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Let f be an unknown multivariate density belonging to a set of densities F k * of finite associated Vapnik-Chervonenkis dimension, where the complexity k * is unknown, and F k ⊂ F k+1 for all k. Given an i.i.d. sample of size n drawn from f , this article presents a density estimate fKn yielding almost sure convergence of the estimated complexity K n to the true but unknown k * , and with the property

 and it includes a wide range of density models, such as mixture models and exponential families.

Introduction

Let (F k ) k≥1 be a sequence of nested parametric models of density functions on R d . Define

F = k≥1 F k .
In the union above, F k denotes, for each fixed k ≥ 1, a given class of densities parametrized by one or more parameters, and such that F k ⊂ F k+1 for all k. Typically, F k may be the class of all mixtures of k Gaussian densities on R d , but many other nested models are possible, see below. In the present paper, we consider the general problem of estimating a density f which belongs to F. Formally, we let the complexity associated with f be defined as

k * = min{k ≥ 1 : f ∈ F k }.
Clearly, as it is supposed that f ∈ F, we have k * < ∞. Thus k * just represents the index of the most parsimonious model for f . Given an i.i.d. random sample X 1 , . . . , X n drawn from f , this article presents a density estimate fKn yielding almost sure convergence of the estimated complexity K n to the true but unknown k * , and with the property that E{ | fKnf |} = O(1/ √ n). Thus, we show how to pick a model complexity and a density from the given model, and still guarantee an O(1/ √ n) rate of convergence for the expected error, just as if we had been given the model complexity beforehand. The strongly consistent estimate K n is obtained by minimizing the L 1 error between candidate models and the standard histogram estimate. Based on this estimate, the model parameters are selected using the general combinatorial tools developed in Devroye and Lugosi [START_REF] Devroye | Combinatorial Methods in Density Estimation[END_REF]. Our methodology is close in spirit to Biau and Devroye [START_REF] Biau | A note on density model size testing[END_REF], [START_REF] Biau | Density estimation by the penalized combinatorial method[END_REF], who use a penalized combinatorial criterion to select a density from a nested sequence of models. However, these authors do not consider the estimation of the complexity parameter k * , and they employ a penalty depending on a sequence of arbitrary weights, which renders the method difficult to implement. In contrast, the selection procedure presented in the present paper does not rely on any arbitrary penalty choice, and it seems therefore more tractable.

The paper is organized as follows. In section 2, we present our new histogrambased estimate K n for the complexity k * and show its strong consistency. In section 3, we develop our density estimation procedure and state its L 1optimality. For the sake of clarity, proofs are gathered in section 4.

Complexity estimation

Without loss of generality, we assume that the sample of independent random vectors distributed according to the probability measure µ with density f is of even size 2n. Let µ 2n be its empirical measure, i.e., µ 2n (A) = 1/(2n) 2n i=1 1 {X i ∈A} . Split the sample into two subsamples: X 1 , . . . , X n and {X 1 , . . . , X n } = {X n+1 , . . . , X 2n }, and denote by µ n and µ n the respective empirical measures. Let P n = {A n,j : j ≥ 1} be a cubic partition of R d with volume h d n . Introduce the statistic

d n,k = inf g∈F k A∈Pn A g -µ 2n (A) .
Roughly speaking, d n,k should be small if f ∈ F k . Consequently, let the threshold be

T n = A∈Pn |µ n (A) -µ n (A)|.
Note that the statistic T n has been introduced in Biau and Györfi [START_REF] Biau | On the asymptotic properties of a nonparametric L 1 -test of homogeneity[END_REF], while its kernel version was studied in Cao and Lugosi [START_REF] Cao | Goodness-of-fit tests based on the kernel density estimator[END_REF]. We say that d n,k is small if it is smaller than T n , so our estimate of k * is

K n = min{k ≥ 1 : d n,k ≤ T n },
with the convention min{∅} = ∞. Clearly, the statistic d n,k is nonincreasing in k, so that this definition makes sense.

From a topological point of view, we will suppose throughout the paper that each F k is a closed metric subspace of the space of all densities on R d endowed with the weak convergence topology. In other words, for any sequence

(g n ) in F k satisfying lim n→∞ g n (x)ϕ(x) dx = g(x)ϕ(x) dx
for every bounded, continuous real function ϕ, one has g ∈ F k . This requirement is not restrictive. For example, one may check that this prerequisite holds for the class F k of all mixtures of k Gaussian densities on R d . In this case, each density f k in F k may be written as

f k (x) = k i=1 p i (2π) d/2 det(Σ i ) e -1 2 (x-m i ) T Σ -1 i (x-m i ) ,
where k < ∞ is the mixture complexity, p i ≥ 0, i = 1, . . . , k are the mixture weights satisfying k i=1 p i = 1, m 1 , . . . , m k are arbitrary elements of R d and Σ 1 , . . . , Σ k are positive definite d × d matrices.

Methodologies for consistent estimation of a mixture distribution are well known. An enormous body of literature exists regarding the application, computational issues and theoretical aspects of mixture models when the number of components is known, but estimating the unknown number of components remains an area of intense research. The scope of application is vast, as mixture models are routinely employed across the entire diverse application range of statistics, including nearly all of the social and experimental sciences. Recent attempts at estimating the mixture density parameters and the number of mixture densities jointly are by Priebe [START_REF] Priebe | Adaptive mixtures[END_REF], James, Priebe and Marchette [START_REF] James | Consistent estimation of mixture complexity[END_REF], and Rogers, Marchette and Priebe [START_REF] Rogers | A procedure for model complexity selection in semiparametric mixture model density estimation[END_REF]. For an updated list of references, we refer the reader to Biau and Devroye [START_REF] Biau | Density estimation by the penalized combinatorial method[END_REF] and the discussion therein.

As another interesting collection of models, we might also consider the class of increasing exponential families. Each density f k in an exponential family F k may be written in the form

f k (x) = cα(θ)β(x)e P k i=1 π i (θ)ψ i (x) ,
where θ belongs to some parameter set Θ, ψ 1 , . . . , ψ k : R d → R, β : R d → [0, ∞), α, π 1 , . . . , π k : Θ → R are fixed functions, and c is a normalization constant. Examples of exponential families include classes of Gaussian, gamma, beta, Rayleigh, and Maxwell densities. By allowing k to grow, this model can become very rich and powerful.

Theorem 1. Assume that, for each k ≥ 1, F k is closed with respect to the weak convergence topology. Choose h n = n -δ with 0 < δ < 1/d. Then there exists a positive constant κ, depending on f , such that

P {K n = k * } ≤ exp -κ n dδ ,
and consequently, almost surely,

K n = k *
for all n large enough.

Fast density estimate

In the same way as in Biau and Devroye [START_REF] Biau | A note on density model size testing[END_REF], [START_REF] Biau | Density estimation by the penalized combinatorial method[END_REF], based on the complexity estimation presented in the previous section, we consider a minimum distance type estimate. Using ideas from Yatracos [START_REF] Yatracos | Rates of convergence of minimum distance estimators and Kolmogorov's entropy[END_REF], Devroye and Lugosi explore in [START_REF] Devroye | Combinatorial Methods in Density Estimation[END_REF] a new paradigm for the data-based or automatic selection of the free parameters of density estimates in general, so that the expected error is within a given constant multiple of the best possible error. To summarize in the present context, fix k ≥ 1, and define a density estimate fk in F k as follows. First introduce the class of sets

A k = {x : g 1 (x) ≥ g 2 (x)} : g 1 , g 2 ∈ F k (A k
is the so-called Yatracos class associated with F k ) and the goodness criterion for a density g ∈ F k :

∆ k (g) = sup A∈A k A g -µ 2n (A) .
Then the minimum distance estimate fk is defined as any density estimate selected from among those densities

f k ∈ F k with ∆ k (f k ) < inf g∈F k ∆ k (g) + 1 2n .
Note that the 1/(2n) term here is added to ensure the existence of such a density estimate. From now on, we let V k be the Vapnik-Chervonenkis dimension of the class of sets A k (Vapnik and Chervonenkis [START_REF] Vapnik | On the uniform convergence of relative frequencies of events to their probabilities[END_REF]).

Corollary 1. Assume that V k * is finite. Then, under the conditions of Theorem 1, the minimum distance estimate fKn satisfies

E | fKn -f | = O 1 √ n . (1) 
Proof. For the minimum distance estimate fk , we have (Devroye and Lugosi [START_REF] Devroye | Combinatorial Methods in Density Estimation[END_REF], Theorem 6.4, page 56)

| fk -f | ≤ 3 inf g∈F k |g -f | + 4∆ k (f ) + 3 2n . ( 2 
)
Since inequality (2) holds for every k ≥ 1, it holds in particular for K n . The corresponding minimum distance estimate, fKn , is a natural candidate for the estimation of f . Clearly,

| fKn -f | ≤ | fK * -f | 1 {Kn=k * } + 2 1 {Kn =k * } .
By inequality (2), we have, for all n ≥ 1,

| fK * -f | ≤ 4∆ K * (f ) + 3 2n .
Using Theorem 1, we deduce that

E | fKn -f | ≤ 4E {∆ k * (f )} + 3 2n + 2 exp -κ n dδ , (3) 
where κ is the positive constant of Theorem 1. The uniform convergence of empirical measures as developed by Vapnik and Chervonenkis [START_REF] Vapnik | On the uniform convergence of relative frequencies of events to their probabilities[END_REF] can now be applied to density estimation via the term ∆ k * (f ). A standard inequality from empirical process theory (Dudley [START_REF] Dudley | Central limit theorems for empirical measures[END_REF]) shows that if

A k * has Vapnik-Chervonenkis dimension V k * , then E {∆ k * (f )} ≤ C V k * n , (4) 
where C is a positive universal constant. Inequalities (3) and ( 4) then imply

E | fKn -f | ≤ 4C V k * n + 3 2n + 2 exp -κ n dδ .
As an illustration, consider the examples of section 2. It can be shown (see Devroye and Lugosi [8], Chapter 8) that V k = O(k 4 ) for the univariate Gaussian mixtures with k components, and V k ≤ k + 1 for the exponential families. Equality ( 1) is thus satisfied by a large collection of models.

It is strictly speaking not necessary that V k → ∞, although such situations are of little general interest. Indeed, if sup k≥1 V k < ∞, then the Vapnik-Chervonenkis dimension of the infinite union F is finite, and one could just apply the ordinary combinatorial method. However, in most situations of interest, the Vapnik-Chervonenkis dimension of F is infinite, and we cannot use the original combinatorial method. It is to correct this situation that we presented the two step procedure.

Observe also that the finiteness of the associated Vapnik-Chervonenkis dimension is only used at k * . We thus allow this dimension to be infinite starting at any k > k * . Considering a silly example, we could take as F k * +1 the class of all densities. Then the d n,k value is zero at k * + 1, so the selected k is never more than k * + 1. But the method is clever enough to stop at k * . If you stop at k * + 1, then the minimum distance estimate includes any density. So the penalty for overshooting is high.

We note that our model selection procedure is simpler than that of Biau and Devroye [START_REF] Biau | A note on density model size testing[END_REF], since the projection over a cubic partition is easier than the projection over a Yatracos class. However, practically speaking, several questions need to be addressed, including that of the effective computation of the minimum distance estimate fk . To date, we do not know any method for its precise computation. Discretized methods and randomized methods that provide acceptable and computationally feasible approximation have been used in the simulation study of Devroye [START_REF] Devroye | Universal smoothing factor selection in density estimation: Theory and practice (with discussion)[END_REF]. However, those simulations only involve one-dimensional problems, and thus, much more work is needed. In fact, the exploration of the relationship between class complexity, computational complexity and approximation seems very interesting. One may follow the model of pattern recognition and machine learning, where these connections have been thoroughly studied.

Summarizing, we have thus shown, assuming that f ∈ F, how to pick a mixture complexity and a density from the given mixture, and still guarantee an O(1/ √ n) rate of convergence for the expected error, just as if we had been given the mixture complexity beforehand. On the other hand, we realize that an important situation occurs when our infinite union is dense in the set of all densities, all Vapnik-Chervonenkis dimensions are finite, and the density is not in any F k . Note that T n depends upon n and h n in the standard way. Now, d n,k tends to zero with k, so we end up anyway with a finite K n . As d n,k is below T n by our selection criterion, it seems that we can have an error bound of the order of the bound for T n . This would mean that we can in the worst case have a bound as for the classical histogram (because that is what T n will give). We believe however that such results are beyond the scope of the present paper and we will deal with this problem elsewhere.

Remark 1. Recall that when the set {k ≥ 1 : d n,k ≤ T n } is empty, we decide K n = ∞ by convention. In this case, any choice in F for fKn will do.

Remark 2. For the actual density estimate, we could not avoid the projection over the Yatracos class. Thus, we could not decrease the computational complexity. It is an open problem whether simply the projection over a cubic partition is a proper density estimate. Note also that the histogram is only used to select k * . The actual density estimate depends upon the Yatracos classes -the histogram is thrown away! This point is essential, as a histogram estimate cannot converge at the rate O(1/ √ n). So we have the apparent paradox that a density estimate with a bad rate can be used to obtain -in two steps -a great rate! In a sense, the histogram is used to choose the complexity (or lack of smoothness) of another class of functions. The choice of the histogram's width, h n , thus has a secondary effect. To stay within the limits of the theorem, one could easily replace h n by one of the many data-dependent and automated bandwidths. Some of these are discussed or surveyed in Devroye and Györfi [START_REF] Devroye | Nonparametric Density Estimation: The L 1 View[END_REF] and Devroye and Lugosi [START_REF] Devroye | Combinatorial Methods in Density Estimation[END_REF].

Interestingly, in the second step, and under some conditions, just the projection of another, non-consistent (asymptotically biased) histogram can result in a density estimate with good rate, too. With this respect, denote by ξ n,r a histogram estimate constructed using the sample X 1 , . . . , X 2n and a cubic partition {B r,j : j ≥ 1} of R d with volume r d , and let π r (g) be the expectation of this histogram for the density g, that is

π r (g)(x) = 1 r d Br(x)
g, where B r (x) is the cell of the partition containing x. Let the estimate fn,r be defined as fn,r = arg min

g∈F Kn |π r (g) -ξ n,r |.
Suppose moreover that the bin width r is such that

C f,r = sup g∈F k * |g -f | |π r (g) -π r (f )| < ∞. ( 5 
) If K n = k * then |π r ( fn,r ) -π r (f )| ≤ |π r ( fn,r ) -ξ n,r | + |π r (f ) -ξ n,r | = min g∈F k * |π r (g) -ξ n,r | + |π r (f ) -ξ n,r | ≤ |π r (f ) -ξ n,r | + |π r (f ) -ξ n,r |.
Therefore, by condition [START_REF] Devroye | Universal smoothing factor selection in density estimation: Theory and practice (with discussion)[END_REF],

| fn,r -f | ≤ C f,r |π r ( fn,r ) -π r (f )| ≤ 2C f,r |π r (f ) -ξ n,r |.
Using Theorem 1, it easily follows, under the additional condition that f has compact support (see Devroye and Györfi [START_REF] Devroye | Nonparametric Density Estimation: The L 1 View[END_REF], Theorem 6, page 99), that

E | fn,r -f | ≤ 2C f,r E |π r (f ) -ξ n,r | ≤ C f,r C √ nr d ,
where C is a positive constant. Therefore, for such fixed r, we can have rate O(1/ √ n). Unfortunately, condition ( 5) is hard to verify, and requires that the operator π r is invertible on F k * and the inverse is continuous. We cannot handle our standard examples. However, for the class of normal densities, this condition holds for any fixed r. In other words, there is no need to choose small r, i.e., the projection of non-consistent (asymptotically biased) histogram results in a good density estimate.

Proofs

From now on, all limits are taken as n goes to infinity.

Proof of Theorem 1

We split the proof into two steps in which bounds for P {K n > k * } (Step 1) and P {K n < k * } (Step 2) are obtained.

Step 1. Note that since f belongs to F k * , one has

d n,k * ≤ A∈Pn A f -µ 2n (A) = A∈Pn |µ(A) -µ 2n (A)|.
Consequently,

{K n > k * } ⊂ {d n,k * > T n } ⊂ A∈Pn |µ(A) -µ 2n (A)| > A∈Pn |µ n (A) -µ n (A)| .
For A ∈ P n , set

I n (A) = |µ(A) -µ 2n (A)| -|µ n (A) -µ n (A)|,
and

ε n = - A∈Pn E {I n (A)} .
In the next paragraph, we prove that, for all n large enough,

ε n ≥ κ 1 nh d n , (6) 
for some positive constant κ 1 depending on f . We can apply McDiarmid's inequality (cf. McDiarmid [START_REF] Mcdiarmid | On the method of bounded differences[END_REF], see also Devroye, Györfi and Lugosi [START_REF] Devroye | A Probabilistic Theory of Pattern Recognition[END_REF], Theorem 9.2, page 136). We have 2n random variables and the fluctuation of A∈Pn I n (A) is at most 3/n. Therefore

P {K n > k * } ≤ P A∈Pn I n (A) > 0 = P A∈Pn [I n (A) -E {I n (A)}] > ε n ≤ exp - 2ε 2 n 2n(3/n) 2 ≤ exp - κ 2 1 9 h -d n = exp - κ 2 1 9 n dδ .
Step 2. Denote by f n (resp. f 2n ) the standard histogram estimate drawn from the data X 1 , . . . , X n (resp. X 1 , . . . , X 2n ) and the partition

P n . That is, for x ∈ R d , f n (x) = µ n (A n (x)) h d n and f 2n (x) = µ 2n (A n (x)) h d n ,
where A n (x) is the cell of the partition P n containing x. For any density g, let π n (g) be defined by

π n (g)(x) = 1 h d n An(x)
g.

Clearly, for any g in D, by the triangle inequality,

A∈Pn A g -µ 2n (A) = |π n (g) -f 2n | ≥ |π n (g) -π n (f )| -|π n (f ) -f 2n |. Therefore {K n < k * } ⊂ {d n,k * -1 ≤ T n } ⊂ inf g∈F k * -1 |π n (g) -π n (f )| ≤ |π n (f ) -f 2n | + T n .
We shall prove that under the closure condition on the models F k , there exists ∆ > 0 satisfying lim inf

n→∞ inf g∈F k * -1 |π n (g) -π n (f )| = 3∆. (7) 
Then, because of

P{T n ≥ ∆} ≤ 2P A∈Pn µ n (A) - A f ≥ ∆/2 = 2P |f n -π n (f )| ≥ ∆/2 ,
we deduce that there exists a positive constant κ 2 depending on f such that, for all n large enough,

P {K n < k * } ≤ 2P |f n -π n (f )| ≥ ∆/2 + P |π n (f ) -f 2n | ≥ ∆ ≤ 7 exp(-κ 2 n).
The last exponential inequality arises from Devroye and Györfi [START_REF] Devroye | Nonparametric Density Estimation: The L 1 View[END_REF] (Lemma 4, page 22). Since nh d n → ∞, it follows that, for all n large enough,

P {K n < k * } ≤ 7 exp(-κ 2 h -d n ) = 7 exp(-κ 2 n dδ ).
In order to prove [START_REF] Devroye | A Probabilistic Theory of Pattern Recognition[END_REF] 

|π n (g) -f | = 0.
Thus, if this is true, there exists a sequence (g n ) in

F k * -1 such that lim n→∞ |π n (g n ) -f | = 0. ( 8 
)
Observe now that for any bounded Lipschitz function ϕ on R d , the following chain of equalities is valid:

π n (g n )ϕ = A∈Pn A 1 h d n A g n ϕ = A∈Pn A g n 1 h d n A ϕ = A∈Pn A g n π n (ϕ) = g n π n (ϕ).
Moreover, as ϕ is Lipschitz, there exists a constant c > 0 such that, for all

n ≥ 1, sup R d |π n (ϕ) -ϕ| ≤ c sup A∈Pn diam A,
and the right-hand term above goes to 0 because the partition P n is cubic.

Using the fact that g n is a density function, and collecting the above results, we obtain lim n→∞ π n (g n )ϕg n ϕ = 0.

Therefore, using [START_REF] Devroye | Combinatorial Methods in Density Estimation[END_REF] and the fact that ϕ is bounded, we are led to lim n→∞ g n ϕ = f ϕ.

Since this equality holds for any bounded Lipschitz function, it also holds for any bounded and continuous function (see Dudley [START_REF] Dudley | Real Analysis and Probability[END_REF], Theorem 11.3.3, page 395). Invoking the closure of the class F k * -1 , we finally deduce that f ∈ F k * -1 , which is a contradiction. This proves equality [START_REF] Devroye | A Probabilistic Theory of Pattern Recognition[END_REF].

Proof of (6)

By Jensen's inequality,

E |µ n (A) -µ n (A)| = E E |µ n (A) -µ n (A)| | X 1 , . . . , X n ≥ E |µ n (A) -E µ n (A) | X 1 , . . . , X n | = E {|µ n (A) -µ(A)|} .
Therefore

ε n = A∈Pn E |µ n (A) -µ n (A)| -E {|µ 2n (A) -µ(A)|} ≥ A∈Pn E {|µ n (A) -µ(A)|} -E {|µ 2n (A) -µ(A)|} = ε n ,
so instead of (6) it suffices to show that for some positive constant c f and all n large enough,

ε n ≥ c f nh d n . (9) 
Let B(n, p) denote a binomial random variable.

Lemma 1. There exists a positive universal constant γ such that

E {|B(n, p) -np|} - 2np(1 -p) π ≤ γ.
Proof. Let Φ denote the standard normal distribution function, let F denote the distribution function of B(n, p), let m = np and σ 2 = np(1p).

We will use the facts:

E {|B(n, p) -np|} = ∞ m (1 -F (x)) dx + m -∞ F (x) dx and P {B(n, p) ≤ m + xσ} -Φ(x) ≤ CnE |B(1, p) -p| 3 σ 3 (1 + |x| 3 ) (10) 
by a local version of the Berry-Esseen inequality, where C is a positive universal constant (cf. Nagaev [START_REF] Nagaev | Some limit theorems for large deviations (Russian)[END_REF]). Working out [START_REF] Dudley | Real Analysis and Probability[END_REF], we note that

E |B(1, p) -p| 3 = p(1-p) 3 + (1-p)p 3 = p(1-p)((1-p) 2 + p 2 ) ≤ p(1-p).
Thus, the bound becomes

Cnp(1 -p) (np(1 -p)) 3/2 (1 + |x| 3 ) = C np(1 -p)(1 + |x| 3 ) . ( 11 
) Therefore ∞ m (1 -F (x)) dx - ∞ m 1 -Φ x -m σ dx ≤ ∞ m C np(1 -p) 1 + |(x -m)/σ| 3
dx by [START_REF] James | Consistent estimation of mixture complexity[END_REF]. After replacing (xm)/σ by y, we obtain

∞ m (1 -F (x)) dx -σ ∞ 0 (1 -Φ(y)) dy ≤ ∞ 0 C 1 + |y| 3 dy = γ/2. Thus, ∞ m (1 -F (x)) dx - σ √ 2π ≤ γ/2. Similarly, m -∞ F (x) dx - σ √ 2π ≤ γ/2.
Finally,

E {|B(n, p) -np|} - 2σ √ 2π ≤ γ. Lemma 2. E {|B(n, p) -np|} - 1 2 E {|B(2n, p) -2np|} ≥ 0.
Proof. If B(n, p) and B (n, p) are i.i.d., then B(2n, p) = B(n, p) + B (n, p).

Thus, We are now in position to prove [START_REF] Devroye | Nonparametric Density Estimation: The L 1 View[END_REF]. To this aim, we show that under the conditions of Theorem 1,

E {|B(2n, p) -2np|} ≤ E {|B(n, p) -np|} + E |B (n, p) -np| = 2E {|B(n, p) -np|} . Lemma 3. E {|B(n, p) -np|} - 1 2 E {|B(2n, p) -2np|} -α np(1 -p) ≤ 3γ 
lim inf n→∞ nh d n ε n ≥ α f .
Note that when the right-hand-side is infinite, inequality ( 9) is trivially true. As ε > 0 is arbitrary, (9) follows.

  we use an indirect argument. Assume that lim inf n→∞ inf g∈F k * -1 |π n (g)π n (f )| = 0, and, possibly extracting a subsequence, that lim n→∞ inf g∈F k * -1 |π n (g)π n (f )| = 0. By the Abou-Jaoude theorem, we obtain lim n→∞ inf g∈F k * -1

  By Lemma 1, using ζ, ζ for numbers in [-γ, γ], E {|B(n, p) -np|} -

Proof. Take 1 / 2 1 nE 2 E 1 n

 12121 > ε > 0 arbitrary. Because of the absolute continuity of µ and h n → 0, sup A∈Pn µ(A) < ε for all n large enough. Thus, by Lemma 2 and Lemma 3, we obtainε n = A∈Pn E {|µ n (A)µ(A)|} -E {|µ 2n (A)µ(A)|} = A∈Pn {|B(n, µ(A))nµ(A)|} -1 {|B(2n, µ(A)) -2nµ(A)|} ≥ A∈Pn α nµ(A) ((1µ(A)) -Jensen's inequality, nh d n ε n ≥ α(1ε) (x))≥β} dx.By the Lebesgue density theorem, for almost all x, µ (A n (x)) d n ≈ f (x), therefore the condition nh d n → ∞ implies that for almost all x satisfying f (x) > 0, and for any β, ε n ≥ α(1ε)3/2 f (x) dx.
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