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Abstract: 

Trajectory analysis models are increasingly used for rockfall hazard mapping. However, classical 

approaches only partially account for the variability of the trajectories. In this paper, a general 

formulation using a Taylor series expansion is proposed for the quantification of the relative 

importance of the different processes that explain the variability of the reflected velocity vector 

after bouncing. A stochastic bouncing model is obtained using a statistical analysis of a large 

numerical data set. Estimation is performed using hierarchical Bayesian modeling schemes. The 

model introduces information on the coupling of the reflected and incident velocity vectors, 

which satisfactorily expresses the mechanisms associated with boulder bouncing. 

The approach proposed is detailed in the case of the impact of a spherical boulder on a coarse 

soil, with special focus on the influence of soil particles’ geometrical configuration near the 

impact point and kinematic parameters of the rock before bouncing. The results show that a first-

order expansion is sufficient for the case studied and emphasize the predominant role of the local 

soil properties on the reflected velocity vector’s variability. The proposed model is compared 

with classical approaches and the interest for rockfall hazard assessment of reliable stochastic 

bouncing models in trajectory simulations is illustrated with a simple case study. 
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1. Introduction  

Trajectory simulation models classically use Digital Elevation Models that define the 

topography, and geographic information systems that provide information on the rockfall sources 

and the spatial distribution of the parameters necessary to calculate the bouncing of the falling 

rocks at each point of the study site. The models classically used for bouncing calculations are 

based on restitution coefficients that express the dependence of the kinematic parameters of the 

rock after impact (reflected kinematic parameters) on the kinematic parameters of the rock 

before impact (incident kinematic parameters). However, experimental studies have proved the 

complexity of simulating this dependence by means of reasonably simple mechanical models 

(Wu, 1985; Bozzolo and Pamini, 1986; Chau et al., 1998; Ushiro et al., 2000; Chau et al., 2002; 

Heidenreich, 2004). In addition, deterministic prediction of boulder bouncing remains highly 

speculative because the available information on the mechanical and geometrical properties of 

the soil and the boulder is not sufficient. Indeed, the spatial distributions of the parameters of the 

bouncing model integrated into the geographic information system result from a field survey 

which, for practical reasons, cannot be exhaustive. Moreover, as for many physical processes in 

the field of natural hazards, it seems impossible to predict the bouncing deterministically. 

Stochastic bouncing models have therefore been proposed to integrate most of the sources 

explaining the bouncing phenomenon’s variability using statistical laws (Paronuzzi, 1989; 

Pfeiffer and Bowen,1989; Azzoni et al., 1995; Dudt and Heidenreich, 2001; Guzzetti et al., 2002; 

Agliardi and Crosta, 2003). The variability sources can be divided into those associated with the 

soil properties (soil surface, porosity, particle size and shape, etc.) and those related to the 

incident conditions (incident kinematic parameters, boulder size, shape and orientation, etc.) 

(Pfeiffer and Bowen, 1989; Labiouse, 1999). Although an important step further, these 

approaches require a thorough calibration of the statistical laws using large data sets. Real 

rockfall events or field experiments are not directly usable for this purpose because either the 

data set is incomplete (rockfall events) or reproducible impact conditions are difficult to obtain 

(field experiments).  

Taking inspiration from other research fields such as hydrology (Rao, 1996; Perreault et al., 

2000a; Perreault et al., 2000b) and avalanche science (Eckert et al., 2007; Eckert et al., 2008) in 

which dealing with stochasticity is more common, this paper aims at defining a bouncing model 

explicitly distinguishing these different sources of variability.  

In section 2, a general framework that aims at determining the kinematics of the boulder after 

bouncing from the kinematics before bouncing using a stochastic operator and its related Taylor 
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series expansion is presented first. This section also shows how the stochastic operator can be 

characterized using a Bayesian statistical analysis (Wickle, 2003; Clark, 2005) of numerical 

simulations. The study focuses on the impact of a boulder on a coarse soil, which is common in 

the context of rockfall trajectory analysis. In a first approximation, only the influences of the 

incident kinematic parameters and the soil particle configuration near the impact point of a 

spherical boulder are studied. In section 3, the stochastic bouncing model obtained using this 

approach is presented and discussed in detail. An extensive sensitivity analysis is performed to 

evaluate the bouncing model’s range of validity. Section 4 discusses the advantages and 

limitations of our approach with regard to classical approaches. The usefulness of using this 

stochastic bouncing model for the prediction of rockfall hazard is finally illustrated through a 

simple case study.  

2. Materials and methods 

2.1. Stochastic modeling of the impact  

The bouncing model is developed in a two-dimensional frame, which is classical in the field of 

trajectory analysis (Guzzeti et al., 2002; Dorren et al., 2004). A generalized velocity vector V  

composed of a normal-to-soil-surface velocity component yv , a tangential-to-soil-surface 

velocity component xv  – both expressed at the gravity center of the falling rock – and a 

rotational velocity ω  properly describes the kinematic parameters of the boulder:  

( )t
byx Rvv ω=V  (1) 

where bR  is the mean radius of the boulder. 

For given mechanical and geometrical properties of the boulder and the soil, it is assumed that 

the incident in
V  and reflected re

V  generalized velocity vectors of the boulder can be related by 

a stochastic operator f
~
: 

)(
~ inre
VV f=  (2) 

The formulation of the operator f
~
 should express the complexity of the mechanisms leading to 

the dependence of the reflected velocity vector to the incident velocity vector. It should also be 

relevant for the variability of the bouncing process depending on the variability of the soil 

properties and the incident kinematic parameters. 
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Assuming that a Taylor series expansion of the operator f
~
 with respect to all components of the 

incident velocity vector in
V  exists, the operator Α  composed of the coefficients of the n -order 

Taylor series expansion of f
~
 is defined. The operator Α  associates the reflected velocity vector 

re
V  with an incident velocity vector expressed as in

T : 

RATV
inre +=  (3) 

with 

1 1 1 1 1

100 010 0 0 00

2 2 2 2 2

100 010 0 0 00

3 3 3 3 3

100 010 0 0 00

... ...

... ...

... ...

uvw n n

uvw n n

uvw n n

a a a a a

a a a a a

a a a a a

 
 =  
 
 

Α , 

... ( ) ( ) ( ) ... ( ) ( )
t

in in in u in v in w in n in n

x y x y b y bv v v v R w v R w =  
in
T , [1, ]u n∈ , [1, ]v n∈ , [1, ]w n∈ , 

and R  a remainder term denoting the difference between the operator f
~
 and its n-order Taylor 

series expansion. The number of the incident vector in
T  component is equal to 3 for a first-order 

Taylor series expansion of f
~
, 7 for a second-order Taylor series expansion of f

~
, etc. One can 

note that, for a first-order Taylor series expansion of the operator f
~
, the incident vector in

T  is 

equal to the incident velocity vector in
V . 

The high variability of the local configurations of the soil and the incident kinematic conditions 

induces the operator Α  and the remainder term R  to take very different values. This suggests 

adopting a stochastic approach distinguishing the variability associated with both the operator Α  

and the remainder term R . Note that this paper only investigates in detail the case of the impact 

of a spherical boulder on a coarse soil. In a first approximation, the sources of variability 

considered are limited to the incident kinematic parameters and the soil particles’ geometrical 

configurations. However, the proposed framework is very general and could be applied to 

modeling boulder bouncing for impacts on different soil types and for different boulder 

mechanical and geometrical properties. Indeed, as exemplified in this paper, it allows extracting 

the respective contribution of the different sources of variability using Bayesian inference.  

2.2. Data set definition from numerical simulations   

The large data sets needed for statistical analyses can be obtained from numerical simulations of 

impacts. Additionally, in the simulations, the influences of the geometrical configuration of the 

soil near the impact point and the incident kinematic parameters can be explored separately, 

since a precise and reproducible definition of these parameters is possible. 
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2.2.1.  Numerical modeling of impacts using the Discrete Element Method  

Assuming that rocks composing the coarse soil can be considered as rigid locally deformable 

two-dimensional bodies, the software Particle Flow Code 2D (Itasca, 1999) based on the 

Discrete Element Method (Cundall and Strack, 1979) is used. In the Discrete Element Method 

(DEM), particles are subjected to gravitational forces and to contact forces. Contact forces are 

applied to neighboring particles in contact. For a given time step, once gravitational and contact 

forces have been computed, the translational and rotational velocities of the particles are 

determined by solving the balance equation using an explicit solving scheme. The resulting 

particle displacements are used to update particle locations for the next time step. In this study, 

the contact forces acting between particles are calculated using the Hertz-Mindlin model 

(Mindlin and Deresiewicz, 1953). Contact forces are governed by three parameters set at 

classical values for rocks (Goodman, 1980): the shear modulus G is set at 40 GPa, the value of 

the Poisson ratio ν is set at 0.25 and the local friction angle φ is 30°. In addition, the density ρ of 

the boulder and the soil particles is set at 2650 kg/m
3
. This contact model takes frictional 

processes between adjoining particles into account. Other dissipation sources also exist within 

real granular soils subjected to dynamical loadings, such as local yielding near the contact 

surface, crack propagation, and rock breakage. However, in the context of the simulations where 

a boulder is approximately of the same size as the soil particles, other dissipation sources can be 

assumed to be negligible compared to frictional dissipation in a first approximation (Oger et al., 

2005; Bourrier et al., 2008a).  

The mean radius of the soil particles is Rm = 0.3 m. Given that natural scree are polydisperse 

granular assemblies (Kirkby and Statham, 1975), the ratio between the mass of the soil’s smaller 

particles and larger particles is set at 10. In the case of an impact on a coarse granular soil, 

boulder and soil particle sizes are nearly the same. The boulder radius Rb varies from Rm to 5Rm. 

The influence of particle shape is also explored by defining two different soil samples composed 

of either spherical particles or elongated particles modeled by indivisible assemblies of spherical 

particles called clump particles, which can realistically model the shape of soil rocks (Bertrand et 

al. 2006; Deluzarche and Cambou 2006, Bourrier et al. 2008a). The soil sample generation 

procedure leads to soil porosity values of 0.204 for spherical particles and 0.171 for clump 

particles. Additional details on the soil properties can be found in Bourrier et al. (2008a). 

Although simulation results also depend on soil sample depth and porosity (Bourrier et al. 

2008a), the influence of these parameters is not investigated in a preliminary approximation. Soil 

sample depth is set at 12Rm. Analyses of the influence of the model parameters on the impact 
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simulations (Bourrier et al., 2008a) have shown that, for a soil depth corresponding to classical 

values in the field of rockfall simulations, the bouncing of the boulder mainly depends on the 

ratio between the boulder radius Rb and the mean radius of a soil particle Rm, the shape of the 

particles, the incident kinematic parameters and the geometrical configuration of the soil 

particles near the impact point. We will focus on modeling the variability associated with the 

incident kinematic parameters and the geometrical configuration of the soil particles near the 

impact point using a stochastic bouncing model (see section  3). In addition, the influence of the 

ratio of the boulder radius Rb to the mean radius of a soil particle Rm and the shape of the 

particles on the parameters on the stochastic bouncing model will also be investigated in section 

 3 by means of sensitivity analyses. 

Once the soil sample is generated, impact simulations are run for varying impact points and 

incident kinematic parameters. The location of each impact point is defined very precisely. In 

addition, incident kinematic conditions are fully determined by the magnitude of the incident 

velocity V
in
, the incident angle αin and the incident rotational velocity ωin

 (Figure 1). These 

parameters are directly related to the normal and tangential velocity components by:  

)sin(
ininin

x
Vv α=  (4) 

)cos(
ininin

y
Vv α−=  (5) 

Finally, reflected velocities are collected when the normal component of the boulder velocity 

reaches its maximum, which corresponds to the last contact between the soil and the boulder. 

 

Figure 1 

It is important to note that the relevance of the numerical model has been proved by comparing 

its results to the available literature (Bourrier et al., 2008a) and to half-scale experiments of 

impacts on a coarse soil (Bourrier et al., 2008b). In particular, the impact model was calibrated 

and validated using laboratory experiments of the impact of a 10-cm spherical rock on a coarse 

soil composed of gravels ranging from 1 cm to 5 cm (Bourrier et al., 2009; Bourrier et al., 

2008b). The incident velocity of the projectile was 6 m/s and the incident angle could reach 

values from 0° to 75°. Satisfactory agreement between the laboratory experiments and the 

numerical simulations of impacts proves that the stochastic impact model adequately expresses 

the energy transfers occurring during the impact of a boulder on a coarse soil.  

One limitation could stem from the differences in the sizes of the impacting and soil rocks during 

calibration and during application in this study. However, the influence of scale change effects 

was proved to be small by comparing the results of the numerical simulations of impacts at 
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different scales (Bourrier, 2008). This has been confirmed by results from the literature in the 

field of aeolian sand transport (Oger et al., 2005). 

2.2.2. Numerical simulation campaign 

For given soil and boulder properties, several impact simulations were conducted for varying 

impact points and incident kinematic parameters. As stated above, the only sources of variability 

accounted for are the incident kinematic parameters and the soil particle geometrical 

configuration near the impact point. In addition, the dependency of the stochastic bouncing 

model parameter values on the boulder size and soil particle shape will be explored in section 

 3.3. Other impact model parameters are set at fixed values: the mechanical properties of the 

particles (G, ν, φ, ρ), the porosity and grading curve of the soil sample and the boulder size are 

fixed parameters.  

Impact points are first precisely defined so that the same impact point can be used for several 

incident kinematic conditions: for a given impact point, a set of equally distributed incident 

kinematic parameters is explored. Kinematic parameter values range within the limits defined 

from rockfall events (Azzoni et al., 1992). For each impact point, all combinations of the chosen 

values for incident kinematic parameters (Table 1) are explored. Preliminary numerical 

investigations have shown that a minimum of 100P =  impact points has to be chosen to ensure 

that the mean values and standard deviations of the reflected velocity components (Bourrier et 

al., 2007) have reached their asymptotic value corresponding to the value obtained for very large 

numbers of impact points. 

 

Table 1 

 

2.3. Stochastic analysis of simulation results base d on Bayesian inference 

2.3.1. Hierarchical stochastic modeling 

First, at each impact point ],1[ Pp∈ , the Taylor series expansion (Eq.  (3)) of the operator f
~
 

defined in Eq.  (2) is considered a linear regression of the reflected velocity vector re
V  with 

regard to the incident vector in
T : 
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~ ( , )pk p pk

re in
V Α T Σ

3N  (6) 

The reflected velocity pk

re
V  is thus sampled from a local three-dimensional Gaussian vector fully 

defined by its local mean vector p pk

in
Α T  varying from one impact event to another and its 

covariance matrix Σ , which is constant for all incident kinematic conditions ],1[ Kk ∈  and 

impact points (homoscedascity assumption). The vector p pk

in
Α T  is the mean predictor in the 

linear regression. Its variability quantifies the variability of the Taylor series expansion of f
~
, 

while the covariance matrix Σ  accounts for the variability of the remainder term R . Our 

stochastic model is therefore based on the assumption that the variability of the operator Α  is 

only related with the variability of the soil particles’ geometrical configuration, whereas the 

remainder term R  is associated with all other variability sources accounted for in the impact 

model, for instance random uncertainties that are not modeled explicitly. The realism of the 

mechanical modeling representing the coupling between the reflected and incident velocity 

vector depends on the order of the Taylor series expansion. For convenience, the matrix pΑ  is 

rewritten as a vector having N components 

1 1 1 1 1 2 2 3 3

100 010 0 0 00 100 00 100 00... ... ... ...
p p p p p pp uvw n n n np p p

a a a a a a a a a =  
l
Α , with 1 3

uvwa →  

denoting the coefficients of the matrix A defined in Eq (3) at the point ],1[ Pp∈ . The number 

N=(n+1)(n+2)(n+3)/2−3 of the vector’s coefficients is equal to 9 for a first-order Taylor series 

expansion of f
~
( 1)n = , 27 for a second-order Taylor series expansion of f

~
 ( 2)n = , etc.  

Second, it is assumed that the results observed at the different impact points are, in some ways, 

similar because the macroscopic properties of the soil (porosity, the particles’ mechanical 

properties, grading curve, etc.) are the same. This makes us use hierarchical modeling to allow 

information to be partially shared between the different impact points and to extract the common 

patterns in all samples. For all impact points p , the coefficients of the operator pΑ  are therefore 

assumed to be realizations of the same Gaussian vector such as: 

1 ~ (M , )a a

pA Σ
NN  (7) 

a
M  and a

Σ  are the mean vector and the covariance matrix of the N-dimensional Gaussian 

vector. a
M  models the mean behavior all over the different local soil particles’ geometrical 
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configurations, whereas the variability of l
Α p measured by a

Σ  expresses how close the different 

reflected velocities at the different impact points are.  

Note that with a non hierarchical model only two extreme cases could have been considered: i) 

all samples are identically distributed, with the same operator pA  for all impact points, or ii) the 

different samples are so different that they have to be modeled by independent distributions. On 

the contrary, even if it complicates model specification and inference, the hierarchical structure 

allows a comprehensive exploration of the grey zone situated between these two extreme cases. 

This makes each local estimation more robust and allows the overall quantities a
M  and a

Σ  to be 

captured. 

The analytical formulation of the model developed can be summarized as follows. First, the 

analytical expression of ( , , )r

pk p pkp e in
V A T Σ , the probability of the observed reflected vector e

V
r

pk  

knowing the values of pA , Σ  and the observed incident kinematic conditions in
Tpk  is: 

11
( ) ( )

2
3/ 2 1/ 2

1
( , , )

(2 ) det( )

r t r
pk p pk pk p pkr

pk p pkp e
π

−− − −
=

e in e in
V A T Σ V A T

e in
V A T Σ

Σ
 

(8) 

Second, the analytical expression of the probability ( , )a a

pp l
Α M Σ  of the nonobserved latent 

vector l
Α p  knowing the values of ,a a

M Σ  is: 

11
( ) ( )

2
/ 2 1/ 2

1
( , )

(2 ) det( )

a t a a
p pa a

p N a
p e

π

−
− − −

=
l l
Α M Σ Α M

l
Α M Σ

Σ

 

(9) 

The unknown parameters of the stochastic model are a
M , a

Σ ,Σ  and the data are e
V

r

pk  and pk

in
T . 

The latent quantities l
Α p  with ],1[ Pp∈  have a hybrid status: with regard to the data e

V
r

pk  they 

are parameters and therefore must be estimated, whereas they behave as data with regard to 

parameters a
M  and a

Σ . Figure 2 gives a general overview of the model using a direct acyclic 

graph (DAG), which expresses conditional dependence. Circled nodes represent stochastic 

variables, while rectangles indicate observed values and diamonds model parameters. The DAG 
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clearly illustrates the three layers distinguished in our approach: impact that depends both on 

incident velocity and location, local soil configuration and the soil’s global parameters. 

 

Figure 2 

 

2.3.2.  Bayesian inference 

Due to its hierarchical nature, determining the parameters of our stochastic model using a 

classical statistical approach (Fischer, 1934; Neyman and Pearson, 1933) is tricky. On the other 

hand, estimates for the parameters a
M , a

Σ  and Σ  and latent vectors l
Α p , ],1[ Pp∈  can be 

more easily obtained using Bayesian inference (Bayes, 1763). The result of applying the Bayes 

theorem is ( , , , , )a a r

p pk pkp Σl e in
Α M Σ V T , the joint posterior probability distribution of all model 

unknowns knowing the data e
V

r

pk  and 
in
Tpk :  

( , , , , )

1
( , , ) ( , , ) ( , )

a a r

p pk pk

a a r a a

pk p pk p

p

p p p
χ

=

× ×

l e in

e in l

Α M Σ Σ V T

M Σ Σ V A T Σ Α M Σ

 

(10) 

The determination of ( , , , , )a a r

p pk pkp l e in
Α M Σ Σ V T  therefore requires the probability of the 

reflected vector e
V

r

pk  knowing the data, latent variables 
l

Α p  and the overall parameter Σ  

( ( , , )r

pk p pkp e in
V A T Σ ) and the probability ( , )a a

pp l
Α M Σ  of the latent variables given the data and 

the overall parameters ,a a
M Σ . Both of them are fully defined by the hierarchical model detailed 

in section  2.3.1. Moreover, determining ( , , , , )a a r

p pk pkp l e in
Α M Σ Σ V T  also requires specifying 

),,( ΣΣM
aap . ( , , ) ( , , ) ( , )a a r a a a a

pk p pk pp p p d d dχ = × ×∫
e in l

M Σ Σ V A T Σ Α M Σ M Σ Σ  is a 

normalizing constant that does not depend on the problem’s unknowns, but makes all difficulty 

of Bayesian inference (see section  2.3.3). 

According to Bayesian interpretation, ),,( ΣΣM
aap  is a prior, which is a probability 

distribution function that expresses the expertise about the parameters that is available before the 
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data analysis. To respond to the classical objections to use such prior information, in this paper 

we use poorly informative priors (Box and Tiao, 1973) that lead asymptotically to the same 

estimators as classical approaches (Berger, 1985). To facilitate inference using Gibbs sampling 

(see section  2.3.3), the chosen poorly informative priors have been taken from conjugate families 

(see Gelman et al., 1995): a normal Gaussian vector with a null mean and very large variance for 

a
M , and Wishart distributions with low degrees of freedom for the inverse of the covariance 

matrixes ( ), a
Σ Σ . Taking very poorly informative priors is possible since a data set as large as 

necessary is available given that numerical simulations were used to generate it. Poorly 

informative priors have the advantage of letting the data speak for themselves so as to infer 

parameters with as much physical meaning as possible. 

Note finally that, contrary to classical statistical approaches, Bayesian inference provides a 

probability distribution rather than a point estimate associated with a confidence interval for each 

unknown quantity. For applications, the mean of the posterior distribution and the 95% credible 

interval ],[ 5.975.2 qq  are generally chosen for each unknown parameter, which represents the best 

prediction given the data and the related uncertainty. In this paper, this convention has been 

followed. In addition, the coefficient of variation cv defined as the ratio between the standard 

deviation and the mean value of the posterior distribution is also provided. It is a normalized 

measure of the dispersion of the posterior distributions but has to be interpreted with care for 

distributions with small mean values. 

2.3.3. MCMC methods 

For hierarchical models, the computation of Bayes theorem is generally analytically unfeasible 

because of the problems calculating the normalizing constant χ . Today this limitation is 

routinely overcome, even for very complex models, with Monte Carlo techniques based on 

Markov chain properties (Brooks, 2003; Gilks et al., 2001). A general discussion of these 

Markov Chain Monte Carlo (MCMC) methods can be found in Robert and Casella (1998). Their 

aim is to obtain the posterior distribution of all model unknowns (parameters and latent 

variables) using an iterative procedure. Reasonable results can only be obtained if the algorithm 

is handled with care. In particular, one must ensure that the convergence is attained for all 
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unknown parameters. In most cases, this requires launching many simulations for varying initial 

states and performing tests to check that the Markov chain has reached the stationary regime. 

Depending on the model and the choice of priors, partial analytical computations can sometimes 

be performed for rather simple hierarchical models. This is the case for our model, given its fully 

Gaussian nature and the choice of conjugate priors for all parameters. However, the full 

analytical expression of the joint posterior distribution remains out of reach, so that recourse to a 

simulation procedure is unavoidable (see Gelman et al., 1995, chapter 15). It was therefore 

decided to perform a MCMC simulation for all unknowns, but to take advantage of the model’s 

structure by running the Gibbs sampler (Geman and Geman, 1984). This MCMC algorithm is 

based on the different full conditional distributions of one unknown (parameter and latent 

variables) given the others, which can actually all be obtained with our model. The Gibbs 

sampler is particularly suitable because, when it can be run, it ensures a quick convergence with 

regard to the more general but less efficient Metropolis-Hastings algorithm (Metropolis et al., 

1953). Note finally that, if the hierarchical structure is dropped by neglecting the random noise 

Σ , all computations can be performed analytically (see section 3.2 for discussion). 

For all the models tested (different orders of the Taylor series expansion), 20,000 iterations were 

performed with different chains starting at different points of the parameter space. The first 

10,000 iterations were deleted to ensure that the ergotic state was attained. Convergence was 

checked for the second group of 10,000 iterations by comparing the distributions obtained with 

the different chains. A few marginal posterior distributions are shown in Figure 3 for the first-

order model detailed in section 3.2. For all parameters, the credibility intervals obtained are 

small (Table 2). It therefore appears that the information conveyed by the data is sufficient and 

only the mean values and therefore be used with confidence. 

 

Figure 3 

 

Table 2 
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2.3.4. Evaluation of model quality 

The quality of the model is first evaluated by estimating the fraction of the variability of the 

reflected velocities that is captured by the random variable in
ΑT  corresponding to the n-order 

Taylor series expansion of f
~
 with regard to the total variability of the results. For the thp  

impact point, the ths  component of the reflected velocity vector e
V

r  and varying incident 

conditions k , the ratio s

pr  is calculated such that: 

( ( ))

( ( )) ( , )

p pks

p

p pk

V s
r

V s s s
=

+

in

in

A T

A T Σ
  

(11) 

where ))(( sV pkp
in
TA  denotes the variance of the ths  component of the random variable in

ΑT  for a 

fixed impact point p  and varying incident conditions k , whereas ( , )s sΣ  denotes the ths  

diagonal term of the covariance matrix Σ . If 
s

pr = 100%, all the variability of the results is 

explained by the random variable in
ΑT . To facilitate the comparison between the models 

evaluated, global indicators are calculated from the s

pr  values, ],1[ Pp∈ . The mean sr  of s

pr  

values is calculated to estimate a mean percentage of variability explained by the random 

variable in
ΑT  for each reflected velocity component. In addition, an overall ratio r  is defined as 

the mean of all s

pr  values. 

3. Application to the definition and evaluation of a stochastic bouncing model 

In this section, the statistical analysis of the data set obtained from numerical simulations is 

performed using the above-described procedure. This analysis allows defining a stochastic 

bouncing model and performing a detailed study of this model. All results obtained in this 

section are valid in the case of the impact of a spherical boulder on a coarse soil. In addition, the 

results obtained depend on the assumptions related to the numerical model of the impact, the 

procedure used for the numerical simulation campaign, and the statistical analysis. The 

assumptions made during this analysis, the validity domain of the bouncing model obtained and 

the possible generalization of this model for practical purposes will be discussed in section  4.  
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3.1. A first-order model is sufficient 

Several models corresponding to increasing dimensions of the incident vector in
T  were 

compared to determine the final formulation of the stochastic bouncing model. Particular 

attention was given to the precision and concision criteria since the bouncing model must satisfy 

a compromise between a precise simulation of the impact phenomenon and a small dimension of 

the incident velocity vector in
T . 

Table 3 summarizes the values of the sr  and r  ratios for different models corresponding to 

increasing dimensions of the incident vector in
T  in the case of the impact of a boulder with the 

radius set at Rb = Rm on a soil composed of spherical particles. The size of the data set used was 

the same for all the models evaluated: 150 different incident kinematic conditions and 100 

different impact points. The results first show that most of the variability of the reflected velocity 

is captured by the random variable in
ΑT  for all models used because the sr  coefficients are all 

greater than 75%.  

Since all the models evaluated provide satisfying results in terms of precision, the most concise 

model was chosen: a dimension of in
T  equal to 3, explaining most of the variability of the 

results by the random variable in
ΑT  for a very small set of parameters. This model will hereafter 

be called the first-order stochastic bouncing model.  

 

Table 3 

3.2. Detailed analysis of the first-order stochasti c bouncing model 

The model chosen corresponds to an incident vector in
T  composed of three components, which 

is equivalent to a first-order Taylor series expansion of the stochastic operator f
~
: 

1 2 3

3

4 5 6

7 8 9

~ ( , )

re in

x x xx xy x

re in

y y xy yy y

re in

b b x y

v a a a v

v a a a v

R a a a R

ω

ω

ω ω ωωω ω

     Σ Σ Σ 
       Σ Σ Σ      
       Σ Σ Σ      

N    

(12) 

where the coefficients ia  are sampled from a nine-dimensional Gaussian vector:   
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    
    
     Σ Σ     
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(13) 

This model separates the sources of variability for the reflected velocity vector. The variability of 

parameters ia  ( [1,9]i∈ ) is quantified by the covariance matrix a
Σ . It is associated with the 

variations in the local soil properties. On the contrary, the variability quantified by the 

covariance matrix Σ  is related to the remainder term R  and is therefore mainly associated with 

the incident velocities.  

For the ths  component of the reflected velocity vector, the standard deviation s sse = Σ  of the 

regression residuals provides a quantitative estimation of the proportion of the reflected velocity 

vector associated with the remainder term R . The correlations between two components s  and t  

of the reflected velocity vector can be estimated by the linear correlation coefficient 

[ ]1,1st
st

ss tt

c
Σ= ∈ −
Σ Σ

.  

The estimates obtained show that, for all components of the reflected velocity vector, the 

standard deviation se  is smaller than 1 m/s. Second, all the linear correlation coefficients range 

within the interval [ ]2.0,2.0− , which means that the correlations between the components of the 

reflected velocity are small. The analysis of the covariance matrix Σ  indicates that the remainder 

term R  of the Taylor series expansion of f
~
 is negligible compared to the term in

ΑT . The 

reflected quantities can therefore be correctly predicted using only the random variable in
ΑT  

and omitting the covariance matrix Σ . The variability of the reflected velocity is then only 

associated with the variability of the soil’s local properties through the covariance matrix a
Σ . It 

should be noted that, for future investigations on other simulated data sets, the model inference 

will be much easier, which will possibly make it accessible to practitioners who are not familiar 

with recent statistical developments. Indeed, ignoring the random noise Σ  makes the model lose 

its hierarchical nature, so that the analytical expression of the posterior distribution is accessible 

if the conjugate priors are kept for a
M  and a

Σ . 
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Finally, the variability associated with the operator Α  is estimated using the marginal normal 

probability distribution functions of parameters ia  (Figure 4). The estimates for their mean 

values a
im  and standard deviations a a

i iis = Σ  are provided in Table 4. Complementary to the 

marginal probability distribution functions of each parameter ia , the calculation of the linear 

correlation coefficients 

a

ija

ij
a a

ij ij

c
Σ

=
Σ Σ

 ( [1,9]i∈ ; [1,9]j∈ ) between the extra-diagonal terms of 

matrix a
Σ  shows strong correlations between parameters ia  because the a

ijc  values are large. 

 

Figure 4  

 

Table 4 

 

3.3. Sensitivity analysis 

3.3.1. Methodology for comparing the model’s parameters 

To investigate the influence of several numerical simulation parameters, such as the number of 

impact points, the spatial distribution of soil particles, the value of the size ratio Rb/Rm and the 

shape of the soil particles, the parameters ia  obtained for different values of these simulation 

parameters must be compared.  

The analysis is based on the marginal probability distribution functions of parameters ia  

summed up by their mean value a

im  and their standard deviation a

is . Complementary to the 

qualitative comparison of the mean value a

im  and the standard deviation a

is  obtained in the 

different cases, a comparison criterion iC  is calculated for each parameter ia . The criterion iC  

evaluates the difference between the marginal distribution of parameter ref

ia  obtained using 

reference conditions and the marginal distribution of parameter comp

ia  obtained using different 

numbers of impact points, different spatial distributions of the soil particles, different soil 

particle shapes or different boulder sizes. Criterion iC  is calculated as follows: 
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( ) ( )

( )

comp ref

i i i i i i
i ref

i i i

P b a b P b a b
C

P b a b

− + − +

− +

≤ ≤ − ≤ ≤=
≤ ≤

 
(14) 

The lower ib −  and upper ib +  bounds are calculated such that ( ) 95%ref

i i iP b a b− +≤ ≤ =  and 

( ) 2.5%ref

i iP a b +> = . Knowing the values of ib −  and ib +  makes it possible to determine the 

probability ( )comp

i i iP b a b− +≤ ≤ . The reference conditions correspond to the impact of a spherical 

boulder with its radius set at mb RR =  on a soil sample composed of spherical particles. The 

other properties of the soil sample are similar to those defined in section  2.2.1. For the reference 

conditions, impacts are simulated on 100 different impact points. Criterion iC  can be interpreted 

as the difference between the most probable values of parameter ia  encountered with the 

reference conditions and the conditions evaluated for which only one simulation parameter 

(number of impact points, soil sample geometrical configuration, soil particle shape, boulder 

radius) is changed compared to the reference conditions. 

3.3.2. Robustness to simulation parameters 

The first aim of this analysis is to quantify the number of simulations necessary to obtain 

relevant values for parameters ia , which are therefore calculated using different numbers of 

impact points P  for the same soil sample. The analysis of the results obtained shows that the 

simulation on 20=P  different impact points is sufficient to obtain stable values for the 

probability distribution functions of parameter ia . Indeed, all the values of criterion iC  are less 

than 10% if the number of impact points is higher than 20 (Table 5). 

 

Table 5 

 

The dependence of parameters ia  on the spatial configuration of the soil sample particles is also 

evaluated. The model estimation is carried out for four different soils with the same grading 

curves, porosity and particle mechanical properties (G, ν, φ, ρ). The only difference between the 

four samples is the spatial configuration of the particles. Soil sample no. 1 is the reference 

sample for the calculation of criterion iC .  
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The results show that the sensitivity to the spatial configuration of the particles is relatively low 

for all the parameters (Table 6) because the maximum value obtained for criterion iC  is 24%. 

Greater differences are observed for parameters 3a , 7a  and 9a  for which iC  reaches values 

greater than 10% (respectively, 17%, 24% and 12%; Table 6). Moreover, the values of 

parameters ia  can locally be slightly different from all other values for a given soil sample. In 

this case, the value of iC  obtained for the considered sample is very different from values 

obtained for all other samples. For example, the distribution of parameter 5a  calculated using 

soil sample no. 2 is very different from the other values obtained ( 5 21C = % for sample no. 2). A 

local analysis of the geometrical configuration of the particles for sample no. 2 highlights the 

particles’ specific spatial distribution: several small particles are located above larger particles 

(Figure 5). When the compression wave (Bourrier et al. 2008a) initiated at the beginning of the 

impact reaches the large particles, the energy is partially reflected toward the soil surface 

because of the larger inertia of the large particles. Supplementary kinetic energy is therefore 

transferred again to the boulder after energy reflection, which leads to an increase in the reflected 

velocity and induces local changes in the values of parameter 5a . 

 

Table 6 

 

Figure 5 

 

3.3.3. Influence of the soil and boulder size 

The influence of the characteristics of the soil and the boulder defines the model’s validity range. 

It is therefore essential for practitioners. Since an exhaustive parametrical study would be very 

long, the choice is made to limit the investigations to the influence of the parameters that are 

both accounted for in the impact model and commonly considered by practitioners (Dorren et al., 

2006). In most cases, for coarse soils, the available data are limited to the mean size and the 

shape of the soil particles. Additionally, in a preliminary approximation, the influence of the 

geometrical and mechanical characteristics of the impacting boulder will not be studied. All 

simulations are therefore performed for the case of the impact of a spherical boulder. 
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To study the influence of soil particle shape, a set of parameters ia  is calculated using a soil 

sample composed of clump particles with the same properties (see section  2.2.1) as the reference 

soil sample. The results show that variations in the parameter values are significantly greater 

(Table 7) than the variations attributable to the geometrical configuration observed previously 

(Table 6). In particular, the criterion iC  values (Table 7) exhibit significant differences for 

parameters 3a , 4a , 6a , 8a  and 9a . These differences result from differences in both the shape of 

the soil surface and the porosity of the soil. Indeed, using clump particles provides a more 

irregular soil surface composed of both quasi-planar and curved surfaces (Bourrier et al., 2007). 

It also induces smaller porosity values because the rearrangement of particles is easier if the 

particles have variable shapes (Bourrier et al., 2007).  

The difference stemming from the use of spherical particles cannot be considered insignificant. 

However, the results obtained using spherical particles provide a first-order approximation of the 

reflected velocities for a very short computation time compared to simulations using clump 

particles. Using spherical particles therefore provides an extensive parametrical analysis of the 

influence of the size ratio between the boulder and the soil particles.  

 

Table 7 

 

The physical processes involved during the impact vary greatly depending on the ratio of the 

falling boulder radius b
R  to the mean radius m

R  of the soil particles (Bourrier et al., 2008a). It is 

therefore necessary to investigate whether the parameters of the stochastic bouncing model 

depend to a large extent on this ratio. The influence of the mb
RR /  ratio is analyzed by 

calculating the parameters of the stochastic bouncing model using a soil sample composed of 

spherical particles with a 2D porosity of 0.204. The /b mR R  ratio of the boulder radius to the 

mean radius of the soil particles ranges within [ ]1,5 . 

 

Figure 6 
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The values of the calculated criterion iC  allow a comparison of parameters ia  obtained for 

different mb
RR /  ratios with the parameters obtained for 1/ =

mb
RR , which correspond to 

parameters ref

ia . The results show that the criteria 5C , 6C  strongly depend on the value of the 

mb
RR /  ratio (Figure 6) for 5.2/1 ≤≤ mb RR  and that the criterion 9C  also strongly varies 

depending on mb RR /  for any value of mb RR / . From a practical point of view, the variations 

observed clearly highlight that a single set of parameters ia  is not sufficient to model the impact 

on a given soil type for all boulder sizes. Different sets of parameters ia  have to be built, 

corresponding to different mb
RR /  ratios. 

4. Discussion  

4.1. Comparison to classical approaches 

The stochastic approach presented in this paper can be compared to classical approaches in the 

field of trajectory analysis. Classical models can be divided into several categories (Guzzetti and 

al., 2002) that consider the boulder either a single point or a rigid body. Moreover, some models 

differentiate two interaction types between the boulder and the soil: the falling rock can either 

roll or bounce onto the soil (Bozzolo and Pamini, 1986; Evans and Hungr, 1993; Kobayashi et 

al., 1990; Azzoni et al., 1995), whereas most approaches consider boulder rolling a succession of 

small bounces. To model boulder bouncing, very complex bouncing models (Falcetta, 1985; Koo 

and Chern, 1998; Dimnet and Fremond, 2000) have been developed. They can describe the 

elastic, plastic, frictional or viscous dynamical behavior of the soil during impact. Although the 

differences between the previously described approaches should not be omitted, the impact of 

the falling rock onto the soil is most often modeled using a tangential restitution coefficient te  

and a normal restitution coefficient ne  (Guzzetti et al., 2002): 

in
x

re
x

t
v

v
e =   

(15) 

in
y

re
y

n
v

v
e =  

(16) 
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The variability of the impact phenomenon is introduced as a last step by modeling the restitution 

coefficients and other parameters influencing the bouncing (Dudt and Heidenreich, 2001) as 

independent random variables that follow user-defined probability distribution functions (Dudt 

and Heidenreich, 2001; Agliardi and Crosta, 2003; Frattini et al., 2008; Jaboyedoff et al., 2005) 

derived from back analysis of previous events, experimental results or empirical expertise. 

In our model, the mean predictor is the expected reflected velocity vector ( )E re
V : 

1 2 3

4 5 6

7 8 9

( )

a in a in a in

x y b

a in a in a in

x y b

a in a in a in

x y b

m v m v m R

E m v m v m R

m v m v m R

ω
ω
ω

 + +
 = + + 
 + + 

re
V  

(17) 

The usual restitution coefficients te  and ne  can be compared to the tangential and normal 

components of the mean predictor ( )E re
V  divided by the tangential or the normal components of 

the incident velocity vector, respectively: 
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(18) 

 

Figure 7 

 

The first term of Eq. 18 highlights that the mean predictor ( )E re
V  is partially composed of a 

term equivalent to classical restitution coefficients. However, the second term shows that the 

mean predictor ( )E re
V  also provides additional information on coupling effects between the 

incident kinematic parameters. The mean restitution coefficients te  and ne  predicted by our 

model are not constant values; they depend heavily on all the incident kinematic parameters of 

the boulder (Figure 7). The strong dependency on the incident angle has already been integrated 

in previous bouncing models (see Pfeiffer and Bowen, 1989 and Dorren et al., 2004 for 

example). The difference between the proposed approach and other existing approaches is based 

on how this dependency is defined. In the proposed model, the dependency with the incidence 

angle is estimated from extensive statistical analysis, which allows exploring large impact 

configurations. On the contrary, in other existing approaches, this dependency was characterized 
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from the physical analysis of experiments on smaller data sets that do not allow exploring the 

complete variability range of the reflected velocity. 

Our stochastic bouncing model is therefore an extension of classical models that take into 

account the coupling between the incident kinematic parameters based on the analysis of the 

impact for very different incident kinematic conditions. The main difference between this model 

and the classical approaches is that the stochastic bouncing model is directly developed within an 

explicit stochastic framework. It therefore allows modeling and quantifying correlations between 

the parameters that cannot be obtained if the variability of the impact phenomenon is introduced 

separately. A particularly notable characteristic of our approach compared to standard 

approaches is the hierarchical nature of the model that separates the different sources of 

variability in the reflected velocity vector, for instance, the variability associated with the local 

characteristics of the impacted soil and with the boulder’s incident kinematic parameters. 

4.2. Remaining limitations and outcomes for further  developments 

Although comparing this model with classical approaches in the field of rockfall simulations is 

important, one has to keep in mind the assumptions and the restrictions associated with the 

proposed stochastic bouncing model. These assumptions are related to the numerical impact 

model, the statistical analysis and the specificities of the case study for which the model was 

obtained. 

The numerical impact model is a simplified simulation of the impact of a spherical boulder on 

coarse soils. Although the Discrete Element Method was proved to be relevant to model the 

impact, several assumptions were used during the modeling phase. As extensive numerical 

simulation campaigns were necessary, 2D numerical simulations were performed although the 

impact is obviously a 3D phenomenon. However, the half-scale experiments conducted to 

calibrate the model showed that the deviation of the rock from its incident plane was fairly 

insignificant, which validates the use of 2D simulations (Bourrier, 2008). The numerical model 

also implies a simplified simulation of all contacts between rocks (in particular, contact between 

the boulder and the soil particles). Indeed, the model only accounts for energy diffusion inside 

the sample and for energy dissipation processes stemming from frictional processes. Other 

dissipation sources such as plastic dissipation at the contact points, the rocks’ partial or complete 

breakage fragmentation and elastic wave propagation are not accounted for in the model. 
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Moreover, the fact that the model was calibrated from half-scale experiments and used for real-

scale simulations could also be a limitation. However, investigations of the influence of scale 

changes made in this specific case study (Bourrier, 2008) and in other research fields (aeolian 

sand transport; see Oger et al., 2005) showed that scale change effects were very slight in this 

case. Finally, the impact model is only valid for a spherical boulder approximately the same size 

as the soil particle size, which corresponds to the case of a spherical projectile impacting a coarse 

soil. As mentioned above, despite these limitations, the results obtained in this study provide a 

basis for further simulation campaigns in which energy dissipation processes and impacting 

particle shape, in particular, would be modeled more precisely.  

Second, the stochastic approach proposed is also associated with several assumptions. In 

particular, parameters ia  are modeled as realizations of a normal probability distribution 

function. Since normal laws are defined over an infinite domain, the predictive use of the 

stochastic model can theoretically lead to the generation of negative values and large reflected 

velocities that would not be in accordance with energy conservation. However, given that the 

normal laws associated with parameters ia  exhibit little variability, the problem is not relevant in 

practice. On the other hand, the numerical simulation campaigns and statistical analyses 

performed only account for the variability associated with the local properties of the soil near the 

impact point and with the incident kinematic parameters. Additionally, the model parameters 

were determined for different values of the boulder radius and for different soil particle shapes. 

The shape of the falling boulder, its orientation before impact, and the macroscopic properties of 

the soil (porosity, G, ν, φ, ρ, etc.) were not accounted for, although they are important sources of 

variability. The model obtained is therefore specific to a very particular configuration. However, 

the approach followed is a general framework for the precise characterization associated with 

each source of variability. It could be generalized over a large range of impact configurations to 

account for the above-mentioned effects. The main challenge would be to develop a relevant and 

numerical model of the impact for the different investigated configurations. It would then be 

necessary to calibrate it from real-scale experiments over a large range of incident conditions, 

which is obviously very difficult in practice.  

Third, the specificities of the case study (impact of a spherical projectile on a coarse soil) induce 

several particularities in the bouncing model obtained. One can first note that a first-order Taylor 

series expansion of the stochastic operator is sufficient to characterize boulder bouncing. 
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Moreover, the variability associated with the remainder term R is very small. In the case of the 

impact on fine soils, the limitation to a first-order Taylor series expansion of the operator would 

certainly not be valid. Indeed, a first-order model does not account for the dependency of the 

reflected velocity on the magnitude of the incident velocity. It is truly insignificant for impact on 

coarse soils (Oger et al. 2005; Bourrier et al., 2007; Bourrier, 2008) but has been proven to be 

more significant in other cases such as the impact on fine soils (see Pfeiffer and Bowen, 1989; 

Heidenreich, 2004). In addition, these particularities can be explained by the statistical analysis 

being performed from numerical simulations that provide a simplified vision of the “real” impact 

process. Finally, the results obtained would certainly be different if the influence of the shape 

and orientation of the boulder were integrated. All these restrictions of the model provide 

interesting research topics for further studies. 

4.3. Perspective for the predictive use of the mode l 

The advantages of using the approach presented to properly model the variability associated with 

boulder bouncing in the field of rockfall hazard assessment are illustrated with a simple 2D 

example. 

In the example (Figure 8), the study conducted aims at characterizing rockfall hazard on a 

homogeneous slope (100 m long, 35° slope) followed by a valley floor. The mean size of the soil 

particles is assumed to be mR = 0.2 m along the slope and mR = 0.1 m in the valley floor. The 

rockfall source, from which rocks detach starting with a 5-m-high freefall, is located at the top of 

the slope. The radius of the falling rocks is assumed to be 0.5 m. 

The first advantages of using the approach proposed for rockfall simulations lie in the clear 

physical meaning of the parameters to be assessed in the field. In addition, the number of 

parameters to be characterized in the field is reduced. Indeed, the validation of the stochastic 

bouncing model performed from real-scale experiments (Bourrier et al., 2009) showed that only 

the Rb/Rm ratio has to be characterized in the different zones of the study site. The other 

properties of the soil, such as substratum location (i.e., soil depth), porosity, and particle shape, 

can be set at fixed values for the entire site.  

The integration of the stochastic bouncing model in a rockfall trajectory simulation model is 

based on the definition of a database composed of several sets of parameters ai for varying 

values of the Rb/Rm ratio. The porosity of the soil, its depth and the particles’ shape at the study 
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site must also be evaluated. For each bouncing calculation, the reflected velocity vector is 

calculated from the incident velocity vector by using the stochastic bouncing model predictively. 

The values of parameters ai to be used for each bouncing calculation are determined depending 

on the value of the Rb/Rm ratio. A field survey must therefore be conducted to assess the spatial 

distribution of Rm over the study site. Additionally, the boulder radius Rb also has to be evaluated 

for each rockfall simulation. 

In France, a classical approach to assess risk associated with rockfall consists in quantifying the 

conjunction of the vulnerability of the elements at risk with rockfall hazard H(x), x representing 

the spatial coordinate measured along a horizontal axis starting at the rockfall source. In 

addition, rockfall hazard is considered the conjunction of probability P(D) for a rock to detach 

from the cliff and the probability P(x|D) for the rock, once detached, to propagate through the 

location x (see Jaboyedoff et al., 2005, for example), such as: 

( ) ( ) ( | )H x P D P x D=  (19) 

The calculation of the detachment probability P(D) is not within the scope of this study. On the 

other hand, the use of the stochastic bouncing model can be highly advantageous for a reliable 

estimation of the cumulative distribution P(X ≥ x|D) = P(x|D) for the rock to exceed the abscissa 

x. The probability P(X ≥ x|D) = P(x|D) is calculated by integrating the discretized density p(x, y, 

Ec) of the falling rock passing through the point (x,y) with a kinetic energy E, which is a direct 

outcome of trajectory simulations : 

0 0

( |D) ( |D) ( , , |D)
x

P x P X x p x y Ec dxdydEc

∞ ∞ ∞

= ≥ = ∫ ∫ ∫
 

(20) 

Figure 8 

 

In the example considered here, a total of 10,000 trajectory simulations are performed following 

the above-described procedure. The decrease in the probability P(x|D) depending on the distance 

x from the release point (Figure 9) shows that most of the falling rocks reach the valley floor 

because P(x|D) is greater than 85% for x ≤ 82 m. However, as soon as the valley floor is reached, 

the probability P(x) of a rockfall event occurring sharply decreases with distance x. In particular, 

it is smaller than 10% for x >120 m.  
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Figure 9 

 

Additionally, using a reliable local discretized density p(x, y, Ec|D) means the rockfall hazard 

can be studied more precisely. It is, for example, possible to determine a 2D map that defines the 

probability for the occurrence of rockfall events at all points of the study site. In a 2D context, 

this information is associated with the following probability:  
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(21) 

where δy is the vertical size of the cells resulting from the discretization of the study site.  

 

Figure 10 

 

Figure 10 provides an illustration of this type of 2D map for the example. To compute this map, 

the horizontal δx and the vertical δy cell sizes associated with the discretization of the study site 

are set at 1 m. Figure 10 clearly shows that most of the falling rocks propagate near the slope’s 

surface. In addition, for x<80 m, the most probable trajectories are located at increasing distances 

from the slope’s surface when altitude decreases. This indicates that, on a steep constant slope, 

materials at risk such as electric cables situated far from the release zone can be hit even if they 

are situated far above the soil surface. However, as soon as the valley floor is reached, the 

altitude range containing most of the trajectories substantially decreases when x increases 

because gravity no longer compensates energy dissipation at each impact. 

Note that a simple hazard assessment procedure has been used in this example. However, more 

advanced guidelines could have been implemented, since p(x, y, Ec|D) is the basis of all methods 

used for rockfall hazard characterization. Since the flight phase of the rock is deterministic, the 

relevance of the probability p(x, y, Ec|D) is determined by the accuracy of the bouncing model. 

This fully justifies the use of the stochastic bouncing models, which suitably account for the 

variability associated with different sources. 

Finally, the results obtained for this example emphasize that the use of 2D maps produced using 

our model could be highly advantageous for the optimization of the locations and the shape of 

defense structures. Indeed, the location and the height of a structure could then be optimized to 
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determine the point of the study site in which the smaller structure can stop most falling rocks. 

Given that p(x, y, Ec|D) is thoroughly calculated, one could also use it to calculate the 

distribution of the impact energy on protective structures in order to optimize its design in terms 

of structural strength performance. This approach would therefore define the probability for the 

protection structure to stop falling rocks depending on the distribution of the rocks’ energy when 

impacting the structure, which will be investigated in further work. 

 

5. Conclusion 

In this paper, a general framework was proposed for the characterization of the variability of 

falling boulders’ velocities after rebound. The use of large data sets from numerical impact 

simulations and of Bayesian modeling schemes has led to the definition of a stochastic bouncing 

model in the context of the impact of a spherical projectile on a coarse soil. This stochastic 

bouncing model uses a hierarchical structure that can quantify the relative importance of 

different contributions to the reflected velocity vector’s variability. This model also introduces 

couplings between the reflected and incident velocity vector that are sufficient to model the 

mechanism associated with boulder bouncing.  

The detailed analysis of the model has proved its relevance for modeling the variability of the 

reflected velocity vector for all spatial configurations of the soil particles. In addition, the 

parametrical study conducted demonstrated that the model is valid for different values of the 

boulder size to soil mean particle size ratio and for different soil particle shapes. The comparison 

with classical bouncing models in the field of trajectory analysis highlighted that the model can 

be considered an extension to classical models that accurately integrates the couplings between 

the reflected and the incident kinematic parameters. Moreover, it has been shown that for the 

impact of spherical boulders on coarse soils, first-order Taylor series expansion on the incident 

velocity is sufficient to express of the variability of the reflected velocity. Another important 

result is that, in this case, the variability of the local soil configurations strongly dominates 

random uncertainties. On the other hand, the model is able to take into account the couplings 

between the model’s parameters that stem from the mechanical complexity, and our results have 

indicated that they should not be neglected. 
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From a practical point of view, the bouncing model developed can easily be integrated into 

rockfall simulation codes that model trajectories of spherical boulders. The main advantages of 

this procedure compared to classical approaches, which generally require field assessment of the 

parameters, is that the required input parameters have a clear physical meaning.  

In the future, our procedure could be used to characterize the bouncing of a boulder on all 

different types of soil surface, such as fine soils or rocky surfaces, with the possible inclusion of 

field observations and real-world data using the chosen Bayesian approach (Straub and Schubert, 

2008). Our approach could also be used to characterize the variability associated with other 

important variability sources of boulder bouncing, such as boulder shape. The challenge would 

then be to provide large data sets composed of reproducible and precisely defined results. For 

this purpose, the direct use of experimental results is not suitable. On the contrary, like the 

methodology proposed here, data sets could be generated from numerical simulations. Finally, as 

illustrated in the case study, the stochastic bouncing model proposed can be used for prediction 

purposes, making a consistent probabilistic starting point available for carrying out prediction-

oriented simulations of boulders impacting a coarse soil. In particular, it can be used to build 

multivariate probability distribution functions characterizing hazard levels on an endangered 

slope and to compute risk levels taking at-risk structures into account.  
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Table 1: Values of the incident kinematic parameters. 

Incident parameters Values explored 

inV  ( /m s ) 5, 10, 15, 20, 25 

inα  ( deg ) 0, 15, 30, 45, 60, 75 

inω  ( srad / ) –6, –3, 0, 3, 6 

 

Table 2. Posterior characteristics for a few unknown parameters. 

 Mean 5.2q  5.97q  cv 

)1(aM  0.5011 0.4560 0.5482 0.0468 

)1(l

50
A  0.260 0.240 0.278 0.0378 

)2,2(Σ  0.640 0.625 0.656 0.0124 

)4,4(aΣ  0.00943 0.00707 0.0126 0.1476 

 

Table 3. sr  and r  values for increasing dimensions of in
T . 

in
T  dimension 

l
Α p  dimension sr  r  

3 9 xr =91.4%; yr =76.9%; rω
=92.3% 86.9% 

4 12 xr =93.0%; yr =80.0%; rω
=94.3% 89.1% 

6 18 xr =93.0%; yr =80.2%; rω
=94.4% 89.2% 

9 27 xr =95.1%; yr =88.8%; rω
=95.9% 93.3% 
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Table 4. Mean values a

im  and standard deviations a

is  of parameters ia . 

 
a

im  a

is  

1a  0.5012 0.2412 

2a  0.04167 0.2096 

3a  –0.1598 0.0490 

4a  0.2269 0.0971 

5a  –0.07873 0.0640 

6a  –0.03321 0.0428 

7a  –0.4188 0.1130 

8a  –0.04112 0.1809 

9a  0.4439 0.0768 

 

Table 5. Criterion iC  for different numbers of impact points.  

 
1C  

(%) 

2C  

(%) 

3C  

(%) 

4C  

(%) 

5C  

(%) 

6C  

(%) 

7C  

(%) 

8C  

(%) 

9C  

(%) 

10 points –9 –2 –18 –4 –9 –17 2 –6 –14 

20 points –1 –3 –9 0 –4 –6 0 0 –4 

50 points 0 0 –2 –1 –1 –3 0 0 –2 

 

Table 6. Criterion iC  for different geometrical configurations of the soil particles. 

 
1C  

(%) 

2C  

(%) 

3C  

(%) 

4C  

(%) 

5C  

(%) 

6C  

(%) 

7C  

(%) 

8C  

(%) 

9C  

(%) 

Soil no. 2 –1 –4 –13 –1 –21 0 –12 –2 –10 

Soil no. 3 –7 3 –17 –5 4 –1 –10 –2 –12 

Soil no. 4 2 4 –15 1 5 –8 –24 4 1 
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Table 7. Criterion iC  for a soil sample composed of clump particles 

1C  (%) 2C  (%) 3C  (%) 
4C  (%) 5C  (%) 6C  (%) 7C  (%) 8C  (%) 9C  (%) 

–3 –2 –26 –15 –6 –27 –18 –12 –48 
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Figure 1. Incident kinematic conditions. 

 

 

Figure 2. DAG summarizing the hierarchical model 
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Figure 3. Posterior distributions for a few unknown parameters. 

 

 

Figure 4. Marginal distribution of parameter 2a . 
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Figure 5. Local segregation of small particles above large particles. In this configuration, a group of small 

particles is located above a group of large particles, whereas, in most cases, particles from different sizes 

are mixed. 

 

 

Figure 6. Influence of the mb
RR /  ratio on criterion iC . 
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Figure 7. Prediction of the model for te  and ne  for varying incidence angles inα  and incident 

rotational velocities inω .  

 

 

Figure 8. Example study site. 
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Figure 9. Distribution P(x|D) depending on the horizontal distance x from the rockfall source. 

 

 

Figure 10. Distribution |D( , )P x y  for the occurrence of a rockfall event at all points of the study 

site. 

 


