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ABSTRACT
This paper deals with the sensitivity analysis oRBR planar parallel manipulators (PPMs). First, the sen-
sitivity coefficients of the pose of the manipulator movingtform to variations in the geometric parameters and
in the actuated variables are expressed algebraically.eder, two aggregate sensitivity indices are determined,
one related to the orientation of the manipulator movindfpten and another one related to its position. Then, a
methodology is proposed to compardRBR PPMs with regard to their dexterity, workspace size anditeihs

Finally, the sensitivity of a 3]RPR PPM is analyzed in detail and fourBPR PPMs are compared as illustrative

examples.
NOMENCLATURE
a Distance between point3 andA
pi Distance between pointg andC;
¢ Distance between poin@ andP
a; Angle between vector®x and OA
Bi Angle between vectoG;C, andPG
6; Angle between vector®x andAC



0g; Variation ing

oo Variation inq;

op; Variation inp;

oc; Variation ing;

OB \Variation inf3;

Il The Euclidean norm

h; Unit vectorOA /|| OA]|2

Ui Unit vectorAGi/||AC ||2

ki Unit vectorG;P/[|CGP|2

¥, Base frame

Fp Moving platform frame

P Geometric center of the moving platform
px, py Cartesian coordinates Bfexpressed inrp
¢ Orientation of the moving platform

day  Position error of poinf; alongOx

day Position error of pointy alongOy

dcx Position error of poin€; alongPX

ocy Position error of poin€; along PY

vp Local sensitivity index of the position of the moving platioto variations in the geometric parameters

Ve Local sensitivity index of the orientation of the moving fhtaim to variations in the geometric parameters

1 INTRODUCTION

Variations in the geometric parameters of PKMs can be ettbapensated or amplified. For that reason, it is importan
to analyze the sensitivity of the mechanism performanceat@tions in its geometric parameters. For instance, Wang
al. [fl] studied the effect of manufacturing tolerances anahcuracy of a Stewart platform. Kim et d]. [2] used a forwarc
error bound analysis to find the error bound of the end-aifect a Stewart platform when the error bounds of the joints
are given, and an inverse error bound analysis to deterrhosetof the joints for the given error bound of the end-effiect

Kim and Tsai [B] studied the effect of misalignment of linemtuators of a 3-Degree of Freedom (DOF) translationa
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parallel manipulator on the motion of its moving platform.arG et al. [#] developed a tolerance synthesis method fc
mechanisms based on a robust design approach. Caro [¢tptofiE]sed two indices to evaluate the sensitivity of the end
effector pose (position + orientation) of Orthoglide 3spd 3-DOF translational PKM, to variations in its desigrepagters.
Besides, they noticed that the better the dexterity, thiedrithe accuracy of the manipulator. However, Yu et[l. [&inokd
that the accuracy of a 3-DOF Planar Parallel ManipulatoMPR not necessarily related to its dexterity. Meng etf]. [7
proposed a method to analyze the accuracy of parallel miahips with joint clearance and obtained a standard conve

optimization problem to evaluate the maximal pose errorpnescribed workspace.

This paper deals with the sensitivity analysis of 3-DOF Ridrarallel Manipulators (PPMs) to variations in their gedtm
ric parameters and actuated joints. Without loss of geitgrale focus on the sensitivity analysis of thaRBRR manipulator
within the framework of this paper. The singularities ofstimanipulator were analyzed if] [9] 10]. Here, we introduce :
methodology to derive the sensitivity coefficients of theving platform pose to variations in the geometric paranseiter
algebraic form. The underlying methodology can also beieg@b derive the sensitivity coefficients of other PPMs sash
3-RPR, 3RRR, 3-RRR and 3PRR PPMs.

First, the architecture of the manipulator is describederi[hithe sensitivity coefficients of the moving platform pose
to variations in the geometric parameters and in the prisnaatuated variables are expressed algebraically. Mereov
two aggregate sensitivity indices are determined, onde®lt the orientation of the manipulator moving platforndan
another one related to its position. Then, a methodologyopgsed to compare RPR PPMs with regard to their dexterity,
workspace size and sensitivity. Finally, the sensitivitgioarbitrary 3RPR PPM is analyzed in detail and fourRBPR PPMs

are compared as illustrative examples.

2 MANIPULATOR ARCHITECTURE

Here and throughout this pap&, P andP denote revolute, prismatic and actuated prismatic jonetspectively. Fig-
ure[} illustrates the architecture of the manipulator ursfedy. It is composed of a base and a moving platform (MP
connected by means of three legs. PoktsA, andAg, (C1, C, andCs, respectively) lie at the corners of a triangle, of which
point O (point P, resp.) is the circumcenter. Each leg is composed®faP and aR joint in sequence. The thrdgjoints

are actuated. Accordingly, the manipulator is namdéRIE3R manipulator.

Fp and 7, are the base and the moving platform frames of the manipulinahe scope of this papes;, and 7, are

supposed to be orthogonaty, is defined with the orthogonal dihedr¢@x, Oy), point O being its center an@x parallel to
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segmentAAy. Likewise, 7 is defined with the orthogonal dihedrgRX, PY), pointC being its center an&X parallel to
segmenC;Co.

The manipulator MP pose, i.e., its position and its oriéotatis determined by means of the Cartesian coordinate

vectorp = [px, py]T of operation poinP expressed in framgy, and anglep, namely, the angle between framgsand 7.

Finally, the passive joints do not have any stop.

Figure 1. 3-RPR manipulator

3 SENSITIVITY INDICES

In this section, we first derive the sensitivity coefficienfsthe pose of the RPR manipulator MP to variations in
the prismatic actuated joints as well as in the coordinates andC;, i = 1,2, 3, the latter being either Polar or Cartesian
coordinates. From the foregoing sensitivity coefficiemts,propose sensitivity indices associated with the vaiatin the
coordinates ofy, G and inp;, i = 1,2, 3, and two aggregate sensitivity indices, one related t@dsiion of the MP of the

manipulator and another one related to its orientation.



3.1 Sensitivity Coefficients

From the closed-loop kinematic chai®s- A —C; —P—0, i =1,...,3 depicted in Fig[]1, the position vectprof point

P can be expressed i, as follows:

p= =a+(C—a)+(p-c), i=1..3 (1)

a; andc; being the position vectors of poings andC; expressed inry. Equation [[1) can also be written as

p = ajhi + piu; + ciK; (2
with
COSQ; cosh; cos(@+ Bi + 1)
hi = , U = ki =
sina; SinG; sin(@+ Bi + 1)

whereg; is the distance between poirsandA;, p;j is the distance between poiisandC, ¢ is the distance between points

C; andP, h; is the unit vectoOA; /||OA ||z, u; is the unit vecto\C; /||ACi||2 andk; is the unit vecto;P/||CP|2.

Upon differentiation of Eq[{2), we obtain:

op = da; hj + a 6a; E h; + dpj uj + p;j 96; E uj
+0c; ki + i (dp+ 0Bi) Ek; 3)
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with matrix E defined as

E— 4)

Op andd being the position and orientation errors of the MP. Likeyd®;, da;, dp;, d¢; anddB; denote the variations ia,

ai, pi, i andp;, respectively.

The idle variationd6; is eliminated by dot-multiplying Eq}(3) bgiu/, thus obtaining

pi U 3p = pi da; U h; + pi a; da; ul Eh; + p; 3p;

+pi OC; U;rki + Pi Gi (0p+ Of3) UiTEki (5)

Equation [B) can now be cast in vector form, namely,

oa; o0, 6p1
o0
A :Ha 6&2 +Ha 502 +B 6p2 +
op
dag da3 dp3
601 6[31
He | 3¢, | +Hp | 3B (6)
503 6[33
with
M piuj pr 0 O
A= |m pu;| . B=10p0 (7a)
Mg P3ug 0 0ps



Ha = diag| p;ulh; poulh, pgughg} (7b)
Ho = dlag plaluIEhl p2a2U12—Eh2 p3a3u—:|,;Eh3:| (7C)
HC = dlag plqul pzugkz p3U§k3:| (7d)
HB = dlag plcluIEkl p2C2U-2rEk2 p3C3U§Ek3] (76)
and
m=—piGuEkj, i=1..3 (8)

Let us notice thaAA andB are the direct and the inverse Jacobian matrices of the miaip, respectively. Assuming

that A is non singular, i.e., the manipulator does not meet any Typmmgularity [I3], we obtain upon multiplication of

Eq.(§) byA ™t

_6a1 o0 op1
o¢
=Jda|day | +Jda | S0p | I [3p, | +
o _6a3 03 op3
B 5
Je | 3¢, | +g | 3B )
| OC3 o3B3
with
J=A"'B (10a)
Ja=A"1H, (10b)
Jo = A 1H, (10c)



Jo=A1H, (10d)

Jp=A"Hg (10e)
and
1 1 Vi V2 V3
_ (11a)
det(A) V1 Va Vs
Vi = pjpk(uj X Uk)Tk (llb)
Vi = E(mjpxux — mypju;j) (11c)
3
detA) = ) my (11d)
2,m
K=1ix]j (11e)

j = (i+1) modulo 3;k = (i +2) modulo 3;i = 1,2,3. Jis the kinematic Jacobian matrix of the manipulator whedgady,

Jc andJg are namedensitivity Jacobian matricesf the pose of the MP to variations &, a;, ¢; andf3;, respectively. Indeed,
the terms ofl,, Jq, Jc andJg are the sensitivity coefficients of the position and therdagon of the moving platform of the
manipulator to variations in the Polar coordinates of moftandC;. Likewise,J contains the sensitivity coefficients of the
manipulator MP pose to variations in the prismatic actugeds. It is noteworthy that all these sensitivity coefficts are

expressed algebraically.

Let dax andday denote the position errors of pointg, i = 1,2,3, alongOx and Oy, namely, the variations in the
Cartesian coordinates of poindg. Likewise, letdcix anddcy denote the position errors of poin® along PX andPY,

namely, the variations in the Cartesian coordinates oftp@in

From Fig.[1,

g COSO; —a; Sinag; g
X _ i i (12a)
dayy singj @ Cosa; el
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OCix _ cosP; —¢i sinf; oC; (12b)
dCiy SinB; ¢ cospB; OB

Accordingly, from Eq[(9) and Eq$.(1]2a)-(b), we obtain thiéckving relation between the pose error of the MP and viaiat

in the Cartesian coordinates of poirtsandC;:

dax dCy1x
dayy dCry
o o) %P1 o
0} a C2x
—da| |43 80|+ (13)
6p 6a2y OCoy
ops3
dagy dCax
dagy dCay

Ja andJc being namedensitivity Jacobian matriced the pose of the MP to variations in the Cartesian coordmaf points
A andC;, respectively. Indeed, the termsdf andJc are the sensitivity coefficients of the pose of the MP to \iamies in

the Cartesian coordinates of poidtsandC;.

In order to better highlight the sensitivity coefficientst lis write the 3« 6 matrices]a andJc and the 3x 3 matrixJ as

follows:

JA = JAl JA2 JA3:| (14&)
Jc = Jcl ‘]Cz J(;3:| (l4b)
J= j1j2j3] (14c)

9



the 3x 2 matrices]y, andJc and the three dimensional vectgrdeing expressed as:

with

g, ri, § andt; taking the form:

In = Ine
_\]Aip_
Jo = Icie
_JCip_
. Ji
li= 'I(p
Jip
A |
10 = Geta)
1
1G9 = Geta)
o = Pi Vi
Y7 det(A)
1
AP Geta)
1
P Geta)
|
Jie = Geta)
G = piuf |
i = piuf |

, 1=123

. i=123

i=1,23

o]
s

qu;ri I’iV;ri
avijrivij
svii vl
S RAVAY

in;ri

PV j
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(15a)

(15b)

(15¢)

(16a)

(16b)

(16c)

(16d)

(16e)

(16f)

(17a)

(17b)



s = piuf kicosB; — piu; Ek;sinp; (17¢)

ti = piu] ki sinB; + pju; Ek; cosB; (17d)

Iag I @nd jig contain the sensitivity coefficients of the orientation loé tMP of the manipulator to variations in the
Cartesian coordinates of poindg, C; and in prismatic actuated variables, respectively. Sigjlda,p, Jc;p andjip contain
the sensitivity coefficients related to the position of thB.M

Accordingly, the designer of such a planar parallel mamifmul can easily identify the most influential geometric vari
ations to the pose of its MP and synthesize proper dimerisiolesances from the previous sensitivity coefficientsm®o
sensitivity indices related to the geometric errors of thavimg and base platforms as well as to prismatic actuatetsjoi

errors are introduced thereafter.

3.2 Sensitivity Indices to Variations in the Cartesian Coor dinates of A;, Ci and in pj

From Egs[(16a)-(c) (Eq$.(J6d)-(f), resp.), it turns owtttthe maximum sensitivity of the orientation (positionspg
of the manipulator MP to variations in the Cartesian coat#ia of pointsA;, C; and inp; is equal to the norm dfa g, jce
and jio (Jap, Jap andjip, resp.). Accordingly, lebga,, Voo, andvey, (Vpa, Vpp, @ndvyg, resp.) be the sensitivity indices of
the orientation (position, resp.) of the moving platformvégiations in the Cartesian coordinates of poistsC; and inpj,

respectively:

Vea = lliall2 (18a)
Vo = [licll2 (18b)
Ve, = liol (18c)
Voa = [[Japll2 (18d)
VG = [[Jcipll2 (18¢)
Vo = [lJipll2 (18f)

with || - ||2 denoting the spectral norm, i.e., the 2-norm. As a remirttlerspectral norm of a matrix is equal to its maximum

singular value.
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3.3 Two Aggregate Sensitivity Indices

The pose errors of the manipulator MP depend on variatiotisergeometric parameters as well as on the manipulatc
configuration. In order to analyze the influence of the maaipu configuration on those errors, let us first formulateso
indices to assess the aggregate sensitivity of the MP posittions in the geometric parameters for a given manipula

configuration. To this end, let Ef.{13) be expressed as:

be0) T
=Js [5&5 6pi OCi ] (19)
op
with
Js = [JA J Jc] (20)
and
dq = dagy 6a1y dapy 6a2y dazy 6a.3y:| (21&)
Opi = | 3p1 3p2 5p3} (21b)
6Ci = 501)( 5Cly 502)( 5Czy 6C3x 6C3Y:| (21C)
The 3x 15 matrixJs can be written as follows:
s
Js



with

j&p = [jAlcijchjAgcp J10 J2¢ j3(ij1(ij2(ij3(p:| (23a)

Js, = [JAlp Jngp Jagp J1p J2p J3p Jeip Joop JCsp} (23b)

From Eq[2Ba), we can define an aggregate sensitivity ingeaf the orientation of the MP of the manipulator to

variations in its geometric parameters and prismatic aetuints, namely,

I
Vo= nl; (24)

ny being the number of variations that are considered. Hwgris,equal to 15.

Likewise, from Eq[(28b), an aggregate sensitivity ingdgof the position of the MP of the manipulator to variations in

its geometric parameters and prismatic actuated jointbeatefined as follows:

AT

- (25)

p

For any given manipulator configuration, the lowgy, the lower the overall sensitivity of the orientation its N&
variations in the geometric parameters. Similarly, thedow, the lower the overall sensitivity of the MP position to
variations in the geometric parameters. As a matter of facy,, resp.) characterizes the intrinsic sensitivity of the MP
orientation (position, resp.) to any variation in the getmgarameters.

Let us notice thav, as well as the sensitivity coefficients related to the MPtmsidefined in Sectionls 3.1 apd]3.2 are
frame dependent, whereagand the sensitivity coefficients related to the MP orientatire not.

Finally, let us notice thaty indices,q; = {A;,pi,Ci}, defined in Eqs[(I8a)-(c), as well ag are expressed in [rad/L],
whereas)pq indices defined in Eqd.(1Bd)-(f), as wellasare dimensionless, [L] being the unit of length.
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4 COMPARISON METHODOLOGY
In this section we define a methodology to compare planatipanmzanipulators with regard to their dexterity, workspac

size and sensitivity. This methodology is organized intar feteps:

1. normalization of the geometric parameters;

2. determination of the manipulator regular dexterous wapake (RDW);

3. evaluation of the sensitivity of the MP orientation toigions in the geometric parameters throughout the RDW b
means of), defined in Eq.[(24);

4. evaluation of the sensitivity of the MP position to vaioas in the geometric parameters throughout the RDW by mear

of vy defined in Eq.[(35).

The radii of the circumscribed circles of the base and mopiatforms of the manipulators are normalized as explained i

Section[4]1. The manipulator RDW is obtained by means of #imaation problem introduced in Secti¢pn]4.2.

4.1 Geometric Parameters Normalization
Let R; andR, be the radii of the base and moving platforms of the PPM. Ieiotd come up with finite value®; and
R; are normalized. In the same vein, the dimensions of two éegf-éreedom manipulators were normalized[if [I2[1B, 14].

For that matter, leN; be a normalizing factor:

N = (Ri+Ry)/2 (26)
and
fm=Rm/Nf, m=12 (27)
Therefore,
f+ry=2 (28)
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From eqs[(37) and (P8), we can notice that:

ri€[0,2],rp€[0,2] (29)

As the former two-dimensional infinite space corresponttirgeometric parameteRy andR; is reduced to a one-dimensiona
finite space defined with E.(28), the workspace analysis@8tRPR manipulator under study is easier. Moreover, once

the geometric parameters of two PPMs are normalized, tikeeo$itheir RDW can be compared.

4.2 Regular Dexterous Workspace

Assessing the kinetostatic peformance of parallel maatpts is not an easy task for 6-DOF parallel manipulatorf [15

but for planar manipulators it is easier as their singuksihave a simple geometric interpretatipr] [16, 17].

The regular dexterous workspace of a manipulator (RDW) isgalar-shaped part of its workspace with good anc
homogeneous kinetostatic performarice [18]. The shapeed®B\V is up to the designer. It may be a cube, a parallelepipet
a cylinder or another regular shape. A reasonable choicghige that “fits well” the one of the singular surfaces. Arxjdir

suits well for planar manipulators.

In the scope of this study, the RDW of the PPM is supposed to ddirrder of ¢-axis with a good kinetostatic per-
formance, i.e., the inverse condition numlaell(Jn) of the normalized Jacobian matiiy of the manipulator based on the
Frobenius norm is higher than a prescribed vakyd;) denoting the condition number of a matrix based on the Friaben

norm. Letkz*(J,) be higher than Q.

The normalized Jacobian maty is used as the terms of the kinematic Jacobian mataise not homogeneous. In this
case, its condition number is meaningless as its singulaesa@annot be arranged in order due to their different afiyris
obtained fromJ by means of a characteristic length [n][16]. For the paréicabse of planar 3-dof parallel manipulators, the
use of the characteristic length to calculate the conditiomber makes sense as it has a geometric meaning as shqwh in [2
Indeed, the characteristic length was calculated suchahtte isotropic configuration, the manipulators is théest from
its singular configurations, which are those where liAgS intersect,i = 1,...,3. Here “furthest” does not relate to a
distance (there is no metric iR? x SQ(2)), but to angles between lines as explainedif [17]. A gedmetterpretation of

the characteristic length was reported[i] [19].
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The RDW is obtained by solving the following optimizatioroptem:

mxin 1/R
Pb|st. Ap>T1/6
Kel(Jn) > 0.1

R being the radius of the cylinder adap the orientation range of the MP within the RDW. Hedwis supposed to be equal

to 11/6. This optimization problem has five decision variablesnely,

X= |:R Ix ly @min (Pmax:|

Ix and Iy being the Cartesian coordinates of the cylinder cemigr, and @max being the lower and upper bounds &,

respectively. Besides, the global minimum of this optirtiaza problem is found by means of a Tabu search Hooke an
Jeeves algorithn{ [20]. Consequently, the RDW of the maatpulis completely defined by means of the decision variable
associated with this global minimum. Finally, Eq.](24) 4Bf) are used to evaluate the overall sensitivity of the MF

orientation and position to variations in the geometricapagters of the manipulator throughout the RDW.

5 ILLUSTRATIVE EXAMPLES
This section aims at illustrating the sensitivity coeffit® indices and comparison methodology introduced in Se
tions[3.1[3. 3]3 anld 4, respectively. For that purposesénsitivity of an arbitrary RPR PPM is first analyzed in detail.

Then, the sensitivity of four RPR PPMs are compared.

5.1 Sensitivity Analysis of a general  3-RPR PPM

Let us study the RPR PPM with the following geometric parameters:

ay=a=a3=R; =060 (30a)
Ci=C=C= R, =0.25 (30b)
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{0y,0;,03} = {—2.50, —0.60, 2.30} (30c)

{B1,B2,B3} = {—2.90, —0.25, 0.75} (30d)

ai and B, i = 1,2,3, being expressed in [rad] amRl andR; in [m]. Figure[? illustrates the corresponding manipulator
the radii of the circumscribed circles of its base and moyitagforms being different. In this figure, the MP orientatip

is equal to—11/8 and the Cartesian coordinates of its geometric cd&xpressed iF, arep = [—0.3, —O.l]T. Figure[B

-0.5-04-03-02-01 0 0.1 02 03 04 0.5
z [m]

Figure 2. The 3-RPR manipulator under study with (9 = —T[/8, P= [—0.37 —O.l]T, Ri=0.6mand R, =0.25m

illustrates the singularity locus of tt82RPR PPM within a region of the workspace delimited witlke [—2,2], y € [-2,2)]
andg@ e [—2,2]. They correspond to configurations in which the stiffnesshef mechanism is locally lost, which occurs
when matrixA is singular, i.e., d¢B) = 0, [21].

Let us assume that the prismatic joints of the manipulatonobohave any stop. Figurg 4 depicts a section of the
workspace of th8-RPR PPM under study for a given orientation of its moving platfiori.e., = —11/8. This section,
called s, is an ellipse and is delimited with the singularity locuswh in Fig.[3.

Figures[5(3)-(b) illustrate the percentagesds, in which the orientation-sensitivity indices related @riations in the
coordinates oy, Ci and inp;, defined with Eqgs.[(T8a)-(c), are smaller than 3 rad/m andifarespectively. The three
bars above indicesy, i = 1,2, 3, are associated with the sensitivity of the MP orientatpdo variations ingy, o> andgs,

17



-1

0

y [m] 0

@ m]

Figure 3. Singularity locus of the 3-RPR PPM within a region of the workspace delimited with X € [—2,2],y € [-2,2] and @ € [—2,2]

0.6 1 i

-1 08 06 -04 02 0 0.2
@ [m]

Figure 4. Section of the workspace of the 3-RPR PPM delimited with the Type-II singularities for a given orientation @, i.e., @ = —T1/8
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100 T T T 100 T T T

901 1901 .
80 8 SO F 1
70F 8 70F 1
60 1 6ot ] [ [ 1
50 1 s0f 1
40t ] ] ] 1 4ot 1
30t 1 30t .
20| 1 20t .
10} 1 10} .
0 — L L 0 — — —
Vga, Vep, Vec; VoA, Vep, Vyc;
@) (b)

Figure 5. The percentage of Ws, in which: (a) Vg < 3rad/m; (b) Vgg < 6radm, gj = {A;,pi,Ci}. 1 =1,2,3

respectively. For the first set of three bagsstands ford;. For the second set of three bagsstands fop;. For the third set
of three barsg; stands foC;, 1 = 1,2, 3. It is apparent that the higher the bar, the smaller thatsstysof the MP orientation
to variations in the corresponding geometric parameteadable. For instance, from Fi@(a}w is smaller than 3 rad/m

in 49.3% of Ws, Vg, is smaller than 3 rad/m in 42.4% efs andvc, is smaller than 3 rad/m in 48.9% ofs.

100 x x : 100 x x x

90 1 90 1
80t 1 sof 1
0t 1 7ot ] ] ] 1
60} 1 6ot 1
50f 1 50t 1
a0t — ] m 1 40 1
30t 1 30t 1
20t 1 20t 1
10} 1 10t 1
0 UpA. V. Upcr: 0 UpA. Vo Upc,

PA; ppi PCi PA; ppi pCi

() (b)

Figure 6. The percentage of Ws, in which: (a) Vpg < 1.5; () Vpg < 3, G = {A,pi,Ci}1=1,2,3
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Figures[6(3)-(b) illustrate the percentagerf, in which the position-sensitivity indices to variatiomsthe coordinates
of A, Gi and inp;, defined with Egs.[(18d)-(f), are smaller than 1.5 and 3,eetiyely. The three bars above indicgs; ,
i =1,2,3, are associated with the sensitivity of the MP positionddations ing;, g andgs, respectively. For the first set
of three barsg; stands forA;. For the second set of three bagsstands fomp;. For the third set of three barg, stands for
Ci, i =1,2,3. The higher the bar, the smaller the sensitivity of the MBitgmn to variations in the corresponding geometric
parameter or variable. For instance, from [fig.]|6¢a), is smaller than 1.5 in 61.2% of/s, v, is smaller than 1.5 in 40.6%

of Wsandvpc, is smaller than 1.5in 71.1% of/s.

From Figs.[5(@)-(b), we can notice thag,, Vg, andv,c, are similar. Likewise, from Fig._6(a)-(bY,pa, Vpp @andvpg
are similar. As a matter of factgy, andve, (Vpa andvyg, resp.) is the sensitivity of the MP orientation (positida)he
most penalizing variation of the corresponding point. Adaagly, the most penalizing variations of poirds andC; are

along legAGi, i =1,2,3.

For the MP orientation depicted in Fig. 2, we can notice fragsH5(d)-(b) that the MP orientation is more sensitive
to variations in the geometric parameters of the second fldgeomanipulator than to variations in its other geometric
parameters as the bars associated with the second leg dtergham the bars associated with the other legs. Likeviiea)
Figs.[6(d)-(b), the MP position is more sensitive to vamiasi in the geometric parameters of second leg of the mandgpula
than to variations in its other geometric parameters as #ng associated with the second leg are smaller than the bz

associated with the other legs.

In order to have an idea of the sensitivity of the MP pose ofhtla@ipulator to variations in its geometric parameters ant
prismatic actuated joints, Figs. 4(a)-(b) illustrate thecontours of, andv,, defined with Egs.[(24) and (25), throughout
ws. We can notice that the closBrto the geometric center ai/s, the smaller the sensitivity of the MP pose to variations in

the geometric parameters and prismatic actuated joints.

Figured 8(3)-(b) illustrate the distribution wf andv, throughoutws. For instance, Fid. 8(b) shows thagis lower than
0.4 rad/m in 247% of ws. Likewise, Fig[8(d) shows that, is lower than 0.2 in 38% of w.

Let us assume that the variations in the geometric parametef prismatic actuated joints follow a normal distribatio

and their tolerance range is equal tqBs0 namely,

Ag; = 304 =50um, g = {A,p;,Ci},i =123 (31)
20
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Ag; andog, being the tolerance range and the standard deviation oy entt; = {A,pi,Ci}, i = 1,2,3, respectively. Lefdg|

pdf
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Figure 9. Distribution of the (a) orientation and (b) positioning errors of the MP for a given pose of the latter: () = T[/8 and P = [0.25, 0.4]

and||dp||2 be the absolute value of the orientation error and the 2-raditime positioning error of the MP of the manipulator,
respectively. Figures 9la)-(b) illustrate their disttibn evaluated by means of Ejg.{19) for the MP pose depictddgn@
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and the tolerance ranges specified in Ed.(31). |B@fnean be the average of the absolute orientation error of the MP ar
[|8p||2meanthe 2-norm of its positioning error. From Fids. $(a)-(®p|meanis equal to 62@rad/m and|dp||2meanis equal to
232um. Figureqd 10(h)-(b) show the isocontours &l meanand||dp||2meanthroughoutws. Those isocontours are similar to
Ve andvp, isocontours illustrated in Fig. 7a)-(b). It means thaandv, are relevant sensitivity indices of the MP pose to

variations in the geometric parameters and in actuatedhias.

5.2 Comparison of Two Non-Degenerate and Two Degenerate  3-RPR PPMs

In order to highlight the comparison methodology propose8ectior{}4, the sensitivity of two degenerate and two non
degenerate ®PR PPMs is analyzed. Degenerate manipulators have a simpéat #inematic characteristic polynomial
and simpler singularity conditions. Whether they are dlghbaore or less sensitive to geometric errors than their-non
degenerate counterparts is a question of interest for thigrr. First, the two degeneracy features are recalledn,Tthe
architectures of the four manipulators under study arstiiied. Finally, those four manipulators are compareédas

the size of their regular dexterous workspace and the sétysif their MP pose to variations.

5.2.1 Degeneracy Conditions  The forward kinematic problem of a parallel manipulatoreafieads to complex
equations and non analytic solutions, even when consglediDOF PPMs[[32]. For those manipulators, Hunt showec
that the forward kinematics admits at most six solutidn§| F#8 some authors proved that their forward kinematics ca
be reduced to the solution of a sixth-degree charactepstignomial [2#[2p]. The decreasing conditions of the degrk
the latter were investigated if J26], ]27] and][28]. Here, foeus on the sensitivity analysis of two classes of degé¢eera
manipulators. The first class includes all 3-RPR manipusatath similar base and moving platforn{sJ27]. As far as the
degenerate manipulators of the second class are concehe@dmnoving platform is obtained from their base platforgn b
means of a reflectior] [R8]. For manipulators of the first glaise forward kinematics is reduced to the solution of two
guadratics in cascade. For manipulators of the second ttesforward kinematics degenerates is reduced to the@olot

a cubic and a quadratic in sequence.

5.2.2 Manipulators Under Study  Figures| 11(§)-(d) illustrate the four manipulators undedg, before geometric
parameters normalization, nambt, M,, M3 and Mg, respectively. M; andM, are non-degenerate wherdds and My
are degenerate. In Fifj. T3(a), it is apparent that the basenawing platforms oM are equilateral. From Fi. T1I]b), the

base and moving platforms ®, are identical but in a different geometric configuration dororientationp = 0. M3z and
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My illustrate two degeneracy cases. It is noteworthy that #eeland moving platforms ofl,, M3 andMy4 have the same
circumscribed circle, its radius being equal to 1. As faMads concerned, the circumscribed circle of its moving platfo

is two times smaller than the one of the base platform. Wighghometric parameters normalization introduce in Sectio

(.1 the sum of their radius being is equal to 2.

Cs
Cs 1.5¢
1.5¢
P
Cy
Cy
1.5 2
(@ My
Cs
_ C
1.5¢ 1.5 1
Cy
P P
1 .
Cy
1.5 2 205 0 0.5 1 1.5 2
(c) M3 (d) My

Figure 11. The four 3-RPR manipulators under study with @ = 0 and p = [1, 1.5]T: (a)-(b) non-degenerate manipulators, (c)-(d) degenerate

manipulators
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5.2.3 Regular Dexterous Workspace In order to compare the sensitivity of the foregoing marapats, we first
define their RDW as defined in subsection 4.2. Then, the satysitf M1, My, M3 and M4 can be evaluated throughout
their RDW and compared. Figurfs 12(a)-(d) illustrate thekspace window equal o= [-2.5;25], y = [-2.5;25] and
@ = [—Tt 11, the singularity surfaces and the maximal RDVW\{, M2, M3 andMy4. Their radii are given in TabIE 1 and

compared in Fig. 33. We can notice thaj has the largest RDW, wherels has the smallest one.

R R Rs R4
1.18 0.64 0.92 1.43

Table 1. RDW radius of M1, M2, M3 and M4

5.2.4 vgand VpIsocontours  In this section, the sensitivity &fl;, M», M3 andMy is evaluated within their RDW for
a matter of comparison based on aggregate sensitivityesdicandv, defined with Eqs[(24) andl (25), respectively.

Figures[14()-(d) (Figurds 15(a)-(d), resp.) illustréte isocontours of the maximum valuegf (vp, resp.) for a given
orientationg of the MP throughout the RDW dfl;, M», M3 andMy, respectively. Itis apparent thislly has the least sensitive
orientation of its MP whereaBl; has the least sensitive position of its MP to variations iangetric parameters. On the
contrary,M; has the most sensitive position of its MP awd has the most sensitive orientation of its MP to variations ir
geometric parameters.

Figures[16(&)-(b) show the distributions\gf andv, throughout the RDW oM, M2, M3 andM,. From Fig [16@)ve
is smaller than 0.3 in 78% (937%, 903% and 983%, resp.) oM; (M2, M3 andMy, resp.) RDW. From Fid._16(by, is
smaller than 0.2 in 79% (488%, 784% and 187%, resp.) oMy (M2, M3 andMy, resp.) RDW.

Finally, TabldP gives an overall classificationMf, Mz, M3 andMy with regard to their RDW size and the sensitivity of
their MP orientation and position to variations in their gegiric parameters. We can notice that the degenerate niaaipu
Mg is globally the most interesting, i.e., it has the most rolgesign. The sensitivity analysis of these four manipuato
has been carried out with other RDWSs, i.e., with differenpapbounds ofz\g andk-1(J,) in the optimization problem
formulated in Sectiofi 4.2. The results are reported ih [2@] iaturns out that the overall classification shown in Tgbls

unchanged.
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Figure 13. RDW radius of M1, M2, M3 and My

Mi Mz M3z My

RDW 2 4 3 1
Vo 4 3 2 1
Vp 1 3 2 4
Ranking| 2 4 2 1

Table 2. Classification of My, M2, M3 and Mg w.rt Vg, Vp and their RDW size

6 CONCLUSIONS

This paper dealt with the sensitivity analysis oRBR planar parallel manipulators (PPMs). First, the sensjtivi
coefficients of the pose of the manipulator moving platfomvariations in the geometric parameters and in the actuate
variables were expressed algebraically. Moreover, twoeggde sensitivity indices were determined, one relateitheéo
orientation of the moving platform of the manipulator anciwer one related to its position. Then, a methodology wa
proposed to compare BPR PPMs with regard to their dexterity, workspace size andigetg The sensitivity of a 3-
RPR PPM was analyzed in detail and fourRR2R PPMs were compared as illustrative examples. The semgitivlices
Ve andvy introduced in the paper should help the designer BfBR PPMs at their conceptual design stage. The actuate
joint limits were not considered in this study, but have toused for the determination of the manipulator size. As ¢

matter of fact, they can be calculated knowing the locatiod the size of the maximal RDW. In order to deal with this
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Figure 14. Vg isocontours of (a) M1, (b) M2, (c) M3 and (d) M4

problem, the RDW can be plotted in the joint space and its lestaénveloping parallelepiped be determined. Later on

the methodology proposed in this paper will be used to compa sensitivity of PPMs of different architectures and/or

dimensions to variations in their geometric parameters.
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