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Abstract

Let f be an unknown multivariate density belonging to a set of densities
Fk∗ of finite associated Vapnik-Chervonenkis dimension, where the
complexity k∗ is unknown, and Fk ⊂ Fk+1 for all k. Given an i.i.d.
sample of size n drawn from f , this article presents a density estimate
f̂Kn yielding almost sure convergence of the estimated complexity Kn

to the true but unknown k∗, and with the property E{
∫
|f̂Kn − f |} =

O(1/
√

n). The methodology is inspired by the combinatorial tools
developed in Devroye and Lugosi [8] and it includes a wide range of
density models, such as mixture models and exponential families.
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1 Introduction

Let (Fk)k≥1 be a sequence of nested parametric models of density functions
on Rd. Define

F =
⋃

k≥1

Fk.

In the union above, Fk denotes, for each fixed k ≥ 1, a given class of densities
parametrized by one or more parameters, and such that Fk ⊂ Fk+1 for all k.
Typically, Fk may be the class of all mixtures of k Gaussian densities on Rd,
but many other nested models are possible, see below. In the present paper,
we consider the general problem of estimating a density f which belongs to
F . Formally, we let the complexity associated with f be defined as

k∗ = min{k ≥ 1 : f ∈ Fk}.

Clearly, as it is supposed that f ∈ F , we have k∗ < ∞. Thus k∗ just repre-
sents the index of the most parsimonious model for f . Given an i.i.d. random
sample X1, . . . ,Xn drawn from f , this article presents a density estimate f̂Kn

yielding almost sure convergence of the estimated complexity Kn to the true
but unknown k∗, and with the property that E{

∫
|f̂Kn − f |} = O(1/

√
n).

Thus, we show how to pick a model complexity and a density from the given
model, and still guarantee an O(1/

√
n) rate of convergence for the expected

error, just as if we had been given the model complexity beforehand. The
strongly consistent estimate Kn is obtained by minimizing the L1 error be-
tween candidate models and the standard histogram estimate. Based on
this estimate, the model parameters are selected using the general combina-
torial tools developed in Devroye and Lugosi [8]. Our methodology is close
in spirit to Biau and Devroye [1], [2], who use a penalized combinatorial cri-
terion to select a density from a nested sequence of models. However, these
authors do not consider the estimation of the complexity parameter k∗, and
they employ a penalty depending on a sequence of arbitrary weights, which
renders the method difficult to implement. In contrast, the selection proce-
dure presented in the present paper does not rely on any arbitrary penalty
choice, and it seems therefore more tractable.
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The paper is organized as follows. In section 2, we present our new histogram-
based estimate Kn for the complexity k∗ and show its strong consistency.
In section 3, we develop our density estimation procedure and state its L1-
optimality. For the sake of clarity, proofs are gathered in section 4.

2 Complexity estimation

Without loss of generality, we assume that the sample of independent ran-
dom vectors distributed according to the probability measure µ with den-
sity f is of even size 2n. Let µ2n be its empirical measure, i.e., µ2n(A) =(
1/(2n)

) ∑2n
i=1 1{Xi∈A}. Split the sample into two subsamples: X1, . . . ,Xn

and {X ′
1, . . . ,X

′
n} = {Xn+1, . . . ,X2n}, and denote by µn and µ′

n the respec-
tive empirical measures. Let Pn = {An,j : j ≥ 1} be a cubic partition of Rd

with volume hd
n. Introduce the statistic

dn,k = inf
g∈Fk

∑

A∈Pn

∣∣∣∣
∫

A
g − µ2n(A)

∣∣∣∣ .

Roughly speaking, dn,k should be small if f ∈ Fk. Consequently, let the
threshold be

Tn =
∑

A∈Pn

|µn(A) − µ′
n(A)|.

Note that the statistic Tn has been introduced in Biau and Györfi [3], while
its kernel version was studied in Cao and Lugosi [4]. We say that dn,k is
small if it is smaller than Tn, so our estimate of k∗ is

Kn = min{k ≥ 1 : dn,k ≤ Tn},

with the convention min{∅} = ∞. Clearly, the statistic dn,k is nonincreasing
in k, so that this definition makes sense.

From a topological point of view, we will suppose throughout the paper
that each Fk is a closed metric subspace of the space of all densities on
Rd endowed with the weak convergence topology. In other words, for any
sequence (gn) in Fk satisfying

lim
n→∞

∫
gn(x)ϕ(x) dx =

∫
g(x)ϕ(x) dx
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for every bounded, continuous real function ϕ, one has g ∈ Fk. This require-
ment is not restrictive. For example, one may check that this prerequisite
holds for the class Fk of all mixtures of k Gaussian densities on Rd. In this
case, each density fk in Fk may be written as

fk(x) =
k∑

i=1

pi

(2π)d/2
√

det(Σi)
e−

1
2 (x−mi)T Σ−1

i (x−mi),

where k < ∞ is the mixture complexity, pi ≥ 0, i = 1, . . . , k are the mixture
weights satisfying

∑k
i=1 pi = 1, m1, . . . ,mk are arbitrary elements of Rd and

Σ1, . . . ,Σk are positive definite d × d matrices.

Methodologies for consistent estimation of a mixture distribution are well
known. An enormous body of literature exists regarding the application,
computational issues and theoretical aspects of mixture models when the
number of components is known, but estimating the unknown number of
components remains an area of intense research. The scope of application
is vast, as mixture models are routinely employed across the entire diverse
application range of statistics, including nearly all of the social and experi-
mental sciences. Recent attempts at estimating the mixture density param-
eters and the number of mixture densities jointly are by Priebe [14], James,
Priebe and Marchette [11], and Rogers, Marchette and Priebe [15]. For an
updated list of references, we refer the reader to Biau and Devroye [2] and
the discussion therein.

As another interesting collection of models, we might also consider the class
of increasing exponential families. Each density fk in an exponential family
Fk may be written in the form

fk(x) = cα(θ)β(x)e
Pk

i=1 πi(θ)ψi(x),

where θ belongs to some parameter set Θ, ψ1, . . . , ψk : Rd → R, β : Rd →
[0,∞), α, π1, . . . , πk : Θ → R are fixed functions, and c is a normaliza-
tion constant. Examples of exponential families include classes of Gaussian,
gamma, beta, Rayleigh, and Maxwell densities. By allowing k to grow, this
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model can become very rich and powerful.

Theorem 1. Assume that, for each k ≥ 1, Fk is closed with respect to the
weak convergence topology. Choose hn = n−δ with 0 < δ < 1/d. Then there
exists a positive constant κ, depending on f , such that

P {Kn += k∗} ≤ exp
(
−κndδ

)
,

and consequently, almost surely,

Kn = k∗

for all n large enough.

3 Fast density estimate

In the same way as in Biau and Devroye [1], [2], based on the complexity es-
timation presented in the previous section, we consider a minimum distance
type estimate. Using ideas from Yatracos [17], Devroye and Lugosi explore
in [8] a new paradigm for the data-based or automatic selection of the free
parameters of density estimates in general, so that the expected error is
within a given constant multiple of the best possible error. To summarize
in the present context, fix k ≥ 1, and define a density estimate f̂k in Fk as
follows. First introduce the class of sets

Ak =
{
{x : g1(x) ≥ g2(x)} : g1, g2 ∈ Fk

}

(Ak is the so-called Yatracos class associated with Fk) and the goodness
criterion for a density g ∈ Fk:

∆k(g) = sup
A∈Ak

∣∣∣∣

∫

A
g − µ2n(A)

∣∣∣∣.

Then the minimum distance estimate f̂k is defined as any density estimate
selected from among those densities fk ∈ Fk with

∆k(fk) < inf
g∈Fk

∆k(g) +
1
2n

.
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Note that the 1/(2n) term here is added to ensure the existence of such
a density estimate. From now on, we let Vk be the Vapnik-Chervonenkis
dimension of the class of sets Ak (Vapnik and Chervonenkis [16]).

Corollary 1. Assume that Vk∗ is finite. Then, under the conditions of
Theorem 1, the minimum distance estimate f̂Kn satisfies

E
{∫

|f̂Kn − f |
}

= O
(

1√
n

)
. (1)

Proof. For the minimum distance estimate f̂k, we have (Devroye and
Lugosi [8], Theorem 6.4, page 56)

∫
|f̂k − f | ≤ 3 inf

g∈Fk

∫
|g − f | + 4∆k(f) +

3
2n

. (2)

Since inequality (2) holds for every k ≥ 1, it holds in particular for Kn. The
corresponding minimum distance estimate, f̂Kn , is a natural candidate for
the estimation of f . Clearly,

∫
|f̂Kn − f | ≤

∫
|f̂K∗ − f | 1{Kn=k∗} + 21{Kn (=k∗}.

By inequality (2), we have, for all n ≥ 1,
∫

|f̂K∗ − f | ≤ 4∆K∗(f) +
3
2n

.

Using Theorem 1, we deduce that

E
{∫

|f̂Kn − f |
}

≤ 4E {∆k∗(f)} +
3
2n

+ 2exp
(
−κndδ

)
, (3)

where κ is the positive constant of Theorem 1. The uniform convergence
of empirical measures as developed by Vapnik and Chervonenkis [16] can
now be applied to density estimation via the term ∆k∗(f). A standard
inequality from empirical process theory (Dudley [9]) shows that if Ak∗ has
Vapnik-Chervonenkis dimension Vk∗, then

E {∆k∗(f)} ≤ C

√
Vk∗

n
, (4)
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where C is a positive universal constant. Inequalities (3) and (4) then imply

E
{∫

|f̂Kn − f |
}

≤ 4C
√

Vk∗

n
+

3
2n

+ 2exp
(
−κndδ

)
.

!

As an illustration, consider the examples of section 2. It can be shown
(see Devroye and Lugosi [8], Chapter 8) that Vk = O(k4) for the univariate
Gaussian mixtures with k components, and Vk ≤ k + 1 for the exponential
families. Equality (1) is thus satisfied by a large collection of models.

It is strictly speaking not necessary that Vk → ∞, although such situations
are of little general interest. Indeed, if supk≥1 Vk < ∞, then the Vapnik-
Chervonenkis dimension of the infinite union F is finite, and one could just
apply the ordinary combinatorial method. However, in most situations of
interest, the Vapnik-Chervonenkis dimension of F is infinite, and we cannot
use the original combinatorial method. It is to correct this situation that
we presented the two step procedure.

Observe also that the finiteness of the associated Vapnik-Chervonenkis di-
mension is only used at k∗. We thus allow this dimension to be infinite
starting at any k > k∗. Considering a silly example, we could take as Fk∗+1

the class of all densities. Then the dn,k value is zero at k∗+1, so the selected
k is never more than k∗ + 1. But the method is clever enough to stop at
k∗. If you stop at k∗ + 1, then the minimum distance estimate includes any
density. So the penalty for overshooting is high.

We note that our model selection procedure is simpler than that of Biau
and Devroye [1], since the projection over a cubic partition is easier than
the projection over a Yatracos class. However, practically speaking, several
questions need to be addressed, including that of the effective computation
of the minimum distance estimate f̂k. To date, we do not know any method
for its precise computation. Discretized methods and randomized methods
that provide acceptable and computationally feasible approximation have
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been used in the simulation study of Devroye [5]. However, those simula-
tions only involve one-dimensional problems, and thus, much more work is
needed. In fact, the exploration of the relationship between class complexity,
computational complexity and approximation seems very interesting. One
may follow the model of pattern recognition and machine learning, where
these connections have been thoroughly studied.

Summarizing, we have thus shown, assuming that f ∈ F , how to pick a
mixture complexity and a density from the given mixture, and still guarantee
an O(1/

√
n) rate of convergence for the expected error, just as if we had

been given the mixture complexity beforehand. On the other hand, we
realize that an important situation occurs when our infinite union is dense
in the set of all densities, all Vapnik-Chervonenkis dimensions are finite, and
the density is not in any Fk. Note that Tn depends upon n and hn in the
standard way. Now, dn,k tends to zero with k, so we end up anyway with
a finite Kn. As dn,k is below Tn by our selection criterion, it seems that we
can have an error bound of the order of the bound for Tn. This would mean
that we can in the worst case have a bound as for the classical histogram
(because that is what Tn will give). We believe however that such results are
beyond the scope of the present paper and we will deal with this problem
elsewhere.

Remark 1. Recall that when the set {k ≥ 1 : dn,k ≤ Tn} is empty, we
decide Kn = ∞ by convention. In this case, any choice in F for f̂Kn will do.

!

Remark 2. For the actual density estimate, we could not avoid the projec-
tion over the Yatracos class. Thus, we could not decrease the computational
complexity. It is an open problem whether simply the projection over a cu-
bic partition is a proper density estimate. Note also that the histogram is
only used to select k∗. The actual density estimate depends upon the Ya-
tracos classes – the histogram is thrown away! This point is essential, as a
histogram estimate cannot converge at the rate O(1/

√
n). So we have the
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apparent paradox that a density estimate with a bad rate can be used to
obtain – in two steps – a great rate! In a sense, the histogram is used to
choose the complexity (or lack of smoothness) of another class of functions.
The choice of the histogram’s width, hn, thus has a secondary effect. To
stay within the limits of the theorem, one could easily replace hn by one of
the many data-dependent and automated bandwidths. Some of these are
discussed or surveyed in Devroye and Györfi [6] and Devroye and Lugosi [8].

Interestingly, in the second step, and under some conditions, just the projec-
tion of another, non-consistent (asymptotically biased) histogram can result
in a density estimate with good rate, too. With this respect, denote by
ξn,r a histogram estimate constructed using the sample X1, . . . ,X2n and a
cubic partition {Br,j : j ≥ 1} of Rd with volume rd, and let πr(g) be the
expectation of this histogram for the density g, that is

πr(g)(x) =
1
rd

∫

Br(x)
g,

where Br(x) is the cell of the partition containing x. Let the estimate f̃n,r

be defined as
f̃n,r = arg min

g∈FKn

∫
|πr(g) − ξn,r|.

Suppose moreover that the bin width r is such that

Cf,r = sup
g∈Fk∗

∫
|g − f |∫

|πr(g) − πr(f)|
< ∞. (5)

If Kn = k∗ then
∫

|πr(f̃n,r) − πr(f)| ≤
∫

|πr(f̃n,r) − ξn,r| +
∫

|πr(f) − ξn,r|

= min
g∈Fk∗

∫
|πr(g) − ξn,r| +

∫
|πr(f) − ξn,r|

≤
∫

|πr(f) − ξn,r| +
∫

|πr(f) − ξn,r|.
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Therefore, by condition (5),
∫

|f̃n,r − f | ≤ Cf,r

∫
|πr(f̃n,r) − πr(f)|

≤ 2Cf,r

∫
|πr(f) − ξn,r|.

Using Theorem 1, it easily follows, under the additional condition that f has
compact support (see Devroye and Györfi [6], Theorem 6, page 99), that

E
{∫

|f̃n,r − f |
}

≤ 2Cf,rE
{∫

|πr(f) − ξn,r|
}

≤ Cf,r
C√
nrd

,

where C is a positive constant. Therefore, for such fixed r, we can have rate
O(1/

√
n). Unfortunately, condition (5) is hard to verify, and requires that

the operator πr is invertible on Fk∗ and the inverse is continuous. We cannot
handle our standard examples. However, for the class of normal densities,
this condition holds for any fixed r. In other words, there is no need to
choose small r, i.e., the projection of non-consistent (asymptotically biased)
histogram results in a good density estimate. !

4 Proofs

From now on, all limits are taken as n goes to infinity.

4.1 Proof of Theorem 1

We split the proof into two steps in which bounds for P {Kn > k∗} (Step

1) and P {Kn < k∗} (Step 2) are obtained.

Step 1. Note that since f belongs to Fk∗ , one has

dn,k∗ ≤
∑

A∈Pn

∣∣∣∣
∫

A
f − µ2n(A)

∣∣∣∣ =
∑

A∈Pn

|µ(A) − µ2n(A)|.

Consequently,

{Kn > k∗} ⊂ {dn,k∗ > Tn}

⊂
{

∑

A∈Pn

|µ(A) − µ2n(A)| >
∑

A∈Pn

|µn(A) − µ′
n(A)|

}
.
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For A ∈ Pn, set

In(A) = |µ(A) − µ2n(A)| − |µn(A) − µ′
n(A)|,

and
εn = −

∑

A∈Pn

E {In(A)} .

In the next paragraph, we prove that, for all n large enough,

εn ≥ κ1√
nhd

n

, (6)

for some positive constant κ1 depending on f . We can apply McDiarmid’s
inequality (cf. McDiarmid [12], see also Devroye, Györfi and Lugosi [7],
Theorem 9.2, page 136). We have 2n random variables and the fluctuation
of

∑
A∈Pn

In(A) is at most 3/n. Therefore

P {Kn > k∗} ≤ P

{
∑

A∈Pn

In(A) > 0

}

= P

{
∑

A∈Pn

[In(A) −E {In(A)}] > εn

}

≤ exp
(
− 2ε2n

2n(3/n)2

)

≤ exp
(
−κ

2
1

9
h−d

n

)

= exp
(
−κ

2
1

9
ndδ

)
.

Step 2. Denote by fn (resp. f2n) the standard histogram estimate drawn
from the data X1, . . . ,Xn (resp. X1, . . . ,X2n) and the partition Pn. That
is, for x ∈ Rd,

fn(x) =
µn (An(x))

hd
n

and f2n(x) =
µ2n (An(x))

hd
n

,
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where An(x) is the cell of the partition Pn containing x. For any density g,
let πn(g) be defined by

πn(g)(x) =
1
hd

n

∫

An(x)
g.

Clearly, for any g in D, by the triangle inequality,
∑

A∈Pn

∣∣∣∣

∫

A
g − µ2n(A)

∣∣∣∣ =
∫

|πn(g) − f2n|

≥
∫

|πn(g) − πn(f)| −
∫

|πn(f) − f2n|.

Therefore

{Kn < k∗} ⊂ {dn,k∗−1 ≤ Tn}

⊂
{

inf
g∈Fk∗−1

∫
|πn(g) − πn(f)| ≤

∫
|πn(f) − f2n| + Tn

}
.

We shall prove that under the closure condition on the models Fk, there
exists ∆ > 0 satisfying

lim inf
n→∞

inf
g∈Fk∗−1

∫
|πn(g) − πn(f)| = 3∆. (7)

Then, because of

P{Tn ≥ ∆} ≤ 2P

{
∑

A∈Pn

∣∣∣∣µn(A) −
∫

A
f

∣∣∣∣ ≥ ∆/2

}

= 2P
{∫

|fn − πn(f)| ≥ ∆/2
}

,

we deduce that there exists a positive constant κ2 depending on f such that,
for all n large enough,

P {Kn < k∗} ≤ 2P
{∫

|fn − πn(f)| ≥ ∆/2
}

+ P
{∫

|πn(f) − f2n| ≥ ∆
}

≤ 7 exp(−κ2n).

The last exponential inequality arises from Devroye and Györfi [6] (Lemma
4, page 22). Since nhd

n → ∞, it follows that, for all n large enough,

P {Kn < k∗} ≤ 7 exp(−κ2h
−d
n )

= 7 exp(−κ2n
dδ).
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In order to prove (7) we use an indirect argument. Assume that

lim inf
n→∞

inf
g∈Fk∗−1

∫
|πn(g) − πn(f)| = 0,

and, possibly extracting a subsequence, that

lim
n→∞

inf
g∈Fk∗−1

∫
|πn(g) − πn(f)| = 0.

By the Abou-Jaoude theorem, we obtain

lim
n→∞

inf
g∈Fk∗−1

∫
|πn(g) − f | = 0.

Thus, if this is true, there exists a sequence (gn) in Fk∗−1 such that

lim
n→∞

∫
|πn(gn) − f | = 0. (8)

Observe now that for any bounded Lipschitz function ϕ on Rd, the following
chain of equalities is valid:

∫
πn(gn)ϕ =

∑

A∈Pn

∫

A

1
hd

n

(∫

A
gn

)
ϕ

=
∑

A∈Pn

∫

A
gn

(
1
hd

n

∫

A
ϕ

)

=
∑

A∈Pn

∫

A
gnπn(ϕ)

=
∫

gnπn(ϕ).

Moreover, as ϕ is Lipschitz, there exists a constant c > 0 such that, for all
n ≥ 1,

sup
Rd

|πn(ϕ) − ϕ| ≤ c sup
A∈Pn

diam A,

and the right-hand term above goes to 0 because the partition Pn is cubic.
Using the fact that gn is a density function, and collecting the above results,
we obtain

lim
n→∞

(∫
πn(gn)ϕ−

∫
gnϕ

)
= 0.
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Therefore, using (8) and the fact that ϕ is bounded, we are led to

lim
n→∞

∫
gnϕ =

∫
fϕ.

Since this equality holds for any bounded Lipschitz function, it also holds
for any bounded and continuous function (see Dudley [10], Theorem 11.3.3,
page 395). Invoking the closure of the class Fk∗−1, we finally deduce that
f ∈ Fk∗−1, which is a contradiction. This proves equality (7). !

4.2 Proof of (6)

By Jensen’s inequality,

E
{
|µn(A) − µ′

n(A)|
}

= E
{
E

{
|µn(A) − µ′

n(A)| | X1, . . . ,Xn
}}

≥ E
{
|µn(A) −E

{
µ′

n(A) | X1, . . . ,Xn
}
|
}

= E {|µn(A) − µ(A)|} .

Therefore

εn =
∑

A∈Pn

[
E

{
|µn(A) − µ′

n(A)|
}
− E {|µ2n(A) − µ(A)|}

]

≥
∑

A∈Pn

[
E {|µn(A) − µ(A)|} − E {|µ2n(A) − µ(A)|}

]

)= ε′n,

so instead of (6) it suffices to show that for some positive constant cf and
all n large enough,

ε′n ≥
cf√
nhd

n

. (9)

Let B(n, p) denote a binomial random variable.

Lemma 1. There exists a positive universal constant γ such that
∣∣∣∣∣E {|B(n, p) − np|} −

√
2np(1 − p)

π

∣∣∣∣∣ ≤ γ.
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Proof. Let Φ denote the standard normal distribution function, let F

denote the distribution function of B(n, p), let m = np and σ2 = np(1− p).
We will use the facts:

E {|B(n, p) − np|} =
∫ ∞

m
(1 − F (x)) dx +

∫ m

−∞
F (x) dx

and ∣∣∣P {B(n, p) ≤ m + xσ} − Φ(x)
∣∣∣ ≤

CnE
{
|B(1, p) − p|3

}

σ3(1 + |x|3) (10)

by a local version of the Berry-Esseen inequality, where C is a positive
universal constant (cf. Nagaev [13]). Working out (10), we note that

E
{
|B(1, p) − p|3

}
= p(1−p)3 +(1−p)p3 = p(1−p)((1−p)2 +p2) ≤ p(1−p).

Thus, the bound becomes

Cnp(1 − p)
(np(1 − p))3/2 (1 + |x|3)

=
C√

np(1 − p)(1 + |x|3)
. (11)

Therefore
∣∣∣∣
∫ ∞

m
(1 − F (x)) dx −

∫ ∞

m

(
1 − Φ

(
x − m

σ

))
dx

∣∣∣∣

≤
∫ ∞

m

C
√

np(1 − p)
(
1 + |(x − m)/σ|3

) dx

by (11). After replacing (x − m)/σ by y, we obtain
∣∣∣∣

∫ ∞

m
(1 − F (x)) dx − σ

∫ ∞

0
(1 − Φ(y)) dy

∣∣∣∣ ≤
∫ ∞

0

C

1 + |y|3
dy

)= γ/2.

Thus, ∣∣∣∣

∫ ∞

m
(1 − F (x)) dx − σ√

2π

∣∣∣∣ ≤ γ/2.

Similarly, ∣∣∣∣

∫ m

−∞
F (x) dx − σ√

2π

∣∣∣∣ ≤ γ/2.

Finally, ∣∣∣∣E {|B(n, p) − np|} − 2σ√
2π

∣∣∣∣ ≤ γ.

!
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Lemma 2.

E {|B(n, p) − np|} − 1
2
E {|B(2n, p) − 2np|} ≥ 0.

Proof. If B(n, p) and B′(n, p) are i.i.d., then

B(2n, p) = B(n, p) + B′(n, p).

Thus,

E {|B(2n, p) − 2np|} ≤ E {|B(n, p) − np|} + E
{
|B′(n, p) − np|

}

= 2E {|B(n, p) − np|} .

!

Lemma 3.
∣∣∣∣E {|B(n, p) − np|} − 1

2
E {|B(2n, p) − 2np|} − α

√
np(1 − p)

∣∣∣∣ ≤
3γ
2

,

where

α =
(

1 − 1√
2

)√
2
π

.

Proof. By Lemma 1, using ζ, ζ ′ for numbers in [−γ, γ],

E {|B(n, p) − np|} − 1
2
E {|B(2n, p) − 2np|}

=

√
2np(1 − p)

π
− 1

2

√
4np(1 − p)

π
+ ζ + ζ ′/2

=
(

1 − 1√
2

)√
2np(1 − p)

π
+ ζ + ζ ′/2.

!

We are now in position to prove (6). To this aim, we show that under the
conditions of Theorem 1,

lim inf
n→∞

√
nhd

nε
′
n ≥ α

∫ √
f.

Note that when the right-hand-side is infinite, inequality (9) is trivially true.
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Proof. Take 1/2 > ε > 0 arbitrary. Because of the absolute continuity of
µ and hn → 0,

sup
A∈Pn

µ(A) < ε

for all n large enough. Thus, by Lemma 2 and Lemma 3, we obtain

ε′n =
∑

A∈Pn

[
E {|µn(A) − µ(A)|} − E {|µ2n(A) − µ(A)|}

]

=
1
n

∑

A∈Pn

[
E {|B(n, µ(A)) − nµ(A)|} − 1

2
E {|B(2n, µ(A)) − 2nµ(A)|}

]

≥ 1
n

∑

A∈Pn

[
α
√

nµ(A) ((1 − µ(A)) − 3γ
2

]+

≥ 1
n

∑

A∈Pn

[
α
√

1 − ε
√

nµ(A) − 3γ
2

]+

≥ 1
n

∑

A∈Pn,
√

nµ(A)≥β

α(1 − ε)3/2
√

nµ(A)

=
α(1 − ε)3/2

√
n

∑

A∈Pn,
√

nµ(A)≥β

√
µ(A),

where
β =

3γ
2αε

√
1 − ε

.

Thus, by Jensen’s inequality,
√

nhd
nε

′
n ≥ α(1 − ε)3/2

∑

A∈Pn,
√

nµ(A)≥β

√
hd

nµ(A)

= α(1 − ε)3/2
∑

A∈Pn,
√

nµ(A)≥β

√

hd
n

∫

A
f(x) dx

≥ α(1 − ε)3/2
∑

A∈Pn,
√

nµ(A)≥β

∫

A

√
f(x) dx

= α(1 − ε)3/2
∫ √

f(x)1{
√

nµ(An(x))≥β} dx.
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By Fatou’s lemma,

lim inf
n→∞

√
nhd

nε
′
n ≥ α(1 − ε)3/2

∫ √
f(x) lim inf

n→∞
1{
√

nµ(An(x))≥β} dx

≥ α(1 − ε)3/2
∫

{x:f(x)>0}

√
f(x) lim inf

n→∞
1{
√

nµ(An(x))≥β} dx.

By the Lebesgue density theorem, for almost all x, µ (An(x)) /hd
n ≈ f(x),

therefore the condition nhd
n → ∞ implies that for almost all x satisfying

f(x) > 0, and for any β,

lim inf
n→∞

1{
√

nµ(An(x))≥β} = lim inf
n→∞

1r
nhd

n
µ(An(x))

hd
n

≥β

ff = 1.

Thus,

lim inf
n→∞

√
nhd

nε
′
n ≥ α(1 − ε)3/2

∫ √
f(x) dx.

As ε > 0 is arbitrary, (9) follows. !
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