 4 for descriptions of the approaches evaluated below.

When the first efforts in correlation technique were pro-
posed for PIV, different approaches based on image analysis
were also developed to estimate fluid motion. Among those
attempts Tokumaru & Dimotakis (1995) proposed a semi-
local approach (Ritz method see section 3.1.2) –involving a
parametric cubic model and insuring a global spatial consis-
tency– appropriate for both scalar and particle images. The
integral form (7) of the equation of motion (6) is employed
in this method. Using dynamic programming Quénot et al.
(1998) devised a global approach assuming the conservation
of the luminance, with the dense displacement fields esti-
mated being small, rectilinear, uniform and continuous. The
proposed global approach uses the brightness constancy (6)
as a data term. Dahm et al. (1992) introduced the concept of
three-dimensional flow fields measurements based on scalar
imaging measurements. The proposed technique based on
the direct inversion of the scalar transport equation was later
refined in Su & Dahm (1996) with and integral minimiza-
tion formulation including the scalar transport equation, the
continuity equation and a first order regularization (global
approach see section 3.2).
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More recently, Ruhnau et al. (2005) evaluated the pro-
totypical variational approach of Horn & Schunck (1981)
(see §3.2) with particle image pairs commonly used in PIV.
To estimate long-range motion, they carefully designed a
coarse-to-fine implementation. Their experimental evalua-
tion showed that the prototypical approach performs well
in noisy real-word applications. Corpetti et al. (2002, 2006)
improved this approach by taking into account the features
of fluid flows. A data term based on the continuity equa-
tion (2), was used for estimating the apparent 2D motion
of 3D flows, and second order regularization (see §4.1) was
proposed to enable the estimation of vector fields with pro-
nounced divergent and rotational structures.

Figure 4 presents a comparison of the error for different
combinations of data terms (OFC or ICE) and regularization
terms (1st order or 2nd order). Corpetti et al. (2006) showed
that using the ICE model (2) as a more physically-grounded
alternative to OFC leads to better results for the case of large
out of plane motions. As for the regularization, only the 2nd

order div-curl scheme is able to preserve the level of vor-
ticity and divergence. Figure 4 also indicates that a robust
norm applied to the data term significantly improves the re-
sults (compare approach A2 with approach A3).

Influence of Discretization Using the mimetic finite differ-
ence method, Yuan et al. (2007) proposed a novel variational
scheme based on a second order div-curl regularizer that in-
cludes the estimation of incompressible flows as a special
case. This new scheme has been assessed both for particle
and for scalar synthetic image sequences, generated from
direct numerical simulations (DNS) of two-dimensional tur-
bulence. Compared to the correlation technique of Lavision
(Davis 7.2) and the second-order method of Corpetti et al.
(2006), the higher-order approach of Yuan et al. (2007) yields
an enlarged dynamic range with accurate measurements at
small and large scales. This behaviour is displayed in fig-
ure 5 showing the better estimated spectrum and the lowest
spectrum of the error obtained with the technique of Yuan
et al. (2007). This higher accuracy is also observed in fig-
ure 6 with vorticity maps and vector fields. With scalar im-
age sequences the differences between the approach of Yuan
et al. (2007) and the others is more pronounced, especially
at large scales, where as expected the correlation technique
completely failed (see Fig. 7).

Vector field density It is interesting to mentioned that global
variational approaches (see §3.2) return dense vector fields,
i.e. one vector per pixel. From the metrological point of
view this behaviour is expected with scalar images since
each pixel exhibits an information of motion, however it
may be surprinsing for particle-based optical measurements
in which the particle-image density is roughly of the order
of 0.01 particles per pixel. The fact that global variational
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Fig. 5 Spectrum of the vertical velocity component in a two-
dimensional turbulent flow. Top, synthetic particle image sequence;
Bottom, synthetic scalar image sequence. Black line, DNS reference;
Red symbols, correlation approach; Blue symbols, Corpetti et al.
(2006) approach; Green symbols, Yuan et al. (2007) approach. Spectra
of the error for the same data are shown in inset.

techniques provide information of motion beyond the spa-
tial scale associated to the particle density is obtained thanks
to the regularization operator involved to tackle the aperture
problem. Note that the regularization is conducted from the
beginning of the minimization process –on the contrary to
the post-processing used with correlation approaches– and
complement the information of the data term with spatial or
spatiotemporal coherence. In this context, the use of physi-
cal models as regularization operators can improve the esti-
mations of the velocity fields down to the smallest scales. In
addition when the regularizer is physically sound the adjust-
ment of the weighting parameter is inferred with the min-
imization process (Héas et al., 2009a). The monotonically
vanishing error spectra (difference between the estimation
and the DNS solution) shown in inset of the figure 5 indi-
cate that the dense information is consistent with the refer-
ence down to the smallest scales. This behaviour can also
be observed in Stanislas et al. (2008) with the results of the
third PIV Challenge for the global approach of Corpetti et al.
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Fig. 6 Vorticity maps and vector fields in a two-dimensional turbulent
flow obtained with a synthetic particle image sequence. From top to
bottom, correlation approach, Corpetti et al. (2006) approach and Yuan
et al. (2007) approach.

(2006). In the following (see §5.3) it is shown that the use
of spatiotemporal regularizer like the Navier-Stokes equa-
tions can significantly improve the accuracy on the whole
dynamic range.

5.2 Correlation-based variational scheme

The combined correlation-variational scheme proposed by
(Heitz et al., 2008) for laser-sheet three-dimensional flow
visualization, described in §4.4.2, was evaluated with syn-
thetic images of particles dispersed in a two-dimensional

Fig. 7 Vorticity maps and vector fields in a two-dimensional turbulent
flow obtained with a synthetic scalar image sequence. From top to bot-
tom, correlation approach, Corpetti et al. (2006) approach and Yuan
et al. (2007) approach.

turbulent flow, and with real world turbulent wake flow ex-
periments. Figure 8 shows for particles images, the com-
parison of results obtained with a multiresolution technique
and the collaborative approach. One advantage of the lat-
ter method is that, due to the global scheme including regu-
larization, ’basic’ correlation estimations are sufficient. Fur-
thermore, compared to correlation technique, the combined
correlation variational scheme yields dense information as
observed in figure 9.
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Fig. 8 Instantaneous vector field with horizontal velocity color map
measured with real images of particles in near the wake of a cir-
cular cylinder at Re = 3900. Top, optical-flow approach (Cor-
petti et al., 2006); Bottom, combined correlation-variational approach
(Heitz et al., 2008).

Fig. 9 Instantaneous vector field with vorticity colormap measured
with real images of particles in the near wake of a circular cylinder at
Re = 3900. Top, correlation approach; Bottom, combined correlation-
variational approach (Heitz et al., 2008).

5.3 Spatiotemporal regularization

Following the route to incorporate explicit physical prior
knowledge into variational motion estimation schemes, that
was suggested by Ruhnau et al. (2007) in connection with
PIV and by Héas et al. (2007a) for satellite imagery, Heitz
et al. (2008) adapted and evaluated the latter technique to
estimate dynamically consistent large eddy apparent motion
of laser sheet 3D turbulent flow visualization (see §4.5.1 for
details of the methods).

Applied on synthetic particle images generated with DNS
of two-dimensional turbulent flows this method enlarges the
dynamic range resolved as a function of the time (see in
Fig.10 the estimated spectrum). The use of spatiotemporal
regularization enhances the accuracy, particularly for noisy
image sequences. As observed in figure 11 through the map
of the deviation from the exact velocity modulus, the tech-
nique improves the estimation of the main vortices as a func-
tion of the time. As a consequence, this approach is espe-
cially well-suited for analyzing time resolved particle im-
age sequences which exhibit noise due to CMOS sensors.
Regarding the implementation of this iterative scheme, we
point out that the computational costs of the simulation of
the dynamic equation (34) are negligible in comparison to
the variational estimation (35).
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Fig. 10 Energy spectra showing the enlargement of the dynamic range
as a function of the time when using spatiotemporal regularization
(Heitz et al., 2008). Spectra of the error for the same data are shown in
inset. Measurements obtained with synthetic particle images generated
from DNS of two-dimensional turbulent flows.

Spatiotemporal consistency of the measurements can be
improved with non local context approaches taking into ac-
count the whole image sequence with recursive estimations
(see §4.5.2).

Cuzol et al. (2007) proposed a non linear stochastic fil-
ter for the tracking of fluid motion. The tracking is based
on a low dimensional representation of the velocity field
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Fig. 11 Results of velocity estimation with spatiotemporal regular-
ization. The analyzed synthetic image sequence is based on a two-
dimensional turbulent flow with additive noise simulating the reduc-
tion of the power of a virtual laser. From top to bottom: Map of the
deviation from the exact velocity modulus for time 1, 2 and 3 (Heitz
et al., 2008).

obtained through a discretization of the vorticity and diver-
gence maps. Beyond the tracking, this method allows to re-
cover a set of consistent velocity fields for a whole sequence
and provides an accurate low order representation of the dy-
namic of fluid flows. The order of the simplified motion es-
timation is related to the number of vortex particles involved
in the estimation.

Papadakis & Mémin (2008b) described a global spatio-
temporal variational formulation in order to optimally fuse
the information obtained from the data images and the dy-
namic model. The technique relies on an optimal control ap-
proach and consists in a forward integration of the Navier-
Stokes equations, followed by a backward integration of an
adjoint evolution model. Results obtained with an image se-
quence of particles dispersed by a turbulent 2D flows are
quite impressive. As observed in figures 12 and 13, Papadakis
& Mémin (2008b) approach outperform other techniques
since the whole dynamic range is recovered with this ap-
proach. The best results are provided when the image lumi-
nance is directly assimilated in the dynamic model, instead

of assimilating vector fields previously estimated from im-
age sequences.
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Fig. 12 Spectrum of the vertical velocity component measured in par-
ticle image sequences generated with DNS of two-dimensional turbu-
lent flow. Black, DNS; Red, approach of Cuzol et al. (2007) ; Blue,
approach of Corpetti et al. (2006); Green, approach of Papadakis &
Mémin (2008b). Spectra of the error for the same data are shown in
inset.

Note that the evaluation of the above spatiotemporal reg-
ularization techniques have been conducted with image se-
quences for which the time resolution was ten times the time
step of the DNS used to generate the sequence.

6 Conclusion and Perspectives

After a brief conclusion, we indicate some promising direc-
tions for further research.

6.1 Conclusion

This paper is an attempt to provide an abridged report on
variational motion estimation techniques, focusing on tech-
niques that we deem especially relevant for experimental
fluid mechanics. After sketching representatives of estab-
lished basic schemes, we presented modifications that have
been developed for the specific case of fluid motion estima-
tion. This latter work indicates the emerging collaboration
between two communities, image processing and computer
vision, and experimental fluid mechanics.

Yet, in our opinion, this is just the tip of the iceberg re-
garding the potential for further research. In the following
subsections, we indicate few promising research directions.
We hope that this paper will stimulate further cooperation
along these lines.
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Fig. 13 Vorticity maps and vector fields in a turbulent flow. From top
to bottom, Corpetti et al. (2006) approach, Cuzol et al. (2007) approach
and Papadakis & Mémin (2008b) approach.

6.2 3D-PIV

Recently, Tomographic Particle Image Velocimetry (TomoPIV)
(Elsinga et al., 2006) has attracted a lot of interest. Observ-
ing projections of particles in a volume of interest with 4-6
cameras, the three-dimensional volume function I(x, t) , x ∈
Ω ⊂ R3, can be reconstructed with high spatial resolu-
tion. A closer look to the currently employed standard alge-
braic reconstruction techniques shows that there is a poten-
tial for improving the trade-off between function reconstruc-
tion from a limited amount of noisy data, and increasing the
particle density to facilitate subsequent motion estimation
(Petra et al., 2009; Petra & Schnörr, 2009).

This move to three dimensions plus eventually time will
likely enable physics-based models and methods to provide
accurate inspection tools for experimental fluid mechanics.

6.3 Turbulence models

Taking seriously the ultimate goal of synergy between ex-
periments and simulation, the question of how to utilize tur-
bulence models in connection with motion estimation nat-
urally appears. To the best of our knowledge, models com-
bining these two worlds in order to improve estimation from
real data, have not been devised, so far.

A promising direction of research concerns ways to in-
corporate invariants and laws governing the turbulence statis-
tics into a variational estimation scheme. A reasonable ap-
proach is to include a regularizing term into the energy func-
tional that enforces quantities derived from the velocity gra-
dient tensor to be smooth. The objective is to preserve the
salient enstrophy and dissipation structures that are relevant
for characterizing the topology of turbulent regions, like vor-
tex tubes, vortex sheets and pure straining (Perry & Chong,
1987; Chong et al., 1998). Likewise Kolmogorov’s law, de-
scribing the statistical structure of turbulence in the inertial
range, Héas et al. (2009a) proposed a multiscale estima-
tor based on scaling power laws accounting for the turbu-
lent kinetic energy decay. A spatial regularization properly
constraints the solution to behave through scales as a self
similar process via second-order structure function. This en-
large further the dynamic range of the estimates. In con-
trast to standard approaches, this multiscale regularization
presents the valuable advantage of solving the aperture prob-
lem while fixing regularizers weights at the different scales.
Figure 14 shows estimations obtained for real particle im-
ages in grid turbulence. In this case, the method is com-
bined with a simple hot-wire measurement providing the
real parameters of the power law (Héas et al., 2009b). Re-
sults exhibit the ability of this technique to estimate large
dynamic ranges and better accuracy than other PIV meth-
ods. Note that instead of measuring the parameters with hot
wire anemometry a promising extension of this approach
consists in selecting by Bayesian evidence the most likely
scaling law given the image data (Héas et al., 2009c).
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