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Abstract  

The lack of a robust framework for quantifying the parametric and predictive uncertainty 

of conceptual rainfall runoff (CRR) models remains a key challenge in hydrology. The 

Bayesian total error analysis (BATEA) methodology provides a comprehensive 

framework to hypothesize, infer and evaluate probability models describing input, output 

and model structural error. This paper assesses the ability of BATEA and standard 

calibration approaches (standard least squares (SLS) and weighted least squares (WLS)) 

to address two key requirements of uncertainty assessment: (i) reliable quantification of 

predictive uncertainty, and (ii) reliable estimation of parameter uncertainty. 

The case study presents a challenging calibration of the lumped GR4J model to a 

catchment with ephemeral responses and large rainfall gradients. Post-calibration 

diagnostics, including checks of predictive distributions using quantile-quantile analysis, 

suggest that, while still far from perfect, BATEA satisfied its assumed probability models 

better than SLS and WLS. In addition, WLS/SLS parameter estimates were highly 

dependent on the selected raingauge and calibration period. This will obscure potential 

relationships between CRR parameters and catchment attributes and prevent the 

development of meaningful regional relationships. Conversely, BATEA provided 

consistent, albeit more uncertain, parameter estimates and thus overcomes one of the 

obstacles to parameter regionalization. However, significant departures from the 

calibration assumptions remained even in BATEA, e.g., systematic over-estimation of 

predictive uncertainty, especially in validation. This is likely due to the inferred rainfall 

errors compensating for simplified treatment of model structural error. 
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1 Introduction 
Given the significance of water in terrestrial and aquatic ecosystems, hydrological models 

are an integral part of virtually all environmental models formulated at the catchment 

scale. This paper focuses on conceptual rainfall-runoff (CRR) models, which aim to 

capture the dominant catchment dynamics while remaining parsimonious and 

computationally efficient. However, their parameters are not directly measurable and 

must be inferred (“calibrated”) from the observed data. 

Characterizing the uncertainty in runoff predicted by a CRR model has attracted the 

attention of hydrologists over many years [Beven and Binley, 1992]. Yet recent reviews 

of CRR model calibration, for example, Kuczera and Franks, [2002] Kavetski et al., 

[2002; 2006a; 2006b]; Vrugt et al., [2005] and Wagner and Gupta, [2005] note the lack 

of a robust framework that accounts for all sources of error (input, model structural and 

output error).  

The lack of a robust calibration framework raises three problems in CRR modeling: (i) 

quantifying the predictive uncertainty in runoff and other model outputs remains 

problematic; (ii) the regionalization of CRR parameters continues to be confounded by 

biases in the calibrated parameters and unreliable assessment of parameter uncertainty; 

and (iii) discriminating between competing CRR model hypotheses is difficult because 

the precise causes of poor model performance are unclear. 

In the quest for a more robust and comprehensive calibration and uncertainty estimation 

methodology, Kavetski et al. [2002; 2006a; 2006b]  and Kuczera et al. [2006] developed 
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the Bayesian total error analysis (BATEA) framework. Its core ideas are: (1) Specify 

explicit probability models for each source of uncertainty (input, output and model 

structural errors); (2) Where necessary, use hierarchical techniques to implement these 

probability models within a Bayesian inference framework; (3) Where available, include 

a priori information about the catchment behavior and data uncertainty;  (4) Jointly infer 

the parameters of the CRR model and any unknown parameters of the error models; (5) 

Examine posterior diagnostics to check the assumptions made in Step (1). BATEA 

allows, indeed, requires, modelers to explicitly hypothesize, infer and evaluate 

assumptions regarding each source of uncertainty, and generates model predictions 

accounting for all uncertainties included in the analysis. 

Earlier BATEA studies focused on the derivation of the posterior distribution given 

specific CRR and uncertainty models [Kavetski et al., 2002; 2006a; 2006b]. Since the 

CRR model represents hypotheses describing hydrological dynamics and the uncertainty 

models represent hypotheses regarding the uncertainty in the calibration data, it is critical 

to evaluate these assumptions a posteriori and identify those that do not stand up to 

empirical scrutiny. 

The objective of this study is to compare and scrutinize the assumptions made in 

traditional least-squares and BATEA calibrations. Specifically, the paper investigates the 

ability of these methods to provide: 1) Reliable quantification of predictive uncertainty; 

and 2) Consistent parameter estimation. The evaluation of competing CRR model 

hypotheses depends on successfully dealing with these two goals and will be undertaken 

in future work. 
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The empirical assessment is based on a challenging case study of a catchment with 

markedly ephemeral hydrological dynamics and strong rainfall gradients. The 

quantification of predictive uncertainty is scrutinized by systematically assessing the 

credibility of the hypotheses underpinning four different calibration/prediction 

approaches, including two traditional least-squares-based methods and two BATEA-

based methods. The consistency of parameter estimates obtained by each calibration 

method is scrutinized by calibrating the same CRR model to different rainfall gauges and 

time periods. 

Of particular note is the application of a quantile-based diagnostic that directly evaluates 

whether the predictive distribution is consistent with the observed time series. This type 

of analysis, originally proposed in probabilistic forecasting [Laio and Tamea, 2007], is 

more comprehensive than traditional evaluation statistics such as the Nash-Sutcliffe index 

[Nash and Sutcliffe, 1970], which do not evaluate whether the predictive uncertainty is 

consistent with the observed data.  

This paper is structured as follows. Section 2 outlines the BATEA framework, including 

definitions of the error models. Section 3 describes the case study, including the 

catchment characteristics and the GR4J CRR model [Perrin et al., 2003]. Section 4 

outlines the calibration frameworks used in this paper: two traditional methods (standard 

least squares (SLS) and weighted least squares (WLS) schemes) and two BATEA 

methods (differing in the assumed error models). Section 5 applies posterior diagnostics 

to check the adequacy of the predictive distributions, while Section 6 checks the 

consistency of the parameter inference. Section 7 discusses avenues for further 

improvements of the characterizations of predictive uncertainty, while Section 8 
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discusses the potential of BATEA for model extrapolation and regionalization. Section 9 

outlines future applications of BATEA to other types of hydrological models and 

catchments. The main conclusions are summarized in section 10.      

2 The BATEA framework 

The BATEA framework conceptualizes the propagation of error in the CRR model using 

a hierarchical model. A schematic of this hierarchical model in calibration mode is  

depicted in Figure 1. Its components (the specific uncertainty models) represent 

hypotheses that will be scrutinized in the case study. 

2.1 CRR model representation 

Let { }; 1, ...,t t= =X X T  denote the true inputs of the CRR model (e.g., rainfall and 

potential evapotranspiration (PET)) and { }; 1, ...,t t= =X X T% %  be the observed values of 

these inputs. Similarly, let { };t= =Y Y 1, ...,t T  denote the true outputs (e.g., runoff), 

{ }; 1, ...,t t T= =Y Y% %  the observed outputs and { }ˆ ˆ ; 1, ...,t t= =Y Y T

)

 the outputs predicted 

by the model. Here, T is the total number of time steps. In this presentation, we assume 

equal length and resolution of inputs and outputs (this is not a necessary assumption, e.g., 

Kavetski et al. [2006b] used hourly rainfalls and daily runoffs in a BATEA calibration). 

A CRR model M() computes the simulated runoff value at time step t as follows 

  (1) 1: 0
ˆ ( , ,t tM=Y X θ S
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where X1:t is the history of inputs for time steps 1 to t, θ are the CRR parameters and S0 

denotes the initial conditions (which can be either inferred or handled using a warm-up). 

2.2 Input errors 

The observed input data of CRR models is often corrupted by sampling and measurement 

errors. In particular, areal rainfall estimates can have standard errors exceeding 30%, 

especially if the gauge network is sparse [Linsley and Kohler, 1988]. 

The uncertainty in the inputs is described in BATEA using a probability model of the 

following general form [Kavetski et al., 2006a]:  

 ( , )f= %X Xϕ  (2) 

 ~ ( | )p Φϕ ϕ  (3) 

where  are variables that are used to estimate the true inputs φ X  given the observations 

%X  and a hypothesized error function f(). Since the true inputs are not observable, 

{ }( ) ;i t 1, ...,tϕ =

( | )p φ Φ

T

φ

φ =  are not observable and their values are inferred [Renard et al., 

2008a]. In Bayesian hierarchical terminology,  are referred to as “latent” variables, the 

distribution  is referred to as the “hyperdistribution” and  are the 

“hyperparameters”. 

Φ

In this paper, we follow Kavetski et al. [2006a] and assume that observed rainfall is 

corrupted by multiplicative errors, hypothesizing the following relationship between 

observed and true rainfall: 
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 ( )t i t tX Xϕ= %  (4) 

where ( )i tϕ  is referred to as a rainfall multiplier. 

Following Kuczera et al. [2006], the rainfall multipliers are assumed to be statistically 

independent and follow a log-normal distribution with hyperparameters 2( , )μ σ=Φ ,  

 2
( )log ~ ( , )i t Nϕ μ σ  (5) 

If the data accuracy is unknown, the hyperparameters are also unknown, but can be 

included in the inference list. 

The “index function” i(t) defines the hypothesized temporal structure of the input errors. 

Two competing hypotheses will be considered and scrutinized in this paper: 

(i) different rainfall multipliers for every day with significant rainfall. This yields the 

simple index function i(t)=t; 

(ii) identical rainfall multipliers for time steps within the same storm event. This restricts 

the number of latent variables and is equivalent to assuming perfect autocorrelation of 

input errors within single storm events [Kavetski et al., 2006a]. If the time series is 

partitioned into K epochs {( ) }1, -1 ; k = 1,..., Kk kt t + , the index function is i(t)=k for tk ≤ t < 

tk+1-1.  

Note that BATEA is not restricted to multiplicative errors, nor to the lognormal 

assumption. These merely represent specific initial hypotheses that should be tested and, 

if found unsupported by the empirical evidence, replaced by more adequate assumptions. 
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Note that the input error model (4) is only applied to the rainfall, whereas the observed 

PET is assumed to be exact. More generally, BATEA can include probabilistic error 

models describing errors in both rainfall and PET. However, since rainfall is the primary 

driving input of CRR models and is more spatially and temporally variable than PET, this 

case study restricts its attention solely to uncertainties in rainfall. The implications of this 

are discussed in section 7.1. 

2.3 Structural errors 

A CRR model is a simplified approximation of the catchment dynamics and therefore is 

unlikely to reproduce the true outputs even if the true inputs were known. We refer to 

these errors as structural errors of the hydrologic model. A major portion of these errors 

is likely to arise due to spatial and temporal averaging/lumping. For example, the 

response of a catchment to a rainfall event with a given total depth depends on the 

localization of the main mass of the rainfall field and its trajectory through the catchment. 

However, a lumped CRR model will not be able to reproduce the different runoff 

responses arising from rainfall fields with the same total depth but different spatial and 

temporal distributions. 

One possibility for characterizing structural errors using the hierarchical BATEA 

framework is to allow one or more CRR parameters to stochastically vary from storm to 

storm, leading to the “storm-dependent” parameter concept introduced by Kuczera et al. 

[2006]. These stochastic parameters can be modeled hierarchically using latent variables 

(analogously to using latent variables to describe input errors). In Error! Reference 

source not found., the latent variables for the stochastic CRR parameters are denoted  λ
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and their hyperparameters are denoted . However, this paper does not use the 

hierarchical description of structural errors because investigations with synthetic data 

have indicated that joint inference of both input error and structural error with vague 

priors can become ill-posed [Renard et al., 2008b]. Addressing this problem will require 

additional information about the input data corruption mechanisms and will be 

considered in future studies. See further discussion in section 7.1.  

Λ

ˆ

ˆ %

It is also possible to account for model structural error using the output error model 

[Huard and Mailhot, 2008; Kavetski et al., 2006a]. However, this approach is not used in 

this paper because the output error model is derived from rating curve analysis.  

2.4 Output errors 

Given a set of latent variables (multipliers), the true rainfall can be estimated using eqn. 

(4) and supplied to the CRR model to generate the simulated outputs Y . However, the 

simulated output Y  will not equal the observed output Y  for several reasons: 

(i) observed outputs are affected by sampling and measurement error, e.g., runoff data are 

affected by rating curve errors (“output measurement errors” in Figure 1); 

(ii) a simple model such as eqn (4) will not recover the true inputs exactly; and 

(iii) structural errors are unlikely to be completely eliminated even if stochastic time-

varying parameters are implemented. 

The errors associated with (ii) and (iii) are labeled “remnant model errors” in Figure 1. 

It is therefore necessary to specify a distribution for residual errors , or, ˆ−ε = Y Y%
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equivalently, an output error model that describes the distribution of observed outputs 

given the simulated outputs, 

ˆ~ ( | , )t tpY Y Y Ξ% %  (6) 

where  are the parameters of the output error model (these can be either inferred or 

fixed a priori). 

Ξ

For example, if we assume that the output errors are independent and Gaussian, i.e., 

, it can be shown that . However, 

output errors are unlikely to have such simple form, and more complicated probability 

models allowing heteroscedasticity and autocorrelation might be necessary.  

2ˆ I% 2ˆ ˆ% %,  ( ; )N εσ=Y Y + ε ε ~ 0 ~ ( | ) ( )p N εσ=Y Y Y,Ξ Y, I

In this paper, BATEA and WLS use a heteroscedastic output error model derived from 

rating curve analysis (section 4.2). Since this error model reflects solely output 

measurement errors, remnant errors are ignored in the case study. 

2.5 Inference 

In general, BATEA can make an inference on all unknown quantities of the hierarchical 

structure, including 

• Latent variables of input errors φ  

• Hyperparameters of input errors Φ  

• Deterministic CRR parameters θ 
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• Latent variables of stochastic CRR parameters λ   

• Hyperparameters of stochastic CRR parameters Λ  

• Output errors parameters Ξ  

The BATEA posterior distribution is, up to a constant of proportionality, given by 

Kavetski et al. [2002, 2006a, b] as follows: 

( , | ) ( ) ( ) ( ) ( ) ( ) ( )p p p p p p∝θ, λ,Λ,φ,Φ Ξ Y,X Y ( )p p|θ, λ,φ,Ξ, X λ | Λ φ |Φ θ Λ Φ Ξ% % % %  (7) 

The quality of the inference using eqn. (7) is contingent on the strength of prior 

information on ,  and . For example, Kavetski et al. [2006a] show that in the 

absence of prior information on  and , the inference is ill-posed even if there are no 

stochastic CRR parameters. To keep the inference well-posed in this study, attention was 

restricted to input errors. Accordingly, no stochastic CRR parameters were used and the 

output errors parameters  were specified a priori. Thus the posterior becomes  

Ξ Λ Φ

Ξ Φ

Ξ

p( | ) ( ) ( ) ( ) ( )p p p p∝θ,φ,Φ Y,X,Ξ Y |θ,φ,Ξ, X φ |Φ θ Φ% % % %  (8) 

which comprises three parts: (i) the likelihood of observed outputs; (ii) the population 

distribution of latent variables conditioned on hyperparameters; and (iii) priors of 

deterministic parameters and hyperparameters. 

The use of latent variables for characterizing input and structural errors comes at the cost 

of the dimensionality of the posterior distributions (7) and (8): the number of quantities 

inferred by BATEA increases with the length of the calibration period and can include 

hundreds or more multipliers. As a result, maximizing and sampling the BATEA 
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posterior distribution is computationally challenging, requiring efficient numerical 

methods and careful implementation. Strategies for implementation of Markov chain 

Monte Carlo (MCMC) methods that deal with these challenges are reported elsewhere 

[Kuczera et al., 2007; Renard et al., 2008a]. 

3 Catchment and data 

BATEA makes explicit the hypotheses used by the modeler to describe data errors and 

catchment dynamics (e.g., in this paper we assume multiplicative lognormal rainfall 

errors and the GR4J CRR model). The posterior distribution (8) is conditioned on all 

these hypotheses. Therefore, merely reporting the posterior distribution of model 

parameters (and latent variables and hyperparameters) falls well short of an adequate 

analysis, since it fails to scrutinize the credibility of the underlying hypotheses. It is 

essential that these hypotheses be challenged with all available evidence and, if found 

wanting, revised. Naturally, the same scrutiny needs to be applied to any model 

identification methodology, but is seldom attempted in hydrology (see Yang et el. [2007] 

and Feyen et al. [2007]). 

The case study illustrates methods for assessing the credibility of the hypotheses made 

during hydrological calibrations using BATEA or any other probabilistic inference 

framework. To subject the calibration methods to a thorough evaluation, we selected a 

case study catchment with several challenging attributes: 

1. The catchment should have a low runoff coefficient and ephemeral flow regime. This 

type of catchment is particularly difficult to model because sustained periods of little 
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or no flow imply low information content of the runoff time series for parameter 

estimation [Wooldridge et al., 2003]. 

2. The catchment should be subject to significant rainfall gradients and have multiple 

raingauges, which is likely to produce significant input uncertainty. 

We selected the Horton catchment, located in northern inland New South Wales, 

Australia (Error! Reference source not found.) [Peel et al., 2000]. It has an average 

annual rainfall of 819 mm and an average annual runoff of 108 mm, yielding an annual 

runoff coefficient of 0.13. The catchment area is 1920 km2 and it contains 4 daily 

raingauges (Table 1 reports the elevation and average daily rainfall for each gauge). 

There is a strong rainfall gradient in the catchment, with higher rainfall in the south-

western areas of the catchment – indeed the average daily rainfall recorded at the wettest 

gauge (gauge 54126) is 86% higher than that of the driest gauge (gauge 54011). 

The ephemeral nature of the Horton catchment can be seen from the flow duration curve 

(Error! Reference source not found.), where 97.5% of daily runoff is below 2 mm. The 

observed time series (Error! Reference source not found.) indicate that the catchment 

experiences very few significant runoff generating events. 

Following the approach of Peel at al [2000], the areal PET was taken as the mean 

monthly value based on estimates provided by the Australian Bureau of Meteorology 

[Wang et al., 2000]. 
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3.1 Calibration and validation periods 

Two calibration periods of different lengths and raingauges were considered: a 2-year 

calibration period ranging from 21 April 1978 to 10 April 1980, and a 5-year period 

ranging from 1 January 1983 to 31 December 1987. In both cases, initial store variables 

were fixed using a 100-day warm-up prior to the calibration period. For the 5-year period 

only raingauges 54138 and 54021 were used because the other gauges had too much 

missing data. Validation was undertaken for the 13-year period from 15 August 1990 to 

21st December 2003 using raingauges 54138 and 54021 because the other raingauges 

were discontinued during this period. 

3.2 CRR model 

We used a lumped rather than distributed model because lumped models are predominant 

in hydrological practice due to their much lower data requirements and lower 

computational burden. The GR4J model was used because it has a parsimonious form 

with only four calibrated parameters and has been extensively tested over hundreds of 

catchments worldwide, with a range of climatic conditions from tropical to temperate and 

semi-arid catchments [Perrin et al., 2003]. Error! Reference source not found. shows a 

schematic of the GR4J model.  

GR4J has four parameters: the capacity of the production store 1x (mm), the groundwater 

exchange coefficient 2x (mm), the capacity of the non-linear routing reservoir 3x (mm) 

and the unit hydrograph time base 4x (days). 
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For computational convenience, we use transformed parameters 

~ ~ ~ ~ x), log(, log(),log( 44332211 )5.0= −=== xxxxxxxx , where %  denotes the original 

parameter. This unconstrains the estimation problem with all transformed parameters 

being defined over ( ) .  ,−∞ +∞

4 Calibration frameworks 

The four calibration frameworks compared in the case study are summarized in Table 2 

and are briefly described below. 

4.1 Standard least squares (SLS) 

SLS seeks to minimize the sum of the squares of the differences between observed and 

simulated responses. It is perhaps the most widely used calibration criterion in hydrology 

and is equivalent to maximizing the Nash-Sutcliffe statistic. SLS ignores input errors and 

assumes that the output errors are independently and normally distributed with zero mean 

and constant variance (homoscedastic errors). In this study, the output error variance is 

inferred as part of the calibration process. We also augment the SLS method with a single 

multiplier for the entire rainfall series in an attempt to correct for systematic biases in the 

rainfall measurements. 

4.2 Weighted least squares (WLS) 

A major shortcoming of SLS in hydrological calibration is that output errors rarely, if 

ever, have a constant variance. To investigate this, the rating curve data for the Horton 
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catchment was examined to estimate the runoff measurement errors due to errors in the 

rating curve. 

Error! Reference source not found. shows the runoff measurement errors (the 

difference between the runoff gaugings and the predicted runoff from the rating curve) as 

a function of the predicted rating curve runoff. Since practitioners are usually interested 

in high flows, we focused on runoff gaugings exceeding 0.5 mm. The data for defining 

the runoff measurement error model is quite sparse, with separate clusters of low/medium 

runoffs and a few high values. Nonetheless, there is a clear proportionality between 

runoff measurement error and the predicted runoff. 

A simple heteroscedastic model was used by assuming that the runoff measurement 

errors are normally distributed with zero mean and a standard deviation εσ linearly 

related to the predicted runoff, 

 a byεσ = + %  (9) 

This relationship was fitted to the runoff measurement error data using WINBUGS 

[Spieghalter et al., 2003], yielding the posterior distribution of a and b. The posterior 

uncertainty in a and b made little difference to the 90% probability limits of the runoff 

measurement error model. Consequently, we fixed these parameters to their expected 

values  and . The corresponding 90% probability limits of the runoff 

measurement error model are shown in Error! Reference source not found. and were 

judged to be satisfactory. 

0.4a = 0.086b =
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Using the heteroscedastic runoff measurement error model  as the output error model has 

two main effects on the calibration: (a) less weight is given to days with high runoff; and 

(b) less weight is given to days with very low runoff (since the runoff measurement error 

eqn  has an intercept of 0.4). 

As with SLS, our WLS implementation also includes a single rainfall multiplier for all 

time steps. 

4.3 BATEA with daily rainfall multipliers (BATEA_DAILY) 

BATEA_DAILY uses a separate rainfall multiplier for each day with non-zero rainfall. 

Auxiliary investigations identified a significant number of insensitive rainfall multipliers, 

which exert little impact on the simulated runoff and are effectively redundant (they were 

associated with days with low rainfall which did not produce significant runoff). Such 

insensitive rainfall multipliers unnecessarily increase the computational cost of the 

inference. A preprocessing heuristic procedure was developed to identify and exclude the 

insensitive rainfall multipliers from the analysis (see auxiliary material, Appendix A). 

Since this procedure makes a number of assumptions that could potentially result in 

excluding important multipliers, a conservative approach was adopted where only very 

insensitive rainfall multipliers were removed. Future work will refine this preprocessing 

heuristic using more robust techniques, but is tangential to this paper.  

Even excluding insensitive multipliers using the preprocessing heuristic, 

BATEA_DAILY was used only with a 2-year calibration period due to the computational 

burden associated with inferring many hundreds of latent variables. 
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The output error model was the heteroscedastic runoff measurement error model  also 

used in WLS. Since the parameters of this model were estimated independently using 

rating curve data, they were not be inferred during the calibration. 

4.4 BATEA with storm epoch rainfall multipliers 

(BATEA_STORM) 

BATEA_STORM applies individual rainfall multipliers to entire storm epochs rather 

than to individual days. This requires subdividing the rainfall series into storm epochs 

separated by inter-storm dry spells of two or more days followed by a wet day with 

rainfall exceeding 0.5 mm. BATEA_STORM implements a coarser treatment of rainfall 

errors than BATEA_DAILY: it merely uses a rainfall multiplier to scale the storm depth 

while assuming the relative rainfall pattern of the storm is correct. This approach has two 

benefits: (i) a reduction in the number of inferred latent variables; and (ii) it is more likely 

that storm epoch multipliers are statistically independent from one epoch to the next 

because they operate over larger time scales. In contrast, consecutive daily multipliers 

may compensate for one another and thus their estimates can become negatively 

correlated. 

5 Posterior diagnostics 

An integral part of the Bayesian approach is a critical evaluation of its hypotheses given 

the available evidence using a range of posterior diagnostics. 

Throughout the rest of this paper, the notation “method_raingauge_period” is used to 

identify the calibration method, the raingauge providing input to the GR4J model, and the 
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calibration period with “2yr” referring to the period 21 April 1978 to 10 April 1980, and 

“5yr” to the period from 1 January 1983 to 31 December 1987.  

5.1 Comparison of predictive distribution of runoff to observed 

data 

Error! Reference source not found. shows the total predictive uncertainty of the 

simulated runoff time series for the 2-year calibration period using raingauge 54138 and 

compares it to the observed runoff. The total predictive uncertainty for the simulated 

runoff series in calibration includes: (i) the uncertainty due to input errors, (ii) uncertainty 

due to output errors and (iii) the uncertainty in the inferred CRR parameters. The 

uncertainty arising from input errors was estimated by sampling from the posterior 

distribution of rainfall multipliers. For BATEA, the rainfall multipliers vary storm-by-

storm or day-by-day, whereas for SLS and WLS a single rainfall multiplier is used for the 

entire time series. 

The poor fits obtained using the SLS and WLS methods are typical of practical 

applications of these methods, with significant runoff events missed (e.g., 50% errors 

during major flows). Note that WLS by construction will not fit the runoff peaks as well 

as SLS because it gives less weight to high runoffs (section 4.2). On the other hand, the 

errors of the SLS fit are strongly heteroscedastic, which violates the constant error 

variance assumption underpinning SLS. Although this is typical in practice, and is well 

known, SLS continues to be widely used as a fitting criterion. 

Author-produced version of the article published in Water Resources Research, Vol. 45, doi:10.1029/2008WR006825, 2009



In contrast, BATEA_DAILY and BATEA_STORM produce much better fits to the 

observed data (for clarity, Figure 6 shows only BATEA_STORM results; the 

BATEA_DAILY results are very similar). However, since improved BATEA fits arise 

from estimating the rainfall errors during model calibration visual examination of 

observed and predicted responses are insufficient to conclusively determine whether the 

BATEA hypotheses are supported by the data. More probing diagnostics are required. 

5.2 The predictive QQ plot  

In the context of quantifying the uncertainty in the model predictions the outcome of the 

analysis takes the form of a predictive distribution. Regardless of the method used to 

derive this distribution two important points must be emphasized: 

1. The predictive distribution is conditioned on the assumptions made during the 

inference. Consequently, unsupported assumptions may lead to inadequate predictive 

distributions. It follows that the estimated predictive distribution must be scrutinized 

(“validated”); as discussed by Hall et al., [2007]: “Without validation, calibration is 

worthless, and so is uncertainty estimation”.  

2. The predictive uncertainty has to be validated using observations. From a 

methodological point of view, this requires a diagnostic approach that compares a 

time-varying distribution (the predictive distribution at all times t) to a time series of 

observations. This is a much more stringent test than validation methods currently 

used in hydrology, which simply compare two time series (observations and 

“optimal” simulations). Indeed, standard goodness-of-fit assessments (e.g. using the 
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Nash-Sutcliff statistic) can not check if the predictive distribution is consistent with 

the observed data. 

Consequently, the runoff time series shown in Error! Reference source not found. are 

insufficient to properly assess whether the predictive uncertainty is consistent with the 

observed data. For this task, we use the predictive QQ plot, adapted from the verification 

tools used for probabilistic forecasts of hydrological and meteorological variables 

[Dawid, 1984; Gneiting et al., 2007; Laio and Tamea, 2007]. 

The predictive QQ plot is constructed as follows: Let Ft be the cumulative distribution 

function (cdf) of the predictive distribution of runoff at time t, and ty%  the corresponding 

observed runoff. If the hypotheses in the calibration framework are consistent with the 

data, the observed value ty%  should be consistent with the distribution Ft. Hence, under 

the assumption that the observation ty%

( )

 is a realization from the predictive distribution, 

the p-value  is a realization from a uniform distribution on [0,1]. The predictive 

QQ plot compares the empirical cdf of the sample of p-values 

t tF y%

( )( )t tF y%
1,...,t T=

 with the cdf 

of a uniform distribution to assess whether the hypotheses are consistent with the 

observations. The predictive QQ plot can be interpreted as follows (Error! Reference 

source not found.): 

a) If all points fall on the 1:1 line, the predicted distribution agrees perfectly with the 

observations. 

b) If an observed p-value is 1.0 or 0.0, the corresponding observed data lies outside the 

predicted range, implying that the predictive uncertainty is significantly underestimated. 
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c) If the observed p-values cluster around the mid-range (i.e., a low slope around 

theoretical quantile 0.4-0.6), the predictive uncertainty is overestimated.  

d) If the observed p-values cluster around the tails (i.e., a high slope around theoretical 

quantile 0.4-0.6), the predictive uncertainty is underestimated. 

e) If the observed p-values at the theoretical median are higher/lower than the theoretical 

quantiles, the modeled predictions systematically under/over-predict the observed data. 

The predictive QQ plot provides a simple, intuitive and informative summary of the 

performance of probabilistic prediction frameworks. Very importantly, it is “distribution-

assumption-free” in the sense of not making any additional assumptions beyond those 

used during the calibration. Indeed, it is a direct test of these assumptions. 

Error! Reference source not found. presents the predictive QQ plot for the 2-year 

calibration and 13-year validation period for SLS, WLS and BATEA_STORM and 

BATEA_DAILY for raingauge 54138. We focus separately on the very low flows (runoff 

below 2 mm) and on the significant forcing events (runoff exceeding 2 mm). 

When BATEA is used in prediction mode the rainfall multipliers are not inferred (they 

can only be inferred in calibration mode). Since the rainfall errors cannot be inferred in 

validation they are sampled from the hyperdistribution inferred during the calibration. 

All QQ plots are far from ideal. For runoffs below 2 mm (Figures 8(a) and 8(c)), there is 

significant overestimation of the uncertainty. In SLS this occurs because the output error 

variance is assumed homoscedastic, while for WLS, BATEA_STORM and 
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BATEA_DAILY this occurs because the assumed output error model uses a standard 

deviation of 0.4 mm for near-zero runoffs, which appears too high. 

The differences in the calibration methods for runoffs exceeding 2mm are more distinct 

(Figures 8(b) and 8(d)). Both SLS and WLS underpredict the high flows, with numerous 

observations lying outside the predicted range. The QQ plot for 

BATEA_STORM/BATEA_DAILY is much closer to the 1:1 line than both WLS and 

SLS, but there remains systematic underprediction of the high flows. The reason for this 

underprediction is currently unclear.  

Overall, while still far from perfect, BATEA yields a noticeable improvement on SLS 

and WLS in terms of the adequacy of predictive uncertainty in calibration and validation. 

5.3 Residual error diagnostics 

The predictive QQ plot provides an overall assessment of whether the total predictive 

uncertainty is consistent with the observations. More specific diagnostics are required to 

verify the assumptions of the individual error models. In particular, the residual errors 

should conform to the output error model. Following Carlin and Louis [2000], the 

residuals were computed as the difference between the observed runoff and the expected 

value from the predictive distribution. Note that collapsing the posterior (whether to 

modal, expected, or median statistics) in this way can result in a substantial loss of 

information [Bernardo and Smith, 2000]. 
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In order to simplify the comparison between calibration methods that use different output 

error models, all residuals are standardized by the standard deviation estimated using the 

output error model. 

In BATEA, the residual error diagnostics are meaningful only in calibration mode, 

because the rainfall multipliers are unknown in validation and are sampled from the 

(posterior) hyperdistribution. In that case the predictive distribution of runoff includes a 

significant input-error contribution and can not be expected to be consistent with the 

output error model (even if remanent errors were included in the analysis). This does not 

imply that BATEA cannot be scrutinized in validation mode: the runoff predictive 

distribution should be consistent with the observed data and this evaluation has already 

been undertaken using the predictive QQ plot (section 5.2).  

5.3.1 Distributional properties 

Error! Reference source not found. presents a quantile-quantile (QQ) plot for the 

residual errors for the calibration periods on days with high (> 2 mm) and low (< 2 mm) 

runoff. If the output error hypothesis (Table 2) is adequate, the residuals should follow 

the straight line labeled “theoretical”. None of the QQ plots for low runoffs are ideal. All 

plots exhibit fat-tail behavior characteristic of outliers, with SLS and WLS notably worse 

than the BATEA.  

For all runs, the slope at the centre of the distribution is less than the assumed slope, 

implying that the residual variance is less than expected from the hypothesized output 

error model. In the case of BATEA, this discrepancy arises because on most days the 
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observed and simulated runoffs are virtually zero, whereas it is assumed that the standard 

deviation of output errors is 0.4 mm when the simulated runoff is zero. 

Adequate treatment of errors in near-zero runoffs remains problematic. Allowing the 

standard deviation of output error to approach zero as simulated runoff goes to zero can 

introduce major statistical artifacts: the likelihood of near-zero observed outputs then 

exerts enormous (and usually undue) leverage on the objective function. 

For high runoff, BATEA outperforms both WLS and SLS providing a much better, yet 

still imperfect match to the theoretical distribution. On the one hand, both SLS and WLS 

exhibit fat tails and a systematic bias: most of the standardized residuals are negative, 

which highlights a systematic under-estimation of high flows. On the other hand, 

BATEA_STORM and BATEA_DAILY yield residuals in far better agreement with the 

output error model assumptions.  

5.3.2 Autocorrelation 

Another important assumption of the output error model is that the residuals are 

statistically independent. To test this assumption, Error! Reference source not found. 

presents partial autocorrelation functions (PACF) of the residuals. In calibration, the 

independence assumption is clearly violated by SLS and WLS. In the case of BATEA, 

the lag-1 correlation, though statistically significant, is relatively low: 0.3 for 

BATEA_STORM and 0.4 for BATEA_DAILY. Note that the autocorrelation at lag-2 is 

statistically significant for BATEA_DAILY but not for BATEA_STORM.  
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5.4 Diagnostics for latent variables 

Hierarchical methods using latent variables need a posteriori checks of the adequacy of 

the hyperdistribution. Since in this BATEA application we hypothesized that the rainfall 

multipliers (both for daily and storm epochs) are independent and lognormal, these 

assumptions need posterior checks. 

Examination of the posteriors of the individual rainfall multipliers revealed that the 

majority of multipliers had a relatively large posterior uncertainty. Error! Reference 

source not found. shows a histogram of the posterior standard deviations of all rainfall 

multipliers in the BATEA_DAILY_54138_2yr and BATEA_STORM_54138_2yr 

calibrations. In both cases, there is evidence of a mixture of two different types of 

multipliers; group A with a low posterior standard deviation and group B with a high 

posterior standard deviation. 

Error! Reference source not found. also shows the posterior distribution of the standard 

deviation for the rainfall multipliers. In both cases, the standard deviation of the 

individual multipliers in group B (high standard deviation) corresponds to the posterior 

standard deviation of the multipliers. This indicates that these rainfall multipliers remain 

uncertain and are not informed by the rainfall/runoff data (i.e., they are insensitive 

multipliers that were missed by the heuristic procedure outlined in section 4.3). 

The posterior of insensitive multipliers becomes near-identical to the posterior 

hyperdistribution (as seen in Error! Reference source not found.). This can by 
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demonstrated by considering the marginal posterior of the insensitive rainfall multipliers, 

 (using eqn (8)): bφ

( | ) ( | ) ( | )p p p d= ∫b bφ Y,X φ Φ,θ,Y, X Φ,θ Y, X Φ θ% % % % % % d     (10) 

Given the insensitivity of the multipliers to the data, this further simplifies to 

[ ]
[ | ]

( | ) ( | ) ( | ) ( | )E
p

p p p d p= =∫b b
ΦY,X

φ Y, X φ Φ Φ Y,X Φ φ
% %

% % % %
b Φ     (11) 

where the notation [ ]
[ | ]

( | )E
p

p b
ΦY,X

φ Φ
% %

 denotes the “expected posterior hyperdistribution”. 

If the posterior uncertainty in the hyperparameters Φ  is low, the expected posterior 

hyperdistribution is almost identical to the hyperdistribution evaluated with the expected 

posterior hyperparameters. 

This derivation explains why the marginal posterior of the insensitive rainfall multipliers 

becomes near-identical to the expected posterior hyperdistribution (Figure 12). In 

particular, their expectations are near-identical to the posterior expectation of μ and their 

standard deviation becomes very similar to the posterior expectation of σ. 

Moreover, Error! Reference source not found. shows that these insensitive rainfall 

multipliers comprise 85% if the multipliers for BATEA_DAILY_54138_2yr and 80% for 

BATEA_STORM_54138_2yr. The likely cause for this is a combination of the 

ephemeral nature of the catchment and the lower bound of 0.4 mm on the standard 

deviation of output errors (this lower bound appears too high).  
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Error! Reference source not found. shows the QQ-plot of the rainfall multipliers for 

BATEA_STORM_54138_2yr and includes the posterior 95% probability limits and a 

comparison to the theoretical distribution (eqn (5) with posterior expected value of the 

hyperparameters). Again, the slope is less than expected around the mid-range of the 

distribution, suggesting that the lognormal multiplier assumption is not supported and a 

distribution with fatter tails would be more appropriate. Similar findings have been 

reported by Kuczera et al. [2006]. 

However, it is clear that the insensitive multipliers cluster in this mid-range because they 

remain near-identical to the posterior expectation of μ . Therefore the lower slope in the 

mid-range of the QQ plot is caused by insensitive multipliers that are poorly identified 

from the data. Hence, it remains unclear if the lognormal assumption is violated. In 

addition, due to the large number of insensitive multipliers, it is difficult to ascertain the 

autocorrelation properties of these multipliers. Further work is needed to refine the 

selection and analysis of the rainfall multipliers that can be informed by the  

rainfall-runoff data.  

5.5 Analysis of “optimal” parameters and simulations 

Analysis of the “optimal” parameter set, defined here as the parameter set that maximizes 

the posterior probability distribution (hence referred to as “modal parameter set”) is of 

hydrological interest because it provides a continuous model run using the most likely 

CRR model parameters and, for BATEA, rainfall multipliers. However, its significance 

should not be overestimated: focusing solely on the modal predictions in lieu of the entire 
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predictive distribution can cause a substantial loss of information from the full posterior 

and corresponds to a 0-1 loss function [Bernardo and Smith, 2000]. 

5.5.1 Comparison of observed and simulated rainfall/runoff series for BATEA.  

Applying the rainfall multipliers to the observed rainfall time series provides an estimate 

of the true rainfall, hereafter referred to as the “corrected” rainfall. Error! Reference 

source not found. compares the corrected rainfall to the observed rainfall/runoff and the 

simulated streamflow for   BATEA_STORM_54138_2yr (similar results were found for 

BATEA_DAILY_54138_2yr). This figure shows that (i) the rainfall correction is 

relatively moderate and is consistent with other estimates of raingauge measurement 

errors (see section 7.3) and (ii) runoff estimates provided by BATEA modal parameter 

estimates are a close match to the observed runoff (Nash Sutcliffe Statistic=0.93). 

However, as discussed by Huard and Malihot [2008], the comparison of observed and 

optimal simulated outputs can be misleading if the calibration uses extra degrees of 

freedom to account for input errors. Indeed, since the rainfall multipliers are inferred (and 

hence optimized) along with the CRR parameters they can potentially compensate for 

structural errors of the model. This can yield near-perfect matches of the simulated runoff 

to the observed runoff even for a severely flawed CRR model. Consequently, calibration 

under conditions of uncertain inputs requires more probing diagnostics than calibrating to 

error-free inputs. The predictive QQ plot in validation (see section 5.2) is very useful in 

this respect. It is also stressed that the potential interaction of the multipliers and the 

structural errors of the CRR model does not imply that input errors should be ignored 

(see section 7.1 for further discussion). 

Author-produced version of the article published in Water Resources Research, Vol. 45, doi:10.1029/2008WR006825, 2009



5.5.2 Analysis of state variables 

No model assessment is complete without an analysis of the internal state variables, even 

if these do not have a direct physical interpretation. In GR4J the state variables are the 

production and routing stores. The state variables corresponding to the modal parameter 

values were compared for each of the calibration runs (Figures B.1-B.4 in the auxiliary 

material). 

In general, we found no obvious anomalies in the state variables. Empirical analysis 

suggests that the state variables estimated using SLS and, to a lesser extent, WLS, 

depended strongly on the raingauge used in the calibration. Conversely, the state 

variables estimated using BATEA were more consistent. These findings held for both 

calibration periods and both stores (differences between the calibration methods were 

more pronounced for the production store). This is not surprising because BATEA yields 

more consistent parameters and predictions with respect to the raingauges than 

SLS/WLS. Since the simulated runoff is a function of the state variables, consistent 

runoff predictions imply consistent state variable behavior. 

6 Consistency of parameter estimates 

A fundamental assumption made by most calibration frameworks is that the CRR 

parameters are stationary over time. Moreover, one would like the parameters to be 

consistent regardless of the choice of raingauge. To test this assumption, the marginal 

posterior distributions of the GR4J parameters and rainfall multiplier hyperparameters are 

compared for different combinations of calibration periods and raingauges. 
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6.1 Visual assessment of parameter consistency 

Error! Reference source not found. shows the marginal posterior distributions of the 

GR4J parameter 1x  (similar behavior was observed for the other GR4J parameters). 

Analysis of the marginal distributions suggests that: 

1. SLS parameter estimates are highly inconsistent between different calibration periods. 

Likewise the SLS distributions are inconsistent for different raingauges, even if a 

rainfall multiplier (constant over the calibration period) is calibrated to compensate 

for rainfall gradient effects. 

2. WLS parameter estimates display a more consistent behavior, although some of the 

distributions do not overlap. 

3. The posterior spread of SLS estimates is typically much tighter than that of WLS and 

BATEA distributions. The parameter uncertainty reported by BATEA is larger due to 

its recognition of input uncertainty. In general, SLS underestimates the parameter 

uncertainty [e.g., Beven and Binley, 1992; Kavetski et al., 2002]. 

4. The parameter distributions inferred using BATEA_STORM and BATEA_DAILY 

are significantly more consistent than WLS and SLS for all calibration periods and 

raingauges. This is an important finding, since a necessary (though not sufficient) 

condition for successful regionalization of CRR parameters is that the parameter 

estimates be robust with respect to choice of raingauge and calibration period. 
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6.2 Quantitative measures of consistency 

A quantitative measure of the parameter consistency was developed to compare marginal 

posterior distributions across different data sets. This measure was based on decomposing 

the total variance of estimated parameters into within- and between- group variances, 

where the groups are defined according to the raingauge used for calibration, or 

alternatively, according to the calibration period. The measure closely resembles 

analogous criteria used in other statistical applications, including (i) in cluster analysis to 

optimize the cluster groupings [Mirkin, 2005]; (ii) convergence assessment of MCMC 

chains [Gelman et al., 2004]; and (iii) in standard ANOVA methods. 

Let θi,j be a collection of samples of parameter θ, where i=1,…,Nsim indexes the posterior 

samples of the parameters, and j=1,…,K indexes the calibration data sets (e.g., for 

different raingauges or calibration periods). The estimated overall variance of parameter 

θ can be decomposed into the sum of between-group and within-group variances, varB 

and varW respectively, as follows: 

2 2
, .,. ., .,. , .,

1 1 1 1 1

1 1 1 1var [ ] ( ) ( ) ( )

var [ ] var [ ]

sim simN NK K K

T i j j
j i j j isim sim
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1 simN

j
isimN i jθ θ
=

= ∑  is the mean value of θ inferred from dataset j, and 
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1
j

jK

K
θ θ

=

= ∑  is the overall mean. 
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If the parameter estimates are consistent across different data sets, the between-group 

variance varB (differences between the mean parameters inferred from each data set) 

should be close to zero. Conversely, inconsistent parameter estimates will result in the 

total variance being dominated by varB. Consequently, the statistic R=varW/(varW+varB) 

can be used to quantify the consistency of parameters, with 0R ≈  implying inconsistent 

parameters and R 1≈  implying consistent parameters. 

Table 3 reports the parameter consistency of the four calibration methods across the four 

raingauges for the 2-year calibration period. This table confirms the visual assessment 

that SLS and, to a lesser extent, WLS produce inconsistent CRR parameter estimates. In 

contrast, the BATEA-inferred parameters are generally more consistent. Lower 

consistency is observed for the estimated means and standard deviations of rainfall errors, 

which is not surprising because rainfall errors are unlikely to have the same distribution 

at different raingauges.  

Note the distinctly better performance of BATEA_DAILY over BATEA_STORM.  This 

is likely due to BATEA_DAILY being more flexible than BATEA_STORM: the latter 

imposes much more structure on the rainfall errors, with only a single multiplier for an 

entire storm epoch that could last several days. Whenever this is inappropriate (e.g., 

significant variability of errors within a single storm epoch) it may degrade the parameter 

consistency. 

Table 4 reports the parameter consistency with respect to the two different calibration 

periods (2 and 5 years). The results are similar: significant inconsistencies appear in SLS 
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and WLS, whereas, with a few exceptions, BATEA_STORM yields consistent parameter 

estimates. 

The hyperparameters of rainfall errors also appear to be consistent across different 

periods, supporting the hypothesis that the rainfall errors are stationary. Note that 

BATEA could also be used with non-stationary errors, but this would require additional 

information (knowledge of the trends, etc.) that is currently unavailable. 

Error! Reference source not found. shows posterior marginal distributions for the 

standard deviation of the rainfall multipliers for the two BATEA methods. It shows that 

BATEA_STORM yields more precise estimates than BATEA_DAILY. This is not 

surprising because, for a multi-day storm, BATEA_DAILY would have daily rainfall 

multipliers for each day within the storm, whereas BATEA_STORM would have only a 

single multiplier for the same storm. We would hence expect larger variability in the 

multipliers estimated using BATEA_DAILY. 

6.3 Parameter precision 

Section 6.1 and 6.2 illustrate that BATEA provides significantly more consistent 

parameter estimates than WLS and SLS. However, while BATEA-based parameters are 

much more consistent (suggesting, though not proving, higher accuracy and robustness), 

they are also more uncertain (i.e., are less precise). This is not surprising because BATEA 

recognizes the additional data uncertainty (in the rainfall data), which is ignored in SLS 

and WLS. In turn, recognizing additional uncertainties in the data generally yields larger 

uncertainty in the inferred parameters. Vrugt et al. [2005] report similar results when 

comparing the Simultaneous Optimization and Data Assimiliation (SODA) framework, 
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which incorporates an additive combined structural/input error and output measurement 

error, to the Bayesian SLS approach.  

This finding raises the question of whether the total predictive uncertainty becomes 

dominated by CRR parameter uncertainty. One of the advantages of the BATEA 

methodology is that it allows an evaluation of the contribution of each source of 

uncertainty to the total predictive uncertainty. As shown in Error! Reference source not 

found., in this case study the parameter uncertainty is not the major contributor to the 

total predictive uncertainty (which is dominated by the uncertainty in the rainfall). 

Therefore, our preference is to seek more reliable and consistent parameter estimates 

even if they come at the expense of reduced precision. 

7 Improvements required for robust estimates of 

predictive uncertainty of CRR models 

7.1 Is input error compensating for other sources of error? 

This study used BATEA to infer input errors, given a rainfall-runoff model and an output 

error model derived from the rating curve. While BATEA can explicitly incorporate 

structural error using storm dependent parameters [Kuczera et al., 2006], this was not 

attempted because synthetic studies suggests that simultaneous inference of input and 

structural errors can become ill-posed if vague priors are used on both sources of error 

[Renard et al., 2008b]; see also Kavetski et al. 2006a, section 3.3]. A possible alternative 

is to use the output error model to absorb structural errors [Kavetski et al. 2006a; see also 

Huard and Mailhot, 2008 for a similar approach]. 
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Given that structural error was not incorporated explicitly, it is possible that the input 

error latent variables, intended to represent input errors, are also compensating for 

structural error. For example, in the GR4J model (as in many other models), the net 

rainfall is computed by subtracting the potential evapotranspiration from the rainfall 

[Perrin et al., 2003]. Hence, random and/or systematic errors in the potential 

evapotranspiration, or in the conceptualization of the rainfall interception store, would 

have effects indistinguishable from rainfall input errors. In addition, GR4J has a 

groundwater exchange term (parameterized by 2x ), which represents the catchment water 

gains/losses via groundwater. This process also has the potential to interact with rainfall 

errors. 

This issue was investigated by determining the posterior correlation between the mean 

rainfall multiplier and the groundwater exchange coefficient 2x  for the different 

calibration methods. For SLS/WLS, the mean rainfall multiplier, i.e., the single value 

scaling the entire rainfall series (section 4.1), had an expected posterior correlation of -

0.80 with 2x , while for WLS the correlation was -0.88. This indicates that the SLS/WLS 

multiplier and the 2x  parameter were indeed interacting with each other. For the BATEA 

methods, the expected posterior correlation between the hypermean μ of the rainfall 

multipliers and 2x  was somewhat lower, -0.58 for BATEA_STORM and -0.38 for 

BATEA_DAILY. 

It follows that reducing the time scale at which the rainfall multipliers operate (from the 

entire time series for SLS/WLS, to storm epochs for BATEA_STORM, to daily for 

BATEA_DAILY) reduces the correlation between 2x  and the rainfall multipliers. This is 
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likely due to the rainfall errors and the groundwater structural errors operating at different 

time scales and impacting on different parts of the hydrograph. 

Synthetic studies have shown that joint inference of both input error and structural error 

with vague priors can become ill-posed [Renard et al., 2008b]. Hence it is preferable to 

use independent information to set appropriate priors on the rainfall errors and/or other 

model parameters (e.g. groundwater exchange coefficient). Since the hyperdistribution 

must reflect the modelers’ understanding of the corruption mechanisms affecting 

observed inputs, this also calls for a more careful data collection in hydrology: each 

observation must be accompanied by its uncertainty estimate. We expect that accurate 

estimates of input uncertainty would significantly reduce compensatory effects between 

input and structural errors and yield a more precise inference. In the absence of such 

information, reliable separation of input and structural errors remains highly problematic. 

7.2 Comparison of daily and storm epoch approaches for 

characterizing input errors  

The storm epoch approach [Kavetski et al. 2002, 2006b; Kuczera et al 2006] reduces the 

computational cost of the inference by reducing the number of latent variables to be 

inferred. Statistically, using storm epochs corresponds to an assumption of perfect 

correlation between daily multiplicative rainfall errors within a single storm epoch.  

Comparison of BATEA_STORM and BATEA_DAILY results revealed no major 

differences in terms of the posterior diagnostics. The predictive QQ plot is slightly better 

for BATEA_DAILY than BATEA-STORM in calibration, but both methods perform 
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similarly in validation. The residual QQ plot also shows little difference, while the 

residual PACF shows BATEA_STORM has a slightly lower autocorrelation than 

BATEA_DAILY in calibration. 

Examination of the correlation between individual rainfall multipliers for both 

BATEA_DAILY_54138_2yr and BATEA_STORM_54138_2yr revealed no significant 

correlations between inferred multipliers.  

In terms of parameter consistency, it appears that BATEA_DAILY yields more 

consistent parameter estimates than BATEA_STORM and is less likely to be 

compensating for groundwater exchange errors. Finally, the most significant difference 

between the daily and the storm epoch approaches is that BATEA_DAILY produced 

estimates of the standard deviation of rainfall multipliers that were double that of 

BATEA_STORM (see Error! Reference source not found.). Overall, current results 

suggest that BATEA_DAILY may be a more appropriate temporal resolution for the 

input errors, but further analysis using dense raingauge networks and radar data is needed 

to more conclusively identify the most appropriate temporal resolution for the rainfall 

errors. 

It would also be very useful to develop relationships between storm types and rainfall 

multipliers. This would reduce the total predictive uncertainty in the validation period, 

with rainfall multipliers sampled conditionally on the storm type. This analysis could be 

carried out at both the daily and storm time scale and will be attempted in future work. 
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7.3 Comparison to rainfall error estimates reported in the 

literature 

Linsley and Kohler [1988] report a rainfall error analysis of the 2000 km2 Muskingum 

Basin, Ohio using a dense gauge network. They report a standard error of 35% for single-

gauge rainfall estimates. This estimate is identical to the posterior median of the standard 

deviation of the multipliers inferred using BATEA_STORM (note that the standard 

deviation of multipliers corresponds to the standard error in the rainfalls). However, for 

BATEA_DAILY the posterior median is 0.6-0.7, which is twice higher than Linsley and 

Kohler’s estimate. 

The Muskingum basin has a humid continental climate, while the Horton catchment is 

humid subtropical (according to the Koppen Classification System [Peel et al., 2007]). 

Both catchments have reasonably similar rainfall patterns, with annual average rainfall of 

800-900 mm and summer-dominated rainfall patterns (which can be extremely variable). 

The elevation range of the Muskingum Basin is considerably less than in the Horton, 

200-300 m versus 1000 m respectively. Given the similar climates, but the more varied 

topography of the Horton catchment, the standard error from Linsley and Kohler [1988] 

could be viewed as a conservative estimate of the rainfall errors expected in the Horton 

catchment. We do warn that analyses and interpretations of multipliers inferred using a 

BATEA application that ignores structural errors should be viewed with caution because 

of the potential for interaction (see section 7.1). In addition, many of these multipliers are 

insensitive (see section 5.4). 
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7.4 Limitations of the multiplicative input error model 

To date, all BATEA applications have used rainfall multipliers to represent rainfall 

errors. While this accounts for the likely heteroscedasticity of rainfall errors, it cannot 

handle situations where a rainfall event is not recorded by a raingauge. This type of input 

error is particularly challenging. While inspection of the time series for the Horton 

catchment revealed little evidence of missed rainfall (all significant runoff events were 

associated with rainfall events), in larger catchments, especially with low raingauge 

density and convective type rainfall events, the rainfall gauges may miss significant 

rainfall events. More sophisticated error models that allow for errors in near-zero-

recorded rain measurements will be presented in future work. 

7.5 Improving the output error model 

As outlined in section 2.4, the output error model represents two sources of uncertainty: 

(i) sampling and measurement errors in the observed runoff, and (ii) “remanent errors” 

that were not accounted by the input and structural error models. In this study, the output 

error model is based solely on rating curve analysis and thus represents solely sampling 

and measurement error only. Since no other treatment of model structural error was 

implemented, it is possible that the latent variables, here intended strictly for input errors, 

can also be compensating for structural errors. 

A more conceptually appealing approach would be to infer the component of the output 

errors representing remanent errors unaccounted by the input error model and/or storm-
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dependent parameters. However, this can result in poor identifiability unless accurate and 

precise prior information on the input uncertainty is available [Renard et al., 2008b]. 

While BATEA_STORM and BATEA_DAILY appear to satisfy the assumptions of the 

output error model better than SLS and WLS, there remains a need for a better 

characterization of output errors, particularly for near-zero runoffs, where mis-

specification of the error distribution can exert undue leverage on the likelihood  

function.  

8 Implications for model extrapolation and 

regionalization 

The ability of BATEA to infer parameters that are not biased by input error is an 

important advance for two key practical challenges of catchment modeling: model 

extrapolation and regionalization of CRR models. 

Model extrapolation can be as simple as investigating the impact of including an 

additional raingauge in the catchment on the runoff estimated using a CRR model, or as 

sophisticated as assessing the impact of climate change on runoff given rainfalls modified 

using a climate change model. In both cases, the rainfall (and therefore the input errors) 

used in the extrapolation is different than in the calibration period. This study indicates 

that neither type of extrapolation can be done reliably using SLS-calibrated parameter 

estimates because they are biased by rainfall errors. BATEA has the potential to 

overcome these limitations because its parameter estimates are less dependent on the 
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specific realization of input errors in the selected calibration period (Error! Reference 

source not found.). 

Regionalization refers to the determination of CRR parameters without recourse to 

calibration and is a key challenge in hydrology because the majority of catchments are 

ungauged and have little or no streamflow observations. Regionalization is a type of 

spatial model extrapolation that requires the development of “regional relationships”, 

e.g., relating CRR parameters to catchment characteristics. However, since input errors 

are likely to vary from catchment to catchment depending on raingauge density and 

location, as well as on catchment climate and topography, it is unlikely that input-error 

biased SLS parameter estimates could be meaningfully regionalized. Indeed, previous 

studies using SLS/WLS-type methods to calibrate the CRR parameters prior to 

regionalizing them have shown poor predictive power. For example, Chiew and 

Siriwardena [2005] conclude “The modelled monthly runoffs […] are reasonable in 

about three quarters of the catchments, where the Nash-Sutcliffe model efficiency is 

greater than 0.6 and the total modelled runoff is within 30% of the total recorded runoff.” 

This is not an encouraging conclusion. 

This study suggests that the poor predictive power of SLS-based regionalization is 

explained at least in part by parameter biases arising from ignoring rainfall uncertainty 

(which results in troublesome parameter sensitivity to the calibration period and 

raingauge). This bias arises because SLS forces the CRR parameters to compensate for 

the specific realization of rainfall errors, which varies unpredictably between data periods 

and raingauges. In contrast, BATEA-based parameter estimates were consistent for all 
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raingauges and calibration periods, eliminating one of the obstacles to CRR parameter 

regionalization. 

The regionalization of BATEA-based CRR parameters to an ungauged site does not 

require regionalizing the input/output error models, precisely because BATEA estimates 

are (relatively) independent of input/output data errors. However, if this regionalized 

CRR model was used for streamflow predictions, it would provide the uncertainty in 

streamflow due to the regionalized CRR model parameters only. More reliable estimates 

of the total predictive uncertainty in the streamflow predictions at an ungauged catchment 

would require the development of an input error model for this catchment. This could be 

accomplished by analysis of the raingauge network and may further benefit from 

regionalizing the input error model. Further research is needed to determine how this 

could be achieved for different catchments.  

It is stressed that the reliance of BATEA on explicit input error models is a strength, 

rather than weakness of the approach vis-a-vis methods that do not explicitly use such 

models. While superficially, SLS or WLS calibration do not “use” input error models, 

they actually correspond to a special case of BATEA with all multipliers fixed at 1.0 (the 

Dirac hyperdistribution, see also Kavetski et al. [2002]). Consequently, they correspond 

to using an error model that is known to be highly incorrect. 

It also follows that regionalizing SLS parameter estimates and using them for prediction 

simply corresponds to assuming a regionalized input error model that ignores rainfall 

uncertainty. It is stressed that BATEA does not necessarily make any more assumptions 

Author-produced version of the article published in Water Resources Research, Vol. 45, doi:10.1029/2008WR006825, 2009



than SLS or WLS, it merely makes its assumptions transparent and explicit, and offers a 

systematic procedure for checking these assumptions against empirical evidence.  

An alternative approach for regionalization is based on calibrating a CRR model to 

estimates of runoff statistics. This has had encouraging results for European catchments 

[Bardossy, 2007], but average to poor results for Australian catchments [Boughton and 

Chiew, 2007]. Combinations of these two approaches, i.e., regionalizing both parameters 

and runoff statistics, could be necessary for meaningful regionalization and these will be 

investigated in future research. 

9 Future BATEA applications 

The performance of BATEA in other modeling contexts, including using semi-distributed 

and distributed hydrological models, wetter catchments, etc, is of interest. In general, 

most calibration methods and models perform better in wetter climates because (i) the 

catchment dynamics are less threshold-driven (and hence less nonlinear); (ii) more runoff  

information is available to infer CRR parameters; and (iii) the development of reliable 

output error model for near-zero runoffs is less critical. 

On the other hand, the application of BATEA to semi-distributed and distributed models 

requires care to avoid prohibitive computational costs. If a separate input error model is 

specified for each modeling unit, with only a single runoff series available for the entire 

network, the problem would likely become ill-posed and computationally intractable. 

Instead, rainfall and topographic information should be used as prior information to 
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develop more precise data uncertainty and CRR models. Kriging of rainfall fields, radar 

data, etc, could be used for this purpose [e.g., Kuczera and Williams, 1992]. 

10 Conclusions 

Three calibration frameworks, including the widely used SLS and WLS methods and the 

more recent BATEA methodology, were used to calibrate the rainfall-runoff model GR4J 

to a difficult-to-model ephemeral catchment. The key assumptions of each method were 

scrutinized, focusing on (i) evaluating predictive uncertainty and (ii) parameter 

consistency. The Horton catchment (New South Wales, Australia) was used because of 

its challenging ephemeral hydrological dynamics and large rainfall gradients. These types 

of catchments are notoriously difficult to calibrate. 

Assessment of requirement (i) using standard diagnostics (tests of probability model 

assumptions) showed that BATEA provided a significant improvement over SLS and 

WLS. Furthermore, a diagnostic of the total predictive uncertainty in validation was 

presented. This simple quantile-based plot provides an excellent summary of the 

performance of probabilistic prediction methods. Here, it showed that all calibration 

methods performed poorly during low flow periods, while BATEA provided more 

reliable estimates of predictive uncertainty during higher flows than both WLS and SLS. 

Requirement (ii) was evaluated by examining the parameter consistency for each of the 

calibration methods when calibrating the same CRR model to the same catchment runoff 

data using different raingauges/time periods. The results showed that BATEA provided 

much more consistent parameter estimates than both SLS and WLS, with the latter 
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yielding results highly dependent on the calibration period and raingauge. These results 

suggest that regionalization of SLS/WLS-based estimates of model parameters is likely to 

be unreliable due to input-error-induced biases. BATEA offers a way to overcome these 

problems. Moreover, its Bayesian foundation offers opportunities to incorporate 

additional knowledge in the calibration and in regionalization, including relationships 

between rainfall errors and storm types, etc. This information cannot be utilized by 

standard methods such as SLS and WLS. 

The fundamental difference in the modeling philosophy between the three calibration 

frameworks considered in this work is that BATEA provides a systematic methodology 

to hypothesize, infer and evaluate models for input error, model structural error and 

output error. Conversely, neither SLS nor WLS can account for input uncertainty, and 

they both assume that model structural error and output error are simple additive random 

noise. Moreover, the capacity of WLS to use a more sophisticated output error model 

(heteroscedastic response uncertainty) is insufficient to produce reliable parameter 

estimates and predictions. 

The implementation of BATEA used in this case study incorporated input and output 

uncertainties, but did not explicitly consider model structural error. The treatment of 

structural errors using the hierarchical BATEA framework while avoiding identifiability 

problems remains a research challenge and will be tackled in future work. 
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Table 1. Rainfall statistics for the Horton catchment 

 

Raingauge ID Elevation(m) Avg. Daily Rainfall (mm)

54011 567 1.83 

54126 1465 3.40 

54021 869 2.66 

54138 392 2.15 
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Table 2. Summary of calibration methods used in case study 

Statistical method Input error model 

Input  

temporal 

structure 

Output error model 

SLS log( )t tX Xμ= %  not applicable ˆ( ),   unknownN ε εσ σ% 2Y ~ Y,  

WLS log( )t tX Xμ= %  not applicable 
ˆ( ),

with 0.4 0.086
N

y
ε

ε

σ
σ = +

%

%

2Y ~ Y,  

BATEA_STORM ( )

2
( )log( ) ~ ( , )

t i t t

i t

X X

N

ϕ

ϕ μ σ

= %

Storm epochs 
ˆ( ),

with 0.4 0.086
N

y
ε

ε

σ
σ = +

%

%

2Y ~ Y,  

BATEA_DAILY ( )

2
( )log( ) ~ ( , )

t i t t

i t

X X

N

ϕ

ϕ μ σ

= %

Daily epochs 
ˆ( ),

with 0.4 0.086
N

y
ε

ε

σ
σ = +

%

%

2Y ~ Y,  
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Table 3. Parameter consistency across different raingauges for the 2-year calibration 

period. 

 

Parameter Method 

1x  2x  3x  4x  μ σ 

SLS 0.03 0.15 0.06 0.29 0.02 na 

WLS 0.12 0.18 0.19 0.77 0.04 na 

BATEA_STORM 0.42 0.86 0.44 0.87 0.12 0.80 

BATEA_DAILY 0.88 0.91 0.93 0.89 0.20 0.57 

 

Author-produced version of the article published in Water Resources Research, Vol. 45, doi:10.1029/2008WR006825, 2009



Table 4. Parameter consistency across the 2 and 5-year calibration periods. 

 

Raingauge 54021 Raingauge 54138 Method 

1x  2x  3x  4x  μ σ 1x  2x  3x  4x  μ σ 

SLS 0.88 0.00 0.01 0.28 0.01 na  0.01 0.18 0.16 0.51 0.04 na 

WLS 0.30 0.09 0.22 0.70 0.99 na  0.99 0.06 0.14 0.82 0.06 na 

BATEA_STORM 0.61 0.41 0.89 0.90 0.65 0.86  0.86 0.95 0.95 1.00 0.81 0.69
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