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SENSITIVITY ANALYSIS OF 3-RPR PLANAR PARALLEL MANIPULATORS

This paper deals with the sensitivity analysis of 3-RPR planar parallel manipulators (PPMs). First, the sensitivity coefficients of the pose of the manipulator moving platform to variations in the geometric parameters and in the actuated variables are expressed algebraically. Moreover, two aggregate sensitivity indices are determined, one related to the orientation of the manipulator moving platform and another one related to its position. Then, a methodology is proposed to compare 3-RPR PPMs with regard to their dexterity, workspace size and sensitivity.

Finally, the sensitivity of a 3-RPR PPM is analyzed in detail and four 3-RPR PPMs are compared as illustrative examples. NOMENCLATURE a i Distance between points O and A i ρ i Distance between points A i and C i c i Distance between points C i and P α i Angle between vectors Ox and OA i β i Angle between vectors C 1 C 2 and PC i θ i Angle between vectors Ox and A i C i

δa i Variation in a i δα i Variation in α i δρ i Variation in ρ i δc i Variation in c i δβ i Variation in β i . [START_REF] Kim | The Kinematic Error Bound Analysis of the Stewart Platform[END_REF] The Euclidean norm Variations in the geometric parameters of PKMs can be either compensated or amplified. For that reason, it is important to analyze the sensitivity of the mechanism performance to variations in its geometric parameters. For instance, Wang et al. [START_REF] Wang | On the Accuracy of a Stewart Platform -Part I, The Effect of Manufacturing Tolerances[END_REF] studied the effect of manufacturing tolerances on the accuracy of a Stewart platform. Kim et al. [START_REF] Kim | The Kinematic Error Bound Analysis of the Stewart Platform[END_REF] used a forward error bound analysis to find the error bound of the end-effector of a Stewart platform when the error bounds of the joints are given, and an inverse error bound analysis to determine those of the joints for the given error bound of the end-effector. Kim and Tsai [START_REF] Kim | Design Optimization of a Cartesian Parallel Manipulator[END_REF] studied the effect of misalignment of linear actuators of a 3-Degree of Freedom (DOF) translational parallel manipulator on the motion of its moving platform. Caro et al. [START_REF] Caro | Tolerance Synthesis of Mechanisms: A Robust Design Approach[END_REF] developed a tolerance synthesis method for mechanisms based on a robust design approach. Caro et al. [START_REF] Caro | Sensitivity Analysis of the Orthoglide, A 3-DOF Translational Parallel Kinematics Machine[END_REF] proposed two indices to evaluate the sensitivity of the endeffector pose (position + orientation) of Orthoglide 3-axis, a 3-DOF translational PKM, to variations in its design parameters.

h i Unit vector OA i / OA i 2 u i Unit vector A i C i / A i C i 2 k i Unit vector C i P/ C i P 2
Besides, they noticed that the better the dexterity, the higher the accuracy of the manipulator. However, Yu et al. [START_REF] Yu | Geometric Method for the Accuracy Analysis of a Class of 3-DOF Planar Parallel Robots[END_REF] claimed that the accuracy of a 3-DOF Planar Parallel Manipulator (PPM) is not necessarily related to its dexterity. Meng et al. [START_REF] Meng | Accuracy Analysis of Parallel Manipulators With Joint Clearance[END_REF] proposed a method to analyze the accuracy of parallel manipulators with joint clearance and obtained a standard convex optimization problem to evaluate the maximal pose error in a prescribed workspace. This paper deals with the sensitivity analysis of 3-DOF Planar Parallel Manipulators (PPMs) to variations in their geometric parameters and actuated joints. Without loss of generality, we focus on the sensitivity analysis of the 3-RPR manipulator within the framework of this paper. The singularities of this manipulator were analyzed in [START_REF] Bonev | Singularity Analysis of 3-DOF Planar Parallel Mechanisms via Screw Theory[END_REF][START_REF] Merlet | Parallel robots[END_REF]. Here, we introduce a methodology to derive the sensitivity coefficients of the moving platform pose to variations in the geometric parameters in algebraic form. The underlying methodology can also be applied to derive the sensitivity coefficients of other PPMs such as 3-RPR, 3-RRR, 3-RRR and 3-PRR PPMs.

First, the architecture of the manipulator is described. Then, the sensitivity coefficients of the moving platform pose to variations in the geometric parameters and in the prismatic actuated variables are expressed algebraically. Moreover, two aggregate sensitivity indices are determined, one related to the orientation of the manipulator moving platform and another one related to its position. Then, a methodology is proposed to compare 3-RPR PPMs with regard to their dexterity, workspace size and sensitivity. Finally, the sensitivity of an arbitrary 3-RPR PPM is analyzed in detail and four 3-RPR PPMs are compared as illustrative examples.

MANIPULATOR ARCHITECTURE

Here and throughout this paper, R, P and P denote revolute, prismatic and actuated prismatic joints, respectively. F b and F p are the base and the moving platform frames of the manipulator. In the scope of this paper, F b and F p are supposed to be orthogonal. F b is defined with the orthogonal dihedron ( Ox, Oy), point O being its center and Ox parallel to segment A 1 A 2 . Likewise, F p is defined with the orthogonal dihedron ( PX, PY ), point C being its center and PX parallel to

segment C 1 C 2 .
The manipulator MP pose, i.e., its position and its orientation, is determined by means of the Cartesian coordinates vector p = [p x , p y ] T of operation point P expressed in frame F b and angle φ, namely, the angle between frames F b and F p .

Finally, the passive joints do not have any stop.

O i j u 1 h 1 α 1 A 1 A 2 A 3 θ 1 θ 2 θ 3 C 1 C 2 C 3 β 1 P x y k 1 φ X Y F p F b Figure 1. 3-RPR manipulator

SENSITIVITY INDICES

In this section, we first derive the sensitivity coefficients of the pose of the 3-RPR manipulator MP to variations in the prismatic actuated joints as well as in the coordinates of A i and C i , i = 1, 2, 3, the latter being either Polar or Cartesian coordinates. From the foregoing sensitivity coefficients, we propose sensitivity indices associated with the variations in the coordinates of A i , C i and in ρ i , i = 1, 2, 3, and two aggregate sensitivity indices, one related to the position of the MP of the manipulator and another one related to its orientation.

Sensitivity Coefficients

From the closed-loop kinematic chains O -A i -C i -P -O, i = 1, . . . , 3 depicted in Fig. 1, the position vector p of point P can be expressed in F b as follows:

p =    p x p y    = a i + (c i -a i ) + (p -c i ) , i = 1, . . . , 3 (1) 
a i and c i being the position vectors of points A i and C i expressed in F b . Equation ( 1) can also be written as

p = a i h i + ρ i u i + c i k i (2) 
with

h i =    cos α i sin α i    , u i =    cos θ i sin θ i    , k i =    cos (φ + β i + π) sin (φ + β i + π)   
where a i is the distance between points O and A i , ρ i is the distance between points A i and C i , c i is the distance between points

C i and P, h i is the unit vector OA i / OA i 2 , u i is the unit vector A i C i / A i C i 2 and k i is the unit vector C i P/ C i P 2 .
Upon differentiation of Eq.(2), we obtain:

δp = δa i h i + a i δα i E h i + δρ i u i + ρ i δθ i E u i +δc i k i + c i (δφ + δβ i ) E k i (3)
with matrix E defined as

E =    0 -1 1 0    (4) 
δp and δφ being the position and orientation errors of the MP. Likewise, δa i , δα i , δρ i , δc i and δβ i denote the variations in a i , α i , ρ i , c i and β i , respectively.

The idle variation δθ i is eliminated by dot-multiplying Eq.( 3) by ρ i u T i , thus obtaining

ρ i u T i δp = ρ i δa i u T i h i + ρ i a i δα i u T i Eh i + ρ i δρ i +ρ i δc i u T i k i + ρ i c i (δφ + δβ i ) u T i Ek i (5) 
Equation ( 5) can now be cast in vector form, namely,

A    δφ δp    = H a       δa 1 δa 2 δa 3       + H α       δα 1 δα 2 δα 3       + B       δρ 1 δρ 2 δρ 3       + H c       δc 1 δc 2 δc 3       + H β       δβ 1 δβ 2 δβ 3       (6) 
with

A =       m 1 ρ 1 u T 1 m 2 ρ 2 u T 2 m 3 ρ 3 u T 3       , B =       ρ 1 0 0 0 ρ 2 0 0 0 ρ 3       (7a) 
H a = diag ρ 1 u T 1 h 1 ρ 2 u T 2 h 2 ρ 3 u T 3 h 3 (7b) H α = diag ρ 1 a 1 u T 1 Eh 1 ρ 2 a 2 u T 2 Eh 2 ρ 3 a 3 u T 3 Eh 3 ( 7c 
)
H c = diag ρ 1 u T 1 k 1 ρ 2 u T 2 k 2 ρ 3 u T 3 k 3 ( 7d 
)
H β = diag ρ 1 c 1 u T 1 Ek 1 ρ 2 c 2 u T 2 Ek 2 ρ 3 c 3 u T 3 Ek 3 ( 7e 
)
and

m i = -ρ i c i u T i Ek i , i = 1, . . . , 3 (8) 
Let us notice that A and B are the direct and the inverse Jacobian matrices of the manipulator, respectively. Assuming that A is non singular, i.e., the manipulator does not meet any Type II singularity [START_REF] Gosselin | Singularity Analysis of Closed-Loop Kinematic Chains[END_REF], we obtain upon multiplication of Eq.( 6) by A -1 :

   δφ δp    = J a       δa 1 δa 2 δa 3       + J α       δα 1 δα 2 δα 3       + J       δρ 1 δρ 2 δρ 3       + J c       δc 1 δc 2 δc 3       + J β       δβ 1 δβ 2 δβ 3       (9) 
with

J = A -1 B (10a) J a = A -1 H a (10b) J α = A -1 H α (10c) J c = A -1 H c (10d) J β = A -1 H β (10e) 
and

A -1 = 1 det(A)    v 1 v 2 v 3 v 1 v 2 v 3    ( 11a 
)
v i = ρ j ρ k (u j × u k ) T k (11b) v i = E (m j ρ k u k -m k ρ j u j ) (11c) det(A) = 3 ∑ i=1 m i v i (11d) k = i × j (11e) 
j = (i + 1) modulo 3; k = (i + 2) modulo 3; i = 1, 2, 3. J is the kinematic Jacobian matrix of the manipulator whereas J a , J α , J c and J β are named sensitivity Jacobian matrices of the pose of the MP to variations in a i , α i , c i and β i , respectively. Indeed, the terms of J a , J α , J c and J β are the sensitivity coefficients of the position and the orientation of the moving platform of the manipulator to variations in the Polar coordinates of points A i and C i . Likewise, J contains the sensitivity coefficients of the manipulator MP pose to variations in the prismatic actuated joints. It is noteworthy that all these sensitivity coefficients are expressed algebraically.

Let δa ix and δa iy denote the position errors of points A i , i = 1, 2, 3, along Ox and Oy, namely, the variations in the Cartesian coordinates of points A i . Likewise, let δc iX and δc iY denote the position errors of points C i along PX and PY , namely, the variations in the Cartesian coordinates of points C i .

From Fig. 1,

   δa ix δa iy    =    cos α i -a i sin α i sin α i a i cos α i       δa i δα i    (12a)    δc iX δc iY    =    cos β i -c i sin β i sin β i c i cos β i       δc i δβ i    (12b) 
Accordingly, from Eq.( 9) and Eqs.(12a)-(b), we obtain the following relation between the pose error of the MP and variations in the Cartesian coordinates of points A i and C i :

   δφ δp    = J A                 δa 1x δa 1y δa 2x δa 2y δa 3x δa 3y                 + J       δρ 1 δρ 2 δρ 3       + J C                 δc 1X δc 1Y δc 2X δc 2Y δc 3X δc 3Y                 (13) 
J A and J C being named sensitivity Jacobian matrices of the pose of the MP to variations in the Cartesian coordinates of points A i and C i , respectively. Indeed, the terms of J A and J C are the sensitivity coefficients of the pose of the MP to variations in the Cartesian coordinates of points A i and C i .

In order to better highlight the sensitivity coefficients, let us write the 3 × 6 matrices J A and J C and the 3 × 3 matrix J as follows:

J A = J A 1 J A 2 J A 3 (14a) J C = J C 1 J C 2 J C 3 (14b) J = j 1 j 2 j 3 (14c)
the 3 × 2 matrices J A i and J C i and the three dimensional vectors j i being expressed as:

J A i =    j A i φ J A i p    , i = 1, 2, 3 (15a) 
J C i =    j C i φ J C i p    , i = 1, 2, 3 (15b) 
j i =    j iφ j ip    , i = 1, 2, 3 (15c) 
with

j A i φ = 1 det(A) v i q i v i r i (16a) j C i φ = 1 det(A) v i s i v i t i (16b) j iφ = ρ i v i det(A) (16c) 
J A i p = 1 det(A)    q i v T i i r i v T i i q i v T i j r i v T i j    (16d) 
J C i p = 1 det(A)    s i v T i i t i v T i i s i v T i j t i v T i j    (16e) 
j ip = 1 det(A)    ρ i v T i i ρ i v T i j    (16f)
q i , r i , s i and t i taking the form:

q i = ρ i u T i i (17a) r i = ρ i u T i j (17b) s i = ρ i u T i k i cos β i -ρ i u T i Ek i sin β i (17c) t i = ρ i u T i k i sin β i + ρ i u T i Ek i cos β i (17d)
j A i φ , j C i φ and j iφ contain the sensitivity coefficients of the orientation of the MP of the manipulator to variations in the Cartesian coordinates of points A i , C i and in prismatic actuated variables, respectively. Similarly, J A i p , J C i p and j ip contain the sensitivity coefficients related to the position of the MP.

Accordingly, the designer of such a planar parallel manipulator can easily identify the most influential geometric variations to the pose of its MP and synthesize proper dimensional tolerances from the previous sensitivity coefficients. Some sensitivity indices related to the geometric errors of the moving and base platforms as well as to prismatic actuated joints errors are introduced thereafter. of the manipulator MP to variations in the Cartesian coordinates of points A i , C i and in ρ i is equal to the norm of j A i φ , j C i φ and j iφ (J A i p , J A i p and j ip , resp.). Accordingly, let ν φA i , ν φC i and ν φρ i (ν pA i , ν pρ i and ν pC i , resp.) be the sensitivity indices of the orientation (position, resp.) of the moving platform to variations in the Cartesian coordinates of points A i , C i and in ρ i , respectively:

Sensitivity Indices to Variations in the Cartesian

ν φA i = j A i φ 2 (18a)
ν φC i = j C i φ 2 (18b)
ν φρ i = | j iφ | (18c) 
ν pA i = J A i p 2 ( 18d 
)
ν pC i = J C i p 2 (18e)
ν pρ i = j ip 2 (18f)
with • 2 denoting the spectral norm, i.e., the 2-norm. As a reminder, the spectral norm of a matrix is equal to its maximum singular value.

Two Aggregate Sensitivity Indices

The pose errors of the manipulator MP depend on variations in the geometric parameters as well as on the manipulator configuration. In order to analyze the influence of the manipulator configuration on those errors, let us first formulate some indices to assess the aggregate sensitivity of the MP pose to variations in the geometric parameters for a given manipulator configuration. To this end, let Eq.( 13) be expressed as:

   δφ δp    = J s δa i δρ i δc i T ( 19 
)
with

J s = J A J J C ( 20 
)
and δa i = δa 1x δa 1y δa 2x δa 2y δa 3x δa 3y (21a)

δρ i = δρ 1 δρ 2 δρ 3 ( 21b 
)
δc i = δc 1X δc 1Y δc 2X δc 2Y δc 3X δc 3Y (21c)
The 3 × 15 matrix J s can be written as follows:

J s =    j s φ J s p    (22) 
with

j s φ = j A 1 φ j A 2 φ j A 3 φ j 1φ j 2φ j 3φ j C 1 φ j C 2 φ j C 3 φ (23a) J s p = J A 1 p J A 2 p J A 3 p j 1p j 2p j 3p J C 1 p J C 2 p J C 3 p (23b)
From Eq.(23a), we can define an aggregate sensitivity index ν φ of the orientation of the MP of the manipulator to variations in its geometric parameters and prismatic actuated joints, namely,

ν φ = j s φ 2 n v ( 24 
)
n v being the number of variations that are considered. Here, n v is equal to 15.

Likewise, from Eq.(23b), an aggregate sensitivity index ν p of the position of the MP of the manipulator to variations in its geometric parameters and prismatic actuated joints can be defined as follows:

ν p = J s p 2 n v ( 25 
)
For any given manipulator configuration, the lower ν φ , the lower the overall sensitivity of the orientation its MP to variations in the geometric parameters. Similarly, the lower ν p , the lower the overall sensitivity of the MP position to variations in the geometric parameters. As a matter of fact, ν φ (ν p , resp.) characterizes the intrinsic sensitivity of the MP orientation (position, resp.) to any variation in the geometric parameters.

Let us notice that ν p as well as the sensitivity coefficients related to the MP position defined in Sections 3.1 and 3.2 are frame dependent, whereas ν φ and the sensitivity coefficients related to the MP orientation are not.

Finally, let us notice that ν φq i indices, 

q i = {A i , ρ i ,C i },

COMPARISON METHODOLOGY

In this section we define a methodology to compare planar parallel manipulators with regard to their dexterity, workspace size and sensitivity. This methodology is organized into four steps:

1. normalization of the geometric parameters;

2. determination of the manipulator regular dexterous workspace (RDW);

3. evaluation of the sensitivity of the MP orientation to variations in the geometric parameters throughout the RDW by means of ν φ defined in Eq. ( 24); 4. evaluation of the sensitivity of the MP position to variations in the geometric parameters throughout the RDW by means of ν p defined in Eq. ( 25).

The radii of the circumscribed circles of the base and moving platforms of the manipulators are normalized as explained in Section 4.1. The manipulator RDW is obtained by means of an optimization problem introduced in Section 4.2.

Geometric Parameters Normalization

Let R 1 and R 2 be the radii of the base and moving platforms of the PPM. In order to come up with finite values, R 1 and R 2 are normalized. In the same vein, the dimensions of two degree-of-freedom manipulators were normalized in [START_REF] Liu | Kinematics, Singularity and Workspace of Planar 5R Symmetrical Parallel Mechanisms[END_REF][START_REF] Liu | Performance Atlases and Optimum Design of Planar 5R Symmetrical Parallel Mechanisms[END_REF][START_REF] Liu | On the Optimal Design of the PRRRP 2-DOF Parallel Mechanism[END_REF].

For that matter, let N f be a normalizing factor:

N f = (R 1 + R 2 )/2 (26) 
and

r m = R m /N f , m = 1, 2 (27) 
Therefore,

r 1 + r 2 = 2 (28) 
From eqs.( 27) and ( 28), we can notice that:

r 1 ∈ [0, 2] , r 2 ∈ [0, 2] (29) 
As the former two-dimensional infinite space corresponding to geometric parameters R 1 and R 2 is reduced to a one-dimensional finite space defined with Eq.( 28), the workspace analysis of the 3-RPR manipulator under study is easier. Moreover, once the geometric parameters of two PPMs are normalized, the size of their RDW can be compared.

Regular Dexterous Workspace

Assessing the kinetostatic peformance of parallel manipulators is not an easy task for 6-DOF parallel manipulators [START_REF] Merlet | Jacobian, Manipulability, Condition Number, and Accuracy of Parallel Robots[END_REF],

but for planar manipulators it is easier as their singularities have a simple geometric interpretation [START_REF] Caro | Isoconditioning Loci of Planar Three-Dof Parallel Manipulators[END_REF][START_REF] Alba-Gomez | Consistent Kinetostatic Indices for Planar 3-DOF Parallel Manipulators, Application to the Optimal Kinematic Inversion[END_REF].

The regular dexterous workspace of a manipulator (RDW) is a regular-shaped part of its workspace with good and homogeneous kinetostatic performance [START_REF] Chablat | An Interval Analysis Based Study for the Design and the Comparison of 3-DOF Parallel Kinematic Machines[END_REF]. The shape of the RDW is up to the designer. It may be a cube, a parallelepiped, a cylinder or another regular shape. A reasonable choice is a shape that "fits well" the one of the singular surfaces. A cylinder suits well for planar manipulators.

In the scope of this study, the RDW of the PPM is supposed to be a cylinder of φ-axis with a good kinetostatic performance, i.e., the inverse condition number κ -1 F (J n ) of the normalized Jacobian matrix J n of the manipulator based on the Frobenius norm is higher than a prescribed value, κ F (•) denoting the condition number of a matrix based on the Frobenius norm. Let κ -1 F (J n ) be higher than 0.1.

The normalized Jacobian matrix J n is used as the terms of the kinematic Jacobian matrix J are not homogeneous. In this case, its condition number is meaningless as its singular values cannot be arranged in order due to their different nature. J n is obtained from J by means of a characteristic length in [START_REF] Caro | Isoconditioning Loci of Planar Three-Dof Parallel Manipulators[END_REF]. For the particular case of planar 3-dof parallel manipulators, the use of the characteristic length to calculate the condition number makes sense as it has a geometric meaning as shown in [START_REF] Alba-Gomez | Consistent Kinetostatic Indices for Planar 3-DOF Parallel Manipulators, Application to the Optimal Kinematic Inversion[END_REF].

Indeed, the characteristic length was calculated such that, at the isotropic configuration, the manipulators is the furthest from its singular configurations, which are those where lines A i C i intersect, i = 1, . . . , 3. Here "furthest" does not relate to a distance (there is no metric in R 2 × SO( 2)), but to angles between lines as explained in [START_REF] Alba-Gomez | Consistent Kinetostatic Indices for Planar 3-DOF Parallel Manipulators, Application to the Optimal Kinematic Inversion[END_REF]. A geometric interpretation of the characteristic length was reported in [START_REF] Khan | The Kinetostatic Optimization of Robotic Manipulators: The Inverse and the Direct Problems[END_REF].

The RDW is obtained by solving the following optimization problem:

Pb min x 1/R s.t. ∆φ ≥ π/6 κ -1 F (J n ) ≥ 0.1
R being the radius of the cylinder and ∆φ the orientation range of the MP within the RDW. Here, ∆φ is supposed to be equal to π/6. This optimization problem has five decision variables, namely, x = R I x I y φ min φ max I x and I y being the Cartesian coordinates of the cylinder center, φ min and φ max being the lower and upper bounds of ∆φ, respectively. Besides, the global minimum of this optimization problem is found by means of a Tabu search Hooke and Jeeves algorithm [START_REF] Al-Sultan | A Tabu Search Hooke and Jeeves Algorithm for Unconstrained Optimization[END_REF]. Consequently, the RDW of the manipulator is completely defined by means of the decision variables associated with this global minimum. Finally, Eqs. ( 24) and ( 25) are used to evaluate the overall sensitivity of the MP orientation and position to variations in the geometric parameters of the manipulator throughout the RDW.

ILLUSTRATIVE EXAMPLES

This section aims at illustrating the sensitivity coefficients, indices and comparison methodology introduced in Sections 3.1, 3.2, 3.3 and 4, respectively. For that purpose, the sensitivity of an arbitrary 3-RPR PPM is first analyzed in detail.

Then, the sensitivity of four 3-RPR PPMs are compared.

Sensitivity Analysis of a general 3-RPR PPM

Let us study the 3-RPR PPM with the following geometric parameters: and φ ∈ [-2, 2]. They correspond to configurations in which the stiffness of the mechanism is locally lost, which occurs when matrix A is singular, i.e., det(A) = 0, [START_REF] Li | Determination of Maximal Singularity-free Zones in the Workspace of Planar Three-degree-of-freedom Parallel Mechanisms[END_REF].

a 1 = a 2 = a 3 = R 1 = 0.60 (30a) c 1 = c 2 = c 3 = R 2 = 0.25 (30b) {α 1 , α 2 , α 3 } = {-2.50, -0.60, 2.30} (30c) {β 1 , β 2 , β 3 } = {-2.
A 1 A 2 A 3 C 1 C 2 C 3 O P φ x [m]
Let us assume that the prismatic joints of the manipulator do not have any stop. Figure 4 depicts a section of the workspace of the 3-RPR PPM under study for a given orientation of its moving platform, i.e., φ = -π/8. This section, called W s , is an ellipse and is delimited with the singularity locus shown in Fig. 3.

Figures 5(a)-(b) illustrate the percentage of W s , in which the orientation-sensitivity indices related to variations in the coordinates of A i , C i and in ρ i , defined with Eqs. (18a)-(c), are smaller than 3 rad/m and 6 rad/m, respectively. The three bars above indices ν φq i , i = 1, 2, 3, are associated with the sensitivity of the MP orientation φ to variations in q 1 , q 2 and q 3 , -2 

-1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 x [m] y [m] φ [rad]
ν φq i < 6 rad/m, q i = {A i , ρ i ,C i }, i = 1, 2, 3
respectively. For the first set of three bars, q i stands for A i . For the second set of three bars, q i stands for ρ i . For the third set of three bars, q i stands for C i , i = 1, 2, 3. It is apparent that the higher the bar, the smaller the sensitivity of the MP orientation to variations in the corresponding geometric parameter or variable. For instance, from Fig. 5(a), ν φA 1 is smaller than 3 rad/m in 49.3% of W s , ν φρ 2 is smaller than 3 rad/m in 42.4% of W s and ν φC 3 is smaller than 3 rad/m in 48.9% of W s . 18d)-(f), are smaller than 1.5 and 3, respectively. The three bars above indices ν pq i , i = 1, 2, 3, are associated with the sensitivity of the MP position to variations in q 1 , q 2 and q 3 , respectively. For the first set of three bars, q i stands for A i . For the second set of three bars, q i stands for ρ i . For the third set of three bars, q i stands for C i , i = 1, 2, 3. The higher the bar, the smaller the sensitivity of the MP position to variations in the corresponding geometric parameter or variable. For instance, from Fig. 6(a), ν pA 1 is smaller than 1.5 in 61.2% of W s , ν pρ 2 is smaller than 1.5 in 40.6%

ν pA i ν pρ i ν pC i
ν pq i < 3, q i = {A i , ρ i ,C i }, i = 1, 2, 3
of W s and ν pC 3 is smaller than 1.5 in 71.1% of W s .

From Figs. 5(a)-(b), we can notice that ν φA i , ν φρ i and ν φC i are similar. Likewise, from Fig. 6(a)-(b), ν pA i , ν pρ i and ν pC i are similar. As a matter of fact, ν φA i and ν φC i (ν pA i and ν pC i , resp.) is the sensitivity of the MP orientation (position) to the most penalizing variation of the corresponding point. Accordingly, the most penalizing variations of points A i and C i are

along leg A i C i , i = 1, 2, 3. 
For the MP orientation depicted in Fig. 2, we can notice from Figs. In order to have an idea of the sensitivity of the MP pose of the manipulator to variations in its geometric parameters and prismatic actuated joints, Figs. 7(a)-(b) illustrate the isocontours of ν φ and ν p , defined with Eqs. ( 24) and ( 25), throughout W s . We can notice that the closer P to the geometric center of W s , the smaller the sensitivity of the MP pose to variations in the geometric parameters and prismatic actuated joints. Let us assume that the variations in the geometric parameters and prismatic actuated joints follow a normal distribution and their tolerance range is equal to 50µm, namely, ∆q i and σ q i being the tolerance range and the standard deviation of entity q i , q 19) for the MP pose depicted in Fig. 2 and the tolerance ranges specified in Eq.(31). Let |δφ| mean be the average of the absolute orientation error of the MP and δp 2mean the 2-norm of its positioning error. From Figs. 9(a In order to highlight the comparison methodology proposed in Section 4, the sensitivity of two degenerate and two nondegenerate 3-RPR PPMs is analyzed. Degenerate manipulators have a simpler direct kinematic characteristic polynomial and simpler singularity conditions. Whether they are globally more or less sensitive to geometric errors than their nondegenerate counterparts is a question of interest for the designer. First, the two degeneracy features are recalled. Then, the architectures of the four manipulators under study are illustrated. Finally, those four manipulators are compared based on the size of their regular dexterous workspace and the sensitivity of their MP pose to variations.

∆q i = 3σ q i = 50µm , q i = {A i , ρ i ,C i } , i = 1, 2, 3 (31) x [m] y [m 
i = {A i , ρ i ,C i }, i = 1, 2, 3, respectively. Let |δφ| pdf |δφ| [rad] 0 0.5 1 1.5 2 2.5 3 3.5 ×10 -3 (a) pdf δp 2 [m] 0 0.2 0.4 0.6 0.8 1 1.2 ×10 -3 (b)

Degeneracy Conditions

The forward kinematic problem of a parallel manipulator often leads to complex equations and non analytic solutions, even when considering 3-DOF PPMs [START_REF] Hunt | Kinematic Geometry of Mechanisms[END_REF]. For those manipulators, Hunt showed that the forward kinematics admits at most six solutions [START_REF] Hunt | Structural Kinematics of In-Parallel Actuated Robot Arms[END_REF] and some authors proved that their forward kinematics can be reduced to the solution of a sixth-degree characteristic polynomial [START_REF] Gosselin | Solutions Polynomiales au Problème de la Cinématique des Manipulateurs Parallèles Plans Trois Degrés de Liberté[END_REF][START_REF] Pennock | Kinematic Analysis of a Planar Eight-Bar Linkage: Application to a Platform-Type Robot[END_REF]. The decreasing conditions of the degree of the latter were investigated in [START_REF] Gosselin | On the Direct Kinematics of Planar Parallel Manipulators: Special Architectures and Number of Solutions[END_REF], [START_REF] Kong | Forward Displacement Analysis of Third-Class Analytic 3-RPR Planar Parallel Manipulators[END_REF] and [START_REF] Wenger | Degeneracy Study of the Forward Kinematics of Planar 3-RPR Parallel Manipulators[END_REF]. Here, we focus on the sensitivity analysis of two classes of degenerate manipulators. The first class includes all 3-RPR manipulators with similar base and moving platforms [START_REF] Kong | Forward Displacement Analysis of Third-Class Analytic 3-RPR Planar Parallel Manipulators[END_REF]. As far as the degenerate manipulators of the second class are concerned, their moving platform is obtained from their base platform by means of a reflection [START_REF] Wenger | Degeneracy Study of the Forward Kinematics of Planar 3-RPR Parallel Manipulators[END_REF]. For manipulators of the first class, the forward kinematics is reduced to the solution of two quadratics in cascade. For manipulators of the second class, the forward kinematics degenerates is reduced to the solution of a cubic and a quadratic in sequence. Their radii are given in Table 1 and compared in Fig. 13. We can notice that M 4 has the largest RDW, whereas M 2 has the smallest one.

Manipulators Under Study

(b) M 2 A 1 A 2 A 3 C 1 C 2 C 3 O P -0.5 0 0.5 1 1.5 2 -0.5 0 0.5 1 1.5 (c) M 3 A 1 A 2 A 3 C 1 C 2 C 3 O P -0.5 0 0.5 1 
R 1 R 2 R 3 R 4
1.18 0.64 0.92 1.43 Finally, Table 2 gives an overall classification of M 1 , M 2 , M 3 and M 4 with regard to their RDW size and the sensitivity of their MP orientation and position to variations in their geometric parameters. We can notice that the degenerate manipulator M 4 is globally the most interesting, i.e., it has the most robust design. The sensitivity analysis of these four manipulators has been carried out with other RDWs, i.e., with different upper bounds of ∆φ and κ -1 F (J n ) in the optimization problem formulated in Section 4.2. The results are reported in [START_REF] Binaud | Sensitivity Comparison of Planar Parallel Manipulators[END_REF] and it turns out that the overall classification shown in Table 2 is unchanged. problem, the RDW can be plotted in the joint space and its smallest enveloping parallelepiped be determined. Later on, the methodology proposed in this paper will be used to compare the sensitivity of PPMs of different architectures and/or dimensions to variations in their geometric parameters. 

φ x y RDW 1 -2 0 2 -2 -1 0 1 2 -3 -2 -1 0 1 2 3 (a) M 1 x y φ RDW 2 -2 -1 0 -2 -1 0 1 2 -3 -2 -1 0 1 2 3 (b) M 2 x y φ RDW 3 -2 -1 0 1 2 -2 0 2 -3 -2 -1 0 1 2 3 (c) M 3 φ y x RDW 4 -2 0 2 -2 -1 0 1 2 -3

F

  b Base frame F p Moving platform frame P Geometric center of the moving platform p x , p y Cartesian coordinates of P expressed in F b φ Orientation of the moving platform δa ix Position error of point A i along Ox δa iy Position error of point A i along Oy δc iX Position error of point C i along PX δc iY Position error of point C i along PY ν p Local sensitivity index of the position of the moving platform to variations in the geometric parameters ν φ Local sensitivity index of the orientation of the moving platform to variations in the geometric parameters 1 INTRODUCTION

Fig- ure 1

 1 illustrates the architecture of the manipulator under study. It is composed of a base and a moving platform (MP) connected by means of three legs. Points A 1 , A 2 and A 3 , (C 1 , C 2 and C 3 , respectively) lie at the corners of a triangle, of which point O (point P, resp.) is the circumcenter. Each leg is composed of a R, a P and a R joint in sequence. The three P joints are actuated. Accordingly, the manipulator is named 3-RPR manipulator.

  Coordinates of A i , C i and in ρ i From Eqs.(16a)-(c) (Eqs.(16d)-(f), resp.), it turns out that the maximum sensitivity of the orientation (position, resp.)

  defined in Eqs.(18a)-(c), as well as ν φ are expressed in [rad/L], whereas ν pq i indices defined in Eqs.(18d)-(f), as well as ν p are dimensionless, [L] being the unit of length.

  90, -0.25, 0.75} (30d) α i and β i , i = 1, 2, 3, being expressed in [rad] and R 1 and R 2 in [m]. Figure2illustrates the corresponding manipulator, the radii of the circumscribed circles of its base and moving platforms being different. In this figure, the MP orientation φ is equal to -π/8 and the Cartesian coordinates of its geometric center P expressed in F b are p = [-0.3, -0.1] T . Figure3

Figure 2 .

 2 Figure 2. The 3-RPR manipulator under study with φ = -π/8, p = [-0.3, -0.1] T , R 1 = 0.6 m and R 2 = 0.25 m

Figure 3 .Figure 4 .Figure 5 .

 345 Figure 3. Singularity locus of the 3-RPR PPM within a region of the workspace delimited with x ∈ [-2, 2], y ∈ [-2, 2] and φ ∈ [-2, 2]

Figure 6 .

 6 Figure 6. The percentage of W s , in which: (a) ν pq i < 1.5; (b)ν pq i < 3, q i = {A i , ρ i ,C i }, i = 1, 2, 3

Figures 6 (

 6 Figures 6(a)-(b) illustrate the percentage of W s , in which the position-sensitivity indices to variations in the coordinates of A i , C i and in ρ i , defined with Eqs. (18d)-(f), are smaller than 1.5 and 3, respectively. The three bars above indices ν pq i ,

  Figs. 6(a)-(b), the MP position is more sensitive to variations in the geometric parameters of second leg of the manipulator than to variations in its other geometric parameters as the bars associated with the second leg are smaller than the bars associated with the other legs.

Figures 8 (

 8 Figures8(a)-(b) illustrate the distribution of ν φ and ν p throughout W s . For instance, Fig.8(b)shows that ν φ is lower than 0.4 rad/m in 24.7% of W s . Likewise, Fig.8(a) shows that ν p is lower than 0.2 in 32.8% of W s .

Figure 7 . 3 <Figure 8 .

 738 Figure 7. ν φ and ν p isocontours throughout W s

Figure 9 .

 9 Figure 9. Distribution of the (a) orientation and (b) positioning errors of the MP for a given pose of the latter: φ = π/8 and p = [0.25, 0.4]

  )-(b), |δφ| mean is equal to 623µrad/m and δp 2mean is equal to 232 µm. Figures 10(a)-(b) show the isocontours of |δφ| mean and δp 2mean throughout W s . Those isocontours are similar to ν φ and ν p isocontours illustrated in Figs. 7(a)-(b). It means that ν φ and ν p are relevant sensitivity indices of the MP pose to variations in the geometric parameters and in actuated variables.

5. 2

 2 Comparison of Two Non-Degenerate and Two Degenerate 3-RPR PPMs

Figure 10 .

 10 Figure 10. (a) |δφ| mean and (b) δp 2mean isocontours throughout W s

M 4 Figure 11 . 5 . 2 . 3

 411523 Figure 11. The four 3-RPR manipulators under study with φ = 0 and p = [1, 1.5] T : (a)-(b) non-degenerate manipulators, (c)-(d) degenerate manipulators

M 4 Figure 12 .Figure 13 . 4 M 1 M 2 M 3 Table 2 . 6 CONCLUSIONSFigure 14 .

 4121341232614 Figure 12. Maximal Regular Dextrous Workspace of: (a) M 1 ; (b) M 2 ; (c) M 3 and (d) M 4

Figure 15 . 4 < 0. 1 <Figure 16 .

 154116 Figure 15. ν p isocontours of (a) M 1 , (b) M 2 , (c) M 3 and (d) M 4

Table 1 .

 1 RDW radius of M 1 , M 2 , M 3 and M 4 M 2 , M 3 and M 4 , respectively. It is apparent that M 4 has the least sensitive orientation of its MP whereas M 1 has the least sensitive position of its MP to variations in geometric parameters. On the contrary, M 1 has the most sensitive position of its MP and M 4 has the most sensitive orientation of its MP to variations in geometric parameters.Figures16(a)-(b)show the distributions of ν φ and ν p throughout the RDW of M 1 , M 2 , M 3 and M 4 . From Fig.16(a), ν φ is smaller than 0.3 in 78.4% (93.7%, 90.3% and 98.3%, resp.) of M 1 (M 2 , M 3 and M 4 , resp.) RDW. From Fig.16(b), ν p is smaller than 0.2 in 79.9% (48.8%, 78.4% and 18.7%, resp.) of M 1 (M 2 , M 3 and M 4 , resp.) RDW.

5.2.4 ν φ and ν p Isocontours

In this section, the sensitivity of M 1 , M 2 , M 3 and M 4 is evaluated within their RDW for a matter of comparison based on aggregate sensitivity indices ν φ and ν p defined with Eqs.(

24

) and (

25

), respectively. Figures 14(a)-(d) (Figures 15(a)-(d), resp.) illustrate the isocontours of the maximum value of ν φ (ν p , resp.) for a given orientation φ of the MP throughout the RDW of M 1 ,