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A MAJORIZE-MINIMIZE LINE SEARCH ALGORITHM FOR BARRIER FUNCTION OPTIMIZATION

Many signal and image estimation problems such as maximum entropy reconstruction and positron emission tomography, require the minimization of a criterion containing a barrier function i.e., an unbounded function at the boundary of the feasible solution domain. This function has to be carefully handled in the optimization algorithm. When an iterative descent method is used for the minimization, a search along the line supported by the descent direction is usually performed at each iteration. However, standard line search strategies tend to be inefficient in this context. In this paper, we propose an original line search algorithm based on the majorize-minimize principle. A tangent majorant function is built to approximate a scalar criterion containing a barrier function. This leads to a simple line search ensuring the convergence of several classical descent optimization strategies, including the most classical variants of nonlinear conjugate gradient. The practical efficiency of the proposal scheme is illustrated by means of two examples of signal and image reconstruction.

INTRODUCTION

The solution of several problems in signal and image estimation involves the minimization of a criterion F in the strictly feasible domain C defined by some concave inequalities c i (x) > 0, i = 1, . . . , N . These constraints are implicitly taken into account when F contains a barrier function, which makes the criterion unbounded at the boundary of C so that its minimizers belong to C. For example, the minimizer of F (x) = F 0 (x)i log x i is strictly positive because of the unboundness of the logarithmic function at the neighborhood of zero.

This property is used by interior point methods [14] to minimize F 0 (x) subject to c i (x) 0 , a barrier function B being artificially introduced to keep the solution inside the feasible domain. The augmented criterion can be expressed as F µ (x) = F 0 (x) + µB(x), where µ 0 is the barrier parameter and B is the barrier function associated to the constraints c i (x) > 0. For instance, B(x) =i log(c i (x)). The minimization of F µ must be performed for a sequence of parameter values µ that decreases to 0. This method can be applied to sparse signal reconstruction and compressed sensing [START_REF] Labat | Convergence of conjugate gradient methods with a closed-form stepsize formula[END_REF] as illustrated in section 4.

The barrier term can also be part of the criterion itself such as in maximum entropy terms and Poissonian THIS WORK IS SUPPORTED BY THE FRENCH ANR PROJECT OPTIMED log-likelihoods. For instance, let us consider the inverse problem of recovering a signal or an image x from a set of noisy observations y, where the measurement process is represented by the linear model y = Hx + ǫ with H is a known matrix and ǫ a noise term. An estimate of x can be obtained as the minimizer of a cost function F depending on the noise statistics and on the desired solution properties.

In the case of a Gaussian likelihood, maximum entropy reconstruction [START_REF] Moré | Line search algorithms with guaranteed sufficient decrease[END_REF][START_REF] Wright | Interior methods for constrained optimization[END_REF] consists in minimizing

F (x) = y -Hx 2 2 + λS(x)
where λ is the regularization parameter and S(x) is an entropy term such as

S(x) = i x i log x i Shannon entropy -i log x i Burg entropy
In both cases, S acts not only as a regularization function but also as a barrier function for positivity constraints. In the case of Shannon entropy, although S remains bounded in the nonnegative orthant, positivity is enforced by the unboundness of the norm of ∇S(x) for small positive values of x.

In a penalized Poissonian likelihood case, the criterion to minimize reads F (x) = L(y, Hx)+λR(x), where R is the penalization function and L is the fidelity to data term defined as

L(y, Hx) = m [Hx] m -y m log([Hx] m ). (1) 
The logarithmic term in L plays the role of a barrier function ensuring the positivity of [Hx] m . In section 4, we will consider an emission tomography problem [START_REF] Skilling | Maximum entropy image reconstruction: General algorithm[END_REF] that calls for the minimization of this criterion form. The aim of this paper is to address optimization problems that read min

x (F (x) = P (x) + µB(x)) , µ 0 ( 2 
)
where P is a differentiable function and B is a differentiable barrier function ensuring the fulfillment of some linear constraints [Ax] i + ρ i > 0.

Many optimization algorithms are based on iteratively decreasing the criterion by moving the current solution x k along a direction d k ,

x k+1 = x k + α k d k , (3) 
where α k > 0 is the stepsize and d k is a descent direction i.e., satisfying ∇F (x k ) T d k < 0. In practice, such iterative descent direction methods consist in alternating the following steps 1. Construction of d k : the direction depends on the gradient of the criterion at the current value x k . More elaborate methods also involve the Hessian matrix (e.g., Newton, Quasi-Newton) or also depend on the previous descent directions (e.g., conjugate gradient methods, L-BFGS). 2. Determination of α k (line search): the value of α k is obtained by minimizing the scalar function f (α) = F (x k + αd k ). However, the barrier function causes the inefficiency of standard line search strategies [START_REF] Nash | A barrier method for largescale constrained optimization[END_REF]. In the next section we propose an original line search procedure based on the majorize-minimize (MM) principle [START_REF] Jacobson | An expanded theoretical treatment of iteration-dependent majorize-minimize algorithms[END_REF] by deriving an adequate form of a tangent majorant function well suited to approximate a criterion containing a barrier function.

LINE SEARCH STRATEGIES

Problem statement

According to Wolfe conditions, α k is acceptable if there exists (c 1 , c 2 ) ∈ (0; 1) such that

F (x k + α k d k ) F (x k ) + c 1 α k g T k d k (4) |∇F (x k + α k d k ) T d k | c 2 |g T k d k | (5) 
where g k ∇F (x k ). There exist several strategies [START_REF] Ollinger | Positron emission tomography[END_REF] for finding such an acceptable stepsize: exact minimization of f (α), backtracking or more generally dichotomy, approximation of f (α) using a cubic interpolating function [START_REF] Murray | Line search procedures for the logarithmic barrier function[END_REF][START_REF] Ollinger | Positron emission tomography[END_REF] or approximation of f (α) by a quadratic function [START_REF] Mohammad-Djafari | Maximum entropy image reconstruction in X-ray and diffraction tomography[END_REF]. However, the barrier term B(x) implies that f (α) tends to infinity when α is equal to the smallest positive step ᾱ cancelling some constraint at x + ᾱd. Consequently, we must ensure that during the line search, the step values remain in the interval [0; ᾱ) since the function f is undefined for α ᾱ. Moreover, due to the vertical asymptote at ᾱ, methods using cubic interpolations or quadratic approximations are not suited [START_REF] Nash | A barrier method for largescale constrained optimization[END_REF]. Some line search strategies adapted to barrier function optimization have been proposed in [START_REF] Nash | A barrier method for largescale constrained optimization[END_REF]. They make use of specific interpolating functions accounting for the barrier term in f (α). Unfortunately, the resulting algorithms are not often used in practice, probably because the proposed interpolating functions are difficult to compute. In contrast, our approach is not based on interpolation, but rather on majorization, with a view to devise a simple line search strategy with strong convergence properties.

MM algorithms

In MM algorithms [START_REF] Jacobson | An expanded theoretical treatment of iteration-dependent majorize-minimize algorithms[END_REF][START_REF] Kim | An interior-point method for large-scale L1-regularized least squares[END_REF], the minimization of a function f is obtained by performing successive minimizations of tangent majorant functions for f . Function

h(u, v) is said tangent majorant for f (u) at v if h(u, v) f (u) and h(v, v) = f (v).
The initial optimization problem is then replaced by a sequence of easier subproblems, corresponding to the MM update rule

u j+1 = arg min u h(u, u j ).
Recently, a line search procedure based on an MM algorithm has been introduced [START_REF] Mohammad-Djafari | Maximum entropy image reconstruction in X-ray and diffraction tomography[END_REF]. In this strategy, the stepsize value α k results from J successive minimizations of quadratic tangent majorant functions for the scalar function f (α). The convergence of a family of non-linear conjugate gradient methods associated to this line search strategy is proved in [START_REF] Mohammad-Djafari | Maximum entropy image reconstruction in X-ray and diffraction tomography[END_REF] whatever the value of J. However, since the function f (α) resulting from problem (2) is unbounded, there is no quadratic that majorizes f (α) in the whole definition domain of α. Actually, it would be sufficient to majorize f (α) within the level set L k = {α, F (x k + αd k ) F (x k )} but this set is difficult to determine or even to approximate.

A new tangent majorant for MM line search

Instead of a quadratic, we propose the following form of tangent majorant function:

h(α) = p 0 + p 1 α + p 2 α 2 -p 3 log(ᾱ -α), (6) 
which is reminiscent of interpolation functions proposed in [START_REF] Nash | A barrier method for largescale constrained optimization[END_REF][START_REF] Nocedal | Numerical Optimization[END_REF]. According to MM theory, the stepsize α k is defined by

α 0 k = 0, α j+1 k = arg min α h j k (α, α j k ), j = 0, . . . , J -1, α k = α J k , (7) 
where h j k (α, α j k ) is the tangent majorant function

h j k (α,α j k ) = f (α j k ) + (α -α j k ) ḟ (α j k ) + 1 2 m j k (α -α j k ) 2 + γ j k (ᾱ k -α j k ) log ᾱk -α j k ᾱk -α -α + α j k ( 8 
)
which depends on two parameters m j k , γ j k . It is easy to check that h j k (α, α) = f (α) for all α. There remains to find values of m j k , γ j k such that h j k (α, α j k ) f (α) holds for all α ∈ [0; ᾱk ).

In [START_REF] Chouzenoux | A new line search method for barrier functions with strong convergence properties[END_REF], the case of a logarithmic barrier associated with linear inequality constraints

B(x) = - i t i log([Ax] i + ρ i ), µ, t i > 0,
is dealt with (Figure 1 illustrates a example of scalar criterion and the obtained majorant). Assuming that p(α) = P (x k + αd k ) is majorized by the quadratic function

p(α j k ) + (α -α j k ) ṗ(α j k ) + 1 2 m p (α -α j k ) 2 , (9) 
the majorization of f is given by the following property.

Property 1. Let a = Ax k + ρ and δ = Ad k , so that f has a barrier located at 

ᾱ = min i|δi<0 -a i /δ i . (10) 
m b = b 1 (0) -b 1 (α j k ) + α j k ḃ1 (α j k ) (α j k ) 2 /2 γ b = b 2 (0) -b 2 (α j k ) + α j k ḃ2 (α j k ) (ᾱ -α j k ) log(1 -α j k /ᾱ) + α j k ( 11 
)
where b 1 (α) = i|δi>0 -t i log(a i + αδ i ) and b 2 (α) = i|δi<0 -t i log(a i + αδ i ). Then, function h j k (•, α j k ) is a tangent majorant of f (•)
Moreover, [START_REF] Ollinger | Positron emission tomography[END_REF] implies m j k , γ j k > 0, so h j k (•, α j k ) is strictly convex. Hence, it has a unique minimizer, which takes an explicit form:

α j+1 k = α j k + -A 2 + A 2 2 -4A 1 A 3 2A 1 , (12) 
with

A 1 = -m j k , A 2 = γ j k -ḟ (α j k ) + m j k (ᾱ -α j k ) and A 3 = (ᾱ -α j k ) ḟ (α j k ).
In such conditions, (7) produces monotonically decreasing values {f (α j k )} and the series {α j k } converges to a stationnary point of f (α) [START_REF] Jacobson | An expanded theoretical treatment of iteration-dependent majorize-minimize algorithms[END_REF].

CONVERGENCE ANALYSIS RESULTS

This section focuses on the convergence of the iterative scheme (3) where α k is chosen according to our MM strategy. Only the main results are presented here, while a detailed analysis can be found in [START_REF] Chouzenoux | A new line search method for barrier functions with strong convergence properties[END_REF]. In the whole section, d k is assumed to be a descent direction, so that ḟ (0) = d T k g k < 0.

Lower and upper bounds for the stepsize

Property 2. There exists ν > 0 such that

α 1 k -νg T k d k / d k 2 . ( 13 
)
Moreover, ∀j > 1, there exist (c min , c max j ) such that

c min α 1 k α j k c max j α 1 k . ( 14 
)

Wolfe conditions

Given a current solution x k and a current descent direction d k , the chosen stepsize α k must induce a sufficient decrease of F . The first Wolfe condition (4) measures this decrease. It is equivalent to

f (α) -f (0) c 1 α k ḟ (0). ( 15 
)
The following result holds.

Property 3. The stepsize (7) fulfills (15) with

c 1 = (2c max J ) -1 ∈ (0; 1) (16) 
On the other hand, it turned out difficult or even impossible to fulfill the second Wolfe condition (5) for any value of J. Fortunately, it is easier to show that the so-called Zoutendijk condition holds, the latter being a weaker condition that is nonetheless sufficient to lead us to convergence results.

Zoutendijk condition

The global convergence of a descent direction method is non only ensured by a 'good choice' of the step but also by well-chosen search directions d k . Convergence proofs are often based on the fulfillment of Zoutendijk condition

∞ k=0 g k 2 cos 2 θ k < ∞, (17) 
where θ k is the angle between d k and the steepest descent direction -g k ,

cos θ k = -g T k d k /( g k d k ). (18) 
Inequality (17) implies that cos θ k g k vanishes for large values of k. Moreover, provided that d k is not orthogonal to -g k (i.e., cos θ k > 0), condition (17) implies the convergence of the algorithm in the sense

lim k→∞ g k = 0. ( 19 
)
In the case of the proposed line search, the following result holds [START_REF] Chouzenoux | A new line search method for barrier functions with strong convergence properties[END_REF]. Property 4. Let α k be defined by [START_REF] Moré | Line search algorithms with guaranteed sufficient decrease[END_REF]. Then, according to Properties 2 and 3, Zoutendijk condition (17) holds.

Convergence of Newton-like methods

The Newton-like methods are defined by the following recurrence

x k+1 = x k + α k d k , d k = -B -1 k g k . ( 20 
)
Property 5. Assume that matrices B k are positive definite for all k and that there exists M > 0 such that

B k B -1 k M, ∀k. (21) 
Algorithm (20) is convergent when α k is defined by [START_REF] Moré | Line search algorithms with guaranteed sufficient decrease[END_REF] in the sense lim

k→∞ g k = 0. ( 22 
)
This result covers the following classical methods

• Steepest descent: d k = -g k , • Newton: d k = -∇ 2 F (x k ) -1 g k in the convex case,
• Quasi Newton (BFGS) in the convex case.

Convergence of conjugate gradient methods

The nonlinear conjugate gradient algorithm (NLCG) is defined by the following recurrence

x k+1 = x k + α k d k d k = -c k sign(g T k c k ) c k = -g k + β k d k-1 (23)
Property 6. The NLCG algorithm is convergent when α k is defined by (7) and β k is chosen according to a classical conjugacy formula such as Polak Ribière Polyak (PRP), Fletcher Reeves (FR) or Hestenes Stiefel (HS), in the sense lim

k→∞ inf g k = 0. ( 24 
)

APPLICATIONS

We consider here two image/signal processing examples with the aim to analyse the performances of descent optimization algorithms when the step size is obtained by the proposed MM line search procedure.

Positron emission tomography

The measurements in positron emission tomography (PET) [START_REF] Skilling | Maximum entropy image reconstruction: General algorithm[END_REF] are modeled as Poisson random variables

y ∼ P oisson(Hx + r) (25) 
where the ith entry of x represents the radioisotope concentration in pixel i and H is the projection matrix whose elements H mi model the contribution of the ith pixel to the mth datapoint. The components of y are the counts measured by the pairs detectors of and r models the background events. We consider a simulated example using data generated with J.A. Fessler's code available at http://www.eecs.umich.edu/ ~fessler. For this simulation, we take an object of size 128 × 128 pixels and assume M = 24924 pairs of detectors.

Objective function

According to the noise statistics, the log-likelihood of the emission data is

J(x) = m [Hx] m + r m -y m log([Hx] m + r m ) .
A useful penalization aiming at favorizing smoothness of the estimated image is given by

R Hub (x) = t∈T ω t ψ([Dx] t ),
where ψ is the edge preserving potential fonction ψ(u) = √ δ 2 + u 2 -δ and [Dx] t is the vector of difference between neighboring pixel intensities. The weights depend on the relative position of the neighbors: ω t = 1 for vertical and horizontal neighbors and ω t = 1/ √ 2 for diagonal neighbors. To ensure the positivity of the estimate, a logarithmic barrier term is added:

R Pos (x) = - N i=1 log x i . (26) 
Finally, the estimated image is the minimizer of the following objective function

F (x) = J(x) + λ 1 R Hub (x) + λ 2 R Pos (x).
(27)

Optimization strategy

The NLCG algorithm with PRP conjugacy is employed with or without preconditioning. The aim is to compare the performance of the proposed MM line search with Moré and Thuente's cubic interpolation procedure (MT) [START_REF] Murray | Line search procedures for the logarithmic barrier function[END_REF]. The algorithm is initialized with a uniform positive object and the convergence is checked using the following stopping rule [START_REF] Ollinger | Positron emission tomography[END_REF] 

g k ∞ < 10 -5 (1 + |F (x k )|). ( 28 
)
The regularization and barrier parameters are set to λ 1 = 10, δ = 0.01 and λ 2 = 0.1. This choice leads to a fairly acceptable reconstructed image quality. It can be noted that the NLCG algorithm with MM line search requires more iterations than the NLCG-MT approach provided that the parameters (c 1 , c 2 ) are appropriately chosen. However, the NLCG-MM is faster because of a smaller computational cost per iteration. Moreover, the proposed MM procedure admits a unique tuning parameter, namely the subiteration number J, and J = 1 always seems a good choice. Furthermore, resorting to the diagonal Hessian preconditioner significantly speeds up the convergence in the sense of both n 1 and T .

Results and discussion

Sparse spike deconvolution

The observation vector y ∈ R M results from the noisy convolution of a sparse spike train sequence x ∈ R N with a filter h of length L. The added noise is centered, white Gaussian. In this experiment, M = 1020, L = 20, N = 1000, the spike train sequence is simulated from a Bernoulli-Gaussian distribution with parameter β = 0.06, and the signal to noise ratio is 13dB.

Objective function

The ℓ 1 norm is a suited regularization function to account for the sparseness of x, which leads to the following optimization problem min

x y -h ⋆ x 2 2 + λ x 1 . (29) 
To tackle the non differentiability of the ℓ 1 norm, problem (29) can be classicaly reformulated as a quadratic programming problem [START_REF] Labat | Convergence of conjugate gradient methods with a closed-form stepsize formula[END_REF]:

min x,u F (x, u) = y -h ⋆ x 2 2 + λ i u i subject to -u i x i u i , i = 1, . . . , N (30) 

Optimization strategy

An interior-point method is proposed in [START_REF] Labat | Convergence of conjugate gradient methods with a closed-form stepsize formula[END_REF] to solve (30).

The augmented criterion has the form (2) where P (x) ≡ F (x, u) and the barrier function is

B(x, u) = - i log(u i + x i ) - i log(u i -x i ). (31) 
For a decreasing sequence of µ, the augmented criterion F µ (x, u) is minimized using a truncated Newton method where the search direction is obtained by applying a preconditioned conjugate gradient (PCG) to the Newton equations. The stepsize α satisfying the first Wolfe condition (4) results from a backtracking line search and the barrier parameter µ is decreased when α α min . The Matlab code of the algorithm is available at S. Boyd's homepage http://www.stanford. edu/ ~boyd. Here, we propose to compare the performances of this algorithm when the backtracking is replaced by our MM line search. λ = 0.01. n 1 is the number of µ updates, n 2 is the average number of iterations for minimizing F µ (x, u) and n 3 is the average number of PCG iterations. The use of our MM line search slightly enhances the performances of the deconvolution algorithm. On this particular problem, the best results have been obtained when J is larger or equal to 5.

Results and discussion

CONCLUSION

In [START_REF] Mohammad-Djafari | Maximum entropy image reconstruction in X-ray and diffraction tomography[END_REF], a simple and efficient quadratic MM line search method has been proposed. However, it is restricted to gradient-Lipschitz criteria, which excludes the case of barrier functions. This case can be handled with the MM line search method presented in this paper. This method benefits from strong convergence results, it is still very easy to implement, and shows itself at least as efficient as classical techniques on practical problems.
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 11 Figure 1: Example of a tangent majorant function h 0 k (α, 0) for f (α) = (α -5) 2 -10 i=1 log(i -α). h 0 k (α, 0) is defined by (8) with m 0 k = 2, γ 0 k = 1.55 and ᾱ = 1

Table 1

 1 summarizes the performance results in terms of iteration number n 1 and computation time T on an Intel Pentium 4 3.2 GHz, 3 GB RAM. The design parameters are the Wolfe condition constants (c 1 , c 2 ) for the MT method and the number of subiterations J for the MM procedure.

				NLCG	PNLCG
		c1	c2	n1	T (s)	n1	T (s)
	MT	10 -4 10 -4	0.1 0.5	403 1043.3 207 454.6	18 17	78.66 73.64
		10 -4	0.9	196	418.5	19	82.81
		10 -4 0.999 170	362.7	19	83.27
		J		n1	T (s)	n1	T (s)
	MM	1 2 5		232 287.45 275 375.27 304 512.28	18 16 22	58.76 55.34 83.02
		10		474 1017.7	24 100.45

Table 1 :

 1 Comparison between MM and MT line search strategies for a PET reconstruction problem.

Table 2

 2 reports the computational results when Boyd's code is used with its default parameters α min = 0.5 and

			n1	n2	n3	T
	Backtracking 13	1	50.07	8.35
		1	10	1.9	56.75 13.41
	MM (J)	2 3 4 5 6	10 10 11 1.27 51.67 1.7 58.67 13.81 1.6 57.47 11.58 9.32 12 1 49.08 7.77 12 1 49.08 7.85
		7	12	1	49.15	7.98

Table 2 :

 2 Comparison between MM and backtracking line search for a spike train deconvolution problem.