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Abstract 

Meaningful quantification of data and structural uncertainties in conceptual rainfall-runoff 

modeling is a major scientific and engineering challenge. This paper focuses on the total predictive 

uncertainty and its decomposition into input and structural components under different inference 

scenarios. Several Bayesian inference schemes are investigated, differing in the treatment of 

rainfall and structural uncertainties, and in the precision of the priors describing rainfall 

uncertainty. Compared with traditional lumped additive-error approaches, the quantification of the 

total predictive uncertainty in the runoff is improved when rainfall and/or structural errors are 

characterized explicitly. However, the decomposition of the total uncertainty into individual 

sources is more challenging. In particular, poor identifiability may arise when the inference 

scheme represents rainfall and structural errors using separate probabilistic models. The inference 

becomes ill-posed unless sufficiently precise prior knowledge of data uncertainty is supplied; this 

ill-posedness can often be detected from the behavior of the Monte Carlo sampling algorithm. 

Moreover, the priors on the data quality must also be sufficiently accurate if the inference is to be 

reliable and support meaningful uncertainty decomposition. Our findings highlight the inherent 

limitations of inferring inaccurate hydrologic models using rainfall-runoff data with large unknown 

errors. Bayesian total error analysis (BATEA) can overcome these problems using independent 

prior information. The need for deriving independent descriptions of the uncertainties in the input 

and output data is clearly demonstrated. 

 

Keywords: hydrologic calibration, identifiability, well-posedness, predictive uncertainty, 

uncertainty decomposition. 

 Page 2 of 65 



Renard, Kavetski, Kuczera, Thyer and Franks  Identifiability in hydrological modeling 

1. Introduction 

1.1. Confronting uncertainty in hydrologic modeling 

In any modeling endeavor, reducing the total predictive uncertainty requires a robust quantitative 

understanding of each of its sources. In hydrology, robust characterization of the uncertainties 

affecting rainfall-runoff models remains a major scientific and operational challenge. Generally 

speaking, hydrologic modeling is affected by four main sources of uncertainty: (i) input 

uncertainty, e.g., sampling and measurement errors in catchment rainfall estimates; (ii) output 

uncertainty, e.g., rating curve errors affecting runoff estimates; (iii) structural uncertainty 

(sometimes referred to as “model uncertainty”), arising from lumped and simplified representation 

of hydrological processes in hydrologic models; and (iv) parametric uncertainty, reflecting the 

inability to specify exact values of model parameters due to finite length and uncertainties in the 

calibration data, imperfect process understanding, model approximations, etc. 

Numerous approaches for quantifying the uncertainty in hydrologic predictions have been 

proposed, including the Generalized Likelihood Uncertainty Estimation (GLUE) [Beven and 

Binley, 1992], frequentist approaches [Montanari and Brath, 2004], standard Bayesian approaches 

[Feyen et al., 2007; Krzysztofowicz, 2002; Kuczera and Parent, 1998], Bayesian Recursive 

Estimation [Thiemann et al., 2001], Bayesian hierarchical models [Huard and Mailhot, 2008; 

Kavetski et al., 2006a; Kuczera et al., 2006], instrumental-variable methods [Young, 1998], 

Bayesian model averaging [Duan et al., 2007; Marshall et al., 2007] and others. 

The Bayesian Total Error Analysis (BATEA) framework [Kavetski et al., 2002; Kavetski et al., 

2006a; Kuczera et al., 2006] was developed to explicitly represent each source of uncertainty 

affecting calibration and prediction of hydrological models. Several studies have shown that, 
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especially in the presence of large rainfall errors, BATEA offers significant improvements over 

traditional approaches that lump all uncertainties into a single error term and yields: (i) reduced 

bias and more consistent parameter estimates; and (ii) more reliable estimates of predictive 

uncertainty [Kavetski et al., 2006a; Renard et al., 2009a; Thyer et al., 2009]. 

Unlike data uncertainty, which can be estimated by analyzing sampling and measurement designs 

[Refsgaard et al., 2006], structural error is much harder to characterize. Several approaches have 

been investigated in the context of conceptual rainfall-runoff (CRR) models, ranging from 

traditional additive Gaussian noise representation [e.g., Huard and Mailhot, 2008] to Kalman 

filters [e.g., Moradkhani et al., 2005] and stochastic perturbations of model states [Bras and 

Rodriguez-Iturbe, 1984] and parameters [e.g., Kuczera et al., 2006; Young, 1998]. None of the 

current approaches appears entirely satisfactory; the optimal methodology and implementation for 

handling structural errors remains to be established. 

Recent work has aimed at quantifying the individual contributions of input, output and structural 

uncertainties to the total predictive uncertainty [Huard and Mailhot, 2008; Kuczera et al., 2006; 

Moradkhani et al., 2005]. This can be used for: (i) diagnosing the main causes of uncertainty, 

suggesting avenues for improving the predictive precision of CRR models; (ii) identifying CRR 

model deficiencies, indicating opportunities for model improvement; and (iii) comparing CRR 

models without obscuring the comparison by input/output data errors. However, significant 

challenges remain in the development of statistical techniques for achieving this decomposition, 

and in the adequate specification of error models and prior knowledge necessary for a meaningful 

and well-posed inference. 

There is a broad recognition of the limitations of rainfall-runoff data in supporting a well-posed 

inference of complicated CRR models [e.g., Beven, 2006]. The inability to infer some or all 
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quantities of interest from the available data is often referred to as “non-identifiability” [e.g., 

Wagener et al., 2001]; unless prior knowledge is available, non-identifiability leads to an “ill-

posed” inference (more formal definitions are given in sections 3.1 and 3.3). 

While this work focuses on lumped conceptual hydrological models, similar concerns hold for 

more complex physically-based distributed models. Indeed, since these models have increased data 

requirements to support the identification and resolution of additional catchment processes, the 

issue of data reliability and informativeness is likely even more critical. 

This study presents a quantitative analysis of the identifiability of input and structural errors using 

a representative set of probabilistic calibration methods, several data-knowledge scenarios and two 

distinct treatments of structural error. It makes a step towards a deeper understanding of the 

different sources of uncertainty and their effect on model calibration, and opens avenues for 

improving the predictive capability of environmental models. The implications of our findings on 

the estimation of physically-based spatially-distributed models are also briefly discussed. 

1.2. Objectives 

This study investigates the ability of statistical estimation, given uncertain rainfall-runoff data and 

an approximate hydrological model, to (i) infer reliable and precise predictive distributions of the 

runoff; and (ii) decompose the total predictive uncertainty, in particular, identify its input and 

structural components (and, moreover, identify individual input errors). Objective (i) is necessary 

to achieve objective (ii). We compare the ability of several distinct calibration schemes to achieve 

objectives (i) and (ii), and evaluate the impact of independent (prior) knowledge of the 

uncertainties in the calibration data. 
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It is stressed that this paper explores the properties of the predictive distributions of runoff and 

rainfall and does not attempt to investigate biases and identifiability issues in CRR models and 

their parameters. In particular, predictive distributions of runoff correspond to integrating over 

CRR parameter distributions and are the ultimate long-term objective of the majority of practical 

applications, especially given the growing emphasis on probabilistic risk analysis. Consequently, 

we limit the scope of this paper to predictive distributions and defer CRR parameter analysis to a 

separate study. 

1.3. Outline of the presentation 

The paper in organized as follows. Section 2 discusses data and structural uncertainties in further 

detail, while Section 3 defines and illustrates the key concepts of identifiability and well-

posedness. Section 4 describes the data and CRR models, Section 5 details the Bayesian inference 

framework used for the analysis and Section 6 outlines the methodology. Three experiments are 

carried out next: Experiment A uses synthetic data and focuses solely on data errors (Section 7), 

Experiment B considers the effects of structural errors using synthetic data (Section 8), while 

Experiment C uses real-data to assess the relevance of the synthetic analysis (Section 9). The 

results are discussed in Section 10 and the conclusions are summarized in Section 11. 

2. Data and structural uncertainties in hydrology 

This section surveys distinctions between data and structural uncertainties and broadly classifies 

methods for treating structural errors. 
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2.1. The nature of data and structural uncertainties 

There is a fundamental difference between the uncertainty in the data and the structural uncertainty 

in the CRR model itself: 

(i) Data uncertainty stems from sampling, measurement and interpretation errors in the observed 

input/output data. Since these errors arise independently from the CRR model, their properties 

(e.g., means and variances of rainfall and runoff errors) can, at least in principle, be estimated prior 

to the calibration by analysis of the data-acquisition instruments and procedures. However, current 

practice seldom reports statistical measures of accuracy and precision of hydrological data (but see 

Di Baldassarre and Montanari [2009] and Dottori et al. [2009] for recent exceptions). This paper 

investigates the impact of this deficiency on the predictive capabilities of hydrological models and 

the decomposition of input and structural errors. 

(ii) Structural uncertainty is an inherent feature of the CRR model: it is a consequence of the 

simplifying assumptions made in approximating the actual environmental system with a 

mathematical hypothesis. In general, the structural error of a CRR model depends on the model 

formulation (e.g. number and connectivity of stores, choice of constitutive functions, etc), on the 

specific catchment, and on the spatial and temporal scale of the analysis. Moreover it may vary 

from storm to storm, or on some other time scale. Since this uncertainty is poorly understood, 

specifying a meaningful prior for structural uncertainty, indeed, even formulating it 

mathematically, is problematic. 

In practice, uncertainties in the calibration data and its finite length necessarily translate into 

uncertainties in the estimated CRR parameters and other inferred quantities (in a Bayesian context, 

“posterior parameter uncertainty”). This would occur even for an exact model, but can be 
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particularly pronounced when the model is approximate. In Bayesian (and frequentist) inferences, 

this “derived” parametric uncertainty declines as more data is included in the calibration. However, 

if the likelihood and/or priors are mis-specified (which, as discussed in this paper, can be detected 

using posterior diagnostics), the posterior will be in error (also see Mantovan and Todini [2006] 

and Beven et al. [2008]). Despite its asymptotic behavior, parametric uncertainty should not be 

ignored because it may contribute significantly to the total predictive uncertainty. 

2.2. Characterizing structural uncertainty 

This section outlines two broad classes of probabilistic approaches used in this paper for 

characterizing structural error. We also briefly survey alternative approaches. 

Traditional approaches treat the CRR model as deterministic and represent structural error using an 

exogenous term, usually additive. Several options are possible: 

A1. Lump output and structural errors into a single “residual” error term, defined as the 

difference between simulated and observed outputs, possibly after a transformation. This 

approach can be implemented both within schemes that ignore input errors (e.g., the standard 

least squares calibration), and within input-error sensitive methodologies [e.g., Kavetski et al., 

2006a]. 

A2. Represent output and structural errors using two separate terms, e.g., such that the 

difference between simulated and true outputs is structural error, while the difference between 

true and observed outputs is output error [e.g., Huard and Mailhot, 2008]. Though this allows 

using more specialized error models and priors, e.g., estimating streamflow uncertainty from 

independent gauge data, specifying a meaningful prior for structural errors remains problematic 

(see section 2.1). 
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More recent approaches abandon the notion that CRR models are deterministic. This is motivated 

by the stochastic nature of errors arising from spatial and temporal averaging of distributed and 

heterogeneous model inputs and internal fluxes, which are unavoidable in lumped models. Several 

related approaches have been proposed: 

B1. Stochastic perturbations of the internal model states. This approach has been used in state-

space approaches, such as the Ensemble Kalman Filter (EnKf) [e.g., Moradkhani et al., 2005]. 

B2. Stochastic variation of one or more CRR parameters through time. This approach can be 

used with transfer function models estimated using instrumental variables [Young, 1998], or 

with general CRR models within BATEA [Kuczera et al., 2006]. 

B3. Formulate the CRR model itself as a joint probability density function [Bulygina and 

Gupta, 2009]. 

In approaches A1-A2, the CRR model is deterministic in the sense that, given fixed inputs, 

parameters and initial conditions, it generates the same output. Conversely, in approaches B1-B3, 

the CRR model is viewed as stochastic: it generates a random output even for fixed inputs, 

parameters and initial conditions. More specifically, output randomness arises due to random 

variations of internal states (B1) or stochastic parameters (B2), or, more generally, due to 

probabilistic formulation of the model structure (B3). 

As a result, in approaches A1-A2, as posterior CRR parameter uncertainty declines, the CRR 

model predictions quickly become deterministic and the total predictive uncertainty is dominated 

by the exogenous error term. Conversely, in approaches B1-B3, the CRR predictions are inherently 

stochastic even if the posterior uncertainty in its parameters is negligible. 
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Also note that approaches B1-B3 can be used to (implicitly or explicitly) reflect all sources of 

uncertainty, rather than just inadequacies of the model structure. Indeed, even when intended 

solely for structural errors, they may also capture at least some effects of data errors. This 

interaction is a key focus of our study. 

The list above is not exhaustive. Assuming that structural uncertainty is epistemic rather than 

strictly stochastic, some authors have abandoned the formal probabilistic framework, e.g., GLUE 

[Beven and Binley, 1992] and possibilistic methods [Jacquin and Shamseldin, 2007]. Yet even 

when structural errors are epistemic, i.e., arise as a consequence of lack of knowledge of catchment 

dynamics, they may still behave stochastically and be characterized using standard probability 

theory, in particular, Bayesian methods. 

Alternatively, Bayesian Model Averaging (BMA) approaches [e.g., Duan et al., 2007; Marshall et 

al., 2007] attempt to quantify structural uncertainty by combining the predictions of multiple CRR 

models. However, BMA’s key assumption that the supplied set of models is complete is difficult to 

achieve and scrutinize in practice; it is unclear what the posterior predictive uncertainty actually 

represents when this assumption is not met. 

Consequently, the calibration methods investigated in this paper are based on the hypothesis that 

structural uncertainty, whatever its cause, can be described by an explicit probabilistic model that 

is then subjected to direct scrutiny. 

2.3. Prior specification of data and structural uncertainties 

A critical aspect of uncertainty quantification is the specification of the parameters of the data and 

structural error models (e.g., variances of rainfall and runoff errors, variance of structural errors). 
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Early applications of BATEA [Kavetski et al., 2006a] used fixed rainfall-error parameters, while 

Huard and Mailhot [2008] used fixed input/output/structural-error parameters. In Bayesian theory, 

this corresponds to the strongest possible prior (parameters known exactly) and would be 

appropriate if the statistical properties of the errors were well understood. Since this remains a 

challenge in hydrology, a more general formulation of BATEA treats the error-model parameters 

as unknown quantities that are inferred along with CRR parameters and other quantities of interest 

[Kuczera et al., 2006]. This corresponds to weaker (more vague) priors. 

A major practical question considered in this paper is the accuracy and precision of prior 

information needed for (i) meaningful estimation of the total predictive uncertainty and (ii) 

accurate attribution of the predictive uncertainty to individual sources. The influence of the priors 

on the reliability of the inference is of critical practical significance because it motivates the 

development of accurate and precise independent prior knowledge, e.g., based on densely-gauged 

experimental basins, etc. 

3. Identifiability and well-posedness 

This section defines and contrasts the concepts of “identifiability” and “well-posedness”. While 

these concepts are necessarily technical and must be defined and used very carefully, they are 

central to this study and for the broader topic of statistical model identification. A simple yet 

informative example is used for illustration. 

3.1. Identifiability 

The notion of identifiability in Bayesian inference can be formalized as follows. Let ( )p θ  and 

( | )p θ y  denote the prior and posterior distributions of a parameter vector θ given data y. At least 
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one component of θ is non-identifiable if there exists a one-to-one reparameterization from -

space into ψ -space such that 

θ

2 1 2 1( |ψ ψ , ) ( | )p p=y ψ ψ  (1) 

for some partitioning of ψ  into subsets  and . 1ψ 2ψ

Equation (1) states that parameters  are non-identifiable if the data y do not provide any 

information on the conditional posterior distribution of  given  [see also Gelfand and Sahu, 

1999]. 

2ψ

2ψ 1ψ

Definition (1) is more intuitive when cast in terms of the likelihood function. Applying Bayes’ 

theorem to the LHS of equation (1) yields 

2 1 2 1 1 2 1

1 2 1

( | , ) ( | ) / ( | ) ( | )

( | , ) ( | )

p p p p

p p

= ⇔

=

y ψ ψ ψ ψ y ψ ψ ψ

y ψ ψ y ψ
 

(2) 

Equation (2) states that  is non-identifiable when the likelihood does not depend on . 2ψ 2ψ

The simplest scenario for non-identifiability is when =θ ψ  and equation (2) holds for at least one 

component of . This occurs when the model contains redundant parameters, or, more commonly, 

if a parameter θ2 controls a specific model regime (e.g., extremely high flows) but the data does 

not force the model into this regime. 

θ

More generally, parameters  can be non-identifiable even if the likelihood function varies with 

respect to all inferred quantities in the original θ -parameterization. This occurs when parameters 

appear in groups that cannot be resolved into individual components (see example in section 3.2). 

θ

Non-identifiability has a strong connection to the properties of the parameter covariance matrix. 

For linear models, the covariance matrix of non-identifiable parameters is singular (i.e., has zero 
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eigenvalues), which can be detected using standard linear-algebraic methods. For nonlinear 

models, near-zero eigenvalues remain indicative (though not conclusively) of non-identifiability, 

but much more complex degeneracies can develop. Kavetski et al. [2006b] and Tonkin et al. [2007] 

further discuss the significance of the covariance/Hessian matrix and its eigenvalues for the 

estimation of nonlinear models. 

In practice, the onset of non-identifiability is gradual. For example, likelihoods where 

1 2 1( | , ) ( | )p p≈y ψ ψ y ψ  (3) 

do not strictly satisfy (2), but provide virtually no information about . 2ψ

3.2. A simple illustration of non-identifiability 

Consider the simple yet instructive example of non-identifiability [Eberly and Carlin, 2000]: 

( )2
1 2~ ,1 , 1,...,iy N iθ θ+ = n  (4) 

For illustrative purposes, θ1 and θ2 could be viewed as analogous to the parameters describing 

input and structural errors that we are trying to disaggregate in this study. 

Assuming the yi’s are independent, the likelihood of observing the data y is: 

( )2
1 2 1 2

1

( | , ) | ,1
n

i
i

p N yθ θ θ θ
=

= +∏y  
(5) 

Although this likelihood depends on both θ1 and θ2, there is no information in the data to 

discriminate between (θ1, θ2) pairs that add up to the same value. 

More formally, the one-to-one reparameterization from ( )1 2,θ θ  to ( ) ((1)
1 2 2, ),ψ ψ η= θ

2

, where 

1η θ θ= + , yields  
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( )2
2

1

( | , ) | ,1
n

i
i

p N yη θ η
=

=∏y  
(6) 

Since the re-parameterized likelihood (6) is independent from θ2, it satisfies the definition (2) and 

therefore θ2 is not identifiable. Similarly, reparameterization from ( )1 2,θ θ  to ( ) ((2)
1 2 1, , )ψ ψ η= θ  

shows that θ1 is not identifiable either. On the other hand, the group η is identifiable – even though 

its individual components θ1 and θ2 are not! 

3.3. Well-posedness 

It is stressed that, given definitions (1) and (2), non-identifiability is a property solely of the 

likelihood function, and is completely independent of the prior distribution. 

While the concept of identifiability is sufficient in maximum-likelihood estimation, Bayesian 

inference requires an analogous measure of informativeness of the posterior distribution. For this 

purpose, we adapt the distinction between “well-posed” and “ill-posed” problems, which is central 

in mathematics and physics [Hadamard, 1902]. 

We term a Bayesian inference “well-posed” if the associated posterior has the following 

properties: (a) it integrates to unity; (b) it is “informative”; and (c) it depends reasonably 

continuously on the inference data. These characteristics mimic Hadamard’s criteria, originally 

developed in the context of mathematical models of physical phenomena [see also Tarantola, 

2005, for a discussion in the context of inverse problems]. 

Criterion (b) can be formulated in direct analogy to condition (2): a posterior  is non-

informative with respect to at least one element of  if it can be re-parameterized such that 

( | )p θ y

θ

1 2 1( , | ) ( | )p p=ψ ψ y ψ y  (7) 
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Equation (7) effectively defines an ill-posed posterior as the product of a non-identifiable 

likelihood with a non-informative prior. 

An ill-posed posterior does not yield a useful inference of . In many cases, especially in the 

absence of prior bounds, a posterior that satisfies (7) does not integrate to a constant. 

2ψ

Finally, in practice it is common to see posteriors where 

1 2 1( , | ) ( | )p p≈ψ ψ y ψ y  (8) 

These are effectively ill-posed and yield very little useful inference. The sensitivity of the posterior 

to  before the inference is judged ill-posed is problem- and context- dependent. 2ψ

3.4. Use of prior information 

Since Bayesian analysis incorporates additional (prior) information into the analysis, it can obtain 

well-posed inferences from the posterior even if the likelihood function alone does not. Indeed, the 

ability to bring in such information is a key strength of the Bayesian paradigm. Yet this does not 

imply that a Bayesian modeler can disregard whether it is the prior or the likelihood that controls 

the well-posedness of a specific inference application. 

In hydrology, independent (prior) information about data uncertainty can be obtained, e.g., from 

geostatistical analysis of spatial rainfall data [Kuczera and Williams, 1992] and rating curve 

analysis [Thyer et al., 2009]. On the other hand, since meaningful characterization of structural 

errors remains a major challenge, it is unclear how to develop informative priors for structural 

errors (see section 2.1).  

This section illustrates how prior knowledge can be used to produce a well-posed posterior 

inference. We simulate n=100 data from model (4), with true parameter values  and 1 1θ = −
(

2 1θ =
(

. 
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θ1 and θ2 are then inferred using standard Bayesian analysis. Two distinct prior knowledge 

scenarios are investigated: 

1) The prior π1 represents some prior knowledge of θ1 and no prior knowledge of θ2: 

1 1 2 1 2
2

1 2

( , ) ( ) ( ), with

( ) ( 1,0.1 ) and ( ) 1

p p

p N p

π θ θ θ θ

θ θ

=

= − ∝
 

(9) 

2) The prior π2 corresponds to no prior knowledge of θ1 and θ2: 

2 1 2 1 2

1 2

( , ) ( ) ( ), with

( ) 1 and ( ) 1

p p

p p

π θ θ θ θ

θ θ

=

∝ ∝
 

(10) 

Inference using the (informative) prior π1 (Figure 1a) yields a posterior that is approximately 

Gaussian. The non-identifiability of θ1 and θ2 does not induce statistical problems; we refer to this 

situation as a “well-posed inference”. 

In contrast, the inference using the (non-informative) prior π2 is “ill-posed” (Figure 1b). In 

particular, the posterior is constant along infinite-size sub-spaces 1 2θ θ η+ = . This posterior does 

not yield any useful information on (θ1, θ2). However, the inference on 1 2η θ θ= +  is well-posed 

(Figure 1c). 

It is critical to note that, as discussed in section 3.2, (θ1, θ2) are non-identifiable from the data 

regardless of the prior distribution (identifiability as defined in equation (2) is strictly a property of 

the likelihood function). However, η  is identifiable (and its inference well-posed) for both priors. 

3.5. Practical diagnosis of well-posedness and identifiability 

The instructive example (4) shows that parameter identifiability cannot be assessed by simply 

checking that the likelihood is sensitive to a change in individual parameter values. Furthermore, 
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the parameter grouping fulfilling condition (2) was obvious in the preceding example, but might be 

very difficult to uncover for more complicated hydrological models. Consequently, in practice 

non-identifiability and ill-posedness are more likely to be detected through their empirical 

symptoms, rather than through formal mathematical analysis. 

In general, the posterior distributions of nonlinear hydrological models are too complicated to be 

described analytically and therefore are usually explored using Markov Chain Monte Carlo 

(MCMC) methods [e.g., Kuczera and Parent, 1998]. Since well-posedness is a key characteristic 

of the posterior, it controls the convergence of MCMC methods. Consequently, the behavior of the 

latter, in conjunction with an evaluation of prior knowledge, can be used to indirectly detect non-

identifiability. 

Consider MCMC sampling from the posteriors in Figure 1. Figure 2 shows the evolution of two 

parallel Metropolis chains for parameters θ1, θ2 and η = θ1 + θ2. The top three panels refer to the 

posterior obtained with prior π1: the two chains mix and converge quickly for all inferred 

quantities. However, the behavior in the case of the prior π2 (Figure 2, bottom panels) is totally 

different: the chains for θ1 and θ2 diverge (note the wide scale of the y-axis). Moreover, the 

posterior correlation between θ1 and θ2 is almost –1, suggesting complete interaction between these 

parameters. Yet convergence is almost immediate for parameter η: despite its individual 

components θ1 and θ2 being non-inferable, the inference of η is perfectly well-posed. 

The poor convergence and near-perfect cross-correlation of MCMC samples from the ill-posed 

posterior is emphasized, since a qualitatively similar behavior will be observed in the case studies 

using conceptual hydrological models (sections 8 and 9). 
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3.6. Non-identifiability, ill-posedness and predictive ability 

While non-identifiability is generally undesirable, its practical consequences depend on the 

objective of the analysis. If parameter estimation is the chief objective, non-identifiability is a 

serious impediment, especially with weak prior knowledge. Yet in some cases, non-identifiability 

does not prevent reliable predictions. For example, prediction of y using the model (4) is 

straightforward because the (sufficient) parameter η = θ1 + θ2 is perfectly identifiable. However, if 

θ1 and/or θ2 are used to predict quantities other than y, using the ill-posed inference can result in 

very poor predictions. In hydrology, this corresponds to using the model to predict environmental 

variables that the model has not been calibrated to. Similar problems develop when attempting to 

extrapolate ill-inferred models beyond the range of calibration data. 

4. Experimental setup 

4.1. Validity of synthetic experiments 

Recent literature debates the value of synthetic experiments [e.g. Beven, 2006; Montanari, 2007]. 

Our view is that synthetic tests are a necessary step to ensure the internal consistency of a 

statistical method and identify its strengths and weaknesses. However, synthetic tests using exact 

models say little about the robustness of the method in the common case when the CRR model is 

inaccurate. 

The strategy used in this study to partially overcome the latter limitation is to generate the “true” 

data using model M0 and calibrate another model, M1, to this data, possibly corrupting the latter 

with synthetic “observation” errors. The advantages of this approach are: (i) all quantities are 

known, so that exact and estimated values can be compared, and (ii) by using different models M0 
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and M1, the calibration scheme can be tested in cases where the notion of “true parameter values” 

is not applicable (since in general there is no M1-parameter set leading to the M0-generated data, 

even if the true input/output is used). 

Since it remains to be seen whether the discrepancies between two hydrological models are 

representative of the discrepancies between a hydrological model and actual physical processes, a 

real-data study is used to check whether qualitatively similar results are obtained as in the synthetic 

analysis. Agreement in this respect suggests, though does not conclusively prove, that the same 

conclusions hold. 

4.2. Calibration data and models 

This paper uses two synthetic and one real dataset. The synthetic set D0 is generated using the 

logSPM model (with parameters summarized in Table 1 and model equations detailed in Appendix 

A) and is corrupted with input/output errors. This dataset is used for basic analysis in the absence 

of structural error (Experiment A). The synthetic set D1 is generated using the GR4J model 

[Perrin et al., 2003] and is also corrupted with data errors. Calibrating logSPM to D1 (Experiment 

B) tests the ability of the calibration methodology to handle structural errors (see Section 4.1). 

Five years of daily rainfall and potential evapotranspiration (PET) from the Abercrombie 

catchment (2770 km2, New South Wales, Australia) are treated as the true inputs (r and pet) and 

used to generate synthetic runoffs. 

The observed rainfall ( ) is generated by corrupting the true rainfall as follows: %r

2

/ exp( )       (a)

~ ( 0.2,0.2 )   (b)
t t t

t

r r m

m N

=

−

%
 

(11) 
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The lognormal distribution used to generate rainfall errors in equation (11)-b leads to a systematic 

over-prediction of about 20% and a standard error of about 20%. 

Since the sensitivity of CRR models to PET errors is low [e.g., Oudin et al., 2006], we assume the 

PET data is error-free, i.e., . � =pet pet

The “true” outputs q are generated using logSPM (dataset D0) and GR4J (dataset D1) and are 

corrupted to produce observed outputs : q%

( )2

                 (a)

~ 0,(0.1 )     (b)
t t t

t t

q q e

e N q

= +%
 

(12) 

The real-data study (Experiment C) uses the observed rainfall, PET and runoff for the calibration 

and validation periods. 

In all three experiments, the calibration period includes days 529-1083 (1.5 years) and is preceded 

by a warm-up period of 100 days. Days 1084-1827 (2 years) are used for validation. 

5. Bayesian inference framework 

The calibration schemes investigated in this study differ in their treatment of each source of 

uncertainty. They can be obtained from the general Bayesian Total Error Analysis (BATEA) 

framework by supplying specific error models and priors. Following an outline of the overall 

framework in sections 5.1-5.8, the calibration schemes are summarized in section 5.9. 
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5.1. Basic notation 

Let  denote the true areal rainfall at day t and  be the corresponding 

observed rainfall. Similarly, let  and  denote the true and observed 

runoffs. 

1,...,( )t t Tr ==R 1,...,( )t t Tr ==R% %

1,...,( )t t Tq ==Q 1,...,( )t t Tq ==Q% %

In general, a CRR model M() predicts the runoff  given rainfall, PET, parameters and 

initial conditions: 

1,...,
ˆ ˆ( )t t Tq ==Q

 

1: 1: 0ˆ ( , , ,t t tq M= R PET θ S )  (13) 

 

where R1:t and PET1:t are the inputs for time indices 1 to t, θ are the deterministic CRR parameters 

and S0 is the vector of initial store values. 

The initial conditions S0 are not inferred because their influence is minimized using a warm-up. 

5.2. Input errors 

Traditional calibration methods, e.g., standard least squares (SLS), assume all observed inputs are 

error-free, in particular, =R R% . With this assumption, the only quantities requiring inference in 

equation (13) are the CRR parameters. However, ignoring input uncertainty can significantly 

degrade the inference [Kavetski et al., 2002]. One possibility, used in BATEA, is to treat input 

uncertainty using a hierarchical formalism, where each rainfall error is represented using a latent 

variable. The full posterior then yields a joint inference of the true inputs and the CRR parameters 

given the model and the observed input/output data [Kavetski et al., 2006a]. 
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In this study, rainfall errors at each wet day are represented using rainfall multipliers sampled from 

an uncorrelated lognormal distribution. More formally, we assume Gaussian log-multipliers 

 as follows: 1,...,( )
wetNτ τφ ==Φ

( )

2
( )

2

2 2

exp( )               (a)

~ ( , )               (b)

~ ( 0.2,1/ )               (c)

~ ( ,0.2)               (d)

t t t

t r r

r

r

r r

N

N

Inv

τ

τ

φ

φ μ σ

μ ν

σ χ ν

=

−

%

 

(14) 

where ( )tτ  is the index of the log-multiplier affecting time step t, N(a,b2) is the Gaussian 

distribution with mean a and variance b2 and invχ2(a,b) is the inverse-χ2 distribution with degrees 

of freedom a and scale b. 

Equation (14)-b is the hyper-distribution of latent variables (Gaussian distribution), with hyper-

parameters rμ (“hyper-mean”) and rσ  (“hyper-standard-deviation”, “hyper-SD” hereafter). 

Equation (14)-c represents the prior distribution of the hyper-mean. The prior mean is set to -0.2, 

which, given equation (14)-a, centers the prior on the actual mean of the rainfall errors. The 

precision parameter ν controls the sharpness of the prior distribution. Three values of ν are 

investigated:  

(1) ν=103: high prior precision: hyper-mean can be considered as virtually known; 

(2) ν=102: medium prior precision: appreciable prior information; 

(3) ν=10: low prior precision: little prior knowledge. 

Similarly, equation (14)-d represents the prior on the hyper-SD. The scale parameter is set to 0.2, 

so that the prior encompasses the true value of 2
rσ  and becomes progressively more concentrated 
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around it as the prior precision ν increases. The three values of ν described above are also used 

when specifying the precision of this prior. 

5.3. Structural errors via stochastic CRR parameters 

Structural uncertainty can be represented hierarchically using stochastic variations of some CRR 

parameters (section 2.2). Following Kuczera et al. [2006], the parameter kS of logSPM is allowed 

to vary across storm epochs delimited by rainfall events exceeding 2 mm/day. Since kS > 0, we 

assumed a lognormal hyper-distribution at each epoch ω:  

2

2

2 2

log( )               (a)

~ ( , )              (b)

~ ( 2,4 )              (c)

~ (1,0.5)              (d)

S S

S

S

S

k k

k

k

k

N

N

Inv

ω ω

ω

λ

λ μ σ

μ

σ χ

=

−
 

(15) 

Similarly to rainfall log-multipliers Φ , the values 1,...,( )
epochsNω ωλ = = Λ  are unknown and are 

therefore treated as latent variables. Since specifying meaningful informative priors for the hyper-

parameters of structural errors is problematic, the priors in equations (15)-c and (15)-d correspond 

to vague knowledge of the stochastic parameter. 

5.4. Output errors 

The uncertainty in the observed runoff is due mainly to rating curve errors. Previous studies 

suggested that these errors are heteroscedastic [Huard and Mailhot, 2008; Thyer et al., 2009], e.g., 

( )2

                   (a)

~ 0, ( )         (b)
t t t

t t

q q

N q

γ

γ ζ

= +%

%
 

(16) 
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Here we assume a relative standard error ζ =0.1, though in general it should be determined from 

rating curve analysis [Thyer et al., 2009] or added to the inference itself. However, since this study 

focuses on input and structural uncertainties, the output error model (16) is fully specified prior to 

calibration. Note a minor inconsistency between equation (16) above and equation (12): the 

synthetic data was corrupted using observation errors proportional to the true flows, whereas in 

BATEA we assumed observation errors proportional to the observed flows. Empirical checks 

suggested the effect of this inconsistency is minor. Importantly, Experiment A (see section 7) 

suggests that it does not introduce any bias into the analysis. 

Note that while operational interest is usually in the actual runoff, both calibration and validation 

are necessarily limited to comparison to observed values. This requires a meaningful consideration 

of the uncertainty in observed streamflows, e.g., as described in equation (16). In addition, the 

predictive uncertainty communicated to decision-makers must clearly state whether it includes 

output observation uncertainty. 

5.5. Remnant errors 

The output error model (16) links the observed runoff with the true runoff. Since the latter is 

unknown, an additional model linking the true runoff with the simulated runoff must be specified. 

Here, we use an additive Gaussian error model with unknown variance 2σ , 

2

2 2

ˆ                        (a)

~ (0, )                   (b)

~ (1,0.2)            (c)

t t t

t

q q

N

Inv

ε

ε σ

σ χ

= +

 

(17) 

In this paper, errors tε  are termed “remnant” because their interpretation depends on the error 

sources remaining due to omission of sources of uncertainty in the calibration scheme or due to 
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imperfect representation of these sources (see Section 5.9 for further discussion). This makes them 

subtly different from the notions of “model inadequacy” and “discrepancy” introduced elsewhere 

when discussing model structural errors [Goldstein and Rougier, 2009; Kennedy and O'Hagan, 

2001]. Note that the remnant error variance 2σ  is expected to decrease as improved 

input/output/structural error models are specified (see Section 10.2.3). 

If runoff measurement errors γt and remnant errors tε  are independent, the distribution of observed 

runoff conditioned on simulated runoff is 

( )
( )

2 2

2 2

ˆ ˆ     (a)

~ 0, ( )                        (b)

ˆ~ , ( )                       (c)

t t t t t t t t

t t

t t t

q q q q

N q

q N q q

γ ε γ η

η ζ σ

ζ σ

= + = + + = +

+

+

%

%

% %

 

(18) 

This equation is used to evaluate the likelihood of observed runoff. 

5.6. Improving error models: an open frontier  

The BATEA framework described in sections 5.1-5.5 integrates probabilistic error models 

describing individual sources of uncertainty. Its reliability evidently depends on the adequacy of 

these error models. While this study focuses on fundamental aspects of identifiability and therefore 

uses synthetic data, significant further work is needed to derive and evaluate realistic models of 

uncertainties in hydrological data. In particular, the following limitations need to be addressed: 

1. The multiplicative treatment of input errors in equation (14) does not handle the situation 

where a rainfall event or time step is missed by the raingauge network. 

2. The characterization of structural errors using stochastic variations of CRR parameter 

(equation (15)) is a hypothesis that needs empirical scrutiny. This assessment requires the 
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disaggregation of input and structural errors; the feasibility of this disaggregation is 

precisely the aim of this paper. 

3. Improved treatment of rating curve errors (equation (16)) is needed. Recent literature [e.g., 

Di Baldassarre and Montanari, 2009; Dottori et al., 2009; Moyeed and Clarke, 2005; 

Neppel et al., 2009; Reitan and Petersen-Overleir, 2009] suggests promising avenues, 

including treatment of stochastic uncertainty (e.g., in the height-discharge measurements 

used to establish the rating curve) and systematic errors (e.g. in the extrapolation necessary 

when measuring high and low flows). 

4. The treatment of remnant errors (equation (17)) is arguably the most challenging tusk, 

because their interpretation depends on the treatment of other error sources (input, output, 

structural). Moreover, their dependence on the catchment dynamics and on the temporal 

and spatial resolution of the analysis is poorly understood. The remnant error model (17) 

used in this paper is quite simple, in particular, it does not account for autocorrelation. An 

interesting approach that represents remnant errors as (discrete) realizations from a 

continuous-time stochastic process [e.g., Reichert and Mieleitner, 2009; Yang et al., 2007] 

will be evaluated in future work. 

As shown in this paper, the adequacy of the entire likelihood function, as well as its individual 

components representing remnant errors, input errors, etc., can and should be directly scrutinized 

using stringent diagnostics such as QQ plots, autocorrelation measures, etc. While disappointingly 

rare in most hydrological applications to-date, such posterior scrutiny is an essential part of 

Bayesian analysis and aids model improvement [see Thyer et al., 2009, for a recent illustration]. 
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5.7. Posterior distribution 

The posterior distribution of all inferred quantities is given by Bayes’ theorem as follows [see 

Kavetski et al., 2006a; Kuczera et al., 2006; Thyer et al., 2009 for details]: 

( , , , , , , , | , )

( | , , , ) ( | , ) ( | , ) ( , , , , , )
r r kS kS

r r kS kS r r kS kS

p

p p p p

μ σ μ σ σ

σ μ σ μ σ μ σ μ σ σ

∝% %

% %

θ Φ Λ Q R

Q θ Φ,Λ R Φ Λ θ
 

(19) 

The full posterior (19) comprises the following three parts: 

(i) The likelihood of observed runoffs, derived from (18) as 

( )

{ } { }( )( )

2 2

1

2 2
1: 1: ( ) 1: ( )

1

ˆ( | , , , ) | , (0.1 )

| , , , (0.1 )

T

t t t
t

T

t t t t t
t

p N q q q

N q M qτ ω

σ σ

σ

=

=

= +

= +

∏

∏

Q θ Φ,Λ R

R Φ θ,Λ

% % % %

%% %

 

(20) 

(ii) The prior distribution of deterministic parameters and hyper-parameters 

( , , , , , )r r kS kSp μ σ μ σ σθ . In this study, independent priors are used. 

(iii) The terms ( | , )r rp μ σΦ  and ( | , )kS kSp μ σΛ  represent the hierarchical parts of the model and 

are derived from (14) and (15), 

1

( | , ) ( | , )
wetN

r r r rp N τ
τ

μ σ φ μ
=

=∏Φ σ  
(21) 

 

1

( | , ) ( | , )
epochsN

kS kS kS kSp N ω
ω

μ σ λ μ
=

= ∏Λ σ  
(22) 
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5.8. Distinction between posterior distributions of latent variables and 

their hyper-distribution 

A subtle but important aspect of hierarchical models such as (19) is the distinction between the 

posterior distributions of individual latent variables and their prior/posterior hyper-distributions. 

This distinction is highly germane to the analyses carried out in this paper. 

In the case of rainfall errors, the prior hyper-distribution describes the prior knowledge of rainfall 

uncertainty. The calibration data supports the inference of individual rainfall multipliers, yielding 

the posterior distributions of individual latent variables (i.e. of individual rainfall errors). The 

Bayesian formulation jointly uses these distributions to refine the prior hyper-distribution, yielding 

the posterior hyper-distribution. The posterior hyper-distribution of rainfall multipliers represents a 

refined description of rainfall uncertainty given the observed data and the CRR model. 

The same mechanism applies to the latent variables describing structural errors. 

5.9. Summary of Calibration Schemes 

Table 2 summarizes the nine calibration schemes used in this paper. They correspond to special 

cases of the Bayesian framework described in sections 5.2-5.7 and differ in their representation of 

each source of uncertainty. 

SLS refers to standard least squares regression (equivalent to maximizing the Nash-Sutcliffe 

statistic). In the application of SLS in this paper, the residual standard deviation σ  in equation 

(17)-b is inferred rather than specified a priori. It lumps the effects of input, output and structural 

errors affecting the CRR model in the remnant (“residual”) error model. This can be obtained by 

setting μr = 0 and 0rσ =  (so that tr rt= % ) in equation (14) and ζ = 0 in (18)-c ( so that t tq q= % ). 
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Scheme O is similar to SLS, except that output uncertainty is represented directly (ζ = 0.1 in (18)-

c). This can be viewed as a special case of the weighted least squares (WLS) method, where σ  in 

equation (18) is inferred. In the formulation (18), the remnant error term ε  lumps the effects of 

input and structural errors, as well as imperfections of the output error model (16). 

The SLS and O schemes treat the CRR model as deterministic and use an additive error term to 

represent all other sources of error (see section 2.2). They are used in this paper as baseline 

methods representing common practice. 

Scheme OP, in addition to representing output uncertainty, describes structural errors using a 

single stochastic CRR parameter. Consequently, the remnant error term lumps the effect of input 

errors and imperfections of the output and structural error models. 

Schemes OI represent the case where input and output errors are included (sections 5.2 and 5.4 

respectively). The suffixes 1, 2 and 3 represent the specified precision of prior information on 

input errors, with 1 denoting the highest precision and 3 the lowest. In the OI scheme, the remnant 

error term lumps structural errors and imperfections of the input/output error models. 

Schemes OIP represent the case where input/output errors are included and structural errors are 

represented using a single stochastic CRR parameter (with suffixes 1, 2 and 3 denoting the 

specified prior precision of input errors). In this case, remnant errors solely represent imperfections 

of the input/output/structural error models.  

5.10. Dimensionality of the inference and MCMC strategy 

Introducing and inferring latent variables representing input and/or structural errors in the CRR 

model comes at the cost of increased dimensionality of the inference. This can be seen in Table 2 

(column 8), where schemes accounting for input errors and/or allowing parameter stochasticity 
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require the inference of a large number of latent variables. For example, the calibration data in 

experiment B yields 251 rainfall log-multipliers (one for each wet day) and 157 latent variables for 

the stochastic parameter sK (one for each epoch). 

Sampling from high-dimensional posteriors is computationally challenging but not 

insurmountable. In particular, the evaluation of the BATEA posterior distribution for a given set of 

CRR parameters is only marginally more expensive than that of SLS or WLS (the extra cost of 

evaluating (21)-(22) is trivial). The increased cost of the BATEA inference comes almost 

exclusively from a larger number of samples needed to adequately characterize high-dimensional 

distributions. In particular, the adaptation of high-dimensional MCMC jump distributions can be 

very challenging, with few theoretical guidelines [e.g., Haario et al., 2005]. 

In this study, the BATEA posterior (19) is explored using a two-stage MCMC strategy [Kuczera et 

al., 2007; Thyer et al., 2009]. The sampler evolves four parallel chains until the Gelman-Rubin 

criteria [Gelman et al., 1995] are below 1.2 for all inferred quantities. The number of MCMC 

iterations and the total CPU times needed to satisfy the Gelman-Rubin criterion are reported in 

Table 2. The longest run did not exceed 5 hrs on a standard desktop computer (2.2 GHz CPU, 4 

GB RAM, Windows XP). 

The increase in dimensionality and its implications for inference are further discussed in Section 

10.1.3. 

6. Experimental methodology 

6.1. Evaluation strategy 

Several analyses are necessary to achieve the objectives of this study: 
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1. Examine the well-posedness of the inference. This is done by inspecting convergence 

diagnostics and the correlation structure of the MCMC samples (Section 3.5). 

2. Evaluate the predictive distribution (PD) of the observed runoff during the validation period (see 

Thyer et al. [2009] for details). This establishes the adequacy of the total predictive uncertainty. 

3. [Synthetic studies only] Evaluate the PD of the true rainfall. This establishes whether the 

sources of uncertainty have been accurately and precisely identified. This check can only be 

carried out for the synthetic datasets D0 and D1, where the true rainfall is known. 

6.2. Evaluating time-varying predictive distributions 

In time series analysis, evaluating a predictive distribution (PD) requires comparing a time-varying 

random variable tX  (with cdf ) to a time series of realizations tF tx . For the rainfall PD, tx  

represents the true rainfall, while for the runoff PD, tx  represents the observed runoff. However, 

model performance measures currently predominant in hydrology, such as the Nash-Sutcliffe 

statistic, are unsuitable for analyzing PD’s, because they merely compare two time series of values 

and disregard their associated uncertainties. Instead, following the terminology used in 

meteorological ensemble predictions [Atger, 1999], this paper considers two criteria: “reliability” 

to quantify the statistical consistency between the time series of tx  and its PD, and “resolution” to 

quantify the sharpness of the PD. 

6.3. Reliability 

If the PD is reliably quantified, the observations correspond to realizations from the PD. This can 

be examined using the predictive QQ-plot [Laio and Tamea, 2007; Thyer et al., 2009]. If the 

realizations tx  are consistent with Ft, the p-values ( ) ( )t t t tF x p X x= ≤  will follow a uniform 
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distribution on the interval [0,1]. This can be checked graphically: deviations from the bisector (the 

1:1 line) denote interpretable deficiencies (see Figure 3). To simplify the comparison of QQ-plots, 

they are summarized using two indexes that quantify the reliability of the PD: 

( )
( ) ( )

1

1 2                                   (a)

/                (b)
x

x x

N
th

x x i x i x
i

p p N

α α

α
=

′= −

′ = −∑
 

(23) 

 

{0,1} ( )
1

{0,1}

1                                         (a)

(1 ( )) /                   (b)

1 if 0 or 1 
1 ( )            (c)

0 otherwise

x

x x
N

x x i x
i

p N
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z

ξ ξ

ξ
=

′= −

′ =

= =⎧
= ⎨
⎩

∑  

(24) 

where ( )x ip  and ( )
( )
th

x ip  are the ith observed and theoretical p-values of tx , xN  is the number of tx  

values and 1 ( )A x  is the indicator function of the set A. 

The index α  is related to the area 'α  between the p-value curve and the 1:1 line, and reflects the 

overall reliability of the PD. It varies between 0 (worst reliability, with all observed p-values equal 

to 0 or 1) and 1 (perfect reliability). 

The index ξ is the complement of the fraction ξ' of observed p-values equal to 0 or 1, which 

correspond to tx  values outside the range of the PD. It varies between 0 (worst reliability, with all 

realizations outside their predictive range) and 1 (no incompatible realizations). Note that ξ = 1 

does not imply perfect reliability. Consequently, this index is used primarily for detecting highly 

unreliable PDs. 
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For the rainfall PD these indices are denoted as rα  and Rξ , while for the runoff PD, they are 

denoted as Qα  and Qξ . 

6.4. Resolution 

“Resolution” denotes the sharpness (effectively, the “average precision”) of the PD. Note that two 

inferences can both yield reliable PDs, but with different resolutions. 

In this paper, the resolution is quantified by indexes  and , defined, respectively, as the 

average absolute and relative precision of the predictions 

( )absπ ( )relπ

tX : 

( )

1

1 1
Sdev[ ]

xN
abs

x
tx tN X

π
=

= ∑  
(25) 

 

( )

1

1 E[ ]
Sdev[ ]

xN
rel t

x
tx t

X
N X

π
=

= ∑  
(26) 

 

where E[] and Sdev[] are the expectation and standard deviation operators. In this paper, we use 

the index ( ) ( )
log( )

abs abs
R x φπ π ==  to assess the resolution of the rainfall PD, and the index ( ) ( )rel rel

Q xπ π q== %  for 

the resolution of the observed runoff PD. The analysis of log-multipliers is based on the absolute 

measure because the multiplicative error model (14)-a already represents relative errors. 

The data used in (23)-(27) can be pre-filtered. In order to focus on hydrologically significant 

events, the computation of indexes in this paper is restricted to observed rainfalls exceeding 10 

mm/day and observed runoffs exceeding 1 mm/day. 
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7. Experiment A: Estimating input errors when the CRR model 

is exact 

Experiment A examines the OI-3 calibration scheme (with weak prior knowledge of rainfall-error 

hyper-parameters) when the calibration data contains input/output errors but the model does not 

contain structural errors. This establishes the “best-case” scenario for parameter estimation, 

indicating what can be achieved when the model is accurate (indeed, exact), and provides a 

necessary benchmark for the comparison of more complicated calibration scenarios where 

structural errors are present. 

7.1. Assessing well-posedness 

MCMC convergence was readily achieved, suggesting that the inference is well-posed. This is 

consistent with previous synthetic studies focusing on input errors [e.g., Kavetski et al., 2002; 

Renard et al., 2009a].  

7.2. Evaluating the predictive distribution of runoff  

7.2.1. Reliability 

The runoff PD shows a good agreement with the observed runoff (Figure 4a). The predictive QQ 

plot shown in Figure 4b confirms this observation, with the curve closely following the bisector. 

The reliability indexes αQ = 0.92 and ξQ = 1 further demonstrate that the PD of observed runoff is 

reliable. 
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7.2.2. Resolution 

 Figure 4a shows that the width of the prediction limits varies with the magnitude of the predicted 

runoff, which justifies the use of the relative precision measure  for assessing the runoff PD. 

The resolution index  corresponds to an average coefficient of variation of about 20%. 

( )rel
Qπ

( ) 4.87rel
Qπ =

7.3. Evaluating the predictive distribution of rainfall 

7.3.1. Reliability 
 

Figure 4c-d suggest that the true rainfall values are reliably estimated, with reliability indexes 

0.92Rα =  and ξR = 1. This is consistent with the results for runoff. 

7.3.2. Resolution 

Despite rainfall multipliers being reliably estimated, the precision of the individual estimates is not 

identical. Figure 5 shows that multipliers affecting large rainfalls can be identified much more 

precisely than multipliers affecting smaller rainfalls. The resolution index , computed 

for rainfall values larger than 10 mm, corresponds to an average coefficient of variation of about 

13%, which is relatively low. 

( ) 7.52abs
Rπ =

Furthermore, Figure 6 shows the posteriors of some rainfall multipliers remain similar to the 

hyper-distribution. A given rainfall multiplier τφ  affects the posterior pdf (19) both through the 

likelihood function and through the pdf of the hyper-distribution evaluated at τφ . Consequently, if 

the likelihood is only weakly dependent on τφ , as in condition (3), the posterior pdf will remain 

close to the hyper-distribution. Such multipliers are “weakly-identifiable”. 

 Page 35 of 65 



Renard, Kavetski, Kuczera, Thyer and Franks  Identifiability in hydrological modeling 

It is stressed that weak identifiability of some individual rainfall multipliers does not imply that the 

entire hyper-distribution is non-identifiable. The estimated hyper-mean and hyper-SD of the 

rainfall multipliers was -0.215 (standard error ± 0.094) and 0.223 (standard error ± 0.018), which 

are close to the true values of -0.2 and 0.2 respectively.  Hence, there is enough information in the 

identifiable multipliers to infer their hyper-distribution. The non-identifiability of some rainfall 

multipliers is effectively “benign” because it neither affects model predictions (since the hyper-

distribution is properly identified), nor causes computational problems (MCMC sampling 

converges because the hyper-distribution constrains the rainfall multipliers).  

8. Experiment B: Estimating input and structural errors using 

inaccurate CRR models 

In this section, the nine inference schemes listed in Table 2 are used to calibrate the CRR model 

LogSPM using the synthetic dataset D1 generated using GR4J. This experiment considers input, 

output and structural errors. 

8.1. Achieving well-posedness using prior information  

MCMC convergence was readily achieved for SLS, O, OI and OP, suggesting that these inferences 

are well-posed. However, convergence difficulties were encountered with OIP. This suggests the 

simultaneous inference of both input and structural errors may be ill-posed. This section examines 

the role of priors when attempting to decompose the total predictive uncertainty by estimating both 

input and structural errors. 
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8.1.1. Low precision priors (OIP-3) 

As shown in Table 2, the OIP-3 scheme has a prohibitively slow rate of MCMC convergence – 

even after more than 3x106 MCMC iterations, the Gelman-Rubin criterion still exceeded 5.0 for 

many quantities (including both latent variables and CRR parameters). This is symptomatic of an 

ill-posed inference. Since the inference was based on a vague prior, its ill-posedness can be 

attributed to non-identifiability, in particular of latent variables. 

The MCMC samples from the OIP-3 posterior yield insights into the reasons for poor convergence. 

Figure 7c shows strong correlations between the latent variables characterizing input and structural 

errors affecting the same time steps. This yields a characteristic bloc-diagonal structure of the 

correlation matrix. This degeneracy is analogous to the simple example in section 3.5, where non-

identifiable parameters θ1 and θ2 were almost perfectly correlated when a non-informative prior 

was used. The implications of this are discussed in section 10.1.2.  

8.1.2. Medium and High precision priors (OIP-1 and OIP-2)  

The MCMC sampling from the OIP-1 and OIP-2 posteriors was convergent, suggesting that the 

inference becomes well-posed when more precise priors on the rainfall multiplier hyper-

parameters are used. However, the onset of ill-posedness is gradual: the posterior correlations for 

OIP-1 and OIP-2 (Figure 7a-b) display similar, though less pronounced, features as the OIP-3 case. 

Note that since the non-identifiability criterion (2) depends solely on the likelihood but not on the 

prior, OIP-1 and OIP-2 methods are necessarily subject to the same non-identifiability issues as 

OIP-3. The MCMC convergence is due to a sufficiently precise prior restricting the size and 

improving the shape of the high-density regions of the posterior. 
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8.2. Evaluating the predictive distribution of runoff  

The reliability and resolution runoff indexes obtained for the nine calibration schemes are reported 

in the second row of Figure 8. 

8.2.1. Reliability 

Figure 8 shows significant differences in the reliability of the runoff PDs between (i) standard 

calibration approaches SLS and O; vs. (ii) approaches OP, OI and OIP, which use Bayesian 

hierarchical inference for at least one source of uncertainty. 

Approaches SLS and O lead to an unreliable quantification of predictive uncertainty, with low Qα  

and ξQ values. In particular, about 40% and 25% of observed runoffs are outside the predictive 

range for SLS and O, respectively. This represents a significant underestimation of predictive 

uncertainty, especially for large runoff events. 

Approaches OP, OI and OIP quantify predictive uncertainty much more reliably, with high Qα  

values and no runoff values outside the predictive range in most cases. Scheme OI-1 is the only 

exception, with ξQ = 0.9 (i.e., 10% of observations outside the predictive range), corresponding to 

a mild underestimation of predictive uncertainty.  

8.2.2. Resolution 

Figure 8 shows that schemes SLS and O achieve a significantly higher resolution (with ( ) 9rel
Qπ ≈ ) 

than schemes OP, OI and OIP (with ( ) 2 6rel
Qπ ≈ − ). However, section 8.2.1 demonstrated that the 

former schemes do not lead to a reliable estimation of the runoff PD. It follows that schemes SLS 

and O yield unduly optimistic estimates of predictive uncertainty: their higher resolution comes at 

the cost of an unacceptably low reliability, which can be misleading to a decision-maker. 
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On the other hand, schemes OP, OI and OIP yield similar results, with the exception of OI-1, 

which yields a higher resolution ( ( ) 6rel
Qπ ≈ ). This causes the mild underestimation of predictive 

uncertainty noted in section 8.2.1. 

8.3. Evaluating the predictive distribution of rainfall  

The rainfall PD is evaluated only for OI and OIP. SLS, O and OP are not considered because they 

do not explicitly consider input errors, and hence do not produce a rainfall PD. The first row of 

Figure 8 summarizes the results using the indexes Rα , ξR and Rπ . 

8.3.1.  Reliability 

For OI and OIP with medium to high prior precision, the PD of true rainfall is inferred reliably 

( Rα  and ξR  are close to one in Figure 8). When only weak prior information is available (OI-3), 

the indexes Rα  and ξR  decrease to about 0.55 and 0.9 respectively, reflecting the deterioration of 

the inference as less prior knowledge is available. This deterioration is also reflected in the 

overestimation of the hyper-SD of the rainfall multipliers (Table 3, estimated value of 0.862 versus 

the true value of 0.2). Section 10.3.1 discusses the implications of this result. 

8.3.2. Resolution 

Two observations can be drawn from Figure 8: 

(i) The resolution depends on the prior precision for both the OI and OIP methods. This implies 

that the prior exerts a significant influence on the inference; 

(ii) For a given prior precision, OI yields a higher resolution than OIP. 
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Figure 9 offers insight about point (ii) above. In the OI case, the precision of the inferred rainfall 

multipliers increases with the observed rainfall. This is consistent with section 7.3.2. In the OIP 

case, this relationship is weaker, with the posterior precision of most multipliers remaining close to 

the precision of their posterior hyper-distribution. Indeed, the posterior distributions of the 

individual rainfall multipliers remain similar to the posterior hyper-distribution (similar to Figure 

6). The implications of this are discussed in section 10.3.1. 

9. Experiment C: Real-data study 

In this experiment, LogSPM is calibrated to the observed runoff from the Abercrombie catchment. 

The aim is to investigate whether the conclusions drawn from synthetic experiment B hold in real-

data applications. This is carried out by comparing experiments B and C in terms of (i) well-

posedness of the inference and (ii) quantification of the predictive uncertainty in the runoff. Since 

we do not have information about the true rainfall, its PD cannot be assessed. 

9.1. Achieving well-posedness using prior information 

The MCMC sampler did not converge for OIP-2 and OIP-3, suggesting that the inference is ill-

posed due to non-identifiability of some inferred quantities. In comparison with Experiment B 

(where OIP-2 was well-posed), the inference is ill-posed even when the prior contains appreciable 

information on the rainfall error hyper-parameters. The posterior correlation matrix of latent 

variables characterizing input and structural errors (Figure 10) exhibits the same bloc-diagonal 

structure as observed with Experiment B (section 8.1). 
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9.2. Evaluating the predictive distribution of runoff  

The reliability of the runoff PD is summarized in Figure 11. Similar conclusions to those reached 

in Experiment B hold: 

(i) Schemes SLS and O lead to a significant fraction of observed runoffs being outside their 

predictive range, with ξQ values of 0.83 and 0.68 respectively. 

(ii) Scheme OI-1 has a high number of observations outside the predictive range (ξQ = 0.84), which 

is similar to findings in Experiment B. However, as discussed in section 10.2.5, the reasons for this 

may be different. 

(iii) Schemes OI-2 and OI-3 have almost no observations outside the predictive range, (ξQ = 0.99 

and 1 respectively). Moreover, the reliability of the runoff PD (αQ values of 0.68 and 0.72) is 

acceptable, though far from perfect. 

(iv) Schemes OP and OIP-1, which allow parameter stochasticity, have no observations outside the 

predicted range (ξQ = 1 in all cases). However, low αQ values of 0.48 and 0.44 suggest that the 

reliability of the runoff PD is unsatisfactory - it considerably overestimates the predictive 

uncertainty. This is in contrast to Experiment B, which had higher values of αQ around 0.8. The 

reasons for this difference are discussed in Section 10.2.5. 

10. Discussion 

This paper investigates the feasibility of decomposing the total predictive uncertainty into several 

components arising from input and structural errors. To achieve this, a calibration scheme must 

conform to the following progressive requirements: 

(i) The inference is well-posed; 
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(ii) The total runoff PD is successfully quantified (i.e., with acceptable reliability and 

resolution); 

(iii) Input and structural uncertainties are successfully decomposed. 

This section discusses the results of sections 8 and 9 in the context of these requirements. 

10.1. Well-posedness of the inference 

10.1.1. Well-posed schemes 

Schemes SLS, O, OI and OP lead to a well-posed inference in all experiments. Moreover, scheme 

OIP is also well-posed when sufficiently precise priors on rainfall errors are specified, though the 

required precision varied between experiments B and C. 

This shows that direct modeling of multiple sources of error using hierarchical methods is not 

inherently ill-posed, but depends on the amount of prior knowledge relative to the number and 

complexity of the sources of uncertainty included in the analysis. Section 10.1.3 further discusses 

the relationship between dimensionality and well-posedness. 

10.1.2. Ill-posed schemes 

Experiments B and C show that when both input and structural errors are explicitly modeled using 

latent variables (OIP schemes) and only vague prior information on the input errors is available, 

the decomposition of input and structural errors becomes an ill-posed problem. This is due to 

interactions between latent variable representing input and structural errors. For example, an 

increase in log-multiplier ( )tτφ  can be compensated by a decrease in the stochastic CRR parameter 

( )tωλ  associated with the same time step. This results in large correlated subspaces within the 

inference space having near-constant likelihood values. This is the non-identifiability property 
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described in Section 3.1, which turns into ill-posedness in the absence of sufficient prior 

information. 

Sufficient prior information on rainfall uncertainty is required for a well-posed inference (scheme 

OIP-1). It is stressed that the inference is then conditioned on this auxiliary information and it is 

crucial that the latter reflect actual knowledge rather than be viewed as a tuning parameter to 

achieve MCMC convergence. Section 10.3.2 outlines several avenues for obtaining adequate prior 

information. 

The consistency of results of experiments B and C suggests that the strong interaction between 

input and structural errors is not an artifact due to the type of structural errors used in the synthetic 

case study (calibrating a CRR model M1 with data generated from a different model M0 in 

experiment B). Indeed, we encountered similar ill-posedness in case studies based on other 

catchments (not shown). This confirms that ill-posedness is not specific to experiments B and C, 

but reflects a general and intrinsic difficulty in separating multiple sources of error, especially with 

weak prior knowledge. These results are unsurprising - it is impossible to infer CRR parameters 

and individual input and structural errors using only a single rainfall-runoff dataset if the modeler 

has no idea about the accuracy of neither the CRR model nor the data. 

Note that calibrating to longer time series may not necessarily help in identifying individual input 

errors or breaking their interaction with structural errors. In particular, due to the finite memory of 

the CRR model, the effect of a rainfall error decreases over time, such that, e.g,, additional data at 

step t+30 (days) will hardly improve the identifiability of a latent variable at step t. 

Instead, independent estimates of data accuracy are required to formulate meaningful priors on the 

data errors. Whether these priors will be sufficient to achieve a well-posed inference is problem-

specific. For example, a higher-precision prior was required to achieve well-posedness in 
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experiment C than in experiment B. From a practical perspective, an understanding of the data 

uncertainty needs to become an essential part of the CRR model calibration. 

10.1.3. Well-posedness, non-identifiability and over-parameterization 

The representation and inference of input and/or structural errors using stochastic parameters 

inevitably increases the dimensionality of the problem. Many hydrologists and practitioners 

instinctively shy away from high-dimensional inference problems, believing them to be invariably 

ill-posed or non-identifiable. However, high-dimensional problems are neither inherently non-

identifiable nor inherently ill-posed - this depends on how the likelihood is formulated and what 

additional (prior) information is available. 

It is stressed that identifiability, well-posedness and the dimensionality of the inference space are 

three distinct concepts. For example, section 3 shows that a simple 2-parameter problem is 

completely non-identifiable for any sample size. This non-identifiability may or may not lead to an 

ill-posed inference, depending on the strength of the prior distribution. 

More generally, the notion of “model complexity” in Bayesian hierarchical models is non-trivial; 

in most cases, the number of inferred quantities is a poor measure of complexity [see Spiegelhalter 

et al., 2002, for a detailed discussion]. In particular, different prior assumptions may affect the 

well-posedness of the inference. For example, the well-posedness of the OIP scheme in 

Experiment B varies with the prior precision even though the number of estimated quantities 

remained exactly the same. 
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10.2. Successful quantification of runoff predictive uncertainty 

10.2.1. Effects of CRR parameter uncertainty on predictive distributions 

Analysis of the posterior distributions in all experiments suggested that the uncertainty in the 

deterministic CRR parameters is relatively small (not shown) and its effect on predictive 

uncertainty is dominated by errors in the data and model structure. This is a consequence of 

posterior parametric uncertainty decreasing as more data is used [e.g., Kuczera et al., 2006; 

Stedinger et al., 2008]. Consequently, it is not considered in further detail in this paper (but see 

discussions by Beven et al. [2008] and Mantovan and Todini [2006]). 

10.2.2. Traditional (non-hierarchical) schemes 

Approaches SLS and O lead to an unreliable and underestimated predictive uncertainty, especially 

for high runoffs. This occurs because these calibration schemes lump several sources of errors 

(input/output/structural for SLS, input/structural for O) into the single remnant error term. 

Consequently, the majority of predictive uncertainty arises from remnant errors, which are 

assumed to have a Gaussian distribution. However, the Gaussian assumption is clearly not 

supported by the data: the standardized residuals are highly skewed and leptokurtotique (Figure 

12). This violation of assumptions explains the underestimation of predictive uncertainty. 

10.2.3. Hierarchical schemes: General comments 

In Experiment B, approaches OP and OI quantified predictive uncertainty much more reliably than 

O and SLS. Method OI-1 is the only exception, with a mild underestimation of predictive 

uncertainty (see section 8.2.1). When well-posed due to sufficient prior precision (cases OIP-1 and 

OIP-2), approach OIP also improves the estimation of the runoff PD. 
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In all cases, the improvement is due to the use of latent variables for describing structural and/or 

input errors: most of the predictive uncertainty arises from stochastic parameters. Introducing 

stochastic parameters has two effects on remnant errors: 

(i) it reduces their standard deviation σ  (Figure 13). This is consistent with its expected behavior 

as the input/output/structural error models are improved (section 5.5). 

(ii) the standardized residuals are more Gaussian (Figure 12). This suggests that the common 

observation that residuals of hydrological models are skewed and leptokurtotic [Beven, 2006] is 

probably caused by unduly simplistic lumped treatment of the different sources of uncertainty. 

Note that the introduction of stochastic parameters did not significantly affect the autocorrelation 

of the residuals, with a lag-1 coefficient remaining between ~ 0.2-0.3 for all calibration schemes 

except scheme O (lag-1 coefficient ~ 0.5). While such low autocorrelation will not affect the 

conclusions of this study, much stronger autocorrelation may arise when modeling on a shorter 

time scale. Hence, simulations based on hourly rainfall may require specialized treatment to handle 

autocorrelation. 

Overall, the results suggest that characterization of errors (input and/or structural) using stochastic 

parameters leads to a significant improvement over traditional additive-error approaches in terms 

of reliability of the predictive uncertainty. 

10.2.4. Treating a single source of uncertainty hierarchically 

Experiment B suggests that treating either input or structural error (but not both) with a single 

stochastic parameter can produce reliable runoff predictions (Figure 8, index Qα  in the range 0.78-

0.9). However, this is only partially supported by experiment C (section 9.2), where the reliability 

index Qα  in the range 0.48-0.84 leaves room for improvement. 
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These results emphasize the importance of validating the predictive uncertainty [Hall et al., 2007]: 

in its absence, there is no guarantee that the inferred predictive uncertainty is meaningful. The use 

of predictive distributions without comprehensive analysis of their reliability and resolution can 

lead to large prediction errors and misleading risk estimates. 

Interestingly, representing either rainfall or structural errors using a stochastic parameter can lead 

to a reliable PD of the runoff (Figure 8) even though input and structural errors cannot be 

successfully decomposed. This is analogous to the simplified example in Section 3.6 – even 

though the individual parameters 1θ  and 2θ  were not inferable, the model still provided reliable 

predictions of the responses that it was calibrated to (but see Section 3.6 for very important 

caveats). 

The approach of treating a single source of error (input or structural) using a stochastic parameter 

is not a complete solution. Even though it may produce more reliable predictions than SLS and 

additive errors models, the following problems remain: 

(1) Interpretation of the stochastic parameter is problematic because it can encompass both input 

and structural errors. This provides no insight on whether the reduction of predictive uncertainty 

requires improving the input data (e.g., more rain gauges) or the model structure. While the need 

for more accurate and precise hydrological data (accompanied by uncertainty estimates) cannot be 

overstated, the ability to determine the relative contributions of input/structural uncertainties would 

strategically guide research efforts and experimental resources to reduce predictive uncertainty. 

(2) Model extrapolation can be particularly unreliable. For example, the predictive ability of the 

model can deteriorate if forced with rainfall time series with different properties than those of the 
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calibration period. This can occur during climate change projections, flood forecasting, or simply 

when the number of raingauges changes. 

10.2.5. Further comments on the OI-1 scheme 

Scheme OI-1 deserves further comment. In both experiments B and C, OI-1 has a larger number of 

observations outside the predictive range (ξQ = 0.9 and ξQ = 0.84 respectively) than OI-2 and OI-3. 

In experiment B, this occurs because the very precise prior used for the rainfall error hyper-

parameters strongly constrains the latent variables, preventing them from compensating for the 

inadequate treatment of structural uncertainty. The structural uncertainty is accounted for by 

remnant errors, which in this case are highly skewed and non-Gaussian (Figure 12). 

The interpretation of experiment C is more difficult. In addition to a poor remnant error model, the 

unreliable performance of the OI-1 methods is likely a consequence of inaccurate prior knowledge 

of rainfall and runoff data errors, moreover, specified using unduly precise priors (in particular, the 

generic 10% streamflow error model was fixed a priori). However, since additional data is not 

available for this catchment, it is impossible to verify either explanation. This highlights three key 

issues: (i) posterior scrutiny is essential to identify violations of underlying statistical hypotheses; 

(ii) reliable independent estimates of data accuracy are needed for meaningful statistical inference; 

and (iii) all hydrological data should be accompanied by error estimates. 

10.2.6. Interaction between log-multipliers and structural errors 

In the OI schemes, the latent variables (log-multipliers) are intended to represent input errors, 

whereas remnant errors are intended primarily for structural errors (Table 2). However, for these 

methods, the standard deviation (Figure 13) and the skewness (Figure 12) of the remnant errors 
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decrease as the precision of the priors on rainfall uncertainty decreases, while the estimated hyper-

SD of log-multipliers increases. 

This suggests that, in the absence of sufficient prior information on input uncertainty, the rainfall 

log-multipliers can be contaminated by structural errors. In other words, both sources of errors 

tend to be conflated in the input error model. This causes an overestimation of rainfall uncertainty 

(section 8.3). The implications of this behavior for practical applications that calibrate CRR 

models to rainfall data with no associated error estimates is further discussed in Section 10.3.2. 

10.3. Successful decomposition of runoff predictive uncertainty in 

input/structural errors components 

10.3.1. Reliability and resolution of input PD 

In the absence of structural errors, no prior information on input errors appears to be required to 

achieve a well-posed and accurate inference. In particular, estimates of rainfall errors are reliable 

and precise (experiment A). This is not the case when structural errors are present (experiment B). 

This section considers the estimation of the rainfall PD. In particular, it must be inferred reliably 

before a meaningful decomposition of predictive uncertainty can be obtained. In experiment B, 

only two approaches achieved this: 

(i) Schemes OI with precise priors (OI-1, and to a lesser extent, OI-2) achieve high rainfall 

reliability ( Rα  ≈ 0.9, ξR ≈ 0.95). This is an important result because it suggests that individual 

rainfall errors (and hence estimates of the true rainfall) can be retrieved from the data in the 

presence of structural errors, provided the properties of rainfall errors are well understood prior to 

the inference (i.e., precise priors for the hyper-parameters). 
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However, the reliability and resolution of the rainfall PD deteriorates rapidly when weaker prior 

information is supplied. In particular, the standard deviation of the hyper-distribution of input 

errors becomes progressively overestimated, up to by a factor of 4 for OI-3 (Table 3). Moreover, 

the improved reliability of rainfall PD achievable with high prior precision comes at the cost of a 

decreased reliability of the runoff PD (Section 10.2.5). Consequently, precise prior information on 

rainfall alone, without an appropriate representation of structural errors, appears insufficient for 

successfully decomposing the total predictive uncertainty. 

(ii) Schemes OIP with precise priors (OIP-1 and OIP-2) also achieve high rainfall reliability (αR ≈ 

0.9, ξR ≈ 1). Again, prior information plays a central role by controlling the well-posedness of the 

inference. However, although the rainfall PD is reliable, it remains similar to the hyper-distribution 

(see Figure 9 and section 8.3.2). This is a consequence of most multipliers being only weakly 

identifiable from the data; their inference is largely controlled by prior knowledge. In the language 

of probabilistic forecasting [Atger, 1999], the resulting rainfall PD is not “skillful” because it does 

not contain any information beyond that given by the prior hyper-distribution. The influence of the 

prior also emphasizes that meaningful uncertainty estimates are not an optional extra when 

collecting and reporting hydrological data. 

As an aside, the point above also illustrates that reliability alone does not imply usefulness when 

the resolution is low. For example, climatologic predictions are reliable in the distributional sense, 

but are not useful for forecasting specific events. This is broadly analogous to the difference 

between the marginal versus conditional predictive distribution. 
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10.3.2. Perspectives on uncertainty in hydrological modeling  

This study suggests that success of the inference (measured by the reliability of runoff predictions 

and successful decomposition of input and structural errors) is largely determined by the prior 

hypotheses describing the distributional properties of rainfall and runoff errors. It is therefore 

important that the priors used in the inference reflect actual knowledge, rather than be treated as 

mere mathematical tricks to ensure MCMC convergence. Indeed, a precise but inaccurate prior 

will simply yield fast convergence to the wrong posterior. The limiting case is SLS – it specifies 

the precise but incorrect prior that the observed rainfall is exact and yields a biased inference. This 

highlights the need to develop and implement reliable methods for estimating the accuracy and 

precision of measured environmental data at the data-collection and post-processing stages. Given 

the superior performance of methods exploiting accurate prior information, this would allow much 

deeper statistical inferences to be carried out than currently possible. 

Contrary to widespread hydrological pessimism, formulating accurate prior hypotheses is not an 

impossible Herculean task, and several promising avenues are already apparent. 

Useful prior distributions of rainfall errors and their hyper-parameters can be derived from spatial 

analysis of rainfall fields, e.g., using radar data and/or geostatistical analyses of raingauge 

networks [e.g., Severino and Alpuim, 2005]. Our preliminary research in this direction is very 

encouraging – using conditional rainfall simulation eliminated ill-posedness and significantly 

improved the reliability and resolution of predictive distributions [Renard et al., 2009b]. 

Using data on other state variables can also be useful. For example, independent estimates of 

saturated areas [Franks et al., 1998] may help identifying the variations of stochastic parameters 

controlling the catchment saturation. Additionally, isotope data can yield independent insights into 

residence times and internal model pathways [e.g., Fenicia et al., 2008; Fenicia et al., in press]. 

 Page 51 of 65 



Renard, Kavetski, Kuczera, Thyer and Franks  Identifiability in hydrological modeling 

Further research is needed to derive meaningful probabilistic models for such additional data and 

will be reported in future work. 

Finally, while this study focuses on lumped conceptual hydrological models, similar concerns hold 

for the identifiability of more complex physically-based distributed models. Indeed, given the 

increased data requirements necessary to support the identification and resolution of additional 

catchment processes represented in these models, we expect the role of reliable prior knowledge to 

become even more critical. 

11. Conclusions 

Bayesian total error analysis (BATEA) offers an inference framework that combines the estimation 

of rainfall-runoff dynamics with an honest accounting of errors in the observations and the 

hypothesized model structure. However, this study shows that sufficient independent information 

must be supplied to the inference before the total predictive uncertainty can be meaningfully 

decomposed into its contributing sources. Indeed, a key strength of the Bayesian paradigm is its 

ability to use independent prior knowledge to obtain a well-posed and useful inference even when 

the data alone may not be sufficient. 

Empirical analysis suggests that a single set of rainfall-runoff data without sufficiently precise 

estimates of rainfall uncertainty is insufficient to infer more than one source of errors, even if the 

distribution of runoff errors is known. Non-identifiability problems arise when attempting to 

disaggregate input and structural errors; unless informative priors on rainfall uncertainty are used, 

this leads to an ill-posed inference. In this respect, priors on the hyper-parameters describing data 

uncertainty play a very different role to the priors on the CRR model parameters: while the latter 
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merely enhance the inference for short calibration datasets, the former control the overall well-

posedness of the inference. 

It was also demonstrated that ill-posedness of the inference can often be diagnosed from 

exceedingly slow MCMC convergence. In particular, when non-informative priors are used, poor 

MCMC convergence is symptomatic of inferred quantities (e.g., model parameters, data and 

structural errors, etc.) being poorly identifiable from the data. 

In the broader hydrological context, this reflects the inherent limitations of using sparse data of 

unknown quality to make reliable statistical inference and meaningfully disaggregate multiple 

sources of uncertainty. If no independent estimates of data uncertainty are available, the 

discrepancy between observed and simulated responses only provides information about total 

errors. Without further information, it is impossible to decompose this error into its components. 

This is the fundamental reality confronting hydrologic modeling. 

Another important conclusion is that hierarchical representation of input and/or structural errors 

produces more reliable runoff predictions than the traditional approach of a deterministic CRR 

model with an additive error model. While this results in an increased dimensionality of the 

problem, it remains computationally practical even on standard computers and laptops. 

More specifically, synthetic and real data studies in this paper suggest that: 

1. If only rainfall-runoff data are used and no independent data uncertainty estimates are available, 

only the total error can be analyzed. This can be accomplished using standard regression methods 

such as standard and weighted least squares schemes. The individual contributions of rainfall, 

runoff and structural errors to predictive uncertainty cannot be disaggregated. Moreover, in 

standard regression methods, unless the statistical properties of the total error are properly satisfied 
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by the residual error model - which is difficult to attain in practice, especially with multiple 

sources of error and large errors in the inputs - predictive uncertainty quantification is inadequate 

and predictions may be biased. Consequently, in the case where insufficient prior information is 

available, uncertainty analysis should be based on specialized statistical techniques [e.g., the semi-

parametric approaches of Krzysztofowicz, 2002; Montanari and Brath, 2004], and the reliability of 

the predictive uncertainty should be thoroughly assessed. Yet attaining independent data 

uncertainty estimates is always preferable, and we strongly encourage experimentalists and data 

analysts to work towards this. 

2. Adding independent knowledge to formulate an informative prior on the properties of runoff 

errors enables a meaningful inference of the combined distributional properties of rainfall and 

structural errors, and their combined contribution to predictive uncertainty. However, what may be 

identified as “input error” by the calibration scheme can also encompass a significant portion of 

structural error, and vice versa. In either case, the disaggregation of rainfall and structural errors is 

ill-posed. 

3. Using independent knowledge to formulate precise priors for both runoff and rainfall hyper-

parameters permits well-posed individual inference of rainfall and structural errors, including the 

distributional properties of the latter. In other words, the decomposition of the total predictive 

uncertainty into its three constituents requires precise priors for rainfall and runoff error hyper-

parameters, with the rainfall-runoff data then providing closure on the remaining structural error. 

The resulting inference provides both (i) reliable estimates of total predictive uncertainty, with 

predictive precision dependent on the quality of the data and model; and (ii) reliable 

decomposition of the total uncertainty into its various sources. Along with a corresponding 
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improvement in the model representation, we consider this scenario to be a strategic goal for 

hydrologic model estimation. 

These conclusions highlight inherent limitations of calibrating inaccurate CRR models to observed 

rainfall-runoff data of unknown quality. They also call for a more systematic reporting of errors 

affecting environmental data, both at the acquisition and post-processing stages. In particular, a 

reliable quantitative understanding of data uncertainty should not be viewed as some “esoteric” 

prior knowledge, but rather as an essential specification of the inference problem. 
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14. Appendix A: Description of LogSPM 

This paper uses a modified version of the LogSPM model [Kavetski et al., 2003; Kuczera et al., 

2006]. The model simulates runoff (q) using rainfall (r) and potential evapotranspiration (pet) 

(here, all in mm). The model has three stores and six parameters (shown in bold below): 

Soil store:  

            (a) Surface water balance

( ) (b)  Quickflow
( ) (c)  Groundwater recharge

(1 exp( )) (d)  Actual evapotranspiration
2( )

1 exp(

s
quick rge et
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s
s

dh r q q q
dt

q f h r
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= − − −
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(27) 

Groundwater store: 

   (a) Groundwater balance

         (b)  Baseflow
         (c)  Percolation to deep aquifers

gw
rge b deep

b gw

deep gw

dh
q q q

dt
q h
q h

= − −

= ×
= ×

Gw

Dp

k
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(28) 

Stream store: 

    (a) Stream store balance

         (b) River runoff

stream
quick b

stream

dh q q q
dt

q h

= + −

= × Streamk
 

(29) 

The prior parameter distributions are given in Table 1. 
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Table 1. Description of LogSPM parameters and their prior distributions. 

Table 2. Summary of calibration schemes in experiments A-C and run details of Experiment B. 

Table 3. Estimated hyper-parameters of rainfall data errors (log-multipliers). The first number is 

the marginal posterior mean of the hyper-parameter, the number in brackets is the marginal 

posterior standard deviation. 
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Figures 

Figure 1. Posterior distributions for the didactic example of Section 3.4. (a) with prior π1; (b) with 

prior π2; (c) posterior distribution of θ1+θ2 with prior π2. 

Figure 2. Evolution of two parallel MCMC chains for parameters θ1 (left), θ2 (center) and θ1 + θ2 

(right) for the didactic problem of Section 3.4. Top row = prior π1, bottom row = prior π2. 

Figure 3. Schematic of the predictive QQ plot and derived indexes. 

Figure 4. Experiment A: Diagnostic plots for calibration scheme OI-3. (a) observed vs. simulated 

runoff (validation period); (b) predictive QQ-plot of runoffs exceeding 1 mm (validation period); 

(c) true, observed and estimated rainfall; (d) predictive QQ-plot of true rainfall. The size of the 

bubbles in (b) and (d) is proportional to the observed runoff and rainfall, respectively. 

Figure 5. Experiment A: Dependence of the posterior precision of estimated log-multipliers on the 

magnitude of observed rainfall. The horizontal line denotes the precision of the posterior hyper-

distribution. 

Figure 6. Experiment A: Comparison of the posterior distributions of individual log-multipliers 

(thin lines) with the true (solid thick line) and the estimated (dashed thick line) hyper-distribution. 

For readability, only 11 log-multipliers are displayed. 

Figure 7. Experiment B: Correlation matrix of latent variables representing structural errors λω and 

input errors φτ as a function of the prior precision of the input-error hyper-parameters (OIP-1 

assumes the highest prior precision). For readability, only latent variables affecting time step 1 to 

58 of the calibration period are displayed. 
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Figure 8. Experiment B: Summary of the reliability and resolution of the predictive distribution of 

rainfall (first row) and runoff (second row) inferred using the nine calibration schemes. The indices 

are defined in section 6. The star denotes the non-convergent OIP-3 case. 

Figure 9. Experiment B: Dependence of the posterior precision of individual log-multipliers on the 

magnitude of observed rainfall. The horizontal line denotes the precision of the posterior hyper-

distribution. 

Figure 10. Experiment C: Correlation matrix of latent variables representing structural errors λω 

and input errors φτ as a function of the prior precision of the input-error hyper-parameters (OIP-1 

assumes the highest prior precision).  

Figure 11. Experiment C: Summary of the reliability and resolution of the predictive distribution of 

runoff inferred using the nine calibration schemes. The indices are defined in section 6. The stars 

denote the non-convergent OIP-2 and OIP-3 cases. Since the true rainfall is unknown, its PD 

cannot be assessed. 

Figure 12. Experiment B: Skewness and excess kurtosis of standardized residuals. 

Figure 13. Experiment B: Reduction of remnant errors as more sources of uncertainty are treated 

explicitly. Note the logarithmic scaling of the y-axis. 
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Table 1. Description of LogSPM parameters and their prior distributions. 

Parameter Description Prior 

rgeMax Groundwater recharge at full saturation log(rgeMax) ~ N(3,32) 

kEt Evapotranspiration (ET) coefficient log(kEt) ~ N(0,42) 

kS Saturated area function parameter log(kS) ~ N(-2,42) 

kGw Baseflow coefficient log(kGw) ~ N(-6,62) 

kDp Percolation coefficient log(kDp) ~ N(0,52) 

kStream Stream coefficient log(kStream) ~ N(-1,22) 
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Experiment B details 

Name ┼ 
Handles 

input 
errors 

Prior 
precision of 

p(μr) and p(σr) 

Handles 
output 
errors 

Stochastic 
CRR model 

Interpretation 
of remnant 

errors € 

Treatment 
of 

structural 
errors 

Inferred 
quantities

MCMC 
iterations 
N £ (x 103) 

Total CPU 
time$ (hours) 

SLS no n/a no ¥ no OIS 
Additive, 
lumped 
with IO 

7 1.8 0.04 

O no n/a yes no IS + F 
Additive, 
lumped 
with I 

7 0.3 0.04 

OP no n/a yes yes I + F P 165 91.5 0.55 
OI-1 yes high yes no S + F Additive 260 48.6 0.73 
OI-2 yes medium yes no S + F Additive 260 62.4 0.82 
OI-3 yes low yes no S + F Additive 260 205.0 1.31 

OIP-1 yes high yes yes F P 418 176.6 2.45 
OIP-2 yes medium yes yes F P 418 624.8 5.41 
OIP-3 yes low yes yes F P 418 ∞ ∞ 

┼ Name is constructed as follows: SLS = standard least squares method, O = uses the (heteroscedastic) output error model, I = recognizes input 
uncertainty, P = uses a stochastic parameter to characterize structural errors. The numbers 1, 2, 3 denote decreasing prior precision 

€ Described as follows: O = denotes ignored output errors, I = denotes ignored input errors, S = denotes ignored structural errors, F = denotes 
errors remaining from imperfect error models (as opposed to ignored sources of uncertainty) 

£ Number of MCMC iterations needed for a max Gelman-Rubin criterion below 1.2 in Experiment B 

Table 2. Summary of calibration schemes in experiments A-C and run details of Experiment B. 

¥ SLS does not distinguish between output and structural errors

$ Standard desktop 2GHz CPU for Experiment B 
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Table 3. Estimated hyper-parameters of rainfall data errors (log-multipliers). The first number is 
the marginal posterior mean of the hyper-parameter, the number in brackets is the marginal 

posterior standard deviation. 

 

BATEA Model Hyper-mean μr Hyper-SD σr 

OI-1 -0.200 [0.001] 0.205 [0.003] 

OI-2 -0.203 [0.011] 0.499 [0.038] 

OI-3 -0.500 [0.069] 0.862 [0.074] 

OIP-1 -0.200 [0.001] 0.201 [0.003] 

OIP-2 -0.200 [0.009] 0.349 [0.059] 

OIP-3 Did not converge 
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