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Abstract

For the L? subcritical and critical () equations, Martel [E} proved the existence and
uniqueness of multi-solitons. Recall that for any N given solitons, we call multi-soliton a
solution of () which behaves as the sum of these IV solitons asymptotically as t — +o0.
More recently, for the L? supercritical case, Cote, Martel and Merle [H] proved the existence of
at least one multi-soliton. In the present paper, as suggested by a previous work concerning
the one soliton case [EL we first construct an N-parameter family of multi-solitons for the
supercritical () equation, for N arbitrarily given solitons, and then prove that any
multi-soliton belongs to this family. In other words, we obtain a complete classification of
multi-solitons for )

1 Introduction

1.1 The generalized Korteweg-de Vries equation

We consider the generalized Korteweg-de Vries equation:

3 P —
{8tu+8mu+8z(u) 0 (eKdV)

u(0) = up € HY(R)

where (t,z) € R? and p > 2 is integer. The following quantities are formally conserved for solutions
of (ERV:
/u2(t) = /uQ(O) (mass),

B(u(t) =5 [w20) - 5 [0 = Bu(0)) (enerey).
p+1

Kenig, Ponce and Vega [[LJ] have shown that the local Cauchy problem for (EKdV]) is well
posed in H'(R): for ug € H*(R), there exist 7 > 0 and a solution u € C([0,T], H*(R)) of (gKdV])
satisfying u(0) = ug which is unique in some class Y7 C C([0,T], H'(R)). Moreover, if T* > T
is the maximal time of existence of u, then either T* = 400 which means that u(t) is a global
solution, or T* < 400 and then |[u(t)||;; — 400 ast T T* (u(t) is a finite time blow up solution).
Throughout this paper, when referring to an H' solution of (), we mean a solution in the
above sense. Finally, if ug € H*(R) for some s > 1, then u(t) € H*(R) for all ¢t € [0,T™).

In the case where 2 < p < 5, it is standard that all solutions in H! are global and uniformly
bounded by the energy and mass conservations and the Gagliardo-Nirenberg inequality. In the
case p = 5, the existence of finite time blow up solutions was proved by Merle [@] and Martel
and Merle @] Therefore p = 5 is the critical exponent for the long time behavior of solutions of

(EKdV)). For p > 5, the existence of blow up solutions is an open problem.



We recall that a fundamental property of () equations is the existence of a family of
explicit traveling wave solutions. Let @ be the only solution (up to translations) of
: +1 r
Q>0 QeH'R), Q' +Q =Q ieQu)=|—tygs]
2 cosh? ()
For all ¢ > 0 and zg € R,
R507I0 (ta :L') = QCO (1' — cot — :L'0>

1

is a solution of (EKdV]), where Q.,(z) = ¢/ " Q(,/cor). We call solitons these solutions though
they are known to be solitons only for p = 2,3 (in the sense that they are stable by interaction).
It is well-known that the stability properties of a soliton solution depend on the sign of

4 [Q? - Since [Q?= 7D J @2, we distinguish the following three cases:

Cle=c

e For p < 5 (L? subcritical case), solitons are stable and asymptotically stable in H' in some
suitable sense: see Cazenave and Lions [ﬂ]7 Weinstein [@], Grillakis, Shatah and Strauss
[ﬂ] for orbital stability; and Pego and Weinstein @}, Martel and Merle [E] for asymptotic
stability.

e For p = 5 (L? critical case), solitons are unstable, and blow up occurs for a large class of
solutions initially arbitrarily close to a soliton, see [@, E] Moreover, for both critical and
subcritical cases, previous works imply the following asymptotic classification result: if u is
a solution of (EKdV]) such that lim; , oo [[u(t) — Q(- — )|l ;1 = 0, then u(t) = Q(- — t) for ¢t
large enough.

e For p > 5 (L? supercritical case), solitons are unstable (see Grillakis, Shatah and Strauss [f]
and Bona, Souganidis and Strauss [m]) In particular, the previous asymptotic classification
result does not hold in this case. More precisely, we have:

Theorem 1.1 ([f]). Let p > 5.

(i) There exists a one-parameter family (U*),.p of solutions of (EKdV]) such that, for all
AeR,
lim [|UA®E,-+1) = Q|| =0,

t——+o0

and if A’ € R satisfies A' # A, then UA + U4,

(ii) Conversely, if u is a solution of (EKAV]) such that lim;_, 4o infyer u(t) — Q(- — y)|| ;1 =0,
then there exist A € R, tg € R and o € R such that u(t) = UA(t,- — z0) fort > t.

We recall that this result was an adaptation to (gEKdV]) of previous works, concerning the
nonlinear Schrodinger equation, of Duyckaerts and Merle [f] and Duyckaerts and Roudenko [E}
The purpose of this paper is to extend Theorem to multi-solitons.

1.2 Multi-solitons

Now, we focus on multi-soliton solutions. Given 2N parameters defining N > 2 solitons with
different speeds,
0<ecr1<---<en, x1,...,zNy €R, (1.1)

we set
N

Rj(t) = Re, =, (t) and R(t) =) R;(1),

and we call multi-soliton a solution u(t) of (EKdV]) such that
|u(t) — R(t)||jn — 0 as t— 4o0. (1.2)

Let us recall known results on multi-solitons:



e For p =2 and 3 (KdV and mKdV), multi-solitons (in a stronger sense) are well-known to
exist for any set of parameters (E), as a consequence of the inverse scattering method.

e In the L? subcritical and critical cases, i.e. for () with p < 5, Martel ] constructed
multi-solitons for any set of parameters (@) The proof in [ follows the strategy of Merle
[ (compactness argument) and relies on monotonicity properties developed in [[J] (see
also [@]) Recall that Martel, Merle and Tsai [@] proved stability and asymptotic stability
of a sum of N solitons for large time for the subcritical case. A refined version of the stability
result of [@] shows that, for a given set of parameters, there exists a unique multi-soliton
solution satisfying (@), see Theorem 1 in [[L1].

e In the L? supercritical case, i.e. in a situation where solitons are known to be unstable,
Cote, Martel and Merle [E] have recently proved the existence of at least one multi-soliton

solution for (EKdV]):

Theorem 1.2 ([E]) Letp>5and N 2 2. Let 0 < ¢y < --- < cny and x1,...,xy € R. There
exist Ty € R, C,00 > 0, and a solution ¢ € C([Ty, +00), H') of (EKAM) such that

3/2

vt € [To, +00), le(t) = R(t)]|;n < Ce™70 .

Recall that, with respect to [Ell, E], the proof of Theorem D relies on an additional topological
argument to control the unstable nature of the solitons. Moreover, note that no uniqueness result
is proved in [, contrary to the subcritical and critical cases [@] In fact, the objective of this
paper is to prove uniqueness up to N parameters, as suggested by Theorem .

1.3 Main result and outline of the paper

The whole paper is devoted to prove the following theorem of existence and uniqueness of a family
of multi-solitons for the supercritical (EKdV]) equation.

N
Theorem 1.3. Letp>5 N >22,0<c1<---<cy andx1,...,xy € R. Denote R = ZRC].@J..
j=1

1. There exists an N-parameter family (‘PAL---,AN)(AI . An)ern Of solutions of EKaW) such
that, for all (Ay,...,Ax) € RV,

Hm loa,,..ay(t) = R(t)| g =0,

t—+oo

and if (AY,..., Ay) # (A1,...,AN), then par  ar # oA, Ay

2. Conversely, if u is a solution of (EKdV]) such that lim; o ||u(t) — R(t)|| ;1 = 0, then there
exists (A1,...,An) € RN such that u= @A, . ay-

Remark 1.4. The convergence of @4, .. 4, to R in Theorem E is actually exponential in time,
as in Theorem @ See the proof of Theorem @ at the beginning of SectionE for more details.

Remark 1.5. For the nonlinear Schrédinger equation, the question of the classification of multi-
solitons as in Theorem is open. In fact, even for subcritical and critical cases, no general
uniqueness result has been proved yet (see general existence results in [E, @, EI, @, E])

The paper is organized as follows. In the next section, we briefly recall some well-known results
on solitons, multi-solitons, and on the linearized equation. One of the most important facts about
the linearized equation, also strongly used in [E, , is the determination by Pego and Weinstein [E]
of the spectrum of the linearized operator £ around the soliton Q(x —1t): o(L)NR = {—eo,0, +eo}
with eg > 0, and moreover eg and —eg are simple eigenvalues of £ with eigenfunctions Y+ and Y .
Indeed, Y+ allow to control the negative directions of the linearized energy around a soliton (see



Lemma E) Moreover, by a simple scaling argument, we determine eigenvalues of the linearized
3/2
operator around Q.;: *e; = £
precise definitions).
In Section E, we construct the family (¢4, 4y) described in Theorem [.3. To do this, we
first claim Proposition @, which is the new key point of the proof of the multi-existence result,
and can be summarized as follows. Let ¢ be a multi-soliton given by Theorem @, j €[1,N] and

A; € R. Then there exists a solution u(t) of (EKdV)) such that

eg are eigenvalues with eigenfunctions in (see Notation @ for

Hu(t) - @(t) - Ajeiejt}/j'i'(t)n < e*(ejJr'y)t’

H1
for t large and for some small v > 0. This means that, similarly as in [E] for one soliton, we can
perturb the multi-soliton ¢ locally around one given soliton at the order e~¢%. Sincee; < --- < en,
©A,,...,Ay has to be constructed by iteration, from j = 1 to j = N. Indeed, it is not significant
to perturb ¢ at order e; before order e;_1, since e; > e;j_1 + . Similarly, it seems that there
exists no simple way to compare pa,,. .4y to ¢. Finally, to prove Proposition @, we rely on
refinements of arguments developed in [E], in particular the topological argument to control the
unstable directions.

In Section E, we classify all multi-solitons in terms of the family previously constructed. Once
again, it appears that the identification of the solution has to be done step by step (after an
improvement of the convergence rate, as in [H]), from order e; to order ey. In this section, we
strongly use special monotonicity properties of (), in particular to prove that any multi-
soliton converges exponentially (Section @) Such arguments are not known for the nonlinear
Schrodinger equations.

Finally, recall that in the one soliton case for (gKdV]) [f], a construction of a family of ap-
proximate solutions of the linearized equation and fixed point arguments were used (among other
things), as in the one soliton case for the nonlinear Schréodinger equation [E] For multi-solitons,
since the construction of approximate solutions is not natural (because of the interactions between
solitons), we propose in this paper an alternate approach based only on compactness and energy
methods.

2 Preliminary results

2.1 Notation and first properties of the solitons

Notation 2.1. They are available in the whole paper.

(a) (-,-) denotes the L?(R) scalar product.

(b) The Sobolev space H® is defined by H*(R) = {u € D'(R) | (1 +§2)S/2ﬂ(§) € L?(R)}, and in
particular H(R) = {u € L2(R) | [[ul%: = JulZ, + o2 < +o0} = L=(R).

(¢) We denote d,v = v, the partial derivative of v with respect to x.

(d) All numbers C, K appearing in inequalities are real constants (with respect to the context)
strictly positive, which may change in each step of an inequality.

Claim 2.2. For all ¢ > 0, one has:
(i) Qe >0, Q. is even, Q. is C*, and Q.(x) <0 for all x > 0.

(it) For all j > 0, there exists C; > 0 such that ng)(x) ~ Cje=Velrl gs 2| — +o0.
In particular, for all j > 0, there exists C; > 0 such that |Qg])(x)| < C]’e—‘/a””‘ forall x € R.

(iii) QU + QP = Q..



2.2 Linearized equation

Let ¢ > 0.

2.2.1 Linearized operator around Q.

The linearized equation appears if one considers a solution of (gKdV]) close to the soliton Q.(z—ct).
More precisely, if uc(t,z) = Qc(x — ct) + he(t, z — ct) satisfies (gKdV]), then h, satisfies

athc + £chc - O(hg)
where
Lea = —0y(Lea) and  Lea = —87a+ ca — pQP~'a.

The spectrum of £, has been calculated by Pego and Weinstein for ¢ = 1 in [[L§. Their results
are summed up in the following proposition for the reader’s convenience.

Proposition 2.3 ([L]). Let (L) be the spectrum of the operator L defined on L*(R) and let
Oess(L) be its essential spectrum. Then

Oess(L) =iR  and o(L)NR = {—ep,0,e0} with ey > 0.
Furthermore, e and —eq are simple eigenvalues of L with eigenfunctions YT and Y~ = Y+ which
have an exponential decay at infinity, and the null space of L is spanned by Q'.

This result is extended to L. in Corollary @ by a simple scaling argument. Indeed, we recall
that if u is a solution of (EKdV]), then for all A > 0, uy(t,z) = AT u(A3t, Az) is also a solution.
Moreover, we have Q.(z) = crT Q(V/cx).

Corollary 2.4. Let o(L.) be the spectrum of the operator L. defined on L*(R) and let oess(Lc)
be its essential spectrum. Then

Oess(Le) = iR and o(L.) NR ={—e.,0,e.} where e.= 03/260 > 0.

Furthermore, e. and —e. are simple eigenvalues of L. with eigenfunctions Y% and Y.~ = Y;",
where

Y () = Py (Vew),
and the null space of L. is spanned by Q..

2.2.2 Adjoint of L.

We recall that Lemma 4.9 in @], under a suitable normalization of Y'*, shows important properties
of the adjoint of £. With the same normalization and by Corollary @, we obtain the following
lemma by a simple scaling argument. Recall that assertion (v) is proved in [ forc=1.

Lemma 2.5. Let Zf = L.Y;*. Then the following properties hold:
(i) ZF are two eigenfunctions of L.0y: Lo(0,ZF) = Fe ZF.
(i) There exists no > 0 such that, for all z € R,
V(@) + |0 YE@)] + |22 @) + 10,72 ()] < Cemm VAl

(iii) (Y5, Z2F5) = (Yo, Z27) = 0 and (ZF,Q7) = (Z:,Qc) = 0.

(i) (Y, Z7) = (Y, Z5) = 1 and QL 0.Y:H) > 0.
(v) There exists o. > 0 such that, for all v. € H* such that (ve, ZF) = (ve, Z7) = (ve, QL) = 0,
(Lc'UcaUc) > 076"1)6"?11

(vi) There exist o. > 0 and C' > 0 such that, for all v. € H',
2

(Leve,ve) = ocllvel i — Clve, ZF)? = Clve, Z;7)° = Clve, QL)



2.3 Multi-solitons results

A set of parameters ([L.1]) being given, we adopt the following notation.
Notation 2.6. For all j € [1, N], define:
() Rj(t,2) = Qe, (z = cjt =), whete Qu(z) = 71 Q(Vex).
(if) Yi(t x) = ch(ac — ¢t — x;), where Y (2) = ¢ V/2Y%(/cx) is defined in Corollary P4,
(iii) Z ( x) = Zgj (x — ¢jt — x;), where ZF = L. Y*.
(iv)

ej = ec;, where e, = 63/260

Now, to estimate interactions between solitons, we denote the small parameters

3/2
o
oo = min{ng/gcl, 63/301, €1,62 —C1,...,cN —cN—1} and 7y = 10—06. (2.1)

From @], it appears that ~ is a suitable parameter to quantify interactions between solitons
in large time. For instance, we have, for j # k and all ¢ > 0,

/Rj(t>Rk(t) +I(R))o (O (Rr)a (8)] < Ce™ 17 (2.2)

From the definition of oy and Lemma @ such an inequality is also true for Yi and Z; =
Moreover, since g has the same definition as in [E then from their Remark 1, Theorem @
can be rewritten as follows. There exist Tp € R and ¢ € C([Ty, +00), H') such that, for all s > 1,

there exists A; > 0 such that
le(t) = R(t) o < Ase™ 7" (2.3)

3 Construction of a family of multi-solitons

In this section, we prove the first point of Theorem E as a consequence of the following crucial
Proposition EI Let p>5, N>22,0<c; <---<cnyand x1,...,28 € R. Denote R = Zk 1 R
and ¢ a multi-soliton solution satisfying (@), as defined in Theorem D for example.

Proposition 3.1. Let j € [1, N] and A; € R. Then there exist to > 0 and u € C([to, +00), H')
a solution of (EKdV]) such that

Vi to, [ul) — o) — Ajem V(B < e (3.1)

Before proving this proposition, let us show how this proposition implies the first point of
Theorem B

Proof of 1. of Theorem [1.3. Let (Ay,...,Ax) € RV,

(i) Consider ¢4, the solution of (gKdV]) given by Proposition applied with ¢ given by
Theorem D Thus there exists tg > 0 such that

VE>to, |lpa,(t) — o) — Are™ Y (1)]] 0 < em T

i

Now remark that ¢4, is also a multi-soliton, which satisfies (R.3) by the definition of v and
the same techniques used in [@, Section 3.4] to improve the estimate in higher order Sobolev
norms. Hence we can apply Proposition EI with ¢4, instead of ¢, so that we obtain ¢4, 4,
such that

VE> 1, [|0asa.(t) — @a, () — Ase Y5 (1)]| 0 < e (20,

Similarly, for all j € [1, N], we construct by induction a solution ¢, ... 4; such that

Vt>to, [[@ar...a,(t) — Par,.a, () — Aje” Y E(@)]| L <em (L (3.2)

[

Observe finally that ¢,.... a, constructed by this way satisfies (E)



(i) Let (A,...,A%) € RY be such that (A},..., A) # (Ai1,..., Ay), and suppose in the sake
of contradiction that pa;  a, = ¢a, . ay. Denote io = min{i € [1,N] | 4] # A;}. Hence

1000

we have A} = A; for i € [1,i9 — 1], A}, # Ai, and from the construction of @4, . Ay,
PA1,..., AN (t) = PA;,..., AN (t) =+ ANe—ENtYJ (t) =+ ZN(t)
= QA an o (t) F AN_1eT VYT () + Ane T NY () + 2v-a () + an(t)
== a8+ Aige YT () + D A Y () + ) z(t)

k>ig k>ig

where 2, satisfies ||2x(t)|| ;1 < e+ for t > ¢5 and each k > io. Similarly, we get

() A e Y () + > Ae Y () + Y A,

k>io k>ig

Qar,...an (t) =pay,..a

i0—

and 5o using ¢a; a4y = @Ay, Ay and Yap a1 = PAr,A, 1, We obtain
—eint / —(ein+v)t
e~ A, — Al | < Ce (eig+7)

for t > to, thus |A;, — Aj | < Ce™", and so A] = A;, by letting ¢ — 400, which is a
contradiction and concludes the proof. O

Now, the only purpose of the rest of this section is to prove Proposition Ell Let j € [1,N]
and A; € R. We want to construct a solution u of (gKdV]) such that

z(t,x) = u(t,z) — p(t,z) — Aje_efthJr(t,:c)

satisfies ||2(t)]| ;2 < e+ for t > ¢, with ¢, large enough.

3.1 Equation of z
Since wu is a solution of (gKdV]) and also ¢ is (and this fact is crucial for the whole proof), we get
Oz + 03z + 0o l(p + Aje 'Y+ 2)" — @]+ Aje™ 03] — ;0. Y} — ;Y] = 0.
But from Corollary @, we have
‘CCJYC-: = erCj_ = agY::j_ - CjaﬂcY::j-_ +paw(Q€j_1Y::j)
and so following Notation @, we get the following equation for z:
Oz + 032 + 0. (p + Ajem sty 4 2)P — P — ije_eftR;)_le*] =0. (3.3)
This can also be written
_ e, e, e, ~1
Orz+0, [0224ppP T 2] 40, [(0 + Aje YT+ 2) = (o + Aje™ Y ) —p(p + Aje YT 2]
e, ~1 _ e, e _
+ 0 [((0 + Aje™ YT — P 2] = 0. (0 + Aje 'Y — P — pAjem'YFRETY).
Finally, if we denote
e -1 _
wi = plp+ Aje YT — o1,
w(z) = (p+ A~} +2) — (o + Aje Y1) = plp+ A=),
o (<P + Aje—ejtyj—i-)P _ (pp _ ije—ejtyj—i-R;)—l,
we obtain the shorter form of the equation of z:

Oz + 05 (022 + pP ™ 2] + Oplwy - 2] + Oz w(2)] = —0,1. (3.4)



Note that the term w(z) is the nonlinear term in z, and that w; satisfies, for all s > 0,
lw1(t)| e < Cse™%" for all t > 0. Moreover, the source term € satisfies

Vs > 1,30, > 0,Vt >0, [|Qt)] 5. < Cse™ ()t (3.5)
Indeed, if we write €2 under the form
Q= [(p+Aje Y = oF —ppP T Aje Y]
+pAje Y (P = R 4 pAje YRV - RYTY),
we deduce from (£.3), (2.2) and the definition of v (R.1)) that
12001 7. < Ce™2" + Ce™*|ip(t) = R(1)|| o + Ce™" - e™7" < Ce G+,

3.2 Compactness argument assuming uniform estimate

To prove Proposition EI, we follow the strategy of [E, @] Let .S,, — 400 be an increasing sequence
of time, b, = (by.x) € RV=7 be a sequence of parameters to be determined, and let u,, be
the solution of

j<k<N

Oy, + 0.[02u,, +ul] = 0,

Un(Sn) = @(Sn) + Aje™ V() + 3 by kY (Sn). (3.6)
k>j

Notation 3.2. (i) R¥ is equipped with the ¢? norm, simply denoted || - ||.

(ii) Bg(P,r) is the closed ball of the Banach space B, centered at P and of radius r > 0. If
P =0, we simply write Bg(r).

(iii) Sgw (r) denotes the sphere of radius r in RY.

Proposition 3.3. There exist ng > 0 and tg > 0 (independent of n) such that the following holds.
For each n > nyg, there exists b,, € RN~ with ||b,|| < 2e (e t205n - and such that the solution u,
of (B.4) is defined on the interval [to, Sy], and satisfies

Wt € [to, Sul,  [Jua(t) = o(t) — Aje” Y (0)] 0 < e @FN

Assuming this proposition and the following lemma of weak continuity of the flow, we can
deduce the proof of Proposition m The proof of Proposition is postponed to the next
section, whereas the proof of Lemma @ is postponed to Appendix [Al.

Lemma 3.4. Suppose that 2o, — 2o in H', and that there exits T > 0 such that the solution
zn(t) corresponding to initial data zo,, exists for t € [0,T] and sup,c(o 1) [|2n(t)|| g2 < K. Then
for all t € [0,T], the solution z(t) corresponding to initial data zy exists, and z,(T) = z(T) in
H'.

Remark 3.5. Note that the proof of Lemma @ strongly relies on the Cauchy theory in H?®
with s < 1, developed in [@] Thus this argument is quite similar to the compactness argument
developed in [[] or [[L1].

Proof of Proposition assuming Proposition @ We may assume ny = 0 in Proposition @
without loss of generality. It follows from this proposition that there exists a sequence u,,(t) of
solutions to (EKdV]), defined on [to, Sp], such that the following uniform estimates hold:

9> 0V € to,Sul, n(®) — pl0) — eIV (D), < .



In particular, there exists Cy > 0 such that |un(to)|| 41 < Co for all n > 0. Thus there exists
up € H*(R) such that u,(ty) — ug in H' weak (after passing to a subsequence). Now consider u
solution of

Opu + 0,[0%u + uP] = 0,

u(to) = uo.
Let T > tg. For n such that S, > T, u,(t) is well defined for all ¢ € [to,T], and moreover
un(®)|| 1 < C. By Lemma B.4, we have u,,(T) — u(T) in H'. As

Jn(T) = @(T) = Aje= YTy, < ¥,

we finally obtain, by weak convergence, ||u(T) — ¢(T) — Aje_efTYjJr (T)HH1 < e (@IT Thus u

is a solution of (EKdV]) which satisfies (B.1]). O
3.3 Proof of Proposition B.3

The proof proceeds in several steps. For the sake of simplicity, we will drop the index n for the
rest of this section (except for S,,). As Proposition @ is proved for given n, this should not be
a source of confusion. Hence we will write u for w,, 2z for z,, b for b,, etc. We possibly drop the
first terms of the sequence S,,, so that, for all n, S, is large enough for our purposes.

From (@), the equation satisfied by z is

Opz + 0:[022 + ppP~12] + Oy w1 - 2] + 0z [w(2)] = —0,9,
2(S0) = e Yy (S0):

Moreover, for all k € [1, N], we denote

o) = [0 2E 0.

In particular, we have

Zbl/ ) - ZE(S,).

I>j

Finally, we denote o™ (t) = (a; (), < -

3.3.1 Modulated final data

Lemma 3.6. For n > ng large enough, the following holds. For all a= € RN™7, there exists a
unique b € RN=J such that ||b]| < 2||a~|| and o= (S,) =a~.

Proof. Consider the linear application
D RN-7 — RN-J

b=(b);qen (ij by leJr(S")Zk_(S"))KMN'

From the normalization of Lemma E, its matrix in the canonical basis is

1 f j+2 ]-‘,—1 S) f j+N ]-‘,—1 )
Mat ® = f J+l J+2 Sn) 1
fYJ+1Z;+N n) 1
But from (@), we have, for k # 1,
‘/Yizi < Cpe™75n




with Cp independent of n, and so by taking ng large enough, we have ® = Id+ A4,, where ||A,| < %
Thus @ is invertible and [|®~1|| < 2. Finally, for a given a= € RV¥=7 it is enough to define b by
b = & !(a”) to conclude the proof of Lemma B.4. O

Claim 3.7. The following estimates at S,, hold:
e o) (Sn)| < Ce=25nb]| for all k € [1, N,
o |oy, (Sn)l < Ce=¥5 6| for all k € [1, 5],
o 205l < o]

3.3.2 Equations on oz,f

Let tg > 0 independent of n to be determined later in the proof, a= € Br~—; (e_(ef+27)3") to be
chosen, b be given by Lemma @ and u be the corresponding solution of (@) We now define the
maximal time interval [T'(a™), S,] on which suitable exponential estimates hold.

Definition 3.8. Let T'(a™) be the infimum of T' > ¢¢ such that for all ¢t € [T, S,], both following
properties hold:

et (t) € Bya (1) and €2Vt~ (t) € Brn—;(1). (3.8)

Observe that Proposition B.3 is proved if for all n, we can find a~ such that T'(a~) = o. The
rest of the proof is devoted to prove the existence of such a value of a™.

First, we prove the following estimate on af.

Claim 3.9. For all k € [1,N] and all t € [T'(a™), Sy],

d v
’mw F ekaw\ < Coe™ P [2(t) g2 + Callz @)z + Coe™ (04", (3.9)

Proof. Using the equation of z (@), we first compute
d + + +
50 0= [ 22+ | 22,
= Zaw + ppP Lz ZE + [ w228 + | w)ZE + | QZE — ¢ | 2ZE
¥ kx kx kx kx kx
= /(zm -z +pRgflz)Zf; +p/(90pfl _ Ri’*l)sz; + /(wlz +w(2) +Q)ZE.
But from (i) of Lemma .5, we have
/(zzz — Cp2 + pRiilz)Z;:I = (=L, 2(t, - + cit), 31Z$)
= (2(t,- + cxt), —Le, (8zZ$)) = teg(z(t, - + cit), chi) = :I:ekoz,f,

and from (.3) and (B.5), we have the following estimates:

| [P = Ry D225, < Cllp = Rl 2]l e + e 2] 12 < Ce™ V|2,

| forzZig | < llwnllpellll o | 205 [l 1 < e l2ll e < Cem 2l

2 2
| [w(2)Zi| < Cllzllze < Cllzl,

| [QZE] < C)Q] o < Cem(etint,

which conclude the proof of the claim. o
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3.3.3 Control of the stable directions
We estimate here a; (t) for all k € [1, N] and ¢ € [T'(a”), S,]. From (B.9) and (B.§), we have
d
Eaz(t) _ ekaZ(t) < Coe_(ej+5'7)t + Oye 2t 4 Oue— (et < o= (e ANt
Thus | (e~ (5))'| < Koe™(¢stest47)s and so by integration on [t, S, we get |e=**Smait (S,) —
e o (t)] < Kae™ (es-bertan)t and so
gt (8)] < e g (S| + Kae™ (&40,
But from Claim B.7] and Lemma B.q, we have

eI (8)] < fogf ()l < Ce‘”"l%ll
< Ce 2 —(e5420)8n <« Koe (€4S < e (G ANt

and so finally
Vk € [1, N],Vt € [T(a™),S,], |af(t)] < Koe (47t (3.10)
3.3.4 Control of the unstable directions for k < j

We estimate here o (t) for all k € [1,5] and ¢t € [T'(a™), S,]. Note first that, as in the previous
paragraph, we get for all k € [1, N] and ¢ € [T'(a™), Sy],

i (8) + enal (1) < Ko™ @+, (3.11)

Now suppose k < j, which implies ej, < e;. Since |(e®**ay (s))l| < Kaelt:=€i=47)3 we obtain, by
integration on [t, S,],
e ()] < e 5D ag; (8n)] + Fpe™ (T,

But again from Claim B.] and Lemma B.6, we have
eek(Sn—t) |a1§ (Sn)| < Koet* (Sn—t)e—2'ySne—(ej+2y)Sn, = Koqe (Sn,—t)e—(ej+4V)Sn
< KoeSn—t)(en—ej) gmejt o —47Sn K2e*(ej+47)t,
and so finally
Vk € [1,5],Vt € [T(a7),Snl, oy (t)] < Koe™ (47t (3.12)
3.3.5 Monotonicity property of the energy

We follow here the same strategy as in [@, Section 4] to estimate the energy backwards. Since
calculations are long and technical, we refer to [[L1] for more details.
We define the following function

Y(x) = %arctan(exp(f\/a:cﬂ))

so that limy ¥ = 0, im_o, ¢ = 1, and for all z € R, ¢)(—z) = 1 — ¢(z). Note that by a direct
calculation, we have [¢)"(z)| < %[¢'(x)|. Moreover, we set

N—1
1 Ccp + Crt1 Tk + Trt1
h(t, — E - - - t— .

Ck+1

11



Observe that the function h takes values close to % for x close to cixt+ xk, and has large variations
only in regions far away from the solitons (for instance we have, for all k € [1,N] and ¢t > 0,
| Ri(t)ha ()| < Ce™*%). We also define a quantity related to the energy for z:

H(t) = / [(22(t.2) — Pt 2(t.2) )it 2) + 2(t.2) } do

where . .
(p+uv+2"7  (p+uv)""

Ft,2) =2
(t,2) p+1 Pt 1

and v;(t,x) = Aje” 'Y (L, x).
Lemma 3.10. For allt € [T(a™),Sy],

dH

S22 ~Collz®) 3 — Cre™ 27 — Coe™ @ 2()ll

Proof. Since 2 = 2[(¢ + v + 2)” — (¢ + v;)F], we can first compute

dH
o = | G F@)he 2/2t[(50+”j +2)" = (p+v)h+ 2/thzzh+2/ztz

- 2/(90 + Uj>t [(90 + Vj + Z>p - (80 + 'Uj)p *p(ga + ’Uj)pilzj| h.
Moreover 2 [ zy1z:h = =2 [ z¢(2g0h + 25hy), thus

dH
ar (Zi — F(2))h — 2/2t [Zm +(p+v;+ 2P — (o + 'Uj)p]h +2 [ ze(z — zzhy)

- 2/(90 + Uj>t [(90 + Uj + Z)p - (80 + Vj p *p(ga + ’Uj)pilzj|h.
Now we replace z; thanks to the equation that it satisfies, which can be written, from @),

ze + {zm + (p+vj+2)° — ((,0+Uj)p:| =—Q,.

Using multiple integrations by parts, we finally obtain

‘il—fj = [ (22— F(2)h + / 22 haga (3.13)
+2/}gu“¢+wg+zf—(¢+vpﬂx (3.14)
—2/?“w+w+wf—%w+wVL—2/wMRw+w+wf—(w+wV—Mw+wW*4

(3.15)
—Q/Ah+2/thm+2/2mQM+2/muﬁ@+w+@p—@+wf (3.16)
—2/hw4wng+zV—(@+uﬁV—m@+uﬂp*4 (3.17)
f/[%f+@+m,+@ﬂf@+mﬁﬂ%uf2/2;m. (3.18)

To conclude, we estimate each term of this equality:

e First note that (B.18) > 0 since h, < 0.

12



e (B.13): By the expression of h and [)"'| < Z2|¢|, we see after direct calculation that
ht = oolhy| 2 4|hgysl|, thus

3
€3> [ [Fors - [ PO
Moreover, since ||Rh¢| ;. < Ce 4, and
1 -1 -1 -1 -1
|F(2)| < ClzlPT + C2 o+ 0P < Cllzllf 2° + C22(I0l" ™ +[o[77)
< Cl2ll e 2® + C22lp = RPTH + C22 R + C2% [0 oo
then [ |F(2)lhe < Collzlf71 + Cre" 2|71
e For (B.17), first note that [|vj¢|| ;.. < Ce™%?, and so

2 — 2
|BIDI < Cllvell o 12llz2 < Cre™ |1zl

o |BLDI < ClQ szl 2 < Cae™ T 2] 1 by (BH).
e To estimate (B.14), we develop it as

p
> (8)r [ 241t vt

k=

€= [ h; (1) e+ 0]

p—1
> (Z) o=k / (0 +0), (0 +0)""  hazaz® + P/Zizp_lhz.
k=1

Since |pghs| + |phs| < Ce " and |vj,| + |vj| < Ce™%*, then
(B19)| < Cre™||2)1 3 + Coll2ll3p -

e We finally estimate () to conclude. The key point to control it is that locally around
T = cxt + o), ¢ behaves as a solitary wave of speed c,. More precisely, we strongly use the
estimate [|@ih + @z~ < Ce™ ", proved in [[L1]. Note that the proof uses the H* norm of
the difference ¢ — R, i.e. (R.3). Now, we compute

— 5B = /Z[(Wr”ﬂ' +2)" - (<P+Uj)p*p(so+vj)p_1zh

" /(pth[((’p 05 +2)" = (9 + )" —plo+ )"z - M(@ + vj)pﬁZQ}

2
B 1 B
—p/(@+vj)” 1ZIZ+%/(Pth((P+Uj)p 22 T4+ T4 +1V.

First notice that [I| + |II] < Co|z[|%,:. Moreover, an integration by parts gives

_ -1 _
M4 1V =2 [ 220 - (e +u)e + o)) 2+%/%<w+vﬁp

=D [ 2o+ oty + B2 [0 o2

thus
2 2 _ 2 e 2
[T+ IV| < Cllgs + ihll oo 12172 + Cllvjall o 12172 < Ce™|2[[5 + Ce™ 2],

and so finally |(B.18)| < Collz[|%: 4+ Cre™ 27|21 O
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We can now prove that, for all ¢ € [T'(a™), S,],
/ (22() = pRP 1 (0)22(0)) (1) + 22(t) < Kyem 220, (3.19)

Indeed, from Lemma and estimates (B.§), we deduce that, for all ¢ € [T'(a™), Sp],
an
dt
Thus by integration on [t, S,,], we obtain H(S,) — H(t) > —Kje~2(¢+20)! and so

(t) > —Cpe 3TNt _ 0y e=21te 20+t _ Ope (€3Nt —(es Mt > ) o= 2(e5+2)¢,

H(t) < H(Sy) + Kye 2201,
But from Claim @ and Lemma @, we have
_2
H(S,) < [H(Sn)| < Cll2(Sn) 71 < Cll6]* < Clla” |

< 0672(ej+2'y)5n < Cvef2(ej+2'y)t7

and so
Vte [T(a7),S,], H(t) < Kie 2@+t
Finally, since
|F(2) = pRP' 22 < |F(2) = plo + o))" 22+ pl((p +vy)" ™ =P )22 +pl(0P " — RPT)27)
< Colzf + Cre™ 22,
we easily obtain (B.19) from the definition of H.

3.3.6 Control of the Ry, directions

N
Define z(t) = 2(t) + Z a(t) Ry (t), where ai(t) = —%, so that by (R.9)
k=1 “k
’ / TRia| < Ce 2] (3.20)
and there exist C', Cy > 0 such that
N
Cullzllm < IZll + D larl < Collzll - (3.21)
k=1

As in [L1], Section 4], we find
/ (22 - pRP'2)h 4 2] < / [(22 — pRP™12%)h + 2%] + Ce™ 27! |z[71.

Using (B.19), we deduce that

x

Vit € [T(a7), Syl, / (22(15) —pRp’l(t)ZQ(t))h(t) (1) < KpeHe+mt, (3.22)

Now, from the property of coercivity (vi) in Lemma @, and since h takes values close to i
for x close to ¢it + x, we obtain, by simple localization arguments (see [@, Lemma 4] for details),
that there exists Ay > 0 such that

N

/(zi*pRp_lzz)h+zz > XollZl 3 *%QZ [(/ZRM)2+ (/zZ,j)2+ (/zzk)2

k=1

Moreover, gathering all previous estimates, we have for all ¢t € [T'(a™), S,]:

14



(a) Forall k € [1,N], ([ ZRis)” < Ce=27||2|%, < Cem2(e+201 by (B.20).

(b) For all k € [1,N], ([ZZ7)° < 2(a)” + Ce||2|%, < Ce=2+20)¢ by (i) of Lemma B3,
(B19) and (2.

(c) For all k € %j]], (f EZk_)2 < 2(04,;)2 + Ce—2"ﬂf||zz||i,1 < Ce2(e 2t by (iii) of Lemma P4,
(B.13) and (2.

(d) Forall k € [j +1,N], (J72;)% < 2(ap)” + Ce=2t|z|%, < Cem2e+20t by (BA).
Finally, we have proved that there exists K > 0 such that, for all t € [T'(a™), Sp],
20| gr < Kem (208,
We want now to prove the same estimate for z.
Lemma 3.11. There exists Ko > 0 such that, for allt € [T'(a™), Sy],
1)l g2 < Koe™ (200,

Proof. By (B.21), it is enough to prove this estimate for |ay(¢)| with k € [1, N] fixed. To do this,
write first the equation of 7 from the equation of z (B.4):

Et + (z:nz +p50p71z)1

N N N N
=2zt + Z allet + Z GEle + Zpgx + Z allemm + pz al(leQDpil)z +p(90p71z)z

=1 =1 =1 =1
N N
= *(wl : Z)gg - (w(z))gg — Q5+ Za;le + Z a; { — Rz + Rigee +p<,0p71Rlz:| .
T
=1 =1

Then multiply this equation by Ry, and integrate, so that we obtain

/ztka - /(gzz +p(10p_1g)szz = a;c/Ril +Za;/Rlle$

1k

N
+Zal/ [Rlzzz _ClRlI +p(Pp_1lei| ka +/wlszzm +/w(’z)RkII +/Qkam
=1 ¥

But from (2.3) and (iii) of Claim P.g, we have

H(lemm - ClRlz _’_p(pp*lle)zHLoo < pHRlI((ppil - Rf_l)HHZ
< Cllp = Rllyz + pll Riz(RP™ = BRIl o < Ce™™,

and consequently

N
+ClZl 2 +Ce™™ Y lajl + Ce™* ) al

0| < C ’/ztRm
12k =1

+Ce™" |z 12 + Clizl72 + Ol -

Moreover, from [ ZRjy, = > iz Qi J RizRper, we deduce that

d -
7 ZRpy = l; af/Rlem + #Zkal /(*Clemka — ¢ Rig Riszs)

= /Zka +/5(*Ckka),
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and so

‘ / zt ka

Gathering previous estimates, we have from (8.21)) and (@),

N
<Oz gr + Ce Y ajl + Ce > ayl.
14k =1

-~ _ _ 2
jai] < CllZ] g2 + Cae™ Y lajl + Ce™ |2y + Cllzll7n + ClIQ| 12
£k

< K67(€j+2'y)t + 0467'” Z |a;| + 06727t67(6j+7)t + 0672(6j+7)t + Cef(ej+4'y)t.
1%k

Finally, if we choose ¢, large enough so that Cye~7" < &, we obtain for all s € [T'(a™), Sy],
()] < e,

By integration on [t,S,] with ¢ € [T'(a™), S,], we get |ax(t)| < |ax(Sn)| + Ke~ (42t But from
Claim B.7 and Lemma B.4, we have

lar(Sn)| < Cllz(Sn)ll g1 < C|lB]| < Clla™|| < Ce™(F2M5n < Cem(est2m)t,
and so finally,
Vt e [T(a™),Sn), |ar(t)] < Ke (ei+20t, -
3.3.7 Control of the unstable directions for k£ > j by a topological argument

Lemma being proved, we choose to large enough so that Koe~ 7% < 5. Therefore, we have
1
A € [T(a_)vsnL ||Z(t>||H1 g 56_(61+7)t.

We can now prove the following final lemma, which concludes the proof of Proposition @
Lemma 3.12. For to large enough, there exists a~ € Byn—; (e~ (497279 such that T(a™) = to.

Proof. For the sake of contradiction, suppose that for all a= € Bgn—;(e=(%12M)5) T(a=™) > t,.
As e(etMT@) (T(a™)) € By1(1/2), then by definition of T(a~) and continuity of the flow, we
have

el 2T~ (T(a7)) € Sprv—i(1). (3.23)

Now let T € [to,T(a")] be close enough to T'(a~) such that z is defined on [T, S,], and by
continuity,
vt e [T7 S’ﬂ]a Hz(t)HHl < e_(ej—i_’)/)t'

We can now consider, for t € [T, S,,],
N(t) = N(a™ (1) = [l >V a (1),

To calculate N, we start from estimate (B.1]):

ke +LNLVEE .85, | Lar(t) +enar (t)\ < Khe~lertir,

4
at”
Multiplying by |a; (t)|, we obtain
—nd - — 2 1= (es At
a (t) ar (t) + exayy, ()] < Kae o, (8)],
and thus

_,.d _ N2 _,.d _ N (e _
20, (UEO% () + 2ej4105 (1) < 20y (UEO% (t) + 2eay (1) < Koe™ T o (1)
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By summing on k € [j + 1, N], we get
(la™ @) +2ej41 e ()7 < Kze™ 4 lam (1))
Therefore we can estimate
N'() = (22 o™ (1)2) = e2(+20% [9(e; + 29) o™ (1) + (Haf(t)HQ)l]
< 2es + 2) e (O — 2epplla” (O + Kae o ()]
Hence we have, for all t € [T, S,],
N'(t) < =0 - N(t) + EKae“la™ (1),

where 6 = 2(e;+1 —e; —27) > 0 by definition of y () In particular, for all 7 € [T, S,,] satisfying
N(r) =1, we have

N'(7) < =04 Ko |ja™ (1)|| = =0 + Kpe®Te G207 — g 4 Koe™ 7 < —0 + Kye™ 270,

Now we fix to large enough so that Kye~27% < &, and so for all 7 € [T, S,] such that N'(r) = 1,
we have

N(1) < —5. (3.24)
In particular, by (B.2), we have N’(T'(a™)) < 7%

First consequence: a~ — T'(a”) is continuous. Indeed, let € > 0. Then there exists § > 0 such
that N(T(a™) —¢) > 1+ 6 and N(T'(a”) +¢) < 1 — 4. Moreover, by definition of T'(a™)
and (B.24), there can not exist 7 € [T'(a™) + ¢, S,,] such that A(7) = 1, and so by choosing
d small enough, we have for all t € [T'(a™) +¢,5,], N(t) <1—4. But from continuity of the
flow, there exists n > 0 such that, for all a~ satisfying ||[a~ — a~|| <7, we have

Vie[T(a") =& S, IW(a (1) = N(a™ ()] < 6/2.
We finally deduce that T'(a™) —e < T'(a~) < T(a™) + ¢, as expected.
Second consequence: We can define the map

M BRij(ef(ejJrh)S") N SRij(e*(ejJr?v)Sn)
a— — e—(ej+2'7)(sn_T(a7))a_(T(a_))_

Note that M is continuous by the previous point. Moreover, let a~ € Sgn—; (e~ (¢i+27)5n),
As N'(S,) < —£ by (B.24), we deduce by definition of T'(a”) that T(a~) = S,, and so
M(a~) = a~. In other words, M restricted to Spx—; (e~ (¢3+27)5) is the identity. But the
existence of such a map M contradicts Brouwer’s fixed point theorem.

In conclusion, there exists a~ € Bgn—; (e~ (¢+27)5) such that T(a™) = to. O

4 Classification of multi-solitons

This section is devoted to prove the second assertion of Theorem @ Let p>5, N>22,0<c; <
-+ <cnyand xq,...,xy € R. Denote R = Zjvzl R, «; and ¢ the multi-soliton given by Theorem
[[.3 Let u be a solution of (EKdV), defined on [t1, +00) with ¢; > 0 large, satisfying

lim [u(t) — R(t)] ;= 0. (4.1)

t——+o0
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4.1 Convergence at exponential rate v

We first improve condition (EI) into an exponential convergence, with a small rate v > 0, where
~ is defined by (R.1]).

Lemma 4.1. Let e = u—¢. Then there exist C,to > 0 such that, for allt > to, ||e(t)||gn < Ce .

Proof. Step 1: Modulation. Denote v = u — R, so that |[v(t)||; — 0 as t — +oo by ([.1).
Therefore, by a standard lemma of modulation (see for example [[L1], Lemma 2]), for to large
enough there exist N functions y; : [to, +00) — R of class C! such that w = u — E, where
R=Y"R; and R;(t) = R;(t, - — y;(t)), satisfies

Vi€lLN], [w (t)(R;),(t) =0,
[l gr + 50 [y < Clo@)]l g,
Vi€ [LN]  |y;®)] < Cllw@)| g + Ce™".

Note that the first two facts are a simple consequence of the implicit function theorem, while the
last estimate comes from the equation satisfied by w,

N N
Opw + 93w = Zy;az(ﬁk) — 0y ((w + E)p - Z Ei) ,
k=1 k=1
multiplied by (]%)I and integrated. Similarly, if we denote Z]i t) = Z?[(t7 - —y;(t)) and &;E t) =
J w(t)Z;E (t), the equation of w multiplied by Z]i leads to

vt > FE(t) F e;ar(t )‘ < Cllw(®))?p + Ce 1, (4.2)

. d
05 dt ]

Step 2: Monotonicity. We use again the function v introduced in Section . Following [E],
we introduce moreover ¢y = 1 and for j € [1, N — 1],

¢+ ¢
2

Tj+ Zj+

t+ = ¥i(t) = v(z —my(t)),

m;(t) =

and
=1, ON=1—Yn_1, ¢ =1 —;1 forje[2,N—1].

We also define some local quantities related to L? mass and energy:

M0 = [000, B0 = [ (520 7010) 60, B0 =50+ 0.

Then, by ([.1]) and monotonicity results on the quantities ¢ > Zizl My (t) and ¢ — Zi:l E(t),
we have, for all ¢ > to and all j € [1, N], following Lemmas 1 and 3 of [@],

i (/ Qz, — Mk(t)) > —Kaye 2 (4.3)
i( (Qey) + 100/622 — Ex(t > > —Kye ™, (4.4)

‘(Ejm%m(t)) (B@)+% [@2) - 5u >\<K4ew+f<4||w<t>||m [,
(4.5)
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where H;(t) = [ (w%(t) + cjw(t) —péﬁ? !
N N—1 J N N
1 ( c 1 1 ~ 1 ~ 1 0o
> (B +5a) = K——)EEk 5 Ek+—<1 >§Mk
2 \ & J 2 2 2
= c; 2 o c; Ci1) o N 2cn 50cn —
N-1 7
1/1 1 o 1 1 Z
=1 2 Cj Ci+1 50 (& Ci+1 st

and similarly

A ; /1 1
Z ( (Qe,) 2/ Cj)j—l [(C?C?+l>k_1

i 2
R B 1 oo (1
+; 5(5_%‘“) (1_%( j CJ+1))Z/Q 1
1 N
+%};< (Qe) + 100/Q’3k> 2cN< 50cN)Z/QCk’

and we remark that all coefficients in these decompositions are positive, we obtain by (E) and

L9,

j=1 C? j=1
Therefore, we have by ([.),

1M1 Al ¢ A

3330 <3z (B0 + F00) - Z—( @)+ % [a)

N
1 _
) DL RS A ey

JlJ

=1
K
< Cre ™ + = w(®)l| / Z%
o3
0. Finally, as Zjv:1 ¢; =1, we obtain
(4.6)

since ¢; >
Y1
>7 S Hj(t) < Crem" + Collw(®)|3.
j=1"14
Step 3: Coercivity. Now, from the property of coercivity (vi) in Lemma E and by standard

localization arguments (as in Section ff), we have
2 B 2
R).0) - ([uwzio).

S L) > Aot ||H1AZ</ L

j:1 J

Ae e

£ (4 — fw(t)ZJi (t), we obtain by (@),

As [w(t)(R;), (1) = 0 and & (1)
Cre "+ Callu(®) [ + Col@ ()P,

2
Acllw(@®)l s <
where a(t) = (&ji (t))j,:l:' For to large enough so that Co|jw(t)|| ;1 < A2, we obtain
Cl||&(t)|‘2 + 026_2vt. (47)

VE>to, Jlw(t)|i <
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Step 4: Exponential decay of &. From ([£3) and ({i.]), we have for all j € [1, N] and all ¢ > to,

d

L) F et (0] < LG + Coe

We follow here the strategy of [, Section 4.4.2]. Define A(t) = Zjv 1a+( ) and B(t) =
Zj-vzl a; (t)Q, and let us prove that A(t) < B(t) + Le2" for L large enough. First, we have,
by multiplying the previous estimate by |&;r(t)| (that we can of course suppose less than 1),

d _ ~ _
F(1) 2 ejaf () - Cla; ()] - @) — Coe ™",

&+(t)£aj g

and so by summing,
A'(t) = 2e1A(t) — C||a(t)|]® — Coe 7,

Similarly, we obtain
B'(t) < —2e1B(t) + C1||a(t)|]® + Coe™ . (4.8)

Now let h(t) = A(t) — B(t) — Le=2" with L to be determined later. We have of course h(t) — 0
as t — 400, and by the previous estimates, we can calculate

B'(t) = A'(t) — B'(t) + 2L~ye
> 2€1A(ﬁ) + 2€1B(t) — Cl|\&(t)||3 — CQG_Q’Yt
2 261h(t> + 4elB(t) - C’1||62(t)|\3 - 026_2vt + 2L€1€_2’yt

Since ||a(t)]|? = A(t) + B(t) = h(t) + 2B(t) + Le= 2", we get
(1) = h(t)(2er — Cil|@(t)|]) + B(t)(der — 2C1[|a(t)])) + e 7 (2Ler — C2 — CLL|a(t)]))-

Now choose ty large enough so that Cy|a(t)|| < 4 for t > to, and fix L = 02. Therefore, we
have, for all ¢t > to such that h(t) > 0, h/(t) > h( Hence if there exists T to such that
h(T) > 0, then h(t) > 0 for all t > T, and thus h( ) = Ce®t which would be in contradiction
with lims—, o A(t) = 0. So we have proved that h(t) < 0 for all ¢ > ¢y, as expected.

Now, from (ﬁ) and the choice of ¢y to have C1||a(t)|| < 5 for all ¢ > to, it comes

L
B'(t) 4+ 2e1B(t) < e1 B(t ( Ay )ew,

and so B'(t) + e1B(t) < Ke 2. Therefore, (e'*B(s))’ < Kel1=27)% for s > to, and so by
integration on [to, t],
e B(t) — e B(ty) < Keler =20t

since e; — 2y > 0. We deduce that
B(t) < Ke ' + K'emat < Ke™ 2",
Finally, we also have by the previous point A(t) < K’e=2?"%, and so
Vt > ty, |a(t)]]? < Ce 7. (4.9)

Step 5: Conclusion. By ([£7), we deduce that [|[w(t)|| g < Ce™*, and from the estimate on
ly;|, we have for all j € [1, N] and all ¢ > to, |y;(t)| < Ce™7*, by integration and the fact that
y;(t) = 0 as t — +o00. To conclude, write

e=u—p=w+R—p=w—(p—R)+ (R—R),
so that

el < lw@)llga + 10 = BYOll s + 1R = R)E)ll g2 < Ce™ + /(R = R)(O)]l g1
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But we have

N
(R = R)(®)ll 2 < Y IR (8- = y3(8) = Ry(®)ll g
j=1
N
2 2
<O Qe - et - %t = ey - Qe - &t - e
j=1
N
<Oyt < Ce™,
=1
and so finally, for all ¢ > to, ||e(¢)]| ;7 < Ce " O

4.2 Convergence at exponential rate e;

Now, we improve the convergence of the previous lemma, with an exponential rate e; > . The
proof will mainly use arguments developed in [@, Section 4].

Lemma 4.2. There exist C,tg > 0 such that, for all t > to, ||le(t)|| 1 < Ce™e?

Proof. Step 1: Estimates. We follow the same strategy as in Section E First, from the equation
of g,

et + (sz + (90 + 5)p - @p)z =0,
we can estimate ozi(t) = [e()Z; £(t) for j € [1,N] and t > to. Indeed, we have

d
pn Ji() /EtZ:t /ngit :/(Emm—l—((p—l—s)p—gop)Zﬁ—cj/gZﬁ
=~ (p
_ ‘ —k _k
_/[gm—cja—i—;(k)(pp £

:/{sm—cjerpr*ls} Z;; +p/(ga - Ry ! sZjE Z( )/ P ksijiz

=TI+ 1II+IIL

+
Ziy

But we have I = ieja]i(t) (see proof of (B.9)), [TT| < Ce™*||e(t)]| 2 and [IIT] < C|le(t)]|3;1, and
so, for all t > tg and all j € [1, N],

‘dt a; Wjaj(f)‘ < Cee(t)|l - (4.10)
To control the R;, directions, we proceed exactly as in Section . Define £(t) = e(t) +

)R, (t ~
SNy aj(t)Rjx (1), where a;(t) = % s0 that | [ Z(t)Rjs(£)] < Ce"[le(#)]| 1 and
€

Cillellgr < lEll +Z|%| Colle| - (4.11)
As [le(®)]| g2 < Ce™ ™, we have exactly as in [T}, for all ¢ > ¢y, by monotonicity arguments,

[ 20 - s 0200 + 20 < ce s @)l

where h is defined in Section B.3.§. We also have from [@],

N
/(Eﬁ — pRPTIZ)h + 2% < / [(e2 — pRP'e*)h + %] + Ce " Z a? + Ce 2|7,

Jj=1
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and thus

[ B0 -prr w2 + 20 < 0 sup )]

But as in Section , a localization argument of the property of coercivity (vi) in Lemma E

leads to
2
+ (/ng)

Since ([ ZR;0)” < Cem2|e(t)||% and ([ 225)° < 2(a)” + Ce=>"|le(t) %1, then

J

N

/(gg_pRp—ng)thgQ > XolEll — /\%Z [(/am): (/gzj)

j=1

2

N N

— — 2 —\2

XalElf < Cem sup et + e le®)lip +C 3 () + C Y (a7)
> j=1

J=1

By denoting a(t) = (ozjE (t))j .- we thus have

)

~ 2 — 2
IE@®) 7 < Ce™" sup [le(t') [ + Clle(t)]|*. (4.12)

Finally, to estimate |a;(t)| for all j € [1, N], we follow the strategy and some calculation from
the proof of Lemma . First write the equation satisfied by &:

gt + (gmm +p(pp—lg)z

=€t + Exaax + p + Z akRk:nt + Z akka + Z akkaxx + pz Qg ka‘P 1 z
N
=—[l¢+ E)p - Sﬁp]x + p(@p_le)x + Z a;Cka + Z ag [7Ckka + Rizaz + p(,Op_lez}l
k=1 k=1
N N
=D @i Ria + ) ar[Rizse — 6Biw + pe? ' Ria], = [(0+ )" — " —po?le] .
k=1 k=1

Then multiply by R;, and integrate, so

/gtij _/(gmm +p(ppilg)ijm = a;/ +Zak/RkI jx
k#j
N

+> ax / Riae — ckRiw + 0o Ry ] Rjo + / [(#F +€)" — ¢ — ppP~le] Rigo.
k=1

As H(kaxx - CkRk:n +p¢p71RkI) < Cei'ytv we obtain

all e
vt vt 2 z
< 0| [EORH 0] + 0 401 + 0 el + OOl + CIED
k#j
Moreover, we still have
[EOR 0] < IOl + 0 401+ Ce (0]
k#j

and so

a5 ()] < Cre™ ™Y " Jag, (b)) + Ce " le(®)ll g + Clle(®) 13 + CIEW ] -
ki

22



Finally choose ty large enough such that Cie=7% < %, so that we obtain, for all j € [[1, N] and
all t > to,
|aj (O] < Ce™ le®)l gr + ClIEWD | 112 (4.13)
Step 2: Induction. With estimates (.10 to (), we can now improve exponential conver-
gence of £ by a bootstrap argument. We recall that we already have [|e(t)|| n < Ce™ 7! with vy =
7. Now, we prove that if ||e(t)|| ;1 < Ce™ ! with v < 79 < e1 — 7, then [|g(t)]| ;1 < C'e™ (o1,
So, suppose that [|e(t)]| 71 < Ce 7! with v <49 < e — 7.

(a) From ([L.10), we get for all j € [1, N], |(e_efta;r(t))/| < Ce (€704t "and so by integration

on [t,+00), o ()] < Ce~ (0t since af(t) = 0 as t — +00.

(b) Still from (.10), we get for all j € [1, N], |(eeita;(t))/| < Cela™70)0t Asej —y — 0 =
e1 —7 — 0 > 0, we obtain by integration on [to,t], [e“'a; (t) — %' (tg)] < Cels 7710,

and so
log ()] < Ce~(otMt 1 Ceeit < e+t

(c) Therefore we have || (t)||? < Ce=200+Mt and so by ([(.13), we obtain ||£(t)|| ;1 < Ce~ (041t

(d) From (f.13), we deduce that for all j € [1, N, |a}(t)] < Ce~ (09t and so, by integration on
[t, +00), |a;j(t)| < Ce= (0N since a;(t) — 0 as t — +oc.

e) Finally, from , we have ||e(t)|| ;1 < Ce= (0Nt as expected.
H

Step 3: Conclusion. We apply the previous induction until to have e; — v < 79 < e;. Note
that if v9 = e; — -, then the estimate is still true for vy = e; — %7 < e; — 7, and so for
Yo = €1 — %7 > e1 — by the previous step. Now we follow the scheme of step 2. We still have, for
all j € [1,N], |af ()] < Cem00tME < Cemt, and |(e® a;(t))/| < Cele=777)t In particular,
for j = 1, we have

ey (1)'] < Celr 771 € L ([to, +00)),

since e — v — o < 0. Hence there exists A; € R such that

lim e“faj (t) = Ay, (4.14)

t—+oo

and |e“ta] (t)—A;| < Celer=7770)t ‘and so |aj (t)| < Ce™t. For j > 2, since e;—y—7p > ea—7—
e1 > 0 by definition of v, we still obtain by integration on [to,t], [o (t)] < Ce=(0FTME < Cemert,
As in step 2, it follows ||au(t)]|? < Ce™24% then ||E(t)|| ;7 < Ce~* by ([12), |a;(t)] < Ce™t for
all j € [1, N] by ({13), and finally ||e(t)| ;2 < Ce=** by (f11)), as expected. O
4.3 Identification of the solution

We now prove the following proposition by induction, following the strategy of the previous section.
We identify v among the family (¢4, 4,) constructed in Section J. We recall that this family
was constructed thanks to the subfamilies (¢a4,,...4,), satisfying (B.2) for all j € [1, N]:

Vit = to, ||(pA1,---7Aj (t) - 90141,---7147'71(1?) - Aje_ejtY'jJr(t)HH1 < e~ (et

Proposition 4.3. For all j € [1,N], there exist to,C > 0 and (A1,...,A;) € RI such that,
defining €;(t) = u(t) — pa,,...a,(t), one has

Vt>to, lej(@)]l g < Ce™ %t
Moreover, defining afk(t) = [e;(0)ZE(t) for all k € [1,N], one has

VEk € [1, 7], tiigrnoo eekta;k(t) = 0.
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Remark 4.4. Ase; =u—pa, =c+ (p — pa,), we have

les @l < lle@®llgn + lo(t) = pa, Ol g < Ce

by Lemma [£3 and (B.3). Moreover, if we define 21 by 21 (t) = pa, (t) — p(t) — Aje=tYF(t), we
have

o) = [0z = [0z 0 - met [vrozio - [a0zi0
=oay (t) — Are” " — /zl(t)Zl_ (t)

by definition of a;” in the previous section and by normalization (iv) of Lemma R.§. As ||z1(t)]| ;1 <
e~ (e1t! we finally deduce, by ([L.14)),

ey ()] < |ettay (1) = 4|+ Ce™" ——— 0

— 400
Therefore, Proposition @ is proved for j = 1.

Proof of Proposition E By remark Q, it is enough to prove the inductive step: we suppose the
assertion true for 7 — 1 with 7 > 2, and we prove it for j. So, suppose that there exist to,C > 0
and (Ay,...,Aj_1) € R77! such that |[e;_1(t)|| 5 < Ce~%-1 for all t > to, and moreover, for all
ke[l,j—1], e*fajy ,(t) = 0ast — +oo.

Step 1: Another induction. Following the proof of Lemma [L.3, we prove that if ||ej_1(¢)|| ;1 <
Ce ! with e;_1 < 79 < €j — 7, then ||g;_1(¢)[|;n < C'e=(0FtVt But, as ¢4, is a soliton like
©, estimates (J.10]) to () of the previous section hold. In other words, we have, with obvious
notation, for all ¢ > g,

ke [LNL | &ak, (0 F enaty 1 (8)] < Ceejoa (O],
&1 (Ol < Cem> supy, llej—1 ()3 + Clla1 (1),

Vk € [LN], )y (0] < Ce ey ()l s + ClE-1 Ol o
lej—1 ()l g < ClIE-1 (Ol g + C iy laj-1,k(8)].

From these estimates, we deduce the following steps as in the previous section.
(a) For all k € [1, NJ, |a;r_1,k(t)| < Ce— (oMt
(b) Forall k € [1,j—1], we have |(eekta;17k(t))/| < Celo =018, As e 70— < €j-1—Yo—7 <

—vy <0and e*a;_, ,(t) = 0 ast — +oo by hypothesis, we deduce by integration on [t, +-oc0)
that [e*!a;_, ()] < Cel* =070 and so |a;_, ,(t)| < Ce (ot

(c) Forall k € [, N], we still have |(eektoz;71’k(t))/| L Celer=07M Asep—yo—y = ej—Y0—7 >

0, we deduce, by integration on [to, #], [e“* o  (t) — e | (to)| < Cels =707 and so

|0‘;—1,k(t)| < Ce ot 4 Ce=(0tNt < Ce=(otNt,

(d) Hence we have |laj—1(f)||> < Ce™200+t Tt follows [|5j_1(t) ||y < Ce™ 0tV a1 1 (2)] <
Ce~(0+Mt by integration, and finally ||e;_1(t)|| ;1 < Ce™ 0+ as expected.

Step 2: Identification of A;. We apply the previous induction until to have e; — v < v < ;.
Moreover, following the same scheme, we obtain the following estimates.

(a) For all k € [1,N], [af_, ,(t)] < Cem0otNE < Ceme", and we still have

|(€ektaj7717k(t))/| < Cleler—r0=7)t
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(b) For all k € [1,j — 1], we still have |a;_, , (t)| < Ce™ (0t < Cemeit.

(¢) For k = j, we have |(e® a;_17j(t))l| < Celes=0=t ¢ Ll([ty, +00)) since e; —y9 — v < 0.

Thus there exists A; € R such that

Jim etag_y (1) = 4,
and moreover |e“’a; ; ;(t) — Aj| < Celei=70=7t Hence we have la; ()] < Cemt,

(d) Forall k € [j + 1, NJ, we have e, — 0 —7 > €41 — €; —7 > 0, thus by integration on [to, ],
we get |, ()] < Ceevt 4 Ce-(wit < Ce-eit

(e) We now have |lo;_1()||* < Ce™2%", and so as in the first step, we conclude that [|e;—1(t)| ;2 <
Ce~¢it,

Step 3: Conclusion. To conclude the induction, we write
€j (t) = u(t) — PA1,.. A (t) = Ejfl(t) + [50141 ----- Ajq (t) — PA1,. LA (t)]
=gj-1(t) = Aje™ Y (1) — (1),
where z;, defined by z;(t) = @a, .. a;(t) — a4, (t) — Aje*ejth"’(t), satisfies ||z (¢)| 1 <
e~ (&)t by (B.d). Thus, we first have
les Wl g < llgj—1 @l g + Ce™" + ||z (t)]] o < Ce™".

Moreover, we find
0l = [e02 (0 = a0 - e [Vrwzi0 - [0z 0.
Therefore, for all k € [1,j — 1], we have |a; . (t)| < |aj_ ()| + Ce™%" + Ce™ (<t and so

o ()] < e laj_y ()] + Cem et o v
Finally, for k = j, we have by (iv) of Lemma .3, o i(t) =aj_ ;(t) = Ajem%" — [ 2;(t)Z; (t), and
SO

ejt| — ejt  — —t

e ag; (O] < leag_y ;(8) — Aj| + Ce™? i 0
which achieves the proof of Proposition @ O
Corollary 4.5. There exist (A1,...,Ax) € RN and C,ty > 0 such that, defining z(t) = u(t) —
Ay, Ax (), we have [|2(t)|| g < Ce™ 2Nt for all t > t.

Proof. Applying Proposition @ with j = N, we obtain (A1,...,Ax) € RY and C,tq > 0 such
that [|z(¢)]| zn < Ce Nt for all t > t9. Moreover, if we set

ot = [ 2020

for all k € [1, N], we have e®**a, (t) — 0 as t — +oco. But, as in the previous proof, it easily
follows that if ||2(2)]| ;1 < Ce™ 7" with 79 > en, then |[2(t)|| ;1 < C'e~ 0+t and we apply this
induction until to have vy = 2epn. O
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4.4 Uniqueness

Finally, we prove the following proposition, which achieves the proof of Theorem [L.J. Note that
its proof is based on the schemes developed above, and on arguments developed in [[L1], Section 4].

Proposition 4.6. There exists to > 0 such that, for all t > to, z(t) = 0.

Proof. We start from the conclusion of Corollary @, we set,
0(t) = sup e ||2(¢)]| 1,
t>t
well defined and decreasing, and we prove that 8 = 0. Indeed, with obvious notation, we still have
the following estimates, for all ¢ > to,
vk € [LN],  [grap (1) F eway ()] < Ce[z(t) I,
Vi € [1,N], |ap(t)] < Ce " |z(t)]| g1 + ClIZE) | 1
~ N
12O < ClZO g2 + C 2=y lar(®)]-
Moreover, if we define Hy as in [[L1] by

Ho(t) = / [(2(t.2) — Fo(t.2(t.2) ) h(t.2) + 2(t.0) s de

where

.....

t p+1 p+1 t
FO (t, Z) -9 (QOAI ----- AN( ) + Z) o s0141 7777 AN( ) p A (t)Z
p+1 p+1

and h is defined in Section B.3.9, we also have dH“ t) > fCe’Q’YtHz(t)Hip. Now, we want to prove
that 0(t) = 0, for t > to with ¢g large enough. Let t > 1.
First, we have for all k € [1, N], | £aif (t) F exai (t)| < Ce e *Vtg(t), and thus, for all s > ¢,

‘ (s) F exaj (s)| < Ce™ (N F73q(¢).

Hence, we have |(e~*a; (s)) )| < Ce~(entest1)sg(t), and so by integration on [, +00),
o (6] < Ce= (e +7tg(r),

Similarly, we have |(eeksa;(s))/| < Ce(en=ext7)59(t), and since ey — e, +v = v > 0 and
e oy (t) — 0 as t — 400, we also get by integration on [t, +00),
o (1)] < Cem(en g (),
We thus have ||a(t)[|? < Ce=2(e¥T792(t). But we also have, for s > t,
dHy
dt

and so by integration on [t, +00), Ho(t) < Ce 2(ext9t2(1). As in the proof of Lemma .9, we
deduce that

(5) > ~Ce™ 7 8) [ = =Ce™ NV (* a(a)] ) > ~Ce2ev+D76%(0),

1265 < Ce D82 (1) + Clla(t)]|* < Cem 2 N2 (1),
and so [|Z(t)|| 1 < Ce™(ent19(t). But, for all k € [1, N] and all s > ¢, we have
i (s)] < Ce™|12(3)]l g + ClIZ(3) ]l o < Ce™ ¥ F7%0(s) < Ce™ ¥ F%(1),

and so by integration on [t, +00), |ax(t)| < Ce~ (v tNtY(t).
Finally, we have shown that there exists C* > 0 such that, for all ¢ > to, [|2(t)||;n <
C*e~(entMtY(t). Now fix t > tg. We have, for all t' > ¢,

e |5(F) i < O O(H') < CTe 00,

and thus 0(t) < C*e™7"¢(t). Choosing to large enough so that C*e™7" < I, we obtain 6(t) <
10(t), so O(t) < 0, and so finally () = 0, as expected. O

26



A Appendix

Proof of Lemma . The scheme of the proof is quite similar to the proof of [E, Theorem 5], and
uses moreover some arguments developed in [[L], section 3.4]. Let T* = T*(HZ()HH%> > 0 be the
maximum time of existence of the solution z(t) associated to zo. We distinguish two cases, whether
T < T* or not, and we show that this last case is in fact impossible.

First case. Suppose that T < T*, and let us show that 2,(T) — z(T) in H'. Since C§° is
dense in H~' and [[2,(T) — 2(T) ||z < [l2n(D)| g1 + [|2(T)]|n < K7, it is enough to show that
zn(T) — 2(T) in D'(R) as n — +00. So let g € C§°(R) and & > 0, and let us show the lemma in
three steps, using a H? regularization.

Step 1. For N > 1 to fix later, we define zéYn and 2} by

—

Zé\,rn(é) =1_n,nN (§)z0.n(8),
(&) = 1w ny(€)20(8)-

In particular, z{’, and z{’ belong to H?, and 2{', — z{' in D'(R) as n — +o0, since Fourier

transform is continuous in D’(R). Moreover, since (z0,) is uniformly bounded in H' by Banach-
Steinhaus’ theorem, we have |\zé\7’n|\H3 < CO(N)||zomll 2 < C(N), and

et = z0nllis = [ (e am@Pa < [ ) de

[EI=N l€I=N

93/4 ) 923/4 5 C
<—= 201" d¢ < —=lz0mll < —=,

VN Jig=n VN YN

S0 20\, — 0 as N — +00 in H? uniformly in n. If we call 22 (¢) the solution corresponding to

initial data zj',, and since ||zn(t)||H% < |z (@)l g < K, we deduce that

. [[200) = 20l <l = 200l 3

for N large enough, by applying [IE, Corollary 2.18] with s = % > 2(’;;751) and T = Tk =

T(||zn (t)HH% ). As a consequence, we have

N N
o [z Ol s < sup ez +Clledilly + Cllzonllyg
< sup zn(®) g+ 2C 200/ 0 < C-

t€[0,T]

Similarly, since sup,¢(o 7y Izl ;2 < K’ by hypothesis, we also obtain, for N large enough,

[0 =204 < €~

where 2% (¢) is the solution corresponding to initial data z{¥. Notice that C' and C’ are independent

of n, and that by propagation of the regularity, we have 2N (t), 2V (t) € H? for all t € [0, T)]. Finally,
we have by the Cauchy-Schwarz inequality

' [ - =g - [ - zN<T>>g' < ' o) —= (T))g' n ' [ =
C

< () = 2N D] o+ [2(7) = N @) )l < = <

€
2

=

for NV large enough, and we now fix it to this value.
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Step 2. Now that N is fixed, we forget it and the situation amounts in: 2,(t), 2(t) € H? for
all t € [0,T], supycpom [2n(®)l ;2 < O, |lzomll s < €7 (with C and C” independent of n) and
20, — 20 in D'(R) as n — +oo. The aim of this step is to show consecutively that z,(t) is
uniformly bounded in H', H? and H?, and finally z, is uniformly bounded in H'([0,7T] x R).

Since sup;efo, 77 [|2n(t)]l ;3 < C and Hi(R) < L>(R) continuously, then we have

sup [[zn(t)][ o <C and  sup [[zn(t)] . < C.
te[0,T] te[0,T]

But energy conservation gives, for all ¢ € [0, 7],

1 ) 1 pl 1/ ) 1 / i
5 [ @en) = o [0 =5 [ @z = — [ 430
We deduce that:

[ @t

and 50 supyeo, 7 [|2n (1) g1 < C-

To estimate ||z, (t)|| g2, we use the “modified energy” as in [[[1], Section 3.4] (see also [§]). If
we denote z, by z for a short moment, and if we define Go(t) = [ (22,(t) — 2222(¢)2P~1(t)) for
t € [0, T], we have the identity

1
< Cllaa®= Izn(®l72 + Cllzonllzn + Cllzomlfh' < C.

Gy (1) = 15— D~ 2)(p - 3) [ 20770 + SPw - 1) [ 202

But Gagliardo-Nirenberg inequalities give, for all k > 2

M2 b2
[l < c(/u) (/u) ,

and since sup¢jo 7y [|2(t)[| L < C, we have

Gh(t) < O /|zz O +C')1=( |\2p3/|zz

< C</ Z§(t>>7/4 (/ ziz(t>>3/4 +c (/ zg(t)>5/4 (/ Ziz@)l“
< C(/ Ziz(t)>3/4 +C' (/ m(t))l/4_

Since a < a*/® +1 and a < a* + 1 for a > 0, we deduce that for some C, D > 0 (still independent

of n), we have, for all s € [0,7],
Gy(s) < C (/ ziz(s)) + D.

Now, for ¢ € [0,T], we integrate between 0 and ¢, and we obtain

Ga(t) — Go(0 /Hzm s)||3. ds + Dt.

28



Moreover, by definition of Gs,

op - 5p -
frarOs < 2| [ 20 0]+ % | [ 200)
t
O +C [ e} ds+ DT
< IO + CIO + 1) + DT+ C [ lenalo)lds

t
<B+c/ 200 (8)|1% ds.
0

Finally, we obtain by Gronwall’s lemma that, for all ¢ € [0, 77,
||zm(t)||i2 < Be®t < Be“T.

We can conclude that sup,cpo 11 |2n(t)[| 2 < C with C' > 0 independent of n.
For a uniform bound in H3, we use the same arguments as for H2. In fact, it is easier, since
we have, by straightforward calculation (we forget again n for a while),

G [ B0 == 1) [ 200220
Fplp = D -2) [ 2000
Fplp = -2 -3) [ 02020
2= Do~ 20~ 30 - D) [ 20020 (0),

But we have now sup;co 17 122 () | oo < C'supseiomy 122 ()| 1 < Csupsepo,zy [12(8) | g2 < €, and
still supyepo 7y [12(0)]l L < C, s0

& [ <a [0+ 8 [l +0 [ 2.0+ D [zl

Using a Gagliardo-Nirenberg inequality for the second term and the Cauchy-Schwarz one for the
last term, we obtain

2 zweaf2mer([20) ([20)"

+ Cllz(Olz + Dllzew ()l g2z ()]l 2

<A 2.0+ B [0+ B+ 0+ Dl
<A [2.weD.

Now, if we integrate this inequality between 0 and ¢ € [0, T], we get
2 2 t 2
”err(t)”L? < ||chr(0)||L2 + AI/O ||chx(5)||L2 ds+ D't
t
< 1O+ 4 [ Nenaa(9)3e ds + DT
0

t
W/H%M%§%+UC
0
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and we conclude again by Grénwall’s lemma that ||zp..(t)]|7. < D”eAt < D”eA'T. Finally, we
have the desired bound: sup,c(o 7} [|2n(t)| gz < C.
As 2pt(t) = —Zpwas(t) — p2ne(t) 2271 (t), then we have, for all t € [0, T],

-1
120Dl 2 < N12nawe ()] 2 + pln (Ol 1202l L2 < ll2n (@l gs + Clzn®)lfn < C.

We deduce that (z,) is uniformly bounded in H'([0,77] x R), thus there exists Z such that 2z, — Z
weakly in H([0,7] x R) (after passing to a subsequence), and in particular strongly on compacts
in L%([0,T] x R). Moreover, since sup; ||z, (t)|| s < C, we have sup, ||Z(t)|| s < C.

Step 3. This step is very similar to the first one of the proof of [, Theorem 5]. We recall that
we want to prove [(z,(T) — z(T))g — 0 as n — +oo. Let w,, = 2, — z. The equation satisfied by
Wy, 18 Wt + Wnaze + (28 — 2P), = 0, and moreover

(Zg - Zp)z = pznzzg_l *pzmzp_l = p[ Znz — Zz)zﬁ_l + Zz(zﬁ_l - Zp_l)]
p—2
=p [wmzﬁl + 22(2n — 2) 2R P2k
k=0
If we define S(u,v) = Zi;é vFuP=27F the equation satisfied by w, can be written

Wnt + Wnzee + pzﬁilwnm + prS(Za Zn)wn = 05
wn(O) = "/)n = Z0,n — <0-

Now consider v(t) the solution of

V4 Vgar + P(ZP7 1), + 2, 5(2, Z)v =0,
o(T) = g.

First notice that sup, ||v||;» < C by an energy method. Indeed, we have by direct calculation

% v = — /1)2 [(p— 1)2,277% + 22,5(2, 7)) .

But supy |22(0)] o < supy [12(0) 2 < €, and similarly supy |50l < C, sup, 22l < C
and sup, ||S(z(t), 2(t))]| L~ < C, and so

-5 [re < [oo.

By integration between ¢ € [0, T] and T, we obtain
2 2 ’ 2
lo@®lze = [lo(T)z2 < C/ [o(8)]I72 ds,
¢

that is to say |[v(t)||7> < [lg]/72 + CftT [v(s)||7> ds. We conclude, by Gronwall’s lemma, that
le®)l72 < llglz2e“" =" < llglz2e" = K.

Now write
/wn(T,z)g(:c) dz—/wn(z)v(o,x)dx /OT/wvar/OT/wnvt =I+1I

T
I= / /wn [vmm +p(vz£71)z — pz,S(z, zn)v} ,
0

with

T
II = / /wn [—vmm —p(vép_l)x + pz,S(z, 2)1}] ,
0
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and so

T T
I+II:p/ /wn[v(zﬁfl *Epfl)]erp/ /wnzxv[S(z,Z)—S(z,zn)]
0 0
T T p—2
= 7p/ /wnmv(zf;*l - prl) *p/ /’LUnZI’U Zzpfkk(zs — Zk)
= —p/ /U}nx’l) — Z Z Zn / /wnzm Zn — 2)5!(2727271)

_ _p/o /[me(Z,zn) FwnzaS (2, 3, 2n)0(zn — 2),

where S(Z,2,) = > 1_¢ 2zp=27k ok and §'(z, 2, 2,) = SO0 l o { ap=2-kzh=1-l 1 Yoth satisfy

sup [[S(Z,z)]| L <€ and  sup HS/(ZaZaZn)HL“’ <G
t€[0,7] te[0.7]

Since 1, — 0 in L? and v(0) € n(
it is enough to conclude to show that for n large enough, |1 + II| <

Jo(0 dm’ < £. Therefore,
% But
sup, ||wneS(Z, 2n) + wp2:5" (2,2, 20) || Lo < C,

and sup, [|2n — || 12 < Cllzn = 2|l g1 go,7(xr) < € sup; [[v]|l 2 < C. Hence, there exists R > 0 such
that

<

co| ™

/ /ac>R WnaS(Z, 20) + wnze S (2, 2, 200 (20 — 2)

And finally, by Cauchy-Schwarz inequality, we have
T T
—p/ / [WnaS(Z, 2n) + wn22S' (2, 2, 20) 0 (20 — 2)| < C/ / |2n, — Z||v]
0 Jlz|<R 0 Jlz|<R

T 1/2 T 1/2 T 1/2
ol [ [ w-z) ([ [ ) <ol [ [ jam-st) <5
o Jjzl<r 0 Jiel<R o Jjzl<r 8

for n large enough, which concludes the first case.

Second case. Suppose that T* < T and let us show that it implies a contradiction. Indeed,
there exists 7" < T such that [|2(7")|| ;s > 2K (where K is the same constant as in the hypothesis
of the lemma). But we can apply the first case with T replaced by T”, so that z,(T") — z(T")
in H', and since ||z,,(T")||z: < K, we obtain by weak convergence [2(T) 2 < [2(T) i < K,
and so the desired contradiction and the end of the proof of the lemma. o
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