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Multi-soliton solutions for the supercritical gKdV equations

For the L 2 subcritical and critical (gKdV) equations, Martel [11] proved the existence and uniqueness of multi-solitons. Recall that for any N given solitons, we call multi-soliton a solution of (gKdV) which behaves as the sum of these N solitons asymptotically as t → +∞. More recently, for the L 2 supercritical case, Côte, Martel and Merle [4] proved the existence of at least one multi-soliton. In the present paper, as suggested by a previous work concerning the one soliton case [3], we first construct an N -parameter family of multi-solitons for the supercritical (gKdV) equation, for N arbitrarily given solitons, and then prove that any multi-soliton belongs to this family. In other words, we obtain a complete classification of multi-solitons for (gKdV).

Lemma 2.5.

Then the following properties hold:

Introduction

The generalized Korteweg-de Vries equation

We consider the generalized Korteweg-de Vries equation:

∂ t u + ∂ 3 x u + ∂ x (u p ) = 0 u(0) = u 0 ∈ H 1 (R) (gKdV)
where (t, x) ∈ R 2 and p 2 is integer. The following quantities are formally conserved for solutions of (gKdV):

u 2 (t) = u 2 (0) (mass), E(u(t)) = 1 2 u 2 x (t) - 1 p + 1 u p+1 (t) = E(u(0)) (energy).
Kenig, Ponce and Vega [START_REF] Kenig | Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle[END_REF] have shown that the local Cauchy problem for (gKdV) is well posed in H 1 (R): for u 0 ∈ H 1 (R), there exist T > 0 and a solution u ∈ C([0, T ], H 1 (R)) of (gKdV) satisfying u(0) = u 0 which is unique in some class Y T ⊂ C([0, T ], H 1 (R)). Moreover, if T * T is the maximal time of existence of u, then either T * = +∞ which means that u(t) is a global solution, or T * < +∞ and then u(t) H 1 → +∞ as t ↑ T * (u(t) is a finite time blow up solution). Throughout this paper, when referring to an H 1 solution of (gKdV), we mean a solution in the above sense. Finally, if u 0 ∈ H s (R) for some s 1, then u(t) ∈ H s (R) for all t ∈ [0, T * ).

In the case where 2 p < 5, it is standard that all solutions in H 1 are global and uniformly bounded by the energy and mass conservations and the Gagliardo-Nirenberg inequality. In the case p = 5, the existence of finite time blow up solutions was proved by Merle [START_REF] Merle | Existence of blow-up solutions in the energy space for the critical generalized KdV equation[END_REF] and Martel and Merle [START_REF] Martel | Blow up in finite time and dynamics of blow up solutions for the L 2 -critical generalized KdV equation[END_REF]. Therefore p = 5 is the critical exponent for the long time behavior of solutions of (gKdV). For p > 5, the existence of blow up solutions is an open problem.

We recall that a fundamental property of (gKdV) equations is the existence of a family of explicit traveling wave solutions. Let Q be the only solution (up to translations) of

Q > 0, Q ∈ H 1 (R), Q ′′ + Q p = Q, i.e. Q(x) = p + 1 2 cosh 2 p-1 2 x 1 p-1 .
For all c 0 > 0 and

x 0 ∈ R, R c0,x0 (t, x) = Q c0 (x -c 0 t -x 0 )
is a solution of (gKdV), where

Q c0 (x) = c 1 p-1 0 Q( √ c 0 x).
We call solitons these solutions though they are known to be solitons only for p = 2, 3 (in the sense that they are stable by interaction).

It is well-known that the stability properties of a soliton solution depend on the sign of

d dc Q 2 c |c=c0 . Since Q 2 c = c 5-p 2(p-1)
Q 2 , we distinguish the following three cases:

• For p < 5 (L 2 subcritical case), solitons are stable and asymptotically stable in H 1 in some suitable sense: see Cazenave and Lions [START_REF] Cazenave | Orbital stability of standing waves for some nonlinear Schrödinger equations[END_REF], Weinstein [START_REF] Weinstein | Lyapunov stability of ground states of nonlinear dispersive evolution equations[END_REF], Grillakis, Shatah and Strauss [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF] for orbital stability; and Pego and Weinstein [START_REF] Pego | Asymptotic stability of solitary waves[END_REF], Martel and Merle [START_REF] Martel | Asymptotic stability of solitons of the subcritical gKdV equations revisited[END_REF] for asymptotic stability.

• For p = 5 (L 2 critical case), solitons are unstable, and blow up occurs for a large class of solutions initially arbitrarily close to a soliton, see [START_REF] Martel | Blow up in finite time and dynamics of blow up solutions for the L 2 -critical generalized KdV equation[END_REF][START_REF] Merle | Existence of blow-up solutions in the energy space for the critical generalized KdV equation[END_REF]. Moreover, for both critical and subcritical cases, previous works imply the following asymptotic classification result: if u is a solution of (gKdV) such that lim t→+∞ u(t) -Q(•t) H 1 = 0, then u(t) = Q(•t) for t large enough.

• For p > 5 (L 2 supercritical case), solitons are unstable (see Grillakis, Shatah and Strauss [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF] and Bona, Souganidis and Strauss [START_REF] Bona | Stability and instability of solitary waves of Korteweg-de Vries type[END_REF]). In particular, the previous asymptotic classification result does not hold in this case. More precisely, we have:

Theorem 1.1 ([3]). Let p > 5.

(i) There exists a one-parameter family (U A ) A∈R of solutions of (gKdV) such that, for all A ∈ R,

lim t→+∞ U A (t, • + t) -Q H 1 = 0,
and if A ′ ∈ R satisfies A ′ = A, then U A ′ = U A .
(ii) Conversely, if u is a solution of (gKdV) such that lim t→+∞ inf y∈R u(t) -Q(•y) H 1 = 0, then there exist A ∈ R, t 0 ∈ R and x 0 ∈ R such that u(t) = U A (t, •x 0 ) for t t 0 .

We recall that this result was an adaptation to (gKdV) of previous works, concerning the nonlinear Schrödinger equation, of Duyckaerts and Merle [START_REF] Duyckaerts | Dynamic of threshold solutions for energy-critical NLS[END_REF] and Duyckaerts and Roudenko [START_REF] Duyckaerts | Threshold solutions for the focusing 3d cubic Schrödinger equation[END_REF]. The purpose of this paper is to extend Theorem 1.1 to multi-solitons.

Multi-solitons

Now, we focus on multi-soliton solutions. Given 2N parameters defining N 2 solitons with different speeds, 0

< c 1 < • • • < c N , x 1 , . . . , x N ∈ R, (1.1) 
we set

R j (t) = R cj,xj (t) and R(t) = N j=1 R j (t),
and we call multi-soliton a solution u(t) of (gKdV) such that

u(t) -R(t) H 1 -→ 0 as t → +∞. (1.2)
Let us recall known results on multi-solitons:

• For p = 2 and 3 (KdV and mKdV), multi-solitons (in a stronger sense) are well-known to exist for any set of parameters (1.1), as a consequence of the inverse scattering method.

• In the L 2 subcritical and critical cases, i.e. for (gKdV) with p 5, Martel [START_REF] Martel | Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations[END_REF] constructed multi-solitons for any set of parameters (1.1). The proof in [START_REF] Martel | Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations[END_REF] follows the strategy of Merle [START_REF] Merle | Construction of solutions with exactly k blow-up points for the Schrödinger equation with critical nonlinearity[END_REF] (compactness argument) and relies on monotonicity properties developed in [START_REF] Martel | Asymptotic stability of solitons of the subcritical gKdV equations revisited[END_REF] (see also [START_REF] Martel | Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations[END_REF]). Recall that Martel, Merle and Tsai [START_REF] Martel | Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations[END_REF] proved stability and asymptotic stability of a sum of N solitons for large time for the subcritical case. A refined version of the stability result of [START_REF] Martel | Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations[END_REF] shows that, for a given set of parameters, there exists a unique multi-soliton solution satisfying (1.2), see Theorem 1 in [START_REF] Martel | Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations[END_REF].

• In the L 2 supercritical case, i.e. in a situation where solitons are known to be unstable, Côte, Martel and Merle [START_REF] Côte | Construction of multi-soliton solutions for the L 2supercritical gKdV and NLS equations[END_REF] have recently proved the existence of at least one multi-soliton solution for (gKdV):

Theorem 1.2 ([4]). Let p > 5 and N 2. Let 0 < c 1 < • • • < c N and x 1 , . . . , x N ∈ R. There exist T 0 ∈ R, C, σ 0 > 0, and a solution ϕ ∈ C([T 0 , +∞), H 1 ) of (gKdV) such that ∀t ∈ [T 0 , +∞),

ϕ(t) -R(t) H 1 Ce -σ 3/2 0 t .
Recall that, with respect to [START_REF] Martel | Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations[END_REF][START_REF] Martel | Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations[END_REF], the proof of Theorem 1.2 relies on an additional topological argument to control the unstable nature of the solitons. Moreover, note that no uniqueness result is proved in [START_REF] Côte | Construction of multi-soliton solutions for the L 2supercritical gKdV and NLS equations[END_REF], contrary to the subcritical and critical cases [START_REF] Martel | Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations[END_REF]. In fact, the objective of this paper is to prove uniqueness up to N parameters, as suggested by Theorem 1.1.

Main result and outline of the paper

The whole paper is devoted to prove the following theorem of existence and uniqueness of a family of multi-solitons for the supercritical (gKdV) equation.

Theorem 1.3. Let p > 5, N 2, 0 < c 1 < • • • < c N and x 1 , . . . , x N ∈ R. Denote R = N j=1 R cj ,xj .
1. There exists an N -parameter family (ϕ A1,...,AN ) (A1,...,AN )∈R N of solutions of (gKdV) such that, for all

(A 1 , . . . , A N ) ∈ R N , lim t→+∞ ϕ A1,...,AN (t) -R(t) H 1 = 0, and if (A ′ 1 , . . . , A ′ N ) = (A 1 , . . . , A N ), then ϕ A ′ 1 ,...,A ′ N = ϕ A1,...,AN . 2. Conversely, if u is a solution of (gKdV) such that lim t→+∞ u(t) -R(t) H 1 = 0, then there exists (A 1 , . . . , A N ) ∈ R N such that u = ϕ A1,...,AN .
Remark 1.4. The convergence of ϕ A1,...,AN to R in Theorem 1.3 is actually exponential in time, as in Theorem 1.2. See the proof of Theorem 1.3 at the beginning of Section 3 for more details.

Remark 1.5. For the nonlinear Schrödinger equation, the question of the classification of multisolitons as in Theorem 1.3 is open. In fact, even for subcritical and critical cases, no general uniqueness result has been proved yet (see general existence results in [START_REF] Merle | Construction of solutions with exactly k blow-up points for the Schrödinger equation with critical nonlinearity[END_REF][START_REF] Perelman | Some results on the scattering of weakly interacting solitons for nonlinear Schrödinger equations[END_REF][START_REF] Rodnianski | Asymptotic stability of N-soliton states of NLS[END_REF][START_REF] Martel | Multi solitary waves for nonlinear Schrödinger equations[END_REF][START_REF] Côte | Construction of multi-soliton solutions for the L 2supercritical gKdV and NLS equations[END_REF]).

The paper is organized as follows. In the next section, we briefly recall some well-known results on solitons, multi-solitons, and on the linearized equation. One of the most important facts about the linearized equation, also strongly used in [START_REF] Côte | Construction of multi-soliton solutions for the L 2supercritical gKdV and NLS equations[END_REF][START_REF] Combet | Construction and characterization of solutions converging to solitons for supercritical gKdV equations[END_REF], is the determination by Pego and Weinstein [START_REF] Pego | Eigenvalues, and instabilities of solitary waves[END_REF] of the spectrum of the linearized operator L around the soliton Q(xt): σ(L) ∩ R = {-e 0 , 0, +e 0 } with e 0 > 0, and moreover e 0 and -e 0 are simple eigenvalues of L with eigenfunctions Y + and Y -. Indeed, Y ± allow to control the negative directions of the linearized energy around a soliton (see Lemma 2.5). Moreover, by a simple scaling argument, we determine eigenvalues of the linearized operator around Q cj : ±e j = ±c 3/2 j e 0 are eigenvalues with eigenfunctions Y ± j (see Notation 2.6 for precise definitions).

In Section 3, we construct the family (ϕ A1,...,AN ) described in Theorem 1.3. To do this, we first claim Proposition 3.1, which is the new key point of the proof of the multi-existence result, and can be summarized as follows. Let ϕ be a multi-soliton given by Theorem 1.2, j ∈ [ [1, N ]] and A j ∈ R. Then there exists a solution u(t) of (gKdV) such that

u(t) -ϕ(t) -A j e -ej t Y + j (t) H 1 e -(ej +γ)t ,
for t large and for some small γ > 0. This means that, similarly as in [START_REF] Combet | Construction and characterization of solutions converging to solitons for supercritical gKdV equations[END_REF] for one soliton, we can perturb the multi-soliton ϕ locally around one given soliton at the order e -ej t . Since e 1 < • • • < e N , ϕ A1,...,AN has to be constructed by iteration, from j = 1 to j = N . Indeed, it is not significant to perturb ϕ at order e j before order e j-1 , since e j > e j-1 + γ. Similarly, it seems that there exists no simple way to compare ϕ A1,...,AN to ϕ. Finally, to prove Proposition 3.1, we rely on refinements of arguments developed in [START_REF] Côte | Construction of multi-soliton solutions for the L 2supercritical gKdV and NLS equations[END_REF], in particular the topological argument to control the unstable directions.

In Section 4, we classify all multi-solitons in terms of the family previously constructed. Once again, it appears that the identification of the solution has to be done step by step (after an improvement of the convergence rate, as in [START_REF] Combet | Construction and characterization of solutions converging to solitons for supercritical gKdV equations[END_REF]), from order e 1 to order e N . In this section, we strongly use special monotonicity properties of (gKdV), in particular to prove that any multisoliton converges exponentially (Section 4.1). Such arguments are not known for the nonlinear Schrödinger equations.

Finally, recall that in the one soliton case for (gKdV) [START_REF] Combet | Construction and characterization of solutions converging to solitons for supercritical gKdV equations[END_REF], a construction of a family of approximate solutions of the linearized equation and fixed point arguments were used (among other things), as in the one soliton case for the nonlinear Schrödinger equation [START_REF] Duyckaerts | Threshold solutions for the focusing 3d cubic Schrödinger equation[END_REF]. For multi-solitons, since the construction of approximate solutions is not natural (because of the interactions between solitons), we propose in this paper an alternate approach based only on compactness and energy methods. (b) The Sobolev space H s is defined by

Preliminary results

Notation and first properties of the solitons

H s (R) = {u ∈ D ′ (R) | (1 + ξ 2 ) s/2 û(ξ) ∈ L 2 (R)}, and in particular H 1 (R) = {u ∈ L 2 (R) | u 2 H 1 = u 2 L 2 + u ′ 2 L 2 < +∞} ֒→ L ∞ (R). (c) We denote ∂ x v = v x the partial derivative of v with respect to x.
(d) All numbers C, K appearing in inequalities are real constants (with respect to the context) strictly positive, which may change in each step of an inequality.

Claim 2.2. For all c > 0, one has:

(i) Q c > 0, Q c is even, Q c is C ∞ , and Q ′ c (x) < 0 for all x > 0.
(ii) For all j 0, there exists

C j > 0 such that Q (j) c (x) ∼ C j e - √ c|x| as |x| → +∞.
In particular, for all j 0, there exists

C ′ j > 0 such that |Q (j) c (x)| C ′ j e - √ c|x| for all x ∈ R. (iii) Q ′′ c + Q p c = cQ c .

Linearized equation

Let c > 0.

Linearized operator around Q c

The linearized equation appears if one considers a solution of (gKdV) close to the soliton

Q c (x-ct). More precisely, if u c (t, x) = Q c (x -ct) + h c (t, x -ct) satisfies (gKdV), then h c satisfies ∂ t h c + L c h c = O(h 2 c ) where L c a = -∂ x (L c a) and L c a = -∂ 2 x a + ca -pQ p-1 c a.
The spectrum of L c has been calculated by Pego and Weinstein for c = 1 in [START_REF] Pego | Eigenvalues, and instabilities of solitary waves[END_REF]. Their results are summed up in the following proposition for the reader's convenience.

Proposition 2.3 ([18]

). Let σ(L) be the spectrum of the operator L defined on L 2 (R) and let σ ess (L) be its essential spectrum. Then σ ess (L) = iR and σ(L) ∩ R = {-e 0 , 0, e 0 } with e 0 > 0.

Furthermore, e 0 and -e 0 are simple eigenvalues of L with eigenfunctions Y + and Y -= Y + which have an exponential decay at infinity, and the null space of L is spanned by

Q ′ .
This result is extended to L c in Corollary 2.4 by a simple scaling argument. Indeed, we recall that if u is a solution of (gKdV), then for all λ > 0, 

u λ (t, x) = λ 2 p-1 u(λ 3 t, λx) is also a solution. Moreover, we have Q c (x) = c 1 p-1 Q( √ cx).
Y ± c (x) = c -1/2 Y ± ( √ cx),
and the null space of L c is spanned by Q ′ c .

Adjoint of L c

We recall that Lemma 4.9 in [START_REF] Combet | Construction and characterization of solutions converging to solitons for supercritical gKdV equations[END_REF], under a suitable normalization of Y ± , shows important properties of the adjoint of L. With the same normalization and by Corollary 2.4, we obtain the following lemma by a simple scaling argument. Recall that assertion (v) is proved in [START_REF] Côte | Construction of multi-soliton solutions for the L 2supercritical gKdV and NLS equations[END_REF] for c = 1.

Multi-solitons results

A set of parameters (1.1) being given, we adopt the following notation.

Notation 2.6. For all j ∈ [[1, N ]], define:

(i) R j (t, x) = Q cj (x -c j t -x j ), where Q c (x) = c 1 p-1 Q( √ cx). (ii) Y ± j (t, x) = Y ± cj (x -c j t -x j ), where Y ± c (x) = c -1/2 Y ± ( √ cx) is defined in Corollary 2.4. (iii) Z ± j (t, x) = Z ± cj (x -c j t -x j ), where Z ± c = L c Y ± c .
(iv) e j = e cj , where e c = c 3/2 e 0 . Now, to estimate interactions between solitons, we denote the small parameters

σ 0 = min{η 2/3 0 c 1 , e 2/3 0 c 1 , c 1 , c 2 -c 1 , . . . , c N -c N -1 } and γ = σ 3/2 0 10 6 . (2.1)
From [START_REF] Martel | Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations[END_REF], it appears that γ is a suitable parameter to quantify interactions between solitons in large time. For instance, we have, for j = k and all t 0,

R j (t)R k (t) + |(R j ) x (t)||(R k ) x (t)| Ce -10γt . (2.2)
From the definition of σ 0 and Lemma 2.5, such an inequality is also true for Y ± j and Z ± j . Moreover, since σ 0 has the same definition as in [START_REF] Côte | Construction of multi-soliton solutions for the L 2supercritical gKdV and NLS equations[END_REF], then from their Remark 1, Theorem 1.2 can be rewritten as follows. There exist T 0 ∈ R and ϕ ∈ C([T 0 , +∞), H 1 ) such that, for all s 1, there exists

A s > 0 such that ϕ(t) -R(t) H s A s e -4γt .
(2.3)

Construction of a family of multi-solitons

In this section, we prove the first point of Theorem 1.3 as a consequence of the following crucial Proposition 3.

1. Let p > 5, N 2, 0 < c 1 < • • • < c N and x 1 , . . . , x N ∈ R. Denote R = N k=1
R k and ϕ a multi-soliton solution satisfying (2.3), as defined in Theorem 1.2 for example. Proposition 3.1. Let j ∈ [[1, N ]] and A j ∈ R. Then there exist t 0 > 0 and u ∈ C([t 0 , +∞), H 1 ) a solution of (gKdV) such that

∀t t 0 , u(t) -ϕ(t) -A j e -ej t Y + j (t) H 1 e -(ej +γ)t . ( 3.1) 
Before proving this proposition, let us show how this proposition implies the first point of Theorem 1.3.

Proof of 1. of Theorem 1.3. Let (A 1 , . . . , A N ) ∈ R N .
(i) Consider ϕ A1 the solution of (gKdV) given by Proposition 3.1 applied with ϕ given by Theorem 1.2. Thus there exists t 0 > 0 such that )t . Now remark that ϕ A1 is also a multi-soliton, which satisfies (2.3) by the definition of γ and the same techniques used in [START_REF] Martel | Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations[END_REF]Section 3.4] to improve the estimate in higher order Sobolev norms. Hence we can apply Proposition 3.1 with ϕ A1 instead of ϕ, so that we obtain ϕ A1,A2 such that 

∀t t 0 , ϕ A1 (t) -ϕ(t) -A 1 e -e1t Y + 1 (t) H 1 e -(e1+γ
∀t t ′ 0 , ϕ A1,A2 (t) -ϕ A1 (t) -A 2 e -e2t Y + 2 (t) H 1 e -(
= ϕ A1,...,AN . Denote i 0 = min{i ∈ [[1, N ]] | A ′ i = A i }. Hence we have A ′ i = A i for i ∈ [[1, i 0 -1]], A ′ i0 = A i0 and from the construction of ϕ A1,...,AN , ϕ A1,...,AN (t) = ϕ A1,...,AN-1 (t) + A N e -eN t Y + N (t) + z N (t) = ϕ A1,...,AN-2 (t) + A N -1 e -eN-1t Y + N -1 (t) + A N e -eN t Y + N (t) + z N -1 (t) + z N (t) = • • • = ϕ A1,...,Ai 0 -1 (t) + A i0 e -ei 0 t Y + i0 (t) + k>i0 A k e -e k t Y + k (t) + k i0 z k (t)
where z k satisfies z k (t) H 1 e -(e k +γ)t for t t 0 and each k i 0 . Similarly, we get

ϕ A ′ 1 ,...,A ′ N (t) = ϕ A ′ 1 ,...,A ′ i 0 -1 (t) + A ′ i0 e -ei 0 t Y + i0 (t) + k>i0 A ′ k e -e k t Y + k (t) + k i0 z k (t),
and so using

ϕ A ′ 1 ,...,A ′ N = ϕ A1,...,AN and ϕ A ′ 1 ,...,A ′ i 0 -1 = ϕ A1,...,Ai 0 -1 , we obtain e -ei 0 t |A i0 -A ′ i0 | Ce -(ei 0 +γ)t for t t 0 , thus |A i0 -A ′ i0 |
Ce -γt , and so A ′ i0 = A i0 by letting t → +∞, which is a contradiction and concludes the proof. Now, the only purpose of the rest of this section is to prove Proposition 3.1. Let j ∈ [[1, N ]] and A j ∈ R. We want to construct a solution u of (gKdV) such that

z(t, x) = u(t, x) -ϕ(t, x) -A j e -ej t Y + j (t, x)
satisfies z(t) H 1 e -(ej +γ)t for t t 0 with t 0 large enough.

Equation of z

Since u is a solution of (gKdV) and also ϕ is (and this fact is crucial for the whole proof), we get

∂ t z + ∂ 3 x z + ∂ x [(ϕ + A j e -ej t Y + j + z) p -ϕ p ] + A j e -ej t [∂ 3 x Y + j -c j ∂ x Y + j -e j Y + j ] = 0.
But from Corollary 2.4, we have

L cj Y + cj = e j Y + cj = ∂ 3 x Y + cj -c j ∂ x Y + cj + p∂ x (Q p-1 cj Y + cj )
and so following Notation 2.6, we get the following equation for z:

∂ t z + ∂ 3 x z + ∂ x [(ϕ + A j e -ej t Y + j + z) p -ϕ p -pA j e -ej t R p-1 j Y + j ] = 0. (3.3)
This can also be written

∂ t z+∂ x ∂ 2 x z+pϕ p-1 z +∂ x (ϕ + A j e -ej t Y + j + z) p -(ϕ + A j e -ej t Y + j ) p -p(ϕ + A j e -ej t Y + j ) p-1 z + p∂ x ((ϕ + A j e -ej t Y + j ) p-1 -ϕ p-1 ) • z = -∂ x (ϕ + A j e -ej t Y + j ) p -ϕ p -pA j e -ej t Y + j R p-1 j . Finally, if we denote        ω 1 = p[(ϕ + A j e -ej t Y + j ) p-1 -ϕ p-1 ], ω(z) = (ϕ + A j e -ej t Y + j + z) p -(ϕ + A j e -ej t Y + j ) p -p(ϕ + A j e -ej t Y + j ) p-1 z, Ω = (ϕ + A j e -ej t Y + j ) p -ϕ p -pA j e -ej t Y + j R p-1 j ,
we obtain the shorter form of the equation of z:

∂ t z + ∂ x ∂ 2 x z + pϕ p-1 z + ∂ x [ω 1 • z] + ∂ x [ω(z)] = -∂ x Ω. (3.4)
Note that the term ω(z) is the nonlinear term in z, and that ω 1 satisfies, for all s 0, ω 1 (t) H s C s e -ej t for all t 0. Moreover, the source term Ω satisfies

∀s 1, ∃C s > 0, ∀t 0, Ω(t) H s C s e -(ej +4γ)t . (3.5)
Indeed, if we write Ω under the form

Ω = (ϕ + A j e -ej t Y + j ) p -ϕ p -pϕ p-1 A j e -ej t Y + j + pA j e -ej t Y + j (ϕ p-1 -R p-1 ) + pA j e -ej t Y + j (R p-1 -R p-1 j ),
we deduce from (2.3), (2.2) and the definition of γ (2.1) that

Ω(t) H s Ce -2ej t + Ce -ej t ϕ(t) -R(t) H s + Ce -ej t • e -4γt Ce -(ej +4γ)t .

Compactness argument assuming uniform estimate

To prove Proposition 3.1, we follow the strategy of [START_REF] Martel | Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations[END_REF][START_REF] Côte | Construction of multi-soliton solutions for the L 2supercritical gKdV and NLS equations[END_REF]. Let S n → +∞ be an increasing sequence of time, b n = (b n,k ) j<k N ∈ R N -j be a sequence of parameters to be determined, and let u n be the solution of

   ∂ t u n + ∂ x [∂ 2 x u n + u p n ] = 0, u n (S n ) = ϕ(S n ) + A j e -ej Sn Y + j (S n ) + k>j b n,k Y + k (S n ). (3.6) Notation 3.2. (i) R N is equipped with the ℓ 2 norm, simply denoted • .
(ii) B B (P, r) is the closed ball of the Banach space B, centered at P and of radius r 0. If P = 0, we simply write B B (r).

(iii) S R N (r) denotes the sphere of radius r in R N .

Proposition 3.3.

There exist n 0 0 and t 0 > 0 (independent of n) such that the following holds. For each n n 0 , there exists b n ∈ R N -j with b n 2e -(ej +2γ)Sn , and such that the solution u n of (3.6) is defined on the interval [t 0 , S n ], and satisfies

∀t ∈ [t 0 , S n ], u n (t) -ϕ(t) -A j e -ej t Y + j (t) H 1 e -(ej +γ)t .
Assuming this proposition and the following lemma of weak continuity of the flow, we can deduce the proof of Proposition 3.1. The proof of Proposition 3.3 is postponed to the next section, whereas the proof of Lemma 3.4 is postponed to Appendix A. Lemma 3.4. Suppose that z 0,n ⇀ z 0 in H 1 , and that there exits T > 0 such that the solution z n (t) corresponding to initial data z 0,n exists for t ∈ [0, T ] and sup t∈[0,T ] z n (t) H 1 K. Then for all t ∈ [0, T ], the solution z(t) corresponding to initial data z 0 exists, and

z n (T ) ⇀ z(T ) in H 1 .
Remark 3.5. Note that the proof of Lemma 3.4 strongly relies on the Cauchy theory in H s with s < 1, developed in [START_REF] Kenig | Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle[END_REF]. Thus this argument is quite similar to the compactness argument developed in [START_REF] Côte | Construction of multi-soliton solutions for the L 2supercritical gKdV and NLS equations[END_REF] or [START_REF] Martel | Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations[END_REF].

Proof of Proposition 3.1 assuming Proposition 3.3. We may assume n 0 = 0 in Proposition 3.3 without loss of generality. It follows from this proposition that there exists a sequence u n (t) of solutions to (gKdV), defined on [t 0 , S n ], such that the following uniform estimates hold:

∀n 0, ∀t ∈ [t 0 , S n ], u n (t) -ϕ(t) -A j e -ej t Y + j (t) H 1 e -(ej +γ)t .
In particular, there exists C 0 > 0 such that u n (t 0 ) H 1 C 0 for all n 0. Thus there exists u 0 ∈ H 1 (R) such that u n (t 0 ) ⇀ u 0 in H 1 weak (after passing to a subsequence). Now consider u solution of

∂ t u + ∂ x [∂ 2 x u + u p ] = 0, u(t 0 ) = u 0 . Let T t 0 .
For n such that S n > T , u n (t) is well defined for all t ∈ [t 0 , T ], and moreover

u n (t) H 1 C. By Lemma 3.4, we have u n (T ) ⇀ u(T ) in H 1 . As u n (T ) -ϕ(T ) -A j e -ej T Y + j (T ) H 1 e -(ej +γ)T ,
we finally obtain, by weak convergence, u(T

) -ϕ(T ) -A j e -ej T Y + j (T ) H 1 e -(ej +γ)T .
Thus u is a solution of (gKdV) which satisfies (3.1).

Proof of Proposition 3.3

The proof proceeds in several steps. For the sake of simplicity, we will drop the index n for the rest of this section (except for S n ). As Proposition 3.3 is proved for given n, this should not be a source of confusion. Hence we will write u for u n , z for z n , b for b n , etc. We possibly drop the first terms of the sequence S n , so that, for all n, S n is large enough for our purposes.

From (3.4), the equation satisfied by z is

∂ t z + ∂ x [∂ 2 x z + pϕ p-1 z] + ∂ x [ω 1 • z] + ∂ x [ω(z)] = -∂ x Ω, z(S n ) = k>j b k Y + k (S n ). (3.7) Moreover, for all k ∈ [[1, N ]], we denote α ± k (t) = z(t) • Z ± k (t).
In particular, we have

α ± k (S n ) = l>j b l Y + l (S n ) • Z ± k (S n ).
Finally, we denote α -(t) = (α - k (t)) j<k N .

Modulated final data

Lemma 3.6. For n n 0 large enough, the following holds. For all a -∈ R N -j , there exists a unique

b ∈ R N -j such that b 2 a -and α -(S n ) = a -.
Proof. Consider the linear application

Φ : R N -j → R N -j b = (b l ) j<l N → l>j b l Y + l (S n )Z - k (S n ) j<k N
.

From the normalization of Lemma 2.5, its matrix in the canonical basis is

Mat Φ =       1 Y + j+2 Z - j+1 (S n ) • • • Y + j+N Z - j+1 (S n ) Y + j+1 Z - j+2 (S n ) 1 • • • . . . . . . . . . . . . . . . Y + j+1 Z - j+N (S n ) • • • • • • 1       .
But from (2.2), we have, for k = l,

Y ± l Z ± k (S n ) C 0 e -γSn
with C 0 independent of n, and so by taking n 0 large enough, we have Φ = Id+A n where A n 1 2 . Thus Φ is invertible and Φ -1 2. Finally, for a given a -∈ R N -j , it is enough to define b by b = Φ -1 (a -) to conclude the proof of Lemma 3.6.

Claim 3.7. The following estimates at S n hold:

• |α + k (S n )| Ce -2γSn b for all k ∈ [[1, N ]], • |α - k (S n )| Ce -2γSn b for all k ∈ [[1, j]], • z(S n ) H 1 C b .

Equations on α ± k

Let t 0 > 0 independent of n to be determined later in the proof, a -∈ B R N -j (e -(ej +2γ)Sn ) to be chosen, b be given by Lemma 3.6 and u be the corresponding solution of (3.6). We now define the maximal time interval [T (a -), S n ] on which suitable exponential estimates hold. Definition 3.8. Let T (a -) be the infimum of T t 0 such that for all t ∈ [T, S n ], both following properties hold:

e (ej +γ)t z(t) ∈ B H 1 (1) and e (ej +2γ)t α -(t) ∈ B R N -j (1). (3.8)
Observe that Proposition 3.3 is proved if for all n, we can find a -such that T (a -) = t 0 . The rest of the proof is devoted to prove the existence of such a value of a -. First, we prove the following estimate on α ± k . Claim 3.9.

For all k ∈ [[1, N ]] and all t ∈ [T (a -), S n ], d dt α ± k (t) ∓ e k α ± k (t) C 0 e -4γt z(t) H 1 + C 1 z(t) 2 H 1 + C 2 e -(ej +4γ)t . (3.9)
Proof. Using the equation of z (3.7), we first compute

d dt α ± k (t) = z t Z ± k + zZ ± kt = (z xx + pϕ p-1 z)Z ± kx + ω 1 zZ ± kx + ω(z)Z ± kx + ΩZ ± kx -c k zZ ± kx = (z xx -c k z + pR p-1 k z)Z ± kx + p (ϕ p-1 -R p-1 k )zZ ± kx + (ω 1 z + ω(z) + Ω)Z ± kx .
But from (i) of Lemma 2.5, we have

(z xx -c k z + pR p-1 k z)Z ± kx = (-L c k z(t, • + c k t), ∂ x Z ± c k ) = (z(t, • + c k t), -L c k (∂ x Z ± c k )) = ±e k (z(t, • + c k t), Z ± c k ) = ±e k α ± k ,
and from (2.3) and (3.5), we have the following estimates:

• | (ϕ p-1 -R p-1 k )zZ ± kx | C ϕ -R L ∞ z L ∞ + Ce -4γt z L 2 Ce -4γt z H 1 , • | ω 1 zZ ± kx | ω 1 L ∞ z L ∞ Z ± kx L 1 Ce -ej t z H 1 Ce -4γt z H 1 , • | ω(z)Z ± kx | C z 2 L 2 C z 2 H 1 , • | ΩZ ± kx | C Ω L ∞ Ce -(ej +4γ
)t , which conclude the proof of the claim.

Control of the stable directions

We estimate here α + k (t) for all k ∈ [[1, N ]] and t ∈ [T (a -), S n ]. From (3.9) and (3.8), we have

d dt α + k (t) -e k α + k (t) C 0 e -(ej +5γ)t + C 1 e -2(ej +γ)t + C 2 e -(ej +4γ)t K 2 e -(ej +4γ)t .
Thus |(e -e k s α + k (s)) ′ | K 2 e -(ej +e k +4γ)s , and so by integration on [t, S n ] we get |e -e k Sn α + k (S n )e -e k t α + k (t)| K 2 e -(ej +e k +4γ)t and so

|α + k (t)| e e k (t-Sn) |α + k (S n )| + K 2 e -(ej +4γ)t .
But from Claim 3.7 and Lemma 3.6, we have

e e k (t-Sn) |α + k (S n )| |α + k (S n )| Ce -2γSn b Ce -2γSn e -(ej +2γ)Sn K 2 e -(ej +4γ)Sn K 2 e -(ej +4γ)t ,
and so finally

∀k ∈ [[1, N ]], ∀t ∈ [T (a -), S n ], |α + k (t)| K 2 e -(ej +4γ)t .
(3.10)

Control of the unstable directions for k j

We estimate here α - 

k (t) for all k ∈ [[1, j]] and t ∈ [T (a -), S n ]. Note first that, as in the previous paragraph, we get for all k ∈ [[1, N ]] and t ∈ [T (a -), S n ], d dt α - k (t) + e k α - k (t) K 2 e -(ej
e e k (Sn-t) |α - k (S n )| K 2 e e k (
Sn-t) e -2γSn e -(ej +2γ)Sn = K 2 e e k (Sn-t) e -(ej +4γ)Sn K 2 e (Sn-t)(e k -ej ) e -ej t e -4γSn K 2 e -(ej +4γ)t , and so finally

∀k ∈ [[1, j]], ∀t ∈ [T (a -), S n ], |α - k (t)| K 2 e -(ej +4γ)t .
(3.12)

Monotonicity property of the energy

We follow here the same strategy as in [START_REF] Martel | Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations[END_REF]Section 4] to estimate the energy backwards. Since calculations are long and technical, we refer to [START_REF] Martel | Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations[END_REF] for more details. We define the following function

ψ(x) = 2 π arctan(exp(- √ σ 0 x/2))
so that lim +∞ ψ = 0, lim -∞ ψ = 1, and for all x ∈ R, ψ(-x) = 1ψ(x). Note that by a direct calculation, we have

|ψ ′′′ (x)| σ0 4 |ψ ′ (x)|. Moreover, we set h(t, x) = 1 c N + N -1 k=1 1 c k - 1 c k+1 ψ x - c k + c k+1 2 t - x k + x k+1 2 .
Observe that the function h takes values close to 1 c k for x close to c k t + x k , and has large variations only in regions far away from the solitons (for instance we have, for all k ∈ [[1, N ]] and t 0, R k (t)h x (t) L ∞ Ce -4γt ). We also define a quantity related to the energy for z:

H(t) = z 2 x (t, x) -F (t, z(t, x)) h(t, x) + z 2 (t, x) dx
where

F (t, z) = 2 (ϕ + v j + z) p+1 p + 1 - (ϕ + v j ) p+1 p + 1 -(ϕ + v j ) p z ,
and v j (t, x) = A j e -ej t Y + j (t, x). Lemma 3.10. For all t ∈ [T (a -), S n ], dH dt (t) -C 0 z(t) 3 H 1 -C 1 e -2γt z(t) 2 H 1 -C 2 e -(ej +3γ)t z(t) H 1 .
Proof.

Since ∂F ∂z = 2[(ϕ + v j + z) p -(ϕ + v j ) p ], we can first compute dH dt = (z 2 x -F (z))h t -2 z t (ϕ + v j + z) p -(ϕ + v j ) p ]h + 2 z xt z x h + 2 z t z -2 (ϕ + v j ) t (ϕ + v j + z) p -(ϕ + v j ) p -p(ϕ + v j ) p-1 z h. Moreover 2 z xt z x h = -2 z t (z xx h + z x h x ), thus dH dt = (z 2 x -F (z))h t -2 z t z xx + (ϕ + v j + z) p -(ϕ + v j ) p ]h + 2 z t (z -z x h x ) -2 (ϕ + v j ) t (ϕ + v j + z) p -(ϕ + v j ) p -p(ϕ + v j ) p-1 z h.
Now we replace z t thanks to the equation that it satisfies, which can be written, from (3.3),

z t + z xx + (ϕ + v j + z) p -(ϕ + v j ) p x = -Ω x .
Using multiple integrations by parts, we finally obtain

dH dt = (z 2 x -F (z))h t + z 2 x h xxx (3.13) + 2 z x h x (ϕ + v j + z) p -(ϕ + v j ) p x (3.14) -2 z (ϕ + v j + z) p -(ϕ + v j ) p x -2 ϕ t h (ϕ + v j + z) p -(ϕ + v j ) p -p(ϕ + v j ) p-1 z (3.15) -2 zΩ x + 2 zhΩ xxx + 2 zh x Ω xx + 2 hΩ x (ϕ + v j + z) p -(ϕ + v j ) p (3.16) -2 hv jt (ϕ + v j + z) p -(ϕ + v j ) p -p(ϕ + v j ) p-1 z (3.17) - z xx + (ϕ + v j + z) p -(ϕ + v j ) p 2 h x -2 z 2 xx h x . (3.18)
To conclude, we estimate each term of this equality:

• First note that (3.18) 0 since h x < 0. 

|F (z)| C|z| p+1 + Cz 2 |ϕ + v j | p-1 C z p-1 L ∞ z 2 + Cz 2 (|ϕ| p-1 + |v j | p-1 ) C z L ∞ z 2 + Cz 2 |ϕ -R| p-1 + Cz 2 |R| p-1 + Cz 2 v j L ∞ , then |F (z)|h t C 0 z 3 H 1 + C 1 e -2γt z 2 H 1 .
• For (3.17), first note that v jt L ∞ Ce -ej t , and so

|(3.17)| C v jt L ∞ z 2 L 2 C 1 e -2γt z 2 H 1 . • |(3.16)| C Ω H 3 z L 2 C 2 e -(ej +4γ)t z H 1 by (3.5).
• To estimate (3.14), we develop it as

1 2 (3.14) = z x h x p k=1 p k (ϕ + v j ) p-k z k x = p-1 k=1 p k k z 2 x z k-1 (ϕ + v j ) p-k h x + p-1 k=1 p k (p -k) (ϕ + v j ) x (ϕ + v j ) p-k-1 h x z x z k + p z 2 x z p-1 h x . Since |ϕ x h x | + |ϕh x | Ce -2γt and |v jx | + |v j | Ce -ej t , then |(3.14)| C 1 e -2γt z 2 H 1 + C 0 z 3 H 1 .
• We finally estimate (3.15) to conclude. The key point to control it is that locally around x = c k t + x k , ϕ behaves as a solitary wave of speed c k . More precisely, we strongly use the estimate ϕ t h + ϕ x L ∞ Ce -2γt , proved in [START_REF] Martel | Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations[END_REF]. Note that the proof uses the H 4 norm of the difference ϕ -R, i.e. (2.3). Now, we compute

- 1 2 (3.15) = z (ϕ + v j + z) p -(ϕ + v j ) p -p(ϕ + v j ) p-1 z x + ϕ t h (ϕ + v j + z) p -(ϕ + v j ) p -p(ϕ + v j ) p-1 z - p(p -1) 2 (ϕ + v j ) p-2 z 2 -p (ϕ + v j ) p-1 z x z + p(p -1) 2 ϕ t h(ϕ + v j ) p-2 z 2 = I + II + III + IV. First notice that |I| + |II| C 0 z 3 H 1 .
Moreover, an integration by parts gives

III + IV = p 2 z 2 (p -1)(ϕ x + v jx )(ϕ + v j ) p-2 + p(p -1) 2 ϕ t h(ϕ + v j ) p-2 z 2 = p(p -1) 2 z 2 (ϕ + v j ) p-2 (ϕ x + ϕ t h) + p(p -1) 2 z 2 v jx (ϕ + v j ) p-2 , thus |III + IV| C ϕ x + ϕ t h L ∞ z 2 L 2 + C v jx L ∞ z 2 L 2 Ce -2γt z 2 H 1 + Ce -ej t z 2 H 1 ,
and so finally

|(3.15)| C 0 z 3 H 1 + C 1 e -2γt z 2 H 1 .
We can now prove that, for all t ∈ [T (a -), S n ],

z 2 x (t) -pR p-1 (t)z 2 (t) h(t) + z 2 (t) K 1 e -2(ej +2γ)t . (3.19)
Indeed, from Lemma 3.10 and estimates (3.8), we deduce that, for all t ∈ [T (a -), S n ],

dH dt (t) -C 0 e -3(ej +γ)t -C 1 e -2γt e -2(ej +γ)t -C 2 e -(ej +3γ)t e -(ej +γ)t -K 1 e -2(ej +2γ)t .

Thus by integration on [t, S n ], we obtain H(S n ) -H(t) -K 1 e -2(ej +2γ)t , and so

H(t) H(S n ) + K 1 e -2(ej +2γ)t .
But from Claim 3.7 and Lemma 3.6, we have

H(S n ) |H(S n )| C z(S n ) 2 H 1 C b 2 C a -2
Ce -2(ej +2γ)Sn Ce -2(ej +2γ)t , and so ∀t ∈ [T (a -), S n ], H(t) K 1 e -2(ej +2γ)t .

Finally, since

|F (z) -pR p-1 z 2 | |F (z) -p(ϕ + v j ) p-1 z 2 | + p|((ϕ + v j ) p-1 -ϕ p-1 )z 2 | + p|(ϕ p-1 -R p-1 )z 2 | C 0 |z| 3 + C 1 e -2γt |z| 2 ,
we easily obtain (3.19) from the definition of H.

Control of the R kx directions

Define z(t) = z(t)

+ N k=1 a k (t)R kx (t), where a k (t) = - z(t)R kx (t) (Q ′ c k
) 2 , so that by (2.2)

zR kx Ce -γt z H 1 (3.20)
and there exist C 1 , C 2 > 0 such that

C 1 z H 1 z H 1 + N k=1 |a k | C 2 z H 1 . (3.21)
As in [11, Section 4], we find

( z 2 x -pR p-1 z 2 )h + z 2 (z 2 x -pR p-1 z 2 )h + z 2 + Ce -2γt z 2 H 1 . Using (3.19), we deduce that ∀t ∈ [T (a -), S n ], z 2 x (t) -pR p-1 (t) z 2 (t) h(t) + z 2 (t) K 1 e -2(ej +2γ)t . (3.22)
Now, from the property of coercivity (vi) in Lemma 2.5, and since h takes values close to 1 c k for x close to c k t + x k , we obtain, by simple localization arguments (see [START_REF] Martel | Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations[END_REF]Lemma 4] for details), that there exists λ 2 > 0 such that

( z 2 x -pR p-1 z 2 )h + z 2 λ 2 z 2 H 1 - 1 λ 2 N k=1 zR kx 2 + zZ + k 2 + zZ - k 2 .
Moreover, gathering all previous estimates, we have for all t ∈ [T (a -), S n ]:

(a) For all k ∈ [[1, N ]], zR kx 2 Ce -2γt z 2 H 1
Ce -2(ej +2γ)t by (3.20).

(b) For all k ∈ [[1, N ]], zZ + k 2 2(α + k ) 2 + Ce -2γt z 2 H 1
Ce -2(ej +2γ)t by (iii) of Lemma 2.5, (3.10) and (2.2).

(c) For all k ∈ [[1, j]], zZ - k 2 2(α - k ) 2 + Ce -2γt z 2 H 1
Ce -2(ej +2γ)t by (iii) of Lemma 2.5, (3.12) and (2.2).

(d) For all k ∈ [[j + 1, N ]], zZ - k 2 2(α - k ) 2 + Ce -2γt z 2 H 1
Ce -2(ej +2γ)t by (3.8).

Finally, we have proved that there exists K > 0 such that, for all t ∈ [T (a -), S n ],

z(t) H 1 Ke -(ej +2γ)t .
We want now to prove the same estimate for z.

Lemma 3.11. There exists K 0 > 0 such that, for all t ∈ [T (a -), S n ], 

z(t) H 1 K 0 e -(ej
z t + ( z xx + pϕ p-1 z) x = z t + N l=1 a l R lxt + N l=1 a ′ l R lx + z xxx + N l=1 a l R lxxx + p N l=1 a l (R lx ϕ p-1 ) x + p(ϕ p-1 z) x = -(ω 1 • z) x -(ω(z)) x -Ω x + N l=1 a ′ l R lx + N l=1 a l -c l R lx + R lxxx + pϕ p-1 R lx x .
Then multiply this equation by R kx and integrate, so that we obtain

z t R kx -( z xx + pϕ p-1 z)R kxx = a ′ k R 2 kx + l =k a ′ l R lx R kx + N l=1 a l R lxxx -c l R lx + pϕ p-1 R lx x R kx + ω 1 zR kxx + ω(z)R kxx + ΩR kxx .
But from (2.3) and (iii) of Claim 2.2, we have

(R lxxx -c l R lx + pϕ p-1 R lx ) x L ∞ p R lx (ϕ p-1 -R p-1 l ) H 2 C ϕ -R H 2 + p R lx (R p-1 -R p-1 l ) H 2 Ce -2γt ,
and consequently

|a ′ k | C z t R kx + C z L 2 + Ce -γt l =k |a ′ l | + Ce -2γt N l=1 |a l | + Ce -ej t z L 2 + C z 2 L 2 + C Ω L 2 .
Moreover, from zR kx = l =k a l R lx R kx , we deduce that

d dt zR kx = l =k a ′ l R kx R lx + l =k a l (-c l R lxx R kx -c k R lx R kxx ) = z t R kx + z(-c k R kxx ),
and so

z t R kx C z H 1 + Ce -γt l =k |a ′ l | + Ce -2γt N l=1 |a l |.
Gathering previous estimates, we have from (3.21) and (3.5),

|a ′ k | C z H 1 + C 4 e -γt l =k |a ′ l | + Ce -2γt z H 1 + C z 2 H 1 + C Ω L 2 Ke -(ej +2γ)t + C 4 e -γt l =k |a ′ l | + Ce -2γt e -(ej +γ)t + Ce -2(ej +γ)t + Ce -(ej +4γ)t .
Finally, if we choose t 0 large enough so that C 4 e -γt0 

|a k (S n )| C z(S n ) H 1 C b C a - Ce -(ej +2γ)Sn Ce -(ej +2γ)t ,
and so finally, ∀t ∈ [T (a -), S n ], |a k (t)| Ke -(ej +2γ)t .

Control of the unstable directions for k > j by a topological argument

Lemma 3.11 being proved, we choose t 0 large enough so that K 0 e -γt0 1 2 . Therefore, we have

∀t ∈ [T (a -), S n ], z(t) H 1 1 2 e -(ej +γ)t .
We can now prove the following final lemma, which concludes the proof of Proposition 3.3.

Lemma 3.12. For t 0 large enough, there exists a -∈ B R N -j (e -(ej +2γ)Sn ) such that T (a -) = t 0 .

Proof. For the sake of contradiction, suppose that for all a -∈ B R N -j (e -(ej +2γ)Sn ), T (a -) > t 0 . As e (ej +γ)T (a -) z(T (a -)) ∈ B H 1 (1/2), then by definition of T (a -) and continuity of the flow, we have e (ej +2γ)T (a -) α -(T (a -)) ∈ S R N -j (1).

(3.23) Now let T ∈ [t 0 , T (a -)] be close enough to T (a -) such that z is defined on [T, S n ], and by continuity, ∀t ∈ [T, S n ], z(t) H 1 e -(ej +γ)t .

We can now consider, for t ∈ [T, S n ],

N (t) = N (α -(t)) = e (ej +2γ)t α -(t) 2 .
To calculate N ′ , we start from estimate (3.11):

∀k ∈ [[j + 1, N ]], ∀t ∈ [T, S n ], d dt α - k (t) + e k α - k (t) K ′ 2 e -(ej +4γ)t .
Multiplying by |α - k (t)|, we obtain

α - k (t) d dt α - k (t) + e k α - k (t) 2 K ′ 2 e -(ej +4γ)t |α - k (t)|,
and thus

2α - k (t) d dt α - k (t) + 2e j+1 α - k (t) 2 2α - k (t) d dt α - k (t) + 2e k α - k (t) 2 K 2 e -(ej +4γ)t |α - k (t)|. By summing on k ∈ [[j + 1, N ]], we get ( α -(t) 2 ) ′ + 2e j+1 α -(t) 2 K 2 e -(ej +4γ)t α -(t) .
Therefore we can estimate

N ′ (t) = (e 2(ej +2γ)t α -(t) 2 ) ′ = e 2(ej +2γ)t 2(e j + 2γ) α -(t) 2 + ( α -(t) 2 ) ′ e 2(ej +2γ)t 2(e j + 2γ) α -(t) 2 -2e j+1 α -(t) 2 + K 2 e -(ej +4γ)t α -(t) .
Hence we have, for all t ∈ [T, S n ],

N ′ (t) -θ • N (t) + K 2 e ej t α -(t) ,
where θ = 2(e j+1e j -2γ) > 0 by definition of γ (2.1). In particular, for all τ ∈ [T, S n ] satisfying N (τ ) = 1, we have

N ′ (τ ) -θ + K 2 e ej τ α -(τ ) = -θ + K 2 e ej τ e -(ej +2γ)τ = -θ + K 2 e -2γτ -θ + K 2 e -2γt0 .
Now we fix t 0 large enough so that K 2 e -2γt0 θ 2 , and so for all τ ∈ [T, S n ] such that N (τ ) = 1, we have

N ′ (τ ) - θ 2 . ( 3.24) 
In particular, by (3.23), we have

N ′ (T (a -)) -θ 2 .
First consequence: a -→ T (a -) is continuous. Indeed, let ε > 0. Then there exists δ > 0 such that N (T (a -)ε) > 1 + δ and N (T (a -) + ε) < 1δ. Moreover, by definition of T (a -) and (3.24), there can not exist τ ∈ [T (a -) + ε, S n ] such that N (τ ) = 1, and so by choosing δ small enough, we have for all t ∈ [T (a -) + ε, S n ], N (t) < 1δ. But from continuity of the flow, there exists η > 0 such that, for all a -satisfying a -a - η, we have

∀t ∈ [T (a -) -ε, S n ], |N ( α -(t)) -N (α -(t))| δ/2.
We finally deduce that T (a -)ε T ( a -) T (a -) + ε, as expected.

Second consequence:

We can define the map

M : B R N -j (e -(ej +2γ)Sn ) → S R N -j (e -(ej +2γ)Sn ) a -→ e -(ej +2γ)(Sn-T (a -)) α -(T (a -)).
Note that M is continuous by the previous point. Moreover, let a -∈ S R N -j (e -(ej +2γ)Sn ).

As N ′ (S n ) -θ 2 by (3.24), we deduce by definition of T (a -) that T (a -) = S n , and so M(a -) = a -. In other words, M restricted to S R N -j (e -(ej +2γ)Sn ) is the identity. But the existence of such a map M contradicts Brouwer's fixed point theorem.

In conclusion, there exists a -∈ B R N -j (e -(ej +2γ)Sn ) such that T (a -) = t 0 .

Classification of multi-solitons

This section is devoted to prove the second assertion of Theorem 1.

3. Let p > 5, N 2, 0 < c 1 < • • • < c N and x 1 , . . . , x N ∈ R. Denote R = N j=1 R cj,xj
and ϕ the multi-soliton given by Theorem 1.2. Let u be a solution of (gKdV), defined on [t 1 , +∞) with t 1 > 0 large, satisfying

lim t→+∞ u(t) -R(t) H 1 = 0. (4.1)

Convergence at exponential rate γ

We first improve condition (4.1) into an exponential convergence, with a small rate γ > 0, where γ is defined by (2.1).

Lemma 4.1. Let ε = u-ϕ. Then there exist C, t 0 > 0 such that, for all t t 0 , ε(t) H 1 Ce -γt .

Proof.

Step 1: Modulation. Denote v = u -R, so that v(t) H 1 → 0 as t → +∞ by (4.1). Therefore, by a standard lemma of modulation (see for example [START_REF] Martel | Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations[END_REF]Lemma 2]), for t 0 large enough, there exist N functions

y j : [t 0 , +∞) → R of class C 1 such that w = u -R, where R = R j and R j (t) = R j (t, • -y j (t)), satisfies      ∀j ∈ [[1, N ]], w(t)( R j ) x (t) = 0, w(t) H 1 + N j=1 |y j (t)| C v(t) H 1 , ∀j ∈ [[1, N ]], |y ′ j (t)| C w(t) H 1 + Ce -γt .
Note that the first two facts are a simple consequence of the implicit function theorem, while the last estimate comes from the equation satisfied by w,

∂ t w + ∂ 3 x w = N k=1 y ′ k ∂ x ( R k ) -∂ x (w + R) p - N k=1 R p k ,
multiplied by ( R j ) x and integrated. Similarly, if we denote Z ± j (t) = Z ± j (t, •y j (t)) and α ± j (t) = w(t) Z ± j (t), the equation of w multiplied by Z ± j leads to

∀t t 0 , d dt α ± j (t) ∓ e j α ± j (t) C w(t) 2 H 1 + Ce -2γt . (4.2)
Step 2: Monotonicity. We use again the function ψ introduced in Section 3.3.5. Following [START_REF] Martel | Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations[END_REF], we introduce moreover ψ N ≡ 1 and for j

∈ [[1, N -1]], m j (t) = c j + c j+1 2 t + x j + x j+1 2 , ψ j (t) = ψ(x -m j (t)),
and

φ 1 ≡ ψ 1 , φ N ≡ 1 -ψ N -1 , φ j ≡ ψ j -ψ j-1 for j ∈ [[2, N -1]].
We also define some local quantities related to L 2 mass and energy:

M j (t) = u 2 (t)φ j (t), E j (t) = 1 2 u 2 x (t) - 1 p + 1 u p+1 (t) φ j (t), E j (t) = E j (t) + σ 0 100 M j (t).
Then, by (4.1) and monotonicity results on the quantities t → j k=1 M k (t) and t → j k=1 E k (t), we have, for all t t 0 and all j ∈ [[1, N ]], following Lemmas 1 and 3 of [START_REF] Martel | Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations[END_REF],

               j k=1 Q 2 c k -M k (t) -K 2 e -2γt , j k=1 E(Q c k ) + σ 0 100 Q 2 c k -E k (t) -K 2 e -2γt , (4.3) (4.4)
and

E j (t) + c j 2 M j (t) -E(Q cj ) + c j 2 Q 2 cj - 1 2 H j (t) K 4 e -2γt + K 4 w(t) H 1 w 2 φ j , (4.5)
where

H j (t) = w 2 x (t) + c j w 2 (t) -p R p-1 j (t)w 2 (t) φ j (t). But if we write N j=1 1 c 2 j E j + c j 2 M j = N -1 j=1 1 c 2 j - 1 c 2 j+1 j k=1 E k + 1 c 2 N N k=1 E k + 1 2c N 1 - σ 0 50c N N k=1 M k + N -1 j=1 1 2 1 c j - 1 c j+1 1 - σ 0 50 1 c j + 1 c j+1 j k=1 M k ,
and similarly

N j=1 1 c 2 j E(Q cj ) + c j 2 Q 2 cj = N -1 j=1 1 c 2 j - 1 c 2 j+1 j k=1 E(Q c k ) + σ 0 100 Q 2 c k + N -1 j=1 1 2 1 c j - 1 c j+1 1 - σ 0 50 1 c j + 1 c j+1 j k=1 Q 2 c k + 1 c 2 N N k=1 E(Q c k ) + σ 0 100 Q 2 c k + 1 2c N 1 - σ 0 50c N N k=1 Q 2 c k ,
and we remark that all coefficients in these decompositions are positive, we obtain by (4.3) and (4.4),

N j=1 1 c 2 j E j (t) + c j 2 M j (t) - N j=1 1 c 2 j E(Q cj ) + c j 2 Q 2 cj Ce -2γt .
Therefore, we have by (4.5),

1 2 N j=1 1 c 2 j H j (t) N j=1 1 c 2 j E j (t) + c j 2 M j (t) - N j=1 1 c 2 j E(Q cj ) + c j 2 Q 2 cj + K 4 N j=1 1 c 2 j e -2γt + K 4 w(t) H 1 N j=1 1 c 2 j w 2 φ j C 1 e -2γt + K 4 σ 2 0 w(t) H 1 w 2 N j=1 φ j since φ j 0. Finally, as N j=1 φ j ≡ 1, we obtain N j=1 1 c 2 j H j (t) C 1 e -2γt + C 2 w(t) 3 H 1 . (4.6)
Step 3: Coercivity. Now, from the property of coercivity (vi) in Lemma 2.5 and by standard localization arguments (as in Section 3), we have

N j=1 1 c 2 j H j (t) λ c w(t) 2 H 1 - 1 λ c N j=1 w(t)( R j ) x (t) 2 - 1 λ c j,± w(t) Z ± j (t) 2 .
As w(t)( R j ) x (t) = 0 and α ± j (t) = w(t) Z ± j (t), we obtain by (4.6), 2 , where α(t) = ( α ± j (t)) j,± . For t 0 large enough so that C 2 w(t) H 1 λc 2 , we obtain

λ c w(t) 2 H 1 C 1 e -2γt + C 2 w(t) 3 H 1 + C 3 α(t)
∀t t 0 , w(t) 2 H 1 C 1 α(t) 2 + C 2 e -2γt . (4.7)
Step 4: Exponential decay of α. From (4.2) and (4.7), we have for all j ∈ [[1, N ]] and all t t 0 ,

d dt α ± j (t) ∓ e j α ± j (t) C 1 α(t) 2 + C 2 e -2γt .
We follow here the strategy of [ 

d dt α + j (t) e j α + j (t) 2 -C 1 | α + j (t)| • α(t) 2 -C 2 e -2γt ,
and so by summing,

A ′ (t) 2e 1 A(t) -C 1 α(t) 3 -C 2 e -2γt .
Similarly, we obtain

B ′ (t) -2e 1 B(t) + C 1 α(t) 3 + C 2 e -2γt . (4.8) Now let h(t) = A(t) -B(t) -Le -2γt
with L to be determined later. We have of course h(t) → 0 as t → +∞, and by the previous estimates, we can calculate

h ′ (t) = A ′ (t) -B ′ (t) + 2Lγe -2γt 2e 1 A(t) + 2e 1 B(t) -C 1 α(t) 3 -C 2 e -2γt 2e 1 h(t) + 4e 1 B(t) -C 1 α(t) 3 -C 2 e -2γt + 2Le 1 e -2γt .
Since α(t) 2 

= A(t) + B(t) = h(t) + 2B(t) + Le -2γt , we get h ′ (t) h(t)(2e 1 -C 1 α(t) ) + B(t)(4e 1 -2C 1 α(t) ) + e -2γt (2Le 1 -C 2 -C 1 L α(t) ).
Now choose t 0 large enough so that C 1 α(t) e1 2 for t t 0 , and fix L = C2 e1 . Therefore, we have, for all t t 0 such that h(t) 0, h ′ (t) e 1 h(t). Hence, if there exists T t 0 such that h(T ) 0, then h(t) 0 for all t T , and thus h(t) Ce e1t , which would be in contradiction with lim t→+∞ h(t) = 0. So we have proved that h(t) 0 for all t t 0 , as expected. Now, from (4.8) and the choice of t 0 to have C 1 α(t) e1 2 for all t t 0 , it comes

B ′ (t) + 2e 1 B(t) e 1 B(t) + Le 1 2 + C 2 e -2γt ,
and so B ′ (t) + e 1 B(t) Ke -2γt . Therefore, (e e1s B(s))

′ Ke (e1-2γ)s for s t 0 , and so by integration on [t 0 , t], e e1t B(t)e e1t0 B(t 0 ) Ke (e1-2γ)t , since e 1 -2γ > 0. We deduce that

B(t) Ke -2γt + K ′ e -e1t Ke -2γt .
Finally, we also have by the previous point A(t) K ′ e -2γt , and so ∀t t 0 , α(t) 2 Ce -2γt . (4.9)

Step 5: Conclusion. By (4.7), we deduce that w(t) H 1 Ce -γt , and from the estimate on |y ′ j |, we have for all j ∈ [[1, N ]] and all t t 0 , |y j (t)| Ce -γt , by integration and the fact that y j (t) → 0 as t → +∞. To conclude, write

ε = u -ϕ = w + R -ϕ = w -(ϕ -R) + ( R -R), so that ε(t) H 1 w(t) H 1 + (ϕ -R)(t) H 1 + ( R -R)(t) H 1 Ce -γt + ( R -R)(t) H 1 . But we have ( R -R)(t) H 1 N j=1 R j (t, • -y j (t)) -R j (t) H 1 C N j=1 Q( √ c j x - √ c j y j (t) -c 3/2 j t - √ c j x j ) -Q( √ c j x -c 3/2 j t - √ c j x j ) H 1 C N j=1 |y j (t)| Ce -γt ,
and so finally, for all t t 0 , ε(t) H 1 Ce -γt .

Convergence at exponential rate e 1

Now, we improve the convergence of the previous lemma, with an exponential rate e 1 ≫ γ. The proof will mainly use arguments developed in [START_REF] Martel | Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations[END_REF]Section 4].

Lemma 4.2.

There exist C, t 0 > 0 such that, for all t t 0 , ε(t) H 1 Ce -e1t .

Proof.

Step 1: Estimates. We follow the same strategy as in Section 3.3. First, from the equation of ε,

ε t + (ε xx + (ϕ + ε) p -ϕ p ) x = 0, we can estimate α ± j (t) = ε(t)Z ± j (t) for j ∈ [[1, N ]] and t t 0 . Indeed, we have d dt α ± j (t) = ε t Z ± j + εZ ± jt = ε xx + (ϕ + ε) p -ϕ p Z ± jx -c j εZ ± jx = ε xx -c j ε + p k=1 p k ϕ p-k ε k Z ± jx = ε xx -c j ε + pR p-1 j ε Z ± jx + p (ϕ p-1 -R p-1 j )εZ ± jx + p k=2 p k ϕ p-k ε k Z ± jx = I + II + III.
But we have I = ±e j α ± j (t) (see proof of (3.9)), |II| Ce -γt ε(t) H 1 and |III| C ε(t) 2 H 1 , and so, for all t t 0 and all j ∈ [[1, N ]],

d dt α ± j (t) ∓ e j α j (t) Ce -γt ε(t) H 1 . ( 4.10) 
To control the R jx directions, we proceed exactly as in Section 3.3.6. Define

ε(t) = ε(t) + N j=1 a j (t)R jx (t), where a j (t) = - ε(t)Rjx (t) (Q ′ c j ) 2 , so that | ε(t)R jx (t)| Ce -γt ε(t) H 1 and C 1 ε H 1 ε H 1 + N j=1 |a j | C 2 ε H 1 . ( 4.11) 
As ε(t) H 1 Ce -γt , we have exactly as in [START_REF] Martel | Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations[END_REF], for all t t 0 , by monotonicity arguments,

ε 2 x (t) -pR p-1 (t)ε 2 (t) h(t) + ε 2 (t) Ce -2γt sup t ′ t ε(t ′ ) 2 H 1 ,
where h is defined in Section 3.3.5. We also have from [START_REF] Martel | Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations[END_REF],

( ε 2 x -pR p-1 ε 2 )h + ε 2 (ε 2 x -pR p-1 ε 2 )h + ε 2 + Ce -2γt N j=1 a 2 j + Ce -2γt ε 2 H 1 ,
and thus

ε 2 x (t) -pR p-1 (t) ε 2 (t) h(t) + ε 2 (t) Ce -2γt sup t ′ t ε(t ′ ) 2 H 1 .
But as in Section 3.3.5, a localization argument of the property of coercivity (vi) in Lemma 2.5 leads to

( ε 2 x -pR p-1 ε 2 )h + ε 2 λ 2 ε 2 H 1 - 1 λ 2 N j=1 εR jx 2 + εZ + j 2 + εZ - j 2 . Since εR jx 2 Ce -2γt ε(t) 2 H 1 and εZ ± j 2 2(α ± j ) 2 + Ce -2γt ε(t) 2 H 1 , then λ 2 ε 2 H 1 Ce -2γt sup t ′ t ε(t ′ ) 2 H 1 + Ce -2γt ε(t) 2 H 1 + C N j=1 (α + j ) 2 + C N j=1 (α - j ) 2 .
By denoting α(t) = (α ± j (t)) j,± , we thus have

ε(t) 2 H 1 Ce -2γt sup t ′ t ε(t ′ ) 2 H 1 + C α(t) 2 . ( 4.12) 
Finally, to estimate |a j (t)| for all j ∈ [[1, N ]], we follow the strategy and some calculation from the proof of Lemma 3.11. First write the equation satisfied by ε:

ε t + ( ε xx + pϕ p-1 ε) x = ε t + ε xxx + p(ϕ p-1 ε) x + N k=1 a k R kxt + N k=1 a ′ k R kx + N k=1 a k R kxxx + p N k=1 a k (R kx ϕ p-1 ) x = -[(ϕ + ε) p -ϕ p ] x + p(ϕ p-1 ε) x + N k=1 a ′ k R kx + N k=1 a k -c k R kx + R kxxx + pϕ p-1 R kx x = N k=1 a ′ k R kx + N k=1 a k R kxxx -c k R kx + pϕ p-1 R kx x -(ϕ + ε) p -ϕ p -pϕ p-1 ε x .
Then multiply by R jx and integrate, so

ε t R jx -( ε xx + pϕ p-1 ε)R jxx = a ′ j R 2 jx + k =j a ′ k R kx R jx + N k=1 a k R kxxx -c k R kx + pϕ p-1 R kx x R jx + (ϕ p + ε) p -ϕ p -pϕ p-1 ε R jxx . As (R kxxx -c k R kx + pϕ p-1 R kx ) x L ∞ Ce -γt , we obtain |a ′ j (t)| C ε t (t)R jx (t) + Ce -γt k =j |a ′ k (t)| + Ce -γt ε(t) H 1 + C ε(t) 2 H 1 + C ε(t) H 1 .
Moreover, we still have

ε t (t)R jx (t) C ε(t) H 1 + Ce -γt k =j |a ′ k (t)| + Ce -γt ε(t) H 1 ,
and so

|a ′ j (t)| C 1 e -γt k =j |a ′ k (t)| + Ce -γt ε(t) H 1 + C ε(t) 2 H 1 + C ε(t) H 1 .
Finally choose t 0 large enough such that C 1 e -γt0

1 N , so that we obtain, for all j ∈ [[1, N ]] and all t t 0 ,

|a ′ j (t)| Ce -γt ε(t) H 1 + C ε(t) H 1 . (4.13)
Step 2: Induction. With estimates (4.10) to (4.13), we can now improve exponential convergence of ε by a bootstrap argument. We recall that we already have ε(t) H 1 Ce -γ0t with γ 0 = γ. Now, we prove that if ε(t) H 1 Ce -γ0t with γ γ 0 < e 1γ, then ε(t) H 1 C ′ e -(γ0+γ)t . So, suppose that ε(t) H 1 Ce -γ0t with γ γ 0 < e 1γ.

(a) From (4.10), we get for all j ∈ [[1, N ]], |(e -ej t α + j (t)) ′ | Ce -(ej +γ0+γ)t , and so by integration

on [t, +∞), |α + j (t)| Ce -(γ0+γ)t , since α + j (t) → 0 as t → +∞. (b) Still from (4.10), we get for all j ∈ [[1, N ]], |(e ej t α - j (t)) ′ | Ce (ej -γ-γ0)t
. As e jγγ 0 e 1γγ 0 > 0, we obtain by integration on [t 0 , t], |e ej t α - j (t)e ej t0 α - j (t 0 )| Ce (ej -γ-γ0)t , and so

|α - j (t)| Ce -(γ0+γ)t + Ce -ej t Ce -(γ0+γ)t .
(c) Therefore we have α(t) 2 Ce -2(γ0+γ)t , and so by (4.12), we obtain ε(t) H 1 Ce -(γ0+γ)t .

(d) From (4.13), we deduce that for all j ∈ [[1, N ]], |a ′ j (t)| Ce -(γ0+γ)t , and so, by integration on [t, +∞), |a j (t)| Ce -(γ0+γ)t , since a j (t) → 0 as t → +∞.

(e) Finally, from (4.11), we have ε(t) H 1 Ce -(γ0+γ)t , as expected.

Step 3: Conclusion. We apply the previous induction until to have e 1γ < γ 0 < e 1 . Note that if γ 0 = e 1γ, then the estimate is still true for γ 0 = e 1 -3 2 γ < e 1γ, and so for γ 0 = e 1 -1 2 γ > e 1γ by the previous step. Now we follow the scheme of step 2. We still have, for

all j ∈ [[1, N ]], |α + j (t)| Ce -(γ0+γ)t
Ce -e1t , and |(e ej t α - j (t)) ′ | Ce (ej -γ-γ0)t . In particular, for j = 1, we have

|(e e1t α - 1 (t)) ′ | Ce (e1-γ-γ0)t ∈ L 1 ([t 0 , +∞)),
since e 1γγ 0 < 0. Hence there exists

A 1 ∈ R such that lim t→+∞ e e1t α - 1 (t) = A 1 , ( 4.14) 
and |e e1t α - 1 (t)-A 1 | Ce (e1-γ-γ0)t , and so |α - 1 (t)| Ce -e1t . For j 2, since e j -γ-γ 0 > e 2 -γe 1 > 0 by definition of γ, we still obtain by integration on [t 0 , t], |α - j (t)| Ce -(γ0+γ)t Ce -e1t . As in step 2, it follows α(t) 2 Ce -2e1t , then ε(t) H 1 Ce -e1t by (4.12), |a j (t)| Ce -e1t for all j ∈ [ [1, N ]] by (4.13), and finally ε(t) H 1 Ce -e1t by (4.11), as expected.

Identification of the solution

We now prove the following proposition by induction, following the strategy of the previous section. We identify u among the family (ϕ A1,...,AN ) constructed in Section 3. We recall that this family was constructed thanks to the subfamilies (ϕ A1,...,Aj ), satisfying ( 

(t) = ϕ A1 (t) -ϕ(t) -A 1 e -e1t Y + 1 (t), we have α - 1,1 (t) = ε 1 (t)Z - 1 (t) = ε(t)Z - 1 (t) -A 1 e -e1t Y + 1 (t)Z - 1 (t) -z 1 (t)Z - 1 (t) = α - 1 (t) -A 1 e -e1t -z 1 (t)Z - 1 (t)
by definition of α - 1 in the previous section and by normalization (iv) of Lemma 2.5. As z 1 (t) H 1 e -(e1+γ)t , we finally deduce, by (4.14),

|e e1t α - 1,1 (t)| |e e1t α - 1 (t) -A 1 | + Ce -γt ----→ t→+∞ 0.
Therefore, Proposition 4.3 is proved for j = 1.

Proof of Proposition 4.3. By remark 4.4, it is enough to prove the inductive step: we suppose the assertion true for j -1 with j 2, and we prove it for j. So, suppose that there exist t 0 , C > 0 and (A 1 , . . . , A j-1 ) ∈ R j-1 such that ε j-1 (t) H 1 Ce -ej-1t for all t t 0 , and moreover, for all k ∈ [[1, j -1]], e e k t α - j-1,k (t) → 0 as t → +∞.

Step 1: Another induction. Following the proof of Lemma 4.2, we prove that if ε j-1 (t) H 1 Ce -γ0t with e j-1 γ 0 < e jγ, then ε j-1 (t) H 1 C ′ e -(γ0+γ)t . But, as ϕ A1 is a soliton like ϕ, estimates (4.10) to (4.13) of the previous section hold. In other words, we have, with obvious notation, for all t t 0 ,

           ∀k ∈ [[1, N ]], d dt α ± j-1,k (t) ∓ e k α ± j-1,k (t) Ce -γt ε j-1 (t) H 1 , ε j-1 (t) 2 H 1 Ce -2γt sup t ′ t ε j-1 (t ′ ) 2 H 1 + C α j-1 (t) 2 , ∀k ∈ [[1, N ]], |a ′ j-1,k (t)| Ce -γt ε j-1 (t) H 1 + C ε j-1 (t) H 1 , ε j-1 (t) H 1 C ε j-1 (t) H 1 + C N k=1 |a j-1,k (t)|.
From these estimates, we deduce the following steps as in the previous section.

(a) For all k ∈ [[1, N ]], |α + j-1,k (t)| Ce -(γ0+γ)t . (b) For all k ∈ [[1, j -1]], we have |(e e k t α - j-1,k (t)) ′ | Ce (e k -γ0-γ)t
. As e k -γ 0 -γ e j-1 -γ 0 -γ -γ < 0 and e e k t α - j-1,k (t) → 0 as t → +∞ by hypothesis, we deduce by integration on [t, +∞) that |e e k t α - j-1,k (t)| Ce (e k -γ0-γ)t , and so |α -

j-1,k (t)| Ce -(γ0+γ)t . (c) For all k ∈ [[j, N ]], we still have |(e e k t α - j-1,k (t)) ′ | Ce (e k -γ0-γ)t
. As e k -γ 0 -γ e j -γ 0 -γ > 0, we deduce, by integration on [t 0 , t], |e e k t α - j-1,k (t)e e k t0 α - j-1,k (t 0 )| Ce (e k -γ0-γ)t , and so

|α - j-1,k (t)| Ce -e k t + Ce -(γ0+γ)t Ce -(γ0+γ)t .
(d) Hence we have α j-1 (t) 2 Ce -2(γ0+γ)t . It follows ε j-1 (t) H 1 Ce -(γ0+γ)t , |a j-1,k (t)| Ce -(γ0+γ)t by integration, and finally ε j-1 (t) H 1 Ce -(γ0+γ)t as expected.

Step 2: Identification of A j . We apply the previous induction until to have e jγ < γ 0 < e j . Moreover, following the same scheme, we obtain the following estimates. 

|(e e k t α - j-1,k (t)) ′ | Ce (e k -γ0-γ)t . (b) For all k ∈ [[1, j -1]], we still have |α - j-1,k (t)| Ce -(γ0+γ)t Ce -ej t .
(c) For k = j, we have |(e ej t α - j-1,j (t)) ′ | Ce (ej -γ0-γ)t ∈ L 1 ([t 0 , +∞)) since e jγ 0γ < 0. Thus there exists A j ∈ R such that lim t→+∞ e ej t α - j-1,j (t) = A j , and moreover |e ej t α - j-1,j (t) -A j | Ce (ej -γ0-γ)t . Hence we have |α

- j-1,j (t)| Ce -ej t . (d) For all k ∈ [[j + 1, N ]],
we have e kγ 0γ > e j+1e jγ > 0, thus by integration on [t 0 , t], we get |α - j-1,k (t)| Ce -e k t + Ce -(γ0+γ)t Ce -ej t .

(e) We now have α j-1 (t) 2 Ce -2ej t , and so as in the first step, we conclude that ε j-1 (t) H 1 Ce -ej t .

Step 3: Conclusion. To conclude the induction, we write

ε j (t) = u(t) -ϕ A1,...,Aj (t) = ε j-1 (t) + [ϕ A1,...,Aj-1 (t) -ϕ A1,...,Aj (t)] = ε j-1 (t) -A j e -ej t Y + j (t) -z j (t),
where z j , defined by z j (t) = ϕ A1,...,Aj (t)ϕ A1,...,Aj-1 (t) -A j e -ej t Y + j (t), satisfies z j (t) H 1 e -(ej +γ)t by (3.2). Thus, we first have

ε j (t) H 1 ε j-1 (t) H 1 + Ce -ej t + z j (t) H 1 Ce -ej t .
Moreover, we find

α - j,k (t) = ε j (t)Z - k (t) = α - j-1,k (t) -A j e -ej t Y + j (t)Z - k (t) -z j (t)Z - k (t).
Therefore, for all k ∈ [[ 

α ± k (t) = z(t)Z ± k (t) for all k ∈ [[1, N ]],
we have e e k t α - k (t) → 0 as t → +∞. But, as in the previous proof, it easily follows that if z(t) H 1 Ce -γ0t with γ 0 e N , then z(t) H 1 C ′ e -(γ0+γ)t , and we apply this induction until to have γ 0 = 2e N .

Uniqueness

Finally, we prove the following proposition, which achieves the proof of Theorem 1.3. Note that its proof is based on the schemes developed above, and on arguments developed in [START_REF] Martel | Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations[END_REF]Section 4]. Proposition 4.6. There exists t 0 > 0 such that, for all t t 0 , z(t) = 0.

Proof. We start from the conclusion of Corollary 4.5, we set

θ(t) = sup t ′ t e eN t ′ z(t ′ ) H 1 ,
well defined and decreasing, and we prove that θ = 0. Indeed, with obvious notation, we still have the following estimates, for all t t 0 ,

     ∀k ∈ [[1, N ]], d dt α ± k (t) ∓ e k α ± k (t) Ce -γt z(t) H 1 , ∀k ∈ [[1, N ]], |a ′ k (t)| Ce -γt z(t) H 1 + C z(t) H 1 , z(t) H 1 C z(t) H 1 + C N k=1 |a k (t)|.
Moreover, if we define H 0 as in [START_REF] Martel | Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations[END_REF] by

H 0 (t) = z 2 x (t, x) -F 0 (t, z(t, x)) h(t, x) + z 2 (t, x) dx,
where

F 0 (t, z) = 2 (ϕ A1,...,AN (t) + z) p+1 p + 1 - ϕ p+1 A1,...,AN (t) p + 1 -ϕ p A1,...,AN (t)z
and h is defined in Section 3.3.5, we also have dH0 dt (t) -Ce -2γt z(t) 2 H 1 . Now, we want to prove that θ(t) = 0, for t t 0 with t 0 large enough. Let t t 0 .

First, we have for all Finally, we have shown that there exists C * > 0 such that, for all t t 0 , z(t) H 1 C * e -(eN +γ)t θ(t). Now fix t t 0 . We have, for all t ′ t,

k ∈ [[1, N ]], d dt α ± k (t) ∓ e k α ± k (t) Ce -γt e -eN
e eN t ′ z(t ′ ) H 1 C * e -γt ′ θ(t ′ ) C * e -γt0 θ(t),

and thus θ(t)

C * e -γt0 θ(t). Choosing t 0 large enough so that C * e -γt0 1 2 , we obtain θ(t) 1 2 θ(t), so θ(t) 0, and so finally θ(t) = 0, as expected.

Step 2. Now that N is fixed, we forget it and the situation amounts in:

z n (t), z(t) ∈ H 3 for all t ∈ [0, T ], sup t∈[0,T ] z n (t) H 3 4
C, z 0,n H 3 C ′ (with C and C ′ independent of n) and z 0,n → z 0 in D ′ (R) as n → +∞. The aim of this step is to show consecutively that z n (t) is uniformly bounded in H 1 , H 2 and H 3 , and finally z n is uniformly bounded in H 1 ([0, T ] × R).

Since sup t∈[0,T ] z n (t)

H 3 4
C and H 

z n (t) L ∞ C and sup t∈[0,T ] z n (t) L 2 C.
But energy conservation gives, for all t ∈ [0, T ],

1 2 (∂ x z n (t)) 2 - 1 p + 1 z n (t) p+1 = 1 2 (∂ x z 0,n ) 2 - 1 p + 1 z p+1 0,n .
We deduce that:

(∂ x z n (t)) 2 C z n (t) p-1 L ∞ z n (t) 2 L 2 + C z 0,n 2 
H 1 + C z 0,n p+1 H 1 C,
and so sup t∈[0,T ] z n (t) H 1 C.

To estimate z n (t) H 2 , we use the "modified energy" as in [START_REF] Martel | Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations[END_REF]Section 3.4] (see also [START_REF] Kato | On the Cauchy problem for the (generalized) Korteweg-de Vries equation[END_REF]). If we denote z n by z for a short moment, and if we define

G 2 (t) = z 2 xx (t) -5p 3 z 2 x (t)z p-1 (t) for t ∈ [0, T ], we have the identity G ′ 2 (t) = 1 12 p(p -1)(p -2)(p -3) z 5 x (t)z p-4 (t) + 5 3 p 2 (p -1) z 3 x (t)z 2p-3 (t).
But Gagliardo-Nirenberg inequalities give, for all k 2,

|u x | k C u 2 x k+2 4 u 2 xx k-2 4
, and since sup t∈[0,T ] z(t) L ∞ C, we have

G ′ 2 (t) C z(t) p-4 L ∞ |z x (t)| 5 + C ′ z(t) 2p-3 L ∞ |z x (t)| 3 C z 2 x (t) 7/4 z 2 xx (t) 3/4 + C ′ z 2 x (t) 5/4 z 2 xx (t) 1/4 C z 2 xx (t) 3/4 + C ′ z 2 xx (t) 1/4
.

Since a a 4/3 + 1 and a a 4 + 1 for a 0, we deduce that for some C, D > 0 (still independent of n), we have, for all s ∈ [0, T ],

G ′ 2 (s) C z 2 xx (s) + D.
Now, for t ∈ [0, T ], we integrate between 0 and t, and we obtain 

G 2 (t) -G 2 (0) C t 0 z xx (s)

C.

We deduce that (z n ) is uniformly bounded in H 1 ([0, T ] × R), thus there exists z such that z n ⇀ z weakly in H 1 ([0, T ] × R) (after passing to a subsequence), and in particular strongly on compacts in L 2 ([0, T ] × R). Moreover, since sup t z n (t) H 3 C, we have sup t z(t) H 3 C.

Step 3. This step is very similar to the first one of the proof of [START_REF] Kenig | Asymptotic stability of solitons for the Benjamin-Ono equation[END_REF]Theorem 5]. We recall that we want to prove (z n (T )z(T ))g → 0 as n → +∞. Let w n = z nz. The equation satisfied by w n is w nt + w nxxx + (z p nz p ) x = 0, and moreover for n large enough, which concludes the first case. Second case. Suppose that T * T and let us show that it implies a contradiction. Indeed, there exists T ′ < T * such that z(T ′ )

H 3 4
2K (where K is the same constant as in the hypothesis of the lemma). But we can apply the first case with T replaced by T ′ , so that z n (T ′ ) ⇀ z(T ′ ) in H 1 , and since z n (T ′ ) H 1 K, we obtain by weak convergence z(T ′ )

H 3 4
z(T ′ ) H 1 K, and so the desired contradiction and the end of the proof of the lemma.

Notation 2 . 1 .

 21 They are available in the whole paper.(a) (•, •) denotes the L 2 (R) scalar product.

Corollary 2 . 4 .

 24 Let σ(L c ) be the spectrum of the operator L c defined on L 2 (R) and let σ ess (L c ) be its essential spectrum. Then σ ess (L c ) = iR and σ(L c ) ∩ R = {-e c , 0, e c } where e c = c 3/2 e 0 > 0. Furthermore, e c and -e c are simple eigenvalues of L c with eigenfunctions Y + c and Y - c = Y + c , where

  (a) For all k ∈ [[1, N ]], |α + j-1,k (t)| Ce -(γ0+γ)tCe -ej t , and we still have

3 4 (

 4 R) ֒→ L ∞ (R) continuously, then we have sup t∈[0,T ]

1 n- 1 n+ z x (z p- 1 n-

 111 (z p nz p ) x = pz nx z p-pz x z p-1 = p[(z nxz x )z p-z p-1 )] = p w nx z p-1 n + z x (z nz) z p-2-k . If we define S(u, v) = p-2 k=0 v k u p-2-k, the equation satisfied by w n can be writtenw nt + w nxxx + pz p-1 n w nx + pz x S(z, z n )w n = 0, w n (0) = ψ n = z 0,nz 0 .Now consider v(t) the solution ofv t + v xxx + p(z p-1 v) x + pz x S(z, z)v = 0, v(T ) = g.First notice that sup t v L 2 C by an energy method. Indeed, we have by direct calculation d dt v 2 = -p v 2 (p -1)z x zp-2 + 2z x S(z, z) .

But

  

g 2 L 2 e 2 L 2 e 0 wI + II = p T 0 w n [v(z p- 1 n-w 2 k=1 k- 1 l=0 8 .

 2222001218 C(T -t) g CT = K. Now write w n (T, x)g(x) dxψ n (x)v(0, x) dx = n v xxx + p(vz p-1 n ) xpz x S(z, z n )v , II = T 0 w n -v xxxp(vz p-1 ) x + pz x S(z, z)v ,and so zp-1 )] x + pT 0 w n z x v[S(z, z) -S(z, z n )] nx v(z nz)S(z, z n )p T 0 w n z x v(z nz)S ′ (z, z, z n ) = -p T 0 [w nx S(z, z n ) + w n z x S ′ (z, z, z n )]v(z nz),whereS(z, z n ) = p-2 k=0 zp-2-k z k n and S ′ (z, z, z n ) = p-z p-2-k zk-1-l z l n both satisfy sup t∈[0,T ] S(z, z n ) L ∞ C and sup t∈[0,T ] S ′ (z, z, z n ) L ∞ C.Since ψ n ⇀ 0 in L 2 and v(0) ∈ L 2 , then, for n large enough,ψ n (x)v(0, x) dx ε 4 .Therefore, it is enough to conclude to show that, for n large enough,|I + II| ε 4 . But sup t w nx S(z, z n ) + w n z x S ′ (z, z, z n ) L ∞ C,and sup t z nz L 2 C z nz H 1 (]0,T [×R) C, sup t v L 2 C. Hence, there exists R > 0 such that -p T 0 |x|>R [w nx S(z, z n ) + w n z x S ′ (z, z, z n )]v(z nz) εAnd finally, by Cauchy-Schwarz inequality, we have S(z, z n ) + w n z x S ′ (z, z, z n )]v(z nz)

  • (3.13): By the expression of h and |ψ ′′′ | σ0 4 |ψ ′ |, we see after direct calculation that h t σ 0 |h x | 4|h xxx |, thus

	(3.13)	3 4	z 2 x h

t -F (z)h t -|F (z)|h t .

Moreover, since Rh t L ∞ Ce -4γt , and

  3.2) for all j ∈ [[1, N ]]: As ε 1 = uϕ A1 = ε + (ϕϕ A1 ), we have ε 1 (t) H 1 ε(t) H 1 + ϕ(t)ϕ A1 (t) H 1 Ce -e1tby Lemma 4.2 and (3.2). Moreover, if we define z 1 by z 1

	Remark 4.4.		
	∀t t 0 ,	ϕ A1,...,Aj (t) -ϕ A1,...,Aj-1 (t) -A j e -ej t Y + j (t) H 1 e -(ej +γ)t .
	Proposition 4.3. For all j ∈ [[1, N ]], there exist t 0 , C > 0 and (A 1 , . . . , A j ) ∈ R j such that, defining ε j (t) = u(t) -ϕ A1,...,Aj (t), one has
		∀t t 0 ,	ε j (t) H 1 Ce -ej t .
	Moreover, defining α ± j,k (t) = ε j (t)Z ± k (t) for all k ∈ [[1, N ]], one has
		∀k ∈ [[1, j]],	lim t→+∞	e e k t α -j,k (t) = 0.

  Ce -2eN t for all t t 0 .Proof. Applying Proposition 4.3 with j = N , we obtain (A 1 , . . . , A N ) ∈ R N and C, t 0 > 0 such that z(t) H 1 Ce -eN t for all t t 0 . Moreover, if we set

1, j -1]], we have |α - j,k (t)| |α - j-1,k (t)| + Ce -ej t + Ce -(ej +γ)t , and so e e k t |α - j,k (t)| e e k t |α - j-1,k

(t)| + Ce -(ej -e k )t ----→ t→+∞ 0.

Finally, for k = j, we have by (iv) of Lemma 2.5, α - j,j (t) = α - j-1,j (t) -A j e -ej tz j (t)Z - j (t), and so

e ej t |α - j,j (t)| |e ej t α - j-1,j (t) -A j | + Ce -γt ----→ t→+∞ 0,

which achieves the proof of Proposition 4.3.

Corollary 4.5.

There exist (A 1 , . . . , A N ) ∈ R N and C, t 0 > 0 such that, defining z(t) = u(t)ϕ A1,...,AN (t), we have z(t) H 1

(t) 2

  Ce -2(eN +γ)t θ 2 (t). But we also have, for s t, Ce -γs z(s) H 1 + C z(s) H 1 Ce -(eN +γ)s θ(s) Ce -(eN +γ)s θ(t), and so by integration on [t, +∞), |a k (t)| Ce -(eN +γ)t θ(t).

				d dt	α ± k (s) ∓ e k α ± k (s)	Ce -(eN +γ)s θ(t).
	dH 0 dt	(s) -Ce -2γs z(s)	2	-Ce -2(eN +γ)s θ 2 (t),
	and so by integration on [t, +∞), H 0 (t) Ce -2(eN +γ)t θ 2 (t). As in the proof of Lemma 4.2, we
	deduce that	z(t) 2 H 1	Ce -2(eN +γ)t θ 2 (t) + C α(t) 2 Ce -2(eN +γ)t θ 2 (t),
	and so z(t) H 1 Ce -(eN +γ)t θ(t). But, for all k ∈ [[1, N ]] and all s t, we have
		|a ′ k (s)|		

t θ(t), and thus, for all s t, Hence, we have |(e -e k s α + k (s)) ′ | Ce -(eN +e k +γ)s θ(t), and so by integration on [t, +∞), |α + k (t)| Ce -(eN +γ)t θ(t). Similarly, we have |(e e k s α - k (s)) ′ | Ce -(eN -e k +γ)s θ(t), and since e Ne k + γ γ > 0 and e e k t α - k (t) → 0 as t → +∞, we also get by integration on [t, +∞), |α - k (t)| Ce -(eN +γ)t θ(t). We thus have α2 H 1 = -Ce -2(eN +γ)s (e eN s z(s) H 1 )

  2 L 2 ds + Dt.Finally, we obtain by Grönwall's lemma that, for all t ∈ [0, T ],Be Ct Be CT . We can conclude that sup t∈[0,T ] z n (t) H 2 C with C > 0 independent of n.For a uniform bound in H 3 , we use the same arguments as for H2 . In fact, it is easier, since we have, by straightforward calculation (we forget again n for a while),But we have now supt∈[0,T ] z x (t) L ∞ C sup t∈[0,T ] z x (t) H 1 C sup t∈[0,T ] z(t) H 2 C, and still sup t∈[0,T ] z(t) L ∞ C, soUsing a Gagliardo-Nirenberg inequality for the second term and the Cauchy-Schwarz one for the last term, we obtain+ D z xx (t) L 2 z x (t) L 2 A z 2 xxx (t) + B ′′ z 2 xxx (t) + B ′′ + C ′ + D z(t) ′′ , and we conclude again by Grönwall's lemma that z xxx (t) D ′′ e A ′ t D ′′ e A ′ T . Finally, we have the desired bound: sup t∈[0,T ] z n (t) H 3 C. As z nt (t) = -z nxxx (t)pz nx (t)z p-1 n (t), then we have, for all t ∈ [0, T ], z nt (t) L 2 z nxxx (t) L 2 + p z n (t)

	Moreover, by definition of G 2 ,					2 L 2
	z xx (t)	2 L 2	5p 3	z 2 x (t)z p-1 (t) +	5p 3	z 2 x (0)z p-1 (0)
			+ z xx (0)	2 L 2 + C	0	t p-1 z xx (s) L ∞ z nx L 2 2 L 2 ds + DT z n (t) H 3 + C z n (t)	p H 1
			C z(t) p+1 H 1 + C z(0) p+1 H 1 + z(0) H 2 + DT + C	0	t	z xx (s) 2 L 2 ds
			B + C	0	t	z xx (s) 2 L 2 ds.
							z xx (t) 2 L 2
	d dt xxx (t)z d z 2 xxx (t) = -7p(p -1) z 2 dt z 2 xxx (t) A z 2
	dt d		z 2 xxx (t) A z 2 xxx (t) + B ′	z 2 xx (t)	5/4	z 2 xxx (t)	1/4
						+ C z(t)	2 H 2 2
									H 2
				A ′ z 2 xxx (t) + D ′ .
	Now, if we integrate this inequality between 0 and t ∈ [0, T ], we get
			z xxx (t)	2 L 2		z xxx (0)	2 L 2 + A ′	0	t	z xxx (s)	2 L 2 ds + D ′ t
							z(0)	

x (t)z p-2 (t) + 14p(p -1)(p -2) z 3 xx (t)z x (t)z p-3 (t) + 14p(p -1)(p -2)(p -3) z 2 xx (t)z 3 x (t)z p-4 (t) + 2p(p -1)(p -2)(p -3)(p -4) z xx (t)z 5 x (t)z p-5 (t). xxx (t) + B |z xx (t)| 3 + C z 2 xx (t) + D |z xx (t)||z x (t)|. 2 H 3 + A ′ t 0 z xxx (s) 2 L 2 ds + D ′ T A ′ t 0 z xxx (s) 2 L 2 ds + D

  sup t zx (t) L ∞ sup t z(t) H 2 C, and similarly sup t z(t) L ∞ C, sup t z x (t) L ∞ C and sup t S(z(t), z(t)) L ∞ C, and so

					-	d ds	v 2 (s) C v 2 (s).
	By integration between t ∈ [0, T ] and T , we obtain
				v(t) 2 L 2 -v(T ) 2 L 2	C	t	T	v(s) 2 L 2 ds,
	that is to say v(t)	2 L 2	g	2 L 2 + C	T t	v(s)	2 L 2 ds. We conclude, by Grönwall's lemma, that
				v(t)	2 L 2		

A Appendix

Proof of Lemma 3.4. The scheme of the proof is quite similar to the proof of [START_REF] Kenig | Asymptotic stability of solitons for the Benjamin-Ono equation[END_REF]Theorem 5], and uses moreover some arguments developed in [11, section 3.4]. Let T * = T * ( z 0 H 3 4 ) > 0 be the maximum time of existence of the solution z(t) associated to z 0 . We distinguish two cases, whether T < T * or not, and we show that this last case is in fact impossible.

First case. Suppose that T < T * , and let us show that z n (T ) ⇀ z(T ) in

0 (R) and ε > 0, and let us show the lemma in three steps, using a H 3 regularization.

Step 1. For N ≫ 1 to fix later, we define z N 0,n and

In particular, z N 0,n and z N 0 belong to H 3 , and

uniformly in n. If we call z N n (t) the solution corresponding to initial data z N 0,n , and since z n (t)

for N large enough, by applying [10, Corollary 2.18] with s = 3 4 > p-5 2(p-1) and

Similarly, since sup t∈[0,T ] z(t) H 1 K ′ by hypothesis, we also obtain, for N large enough,

where z N (t) is the solution corresponding to initial data z N 0 . Notice that C and C ′ are independent of n, and that by propagation of the regularity, we have z for N large enough, and we now fix it to this value.