
HAL Id: hal-00455993
https://hal.science/hal-00455993

Submitted on 11 Feb 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Uniqueness Results for Second Order Bellman-Isaacs
Equations under Quadratic Growth Assumptions and

Applications
Francesca da Lio, Olivier Ley

To cite this version:
Francesca da Lio, Olivier Ley. Uniqueness Results for Second Order Bellman-Isaacs Equations under
Quadratic Growth Assumptions and Applications. SIAM Journal on Control and Optimization, 2006,
45 (1), pp.74-106. �10.1137/S0363012904440897�. �hal-00455993�

https://hal.science/hal-00455993
https://hal.archives-ouvertes.fr


Uniqueness Results for Second Order Bellman-Isaacs Equations

under Quadratic Growth Assumptions and Applications

Francesca Da Lio∗ Olivier Ley†

Abstract

In this paper, we prove a comparison result between semicontinuous viscosity sub and supersolu-
tions growing at most quadratically of second-order degenerate parabolic Hamilton-Jacobi-Bellman
and Isaacs equations. As an application, we characterize the value function of a finite horizon stochas-
tic control problem with unbounded controls as the unique viscosity solution of the corresponding
dynamic programming equation.

1 Introduction

In this paper, we are interested in the second-order equation





∂w

∂t
+H(x, t,Dw,D2w) +G(x, t,Dw,D2w) = 0 in IRN × (0, T ),

w(x, 0) = ψ(x) in IRN ,

(1)

where N ≥ 1, T > 0, the unknown w is a real-valued function defined in IRN × [0, T ], Dw and D2w
denote respectively its gradient and Hessian matrix and ψ is a given initial condition. The Hamiltonians
H,G : IRN × [0, T ]× IRN × SN (IR) → IR are continuous in all their variables and have the form

H(x, t, p,X) = inf
α∈A

{
〈b(x, t, α), p〉 + ℓ(x, t, α)− Tr

[
σ(x, t, α)σT (x, t, α)X

]}
(2)

and

G(x, t, p,X) = sup
β∈B

{
−〈g(x, t, β), p〉 − f(x, t, β)− Tr

[
c(x, t, β)cT (x, t, β)X

]}
. (3)

This kind of equation is of particular interest for applications since it relies on differential game theory
(Isaacs equations) or on deterministic and stochastic control problems when either H ≡ 0 or G ≡ 0
(Hamilton-Jacobi-Bellman equations).

Notations and precise assumptions are given in Section 2 but we point out that we allow one of the
control set A or B to be unbounded and the solutions to (1) may have quadratic growth. Our model case
is the well-known stochastic linear quadratic problem. We refer to Bensoussan [10], Fleming and Rishel
[18], Fleming and Soner [19], Øksendal [38], Yong and Zhou [41] and the references therein for an overview
and to Examples 2.2 and 3.1 below. This problem can be described as follows. Let (Ω,F , (Ft)t≥0, P ) be
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UNIQUENESS RESULTS FOR BELLMAN-ISAACS EQUATIONS 2

a filtered probability space and let (Wt)t be a Ft-adapted standardM -Brownian motion. The control set
is A = IRk for some k > 0 and we consider the linear stochastic differential equation

{
dXs = [A(s)Xs +B(s)αs]ds+ [C(s)Xs +D(s)]dWs, for t ≤ s ≤ T
Xt = x

where αs ∈ At, the set of A-valued Ft-progressively measurable controls and the adapted process Xs is
the solution. The linear quadratic problem consists in minimizing the quadratic cost

V (x, t) = inf
αs∈At

E{
∫ T

t

[〈Xs, Q(s)Xs〉+R|αs|2] ds+ 〈XT , SXT 〉}, (4)

where A(·), B(·), C(·), D(·), Q(·) and S are deterministic matrix-valued functions of suitable size and
R > 0 to simplify the presentation. The Hamilton-Jacobi equation associated to this problem is





−∂w
∂t

− 〈A(t)x,Dw〉 − 〈x,Q(t)x〉 + 1

4R
|B(t)TDw|2 − Tr

[
a(x, t)D2w

]
= 0

w(x, T ) = 〈x, Sx〉,
(5)

where a(x, t) = (C(t)x + D(t))(C(t)x + D(t))T /2. Note that this equation is of type (1) (with G ≡ 0)
since

1

4R
|B(t)TDw|2 = sup

α∈IRk

{
− 〈B(t)α,Dw〉 −R|α|2

}
. (6)

In this paper, we are concerned with two issues about this problem.
The first question relies on the partial differential equation (5). We note that the quadratic cost

with unbounded controls leads to a quadratic term with respect to the gradient variable. From the
terminal condition, we expect the solutions have quadratic growth. Moreover, the diffusion matrix may
be degenerate. Therefore, we cannot hope to obtain smooth solutions in general. We need to consider
weak solutions, namely viscosity solutions. (We refer the reader who is not familiar with this notion
of solutions to Crandall, Ishii and Lions [15], Fleming and Soner [19], Bardi and Capuzzo Dolcetta [3]
and Barles [6] and all the references therein). We obtain the existence of a unique continuous viscosity
solution for (5) and for a large class of equations of type (1) (see Theorem 2.1 and Corollary 2.1).

We point out that the results obtained in this paper are beyond the classical comparison results for
viscosity solutions (see e.g. [15]) because of the growth both of the solutions and the Hamiltonians. In fact,
most of the comparison results in the literature require that either the solutions are uniformly continuous
or the Hamiltonian is uniformly continuous with respect to the gradient uniformly in the x variable (in
our case this amounts to assume that both controls sets are compact). Let us mention that uniqueness
and existence problems for a class of first-order Hamiltonians corresponding to unbounded control sets
and under assumptions including deterministic linear quadratic problems have been addressed by several
authors, see, e.g. the book of Bensoussan [10], the papers of Alvarez [2], Bardi and Da Lio [4], Cannarsa
and Da Prato [12], Rampazzo and Sartori [40] in the case of convex operators, and the papers of Da Lio
and McEneaney [16] and Ishii [22] for more general operators. As for second-order Hamiltonians under
quadratic growth assumptions, Ito [23] obtained the existence of locally Lipschitz solutions to particular
equations of the form (1) under more regularity conditions on the data, by establishing a priori estimates
on the solutions. Whereas Crandall and Lions in [14] proved a uniqueness result for very particular
operators depending only on the Hessian matrix of the solution. Kobylanski [26] studied equations with
the same kind of quadratic nonlinearity in the gradient than ours, but her existence and uniqueness results
hold in the class of bounded viscosity solutions. Finally, one can find existence and uniqueness results
for viscosity solutions which may have a quadratic growth in [7] for quasilinear degenerate parabolic
equations.

The second question we deal with in this paper concerns the link between the control problem (4)
and Equation (5). The rigorous connection between the Hamilton-Jacobi-Bellman and optimal control is
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usually performed by means of a principle of optimality. For deterministic control problems which lead
to a first-order Hamilton-Jacobi equation, see Bardi and Capuzzo Dolcetta [3] and Barles [6]; for the
connections between stochastic control problems and second-order Hamilton-Jacobi-Bellmann equations
we refer to Fleming and Rishel [18], Krylov [27], Lions [31, 32, 33], Fleming and Soner [19], Yong and
Zhou [41, Theorem 3.3] and the references therein.

However, for stochastic differential equations with unbounded controls as in stochastic linear quadratic
problems, additional difficulties arise. Some results in this direction were obtained for infinite horizon
problems, in the deterministic case by Barles [5] and in the stochastic case by Alvarez [1]. In this paper,
we characterize the value function (4) as the unique solution of (5). Actually, our results apply for a
larger class of unbounded stochastic control problems

V (x, t) = inf
αs∈At

E{
∫ T

t

ℓ(Xs, s, αs) ds+ ψ(XT )} (7)

where the process Xs is governed by
{
dXs = b(Xs, s, αs)ds+ σ(Xs, s, αs)dWs

Xt = x,
(8)

where A is a possibly unbounded subset of a normed linear space and all the datas are continuous with
the following restricted growths: b grows at most linearly with respect to both the control and the state,
σ grows at most linearly with respect to the state and is bounded in the control variable, ψ can have a
quadratic growth and ℓ grows at most quadratically with respect to both the control and the state with
a coercitivity assumption

ℓ(x, α, t) ≥ ν

2
|α|2 − C(1 + |x|2). (9)

In this case, the Hamilton-Jacobi equation looks like (1) with G ≡ 0 (see Section 3 for details). Because
of the unbounded framework, the use of an optimality principle to establish the connection between the
control problem and the equation is more delicate than usual. Thus we follow another strategy which
consists in comparing directly the value function with the unique solution of the Hamilton-Jacobi equation
as long as this latter exists (see Theorem 3.1).

It is worth noticing that, surprisingly, for the general stochastic linear problem, it is not even clear
how to give sense to the partial differential equation associated to the stochastic control problem! For
instance, consider again the above linear quadratic problem where σ(x, t, α) = C(t)x+D(t) is replaced by
C(t)x+D(t)α which depends now both on the state and the control. Taking A,C,Q ≡ 0 and B,R,D ≡ 1
to simplify, the Hamiltonian in (5) becomes

sup
α∈IRk

{
− 〈α,Dw〉 − |α|2 − |α|2

2
∆w

}
(10)

which is +∞ as soon as ∆w ≤ −2. The connection between the control problem and the equation in this
case was already investigated (see Yong and Zhou [41] and the references therein). The results need a
priori knowledges about the value function (the value function and its derivatives are supposed to remain
in the domain of the Hamiltonian). We do not consider the case when σ is unbounded in the control
variable in this paper. It is the aim of a future work. When finishing this paper, we learnt that Krylov
[28] succeeded in treating the general stochastic linear regulator. But his assumptions are designed to
solve this latter problem (the datas are supposed to be polynomials of degree 1 or degree 2 in (x, α)) and
the proofs rely heavily on the particular form of the datas.

Another important example of equations of type (1) where concave and convex Hamiltonians appear
is the first-order equation

∂w

∂t
+ min

α∈IRk

{
γ2

2
|α|2 − 〈σ(x)α,Dw〉

}
+max

β∈B
{−〈g(x, β), Dw〉 − f(x, β)} = 0 (11)
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in IRN×(0, T ). Such kind of equation is related to the so-calledH∞-Robust control problem. This problem
can be seen as a deterministic differential game. We refer the reader to Example 3.3 and McEneaney
[34, 35, 36], Nagai [37] and the references therein for details.

Finally, we point out that one of the main fields of application of these types of equations and problems
is mathematical finance, see e.g. Lamberton and Lapeyre [29], Fleming and Soner [19], Øksendal [38] and
the references therein for an introduction. For recent papers which deal with equations we are interested
in, we refer to Pham [39] and Benth and Karlsen [11] (see Example 3.2).

Let us now describe how the paper is organized.
Section 2 is devoted to the study of (1). More precisely, we prove a uniqueness result for (1) in the set

of continuous functions growing at most quadratically in the state variable under the assumption that
either A or B is an unbounded control set, the functions b, g and ℓ, f grow respectively at most linearly
and quadratically with respect to both the control and the state. Instead the functions σ, c are assumed
to grow at most linearly with respect to the state and bounded in the control variable.

One of the main tools within the theory of viscosity solutions to obtain a uniqueness result is to
show a comparison result between viscosity upper semicontinuous subsolutions and lower semicontinuous
supersolutions to (1), see Theorem 2.1. Indeed, the existence and the uniqueness (Corollary 2.1) follow
as a by-product of the comparison result and Perron’s method of Ishii [21]. However, under our general
assumptions one cannot expect the existence of a solution for all times as Example 2.2 shows.

The method we use in proving the comparison Theorem 2.1 is similar in the spirit to the one applied by
Ishii in [22] in the case of first order Hamilton-Jacobi equations and it is based on a kind of linearization
procedure of the equation. Roughly speaking, it consists in three main steps: 1) one computes the
equations satisfied by Ψµ = U − µV (U, V being respectively the sub and supersolution of the original
pde and 0 < µ < 1 a parameter); 2) for all R > 0 one constructs a strict supersolution χµ

R of the linearized
equation such that χµ

R(x, t) → 0 as R → ∞; 3) one shows that Ψµ(x, t) ≤ χµ
R(x, t) and then one concludes

by letting first R → ∞ and then µ→ 1.
In Section 3, we give applications to finite horizon stochastic control problems previously mentioned

and we provide some examples.
In Section 4, we deal with particular cases where both controls are unbounded but H (or G) is

“predominant” in H + G (see Remark 2.2 and Theorem 4.1). For instance, we are able to deal with
equations of the form

∂w

∂t
− |Σ1(x)Dw|2

2
+

|Σ2(x)Dw|2
2

= 0 in IRN × (0, T )

where Σ1, Σ2 are N×k matrices, which corresponds to the case α, β ∈ IRk, σ ≡ c ≡ 0, b(x, t, α) = Σ1(x)α,
g(x, t, β) = Σ2(x)β and ℓ(x, t, α) = |α|2/2, f(x, t, β) = |β|2/2 in (2) and (3). The comparison result
applies if either (Σ1Σ

T
1 )(x) > (Σ2Σ

T
2 )(x) or (Σ1Σ

T
1 )(x) < (Σ2Σ

T
2 )(x).

When neither H nor G) is “predominant”, the problem seems to be very difficult and our only result
takes place in dimension N = 1: we have comparison for

∂w

∂t
+ h(x, t)|Dw|2 = 0 in IRN × (0, T ), (12)

where the function h may change sign (see (A5) for details). Finally, we point out that assumptions and
proofs in Section 4 essentially differ from those of Theorem 2.1 (see Remark 4.1).

Acknowledgments. We are grateful to Martino Bardi and Guy Barles for valuable suggestions
during the preparation of this work. The first author is partially supported by M.I.U.R. project “Viscosity,
metric, and control theoretic methods for nonlinear partial differential equations.” The second author is
partially supported by the ACI project “Mouvement d’interfaces avec termes non locaux”.
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2 Comparison result for the Hamilton-Jacobi equation (1)

In order to give precise assumptions upon Equation (1) and (2), (3), we need to introduce some notations.
For all integers N,M ≥ 1 we denote by MN,M(IR) (respectively SN (IR), S+

N (IR)) the set of real N ×M
matrices (respectively real symmetric matrices, real symmetric nonnegative N × N matrices). All the
norms which appear in the sequel are denoting by | · |. The standard Euclidean inner product in IRN is
written 〈·, ·〉. We recall that a modulus of continuity m : IR → IR+ is a nondecreasing continuous function
such that m(0) = 0. Finally B(x, r) = {y ∈ IRN : |x − y| < r} is the open ball of center x and radius
r > 0.

We list the basic assumptions on H, G and ψ. We assume that there exist positive constants C̄ and
ν such that:
(A1) (Assumptions on H given by (2)) :

(i) A is a subset of a separable complete normed space. The main point here is the possible unbound-
edness of A. Therefore, to enlight this property in the sequel, we take A = IRk for some k ≥ 1 (see
Remark 2.1 above);

(ii) b ∈ C(IRN × [0, T ]× IRk; IRN ) satisfying for x, y ∈ IRN , t ∈ [0, T ], α ∈ IRk,

|b(x, t, α)− b(y, t, α)| ≤ C̄(1 + |α|)|x− y|
|b(x, t, α)| ≤ C̄(1 + |x|+ |α|) ;

(iii) ℓ ∈ C(IRN × [0, T ]× IRk; IR) satisfying for x ∈ IRN , t ∈ [0, T ], α ∈ IRk,

C̄(1 + |x|2 + |α|2) ≥ ℓ(x, t, α) ≥ ν

2
|α|2 + ℓ0(x, t, α) with ℓ0(x, t, α) ≥ −C̄(1 + |x|2),

and for every R > 0, there exists a modulus of continuity mR such that for all x, y ∈ B(0, R), t ∈
[0, T ], α ∈ IRk,

|ℓ(x, t, α)− ℓ(y, t, α)| ≤ (1 + |α|2)mR(|x− y|) ; (13)

(iv) σ ∈ C(IRN × [0, T ]× IRk;MN,M(IR)) is locally Lipschitz continuous with respect to x uniformly
for (t, α) ∈ [0, T ]× IRk and satisfies for every x ∈ IRN , t ∈ [0, T ], α ∈ IRk,

|σ(x, t, α)| ≤ C̄(1 + |x|).

(A2) (Assumptions on G given by(3)) :

(i) B is a bounded subset of a normed space;

(ii) g ∈ C(IRN × [0, T ] × B; IRN ) is locally Lipschitz continuous with respect to x uniformly for
(t, β) ∈ [0, T ]×B and satisfies for every x ∈ IRN , t ∈ [0, T ], β ∈ B,

|g(x, t, β)| ≤ C̄(1 + |x|) ;

(iii) f ∈ C(IRN × [0, T ]×B; IR) is locally uniformly continuous with respect to x uniformly in (t, β) ∈
[0, T ]×B and satisfies for every x ∈ IRN , t ∈ [0, T ], β ∈ B,

|f(x, t, β)| ≤ C̄(1 + |x|2);

(iv) c ∈ C(IRN × [0, T ]×B;MN,M(IR)) is locally Lipschitz continuous with respect to x uniformly for
(t, β) ∈ [0, T ]×B and satisfies for every x ∈ IRN , t ∈ [0, T ], β ∈ B,

|c(x, t, β)| ≤ C̄(1 + |x|).
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(A3) (Assumptions on the initial condition ψ) :
ψ ∈ C(IRN ; IR) and

|ψ(x)| ≤ C̄(1 + |x|2) for every x ∈ IRN .

Remark 2.1 (i) About (A1)(i): we choose to take A = IRk in this section to enlight the possible
unboundedness of A in the notation. Indeed, the calculations when A is any subset of a complete
separable normed space are the same and are based on the following inequality: for every ρ > 0, γ ∈ IR,

inf
α∈A

{
ρ|α|2 + γ|α|

}
= inf

α∈A

{(√
ρ|α|2 + γ

2
√
ρ

)2

− γ2

4ρ

}
≥ −γ

2

4ρ
. (14)

(ii) Note that, with respect to the gradient variable, H is a concave function and G is a convex
function. Under Assumptions (A1) and (A2), classical computations show that H and G are continuous
in all their variables.

Example 2.1 The typical case we have in mind is when H is quadratic in the gradient variable, for
instance A = IRk, ℓ(x, t, α) = |α|2/2, σ ≡ 0 and b(x, t, α) = a(x)α where a ∈ C(IRN ;MN,k(IR)) is locally
Lipschitz continuous and bounded for all x ∈ IRN . It leads to

H(x, p) = inf
α∈IRk

{〈a(x)α, p〉 + |α|2
2

} = −|a(x)T p|2
2

. (15)

This particular example is treated both in Ishii [22] and in Da Lio and McEneaney [16] in the case of first
order Hamilton-Jacobi-Bellman equations under more restrictive assumptions than ours. In particular, a
has to be a nonsingular matrix in [22]. See also Section 4 for some further comments.

For any O ⊆ IRK , we denote by USC(O) the set of upper semicontinuous functions in O and by
LSC(O) the set of lower semicontinuous functions in O.

The main result of this section is the

Theorem 2.1 Assume (A1)–(A3). Let U ∈ USC(IRN × [0, T ]) be a viscosity subsolution of (1) and
V ∈ LSC(IRN × [0, T ]) be a viscosity supersolution of (1). Suppose that U and V have quadratic growth,
i.e. there exists Ĉ > 0 such that, for all x ∈ IRN , t ∈ [0, T ],

|U(x, t)|, |V (x, t)| ≤ Ĉ(1 + |x|2). (16)

Then U ≤ V in IRN × [0, T ].

The question of the existence of a continuous solution to (1) is not completely obvious. In the
framework of viscosity solutions, existence is usually obtained as a consequence of the comparison principle
by means of Perron’s method as soon as we can build a sub- and a super-solution to the problem. Here,
the comparison principle is proved in the class of functions satisfying the quadratic growth condition (16).
Therefore, to perform the above program of existence, we need to be able to build quadratic sub- and
super-solutions to (1). In general one can expect to build such sub- and super-solutions only for short
time (see the following lemma and Corollary 2.1). In Example 2.2, we see that solutions may not exist
for all time.

Lemma 2.1 Assume (A1)–(A3). If K ≥ C̄ +1 and ρ are large enough, then u(x, t) = −Keρt(1+ |x|2)
is a viscosity subsolution of (1) in IRN×[0, T ] and there exists 0 < τ ≤ T such that u(x, t) = Keρt(1+|x|2)
is a viscosity supersolution of (1) in IRN × [0, τ ].
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Proof of Lemma 2.1. We only verify that u is a supersolution (the proof that u is a subsolution being
similar and simpler). Since K ≥ C̄ + 1, we have u(x, 0) = K(1 + |x|2) ≥ ψ(x). Moreover, since u is
smooth and using (A1), (A2) and (14), we have

∂u

∂t
+H(x, t,Du,D2u) +G(x, t,Du,D2u)

= Kρeρt(1 + |x|2) +H(x, t, 2Keρtx, 2KeρtId) +G(x, t, 2Keρtx, 2KeρtId)

≥ Kρeρt(1 + |x|2) + inf
α∈IRk

{−C̄(1 + |x|+ |α|)}2Keρt|x|+ ν

2
|α|2 − C̄(1 + |x|2)− C̄2(1 + |x|)22Keρt}

+ sup
β∈B

{−C̄(1 + |x|)2Keρt|x| − C̄(1 + |x|2)− C̄2(1 + |x|)22Keρt}

≥ Kρeρt(1 + |x|2)−K(10C̄ + 12C̄2)eρt(1 + |x|2) + inf
α∈IRk

{−2KC̄eρt|x||α| + ν

2
|α|2}

≥
[
ρ− 10C̄ − 12C̄2 − 2C̄2Keρt

ν

]
Keρt(1 + |x|2).

We notice that if tρ ≤ 1 and ρ > 0 is large enough, then the quantity between the brackets is nonnegative.
Hence the result follows with 0 < τ = 1/ρ. �

As explained above, Theorem 2.1 together with Perron’s method implies the following result. We
omit its proof since it is standard.

Corollary 2.1 Assume (A1)–(A3). Then there is τ > 0 such that there exists a unique continuous
viscosity solution of (1) in IRN × [0, τ ] satisfying the growth condition (16).

Remark 2.2 (i) For global existence results under further regularity assumptions on the data we refer
the reader to Ito [23]. For a case where blowup in finite time occurs, see Example 2.2 which follows.

(ii) Theorem 2.1 and Corollary 2.1 hold when replacing “inf” by “sup” and “ℓ” by “−ℓ” in H or/and
“sup” by “inf” and “f” by “−f” in G. To adapt the proofs, one can use the change of function w′ := −w
or to consider µU − V instead of U − µV in the proof of Theorem 2.1. Therefore it is possible to deal
either with unbounded controls in the “sup” in order to have a convex quadratic Hamiltonian or to deal
with unbounded control in the “inf” in order to have a concave quadratic Hamiltonian.

(iii) Up to replace t by T − t, all our results hold for




−∂w
∂t

+H(x, t,Dw,D2w) +G(x, t,Dw,D2w) = 0 in IRN × (0, T ),

w(x, T ) = ψ(x) in IRN

(17)

This latter equation with terminal condition is the one which arises usually in control theory, see Example
2.2 and Section 3.

(iv) In this section, we are not able to consider the case when both α in H and β in G are unbounded
controls. Roughly speaking, one of the reason is that unbounded controls lead to quadratic Hamiltonians.
When both controls are unbounded, we then obtain two quadratic-type Hamiltonians, a concave and a
convex one. Let us explain the difficulty on a model case where

H(x, p) = inf
α∈IRk

{〈a1(x)α, p〉 +
|α|2
2

} = −|a1(x)T p|2
2

, G(x, p) = sup
β∈IRk

{〈a2(x)β, p〉 −
|β|2
2

} =
|a2(x)T p|2

2
,

with a1, a2 ∈ C(IRN ;MN,k(IR)) are locally Lipschitz continuous and bounded. The difficulty to treat
such a case is related to our strategy of proof which relies on a kind of “linearization procedure” (see
Lemma 2.2 and its proof). In this simple case, this “linearization” uses in a crucial way the convex
inequality

|p|2
µ

− |q|2 ≥ −|p− q|2
1− µ

for all p, q ∈ IRN and 0 < µ < 1,
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which does not work at the same time for a concave and a convex Hamiltonian. Of course, in this simple
case, there are alternative ways to solve the problem: we have

H(x, p) +G(x, p) =
1

2
〈(a1 + a2)(a2 − a1)

T p, p〉, (18)

which allows to apply Theorem 2.1 up to add some assumptions on a1 or a2 (for instance (a1+a2)(a2−a1)T
is a nonnegative symmetric matrix with a locally Lipschitz squareroot). In Section 4, we provide another
approach to solve such equations (see Theorem 4.1 and Remark 4.1).

Example 2.2 A deterministic linear quadratic control problem.
Linear quadratic control problems (see also Section 3 for stochastic linear quadratic control problems)
are the typical examples we have in mind since they lead to Hamilton-Jacobi equations with quadratic
terms. On the other hand, the value function can blow up in finite time. Consider the control problem
(in dimension 1 for sake of simplicity)

{
dXs = αs ds, s ∈ [t, T ], 0 ≤ t ≤ T,
Xt = x ∈ IR,

where the control α ∈ At := L2([t, T ]; IR) and the value function is given by

V (x, t) = inf
α∈At

{ρ
∫ T

t

(|αs|2 + |Xs|2) ds− |XT |2} for some ρ > 0.

Then the value function, when it is finite, is the unique viscosity solution of the Hamilton-Jacobi equation
of type (1) which reads

{ −wt +
1
4ρ |wx|2 = ρx2 in IR × (0, T ),

w(x, T ) = −x2, (19)

(see Theorem 3.1 for a proof of this result). Looking for a solution w under the form w(x, t) = ϕ(t)x2,
we obtain that ϕ is a solution of the differential equation

− ϕ′ +
ϕ2

ρ
= ρ in (0, T ), ϕ(T ) = −1. (20)

We distinguish two cases:
Case 1.— If ρ ≥ 1, then the solution of (20) is defined in the whole interval [0, T ] for all T > 0 and is
given by

ϕ(t) = ρ
(ρ− 1)e2(T−t) − (ρ+ 1)

(ρ− 1)e2(T−t) + ρ+ 1
. (21)

which is a function decreasing from ϕ(0) to −1. Therefore (19) admits a unique viscosity solution in
IR × [0, T ] which is the value function of the control problem

V (x, t) = ϕ(t)x2.

Note that, if ρ > 1 and T > ln((ρ + 1)/(ρ − 1))/2, then ϕ(0) > 0. It follows that the value function
satisfies (16) but is neither bounded from above neither bounded from below.
Case 2.— If 0 < ρ < 1 and T > ln((1 + ρ)/(1− ρ))/2, then the solution of (20) is given by (21) in (τ̄ , T ],
where

τ̄ := T − 1

2
ln

(
1 + ρ

1− ρ

)
,

and blows up at t = τ̄ . Therefore we have existence for (19) only in IR× (τ̄ , T ].
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Proof of Theorem 2.1. We divide the proof of the theorem in two steps.
Step 1. We first assume that ℓ0 ≥ 0, f ≤ 0 and ψ ≤ 0 in (A1), (A2) and (A3).

The proof is based on the two following lemmas whose proofs are postponed.

Lemma 2.2 (“Linearization” of Equation (1)). Let 0 < µ < 1 and set Ψ = U − µV. Suppose ℓ0 ≥ 0,
f ≤ 0 and ψ ≤ 0. Then Ψ is an USC viscosity subsolution of

L[w] :=
∂w

∂t
− C̄2

2ν(1− µ)
|Dw|2 − 2C̄(1 + |x|)|Dw| (22)

− sup
α∈IRk

Tr
[
σ(x, t, α)σT (x, t, α)D2w

]
− sup

β∈B
Tr

[
c(x, t, β)cT (x, t, β)D2w

]
= 0

in IRN × (0, T ), with the initial condition

w(·, 0) ≤ (1− µ)ψ ≤ 0. (23)

Lemma 2.3 Consider the parabolic problem

{
ϕt − r2ϕrr − rϕr = 0 in [0,+∞)× (0, T ]
ϕ(r, 0) = ϕR(r) in [0,+∞),

(24)

where ϕR(r) = max{0, r−R} for some R > 0. Then (24) has a unique solution ϕ ∈ C([0,+∞)× [0, T ])∩
C∞([0,+∞)× (0, T ]) such that, for all t ∈ (0, T ], ϕ(·, t) is positive, nondecreasing and convex in [0,+∞).
Moreover, for every (r, t) ∈ [0,+∞)× (0, T ],

ϕ(r, t) ≥ ϕR(r), 0 ≤ ϕr(r, t) ≤ eT and ϕ(r, t) −→
R→+∞

0. (25)

Let Φ(x, t) = ϕ(C(1+ |x|2)eLt,Mt)+ηt where ϕ is given by Lemma 2.3, L,M, η are positive constants
to be determined and C > max{C̄, Ĉ}, where C̄ and Ĉ are the constants appearing in the assumptions.

Claim :We can choose the constants L and M such that Φ is a strict supersolution of (22) at least in
IRN × (0, τ ] for small τ.

To prove the claim, we have to show that L[Φ] > 0 in IRN × (0, τ ] for some τ > 0. The function
Φ ∈ C(IRN × [0, T ]) ∩ C∞(IRN × (0, T ]) and we have, for t > 0,

Φt = η + LC(1 + |x|2)eLtϕr +Mϕt, DΦ = 2CxeLtϕr and D2Φ = 2C Id eLtϕr + 4C2e2Ltϕrr x⊗ x.

Using (A1) and (A2), for all (x, t) ∈ IRN × (0, T ], we get

L[Φ] ≥ η + LC(1 + |x|2)eLtϕr +Mϕt −
C̄2

2ν(1− µ)
|2CxeLtϕr|2 − 2C̄(1 + |x|)|2CxeLtϕr|

−2C̄2(1 + |x|)2|2C Id eLtϕr + 4C2e2Ltx⊗ xϕrr|.

Setting r = C(1 + |x|2)eLt and since C > C̄, we obtain

L[Φ] ≥ η +Mϕt − 16C2r2ϕrr − 8C(C + 1)rϕr +

(
L− 2C3eLtϕr

ν(1 − µ)

)
rϕr.

Our aim is to fix the parameters M and L in order to make L[Φ] positive.
We first choose M > 16C2 + 8C. Since ϕ is a solution of (24) (Lemma 2.3), we obtain

L[Φ] > η +

(
L− 2C3eLtϕr

ν(1 − µ)

)
rϕr. (26)
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Then, taking L >
2C3eT+1

ν(1− µ)
, we get L[Φ] > η > 0 for all x ∈ IRN and t ∈ (0, τ ], where τ = 1/L. This

proves the claim.
We continue by considering

max
IRN×[0,τ ]

{Ψ− Φ}, (27)

where Ψ is the function defined in Lemma 2.2 which is a viscosity subsolution of (22) and Φ is the strict
supersolution of (22) in IRN × (0, τ ] we built above.

From (25), we have Φ(x, t) ≥ C(1 + |x|2) > C̄(1 + |x|2) ≥ Ψ(x, t) for |x| ≥ R. It follows that the
maximum (27) is achieved at a point (x̄, t̄) ∈ IRN × [0, τ ]. We claim that t̄ = 0. Indeed suppose by
contradiction that t̄ > 0. Then since Ψ is a viscosity subsolution of (22), by taking Φ as a test-function,
we would have L[Φ](x̄, t̄) ≤ 0 which contradicts the fact that Φ is a strict supersolution.

Thus, for all (x, t) ∈ IRN × [0, τ ],

Ψ(x, t)− Φ(x, t) ≤ Ψ(x̄, 0)− Φ(x̄, 0) ≤ (1 − µ)ψ(x̄),

where the last inequality follows from (23) and the fact that Φ ≥ 0. Since we assumed that ψ is nonpositive,
for every (x, t) ∈ IRN × [0, τ ], we have Ψ(x, t) ≤ Φ(x, t). Letting η go to 0 and R to +∞, we get by Lemma
2.3, Ψ ≤ 0 in IRN × [0, τ ].

By a step-by-step argument, we prove that Ψ ≤ 0 in IRN × [0, T ]. Therefore Ψ = U − µV ≤ 0 in
IRN × [0, T ]. Letting µ go to 1, we obtain U ≤ V as well which concludes the Step 1.

Step 2. The general case.
The idea is to reduce to the first case by a suitable change of function (see Ishii [22]). Suppose that w is
a solution of (1). Then, a straightforward computation shows that w̄(x, t) = w(x, t)−C(1 + |x|2)eρt, for
C > C̄, Ĉ and ρ > 0, is a solution of






w̄t + inf
α∈IRk

{
〈b(x, t, α), Dw̄〉+ ℓ̄(x, t, α) − Tr

[
σ(x, t, α)σT (x, t, α)D2w̄

]}

+ sup
β∈B

{
−〈g(x, t, β), Dw̄〉 − f̄(x, t, β)− Tr

[
c(x, t, β)cT (x, t, β)D2w̄

]}
= 0,

w̄(x, 0) = ψ(x) − C(1 + |x|2),

(28)

where

ℓ̄(x, t, α) = ℓ(x, t, α) + 2Ceρt〈b(x, t, α), x〉 − 2Ceρt Tr
[
σ(x, t, α)σT (x, t, α)

]
+

1

2
Cρeρt(1 + |x|2),

f̄(x, t, β) = f(x, t, β) + 2Ceρt〈g(x, t, β), x〉 + 2Ceρt Tr
[
c(x, t, β)cT (x, t, β)

]
− 1

2
Cρeρt(1 + |x|2).

We observe that ℓ̄ and f̄ still satisfy respectively the assumptions (A1)(iii) and (A2)(iii). Moreover from
(A3), we can choose C > C̄ in order that ψ̄ ≤ 0.

Next we show that if ρ > 0 is chosen in a suitable way then ℓ̄(x, t, α) ≥ ν̄|α|2/2 for all (x, t, α) ∈
IRN × [0, 1/ρ] × IRk and f(x, t, β) ≤ 0 for all (x, t, β) ∈ IRN × [0, 1/ρ] × B. Indeed for all (x, t, α) ∈
IRN × [0, 1/ρ]× IRk by (A1) we have

ℓ̄(x, t, α) ≥ ν

2
|α|2 − C̄(1 + |x|2)− 2CC̄eρt(1 + |x|+ |α|)|x| − 2CC̄2eρt(1 + |x|)2 + 1

2
Cρeρt(1 + |x|2)

≥ ν

2
|α|2 − (C̄ + 4CC̄ + 4CC̄2)eρt(1 + |x|2)− 2CC̄eρt|α||x| + 1

2
Cρeρt(1 + |x|2).

But

2CC̄eρt|α||x| ≤ ν

4
|α|2 + 16C2C̄2e2ρt

ν
|x|2 ;
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Therefore, by choosing

ρ > 2
C̄

C
+ 8C̄ + 8C̄2 +

32CC̄2e

ν
, (29)

we have
ℓ̄(x, t, α) ≥ ν

4
|α|2 for all (x, t, α) ∈ IRN × [0, 1/ρ]× IRk,

which is the desired estimate with ν̄ = ν/2 > 0 and ℓ0 ≡ 0.
The next step consists in choosing ρ such that f̄ ≤ 0 . Using (A2), the same kind of calculation as

above shows that, taking

ρ > 8(C̄ + C̄2) + 2 (30)

ensures f̄ ≤ 0.
Finally if we choose C > C̄ and ρ as the maximum of the two quantities appearing in (29) and (30), we

are in the framework of Step 1 in IRN × [0, ρ]. Setting Ū = U −C(1+ |x|2)eρt and V̄ = V −C(1+ |x|2)eρt,
from Step 1 we get Ū ≤ V̄ in IRN × [0, 1/ρ]; thus U ≤ V in IRN × [0, 1/ρ]. Then by a step-by-step
argument we obtain the comparison in IRN × [0, T ]. �

Remark 2.3 A key fact in the proof to build a strict supersolution of (22) is to use a function which is
the solution of the auxiliary – and simpler – pde (24). This idea come from mathematical finance to deal
with equations related to Blake and Scholes formula. See for instance Lamberton and Lapeyre [29] and
Barles et al. [8].

We turn to the proof of the lemmas 2.2 and 2.3.
Proof of Lemma 2.2. For 0 < µ < 1, let Ṽ = µV and Ψ = U − Ṽ . We divide the proof in different

steps.
Step 1. A new equation for Ṽ .

It is not difficult to see that, if V is a supersolution of (1), then Ṽ is a supersolution of

Ṽt + µH
(
x, t,

DṼ

µ
,
D2Ṽ

µ

)
+ µG

(
x, t,

DṼ

µ
,
D2Ṽ

µ

)
≥ 0 in IRN × (0, T )

Ṽ (x, 0) ≥ µψ(x) in IRN .

(31)

Step 2. Viscosity inequalities for U and Ṽ .
This step is classical in viscosity theory. Let ϕ ∈ C2(IRN × (0, T ]) and (x̄, t̄) ∈ IRN × (0, T ] be a local
maximum of Ψ − ϕ. We can assume that this maximum is strict in the same ball B(x̄, r) × [t̄− r, t̄+ r]
(see [6] or [3]). Let

Θ(x, y, t) = ϕ(x, t) +
|x− y|2
ε2

and consider
Mε := max

x,y∈B(x̄,r), t∈[t̄−r,t̄+r]
{U(x, t)− Ṽ (y, t)−Θ(x, y, t)}.

This maximum is achieved at a point (xε, yε, tε) and, since the maximum is strict, we know ([6], [3]) that

|xε − yε|2
ε2

→ 0 as ε→ 0,

and

Mε = U(xε, tε)− Ṽ (yε, tε)−Θ(xε, yε, tε) −→ U(x̄, t̄)− Ṽ (x̄, t̄)− ϕ(x̄, t̄) = Ψ(x̄, t̄)− ϕ(x̄, t̄).
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It means that, at the limit ε → 0, we obtain some information on Ψ − ϕ at (x̄, t̄) which will provide the
new equation for Ψ. Before that, we can take Θ as a test-function to use the fact that U is a subsolution
and Ṽ a supersolution. Indeed (x, t) ∈ B(x̄, r) × [t̄ − r, t̄ + r] 7→ U(x, t) − Ṽ (yε, t) − Θ(x, yε, t) achieves
its maximum at (xε, tε) and (y, t) ∈ B(x̄, r) × [t̄ − r, t̄ + r] 7→ −U(xε, t) + Ṽ (y, t) + Θ(xε, y, t) achieves
its minimum at (yε, tε). Thus, by Theorem 8.3 in the User’s guide [15] , for every ρ > 0, there exist
a1, a2 ∈ IR and X,Y ∈ SN such that

(a1, DxΘ(xε, yε, tε), X) ∈ P̄2,+(U)(xε, tε), (a2,−DyΘ(xε, yε, tε), Y ) ∈ P̄2,−(Ṽ )(yε, tε),

a1 − a2 = Θt(xε, yε, tε) = ϕt(xε, tε) and

− (
1

ρ
+ |M |)I ≤

(
X 0
0 −Y

)
≤M + ρM2 where M = D2Θ(xε, yε, tε). (32)

Setting pε = 2
xε − yε
ε2

, we have

DxΘ(xε, yε, tε) = pε +Dϕ(xε, tε) and DyΘ(xε, yε, tε) = −pε,

and

M =

(
D2ϕ(xε, tε) + 2I/ε2 −2I/ε2

−2I/ε2 2I/ε2

)
.

Thus, from (32), it follows

〈Xp, p〉 − 〈Y q, q〉 ≤ 〈D2ϕ(xε, tε)p, p〉+
2

ε2
|p− q|2 +m

( ρ
ε4

)
, (33)

where m is a modulus of continuity which is independent of ρ and ε. In the sequel, m will always denote
a generic modulus of continuity independent of ρ and ε.

Writing the subsolution viscosity inequality for U and the supersolution inequality for Ṽ by means of
the semi-jets and subtracting the inequalities, we obtain

ϕt(xε, tε) + H
(
xε, tε, Dϕ(xε, tε) + pε, X)− µH

(
yε, tε,

pε
µ
,
Y

µ

)

+ G
(
xε, tε, Dϕ(xε, tε) + pε, X)− µG

(
yε, tε,

pε
µ
,
Y

µ

)
≤ 0. (34)

Step 3. Estimate of G := G
(
xε, tε, Dϕ(xε, tε) + pε, X)− µG

(
yε, tε,

pε
µ
,
Y

µ

)
.

For sake of simplicity, we set

c(xε, tε, β) = cx and c(yε, tε, β) = cy.

We have

G = sup
β∈B

{
−〈g(xε, tε, β), Dϕ(xε, tε) + pε〉 − f(xε, tε, β)− Tr

[
cxc

T
xX

]}

− sup
β∈B

{
−〈g(yε, tε, β), pε〉 − µf(yε, tε, β)− Tr

[
cyc

T
y Y

]}

≥ inf
β∈B

{〈g(yε, tε, β)− g(xε, tε, β), pε〉 − 〈g(xε, tε, β), Dϕ(xε, tε)〉

−(1− µ)f(yε, tε, β) + f(yε, tε, β)− f(xε, tε, β)− Tr
[
cxc

T
xX − cyc

T
y Y

]}
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From (A2), if Lg,r is the Lipschitz constant of g in B(x̄, r) × [t̄− r, t̄+ r], then we have

〈g(yε, tε, β)− g(xε, tε, β), pε〉 ≤ Lg,r|yε − xε||pε| ≤ 2Lg,r
|yε − xε|2

ε2
= m(ε)

and

−〈g(xε, tε, β), Dϕ(xε, tε)〉 ≥ −C̄(1 + |xε|)|Dϕ(xε, tε)| .

By assumption, f ≤ 0 thus −(1− µ)f(yε, tε, β) ≥ 0. Again from (A2) it follows that

f(yε, tε, β)− f(xε, tε, β) ≥ −m(|yε − xε|).

Let us denote by (ei)1≤i≤N the canonical basis of IRN . By using (33), we obtain

Tr
[
cxc

T
xX − cyc

T
y Y

]
=

N∑

i=1

〈Xcxei, cxei〉 − 〈Y cyei, cyei〉

≤ Tr
[
cxc

T
xD

2ϕ(xε, tε)
]
+

2

ε2
|cx − cy|2 +m

( ρ
ε4

)

≤ Tr
[
cxc

T
xD

2ϕ(xε, tε)
]
+ 2L2

c,r

|xε − yε|2
ε2

+m
( ρ
ε4

)

≤ Tr
[
cxc

T
xD

2ϕ(xε, tε)
]
+m(ε) +m

( ρ
ε4

)
,

where Lc,r is a Lipschitz constant for c in B̄(x, r). Hence, since all the modulus are independent of ε, ρ
and the control, we have

G ≥ −C̄(1 + |xε|)|Dϕ(xε, tε)|+ inf
β∈B

{
−Tr

[
c(xε, tε, β)c(xε, tε, β)

TD2ϕ(xε, tε)
]}

+m(ε) +m
( ρ
ε4

)
.

Step 4. Estimate of H := H
(
xε, tε, Dϕ(xε, tε) + pε, X)− µH

(
yε, tε,

pε
µ
,
Y

µ

)
.

With the same notations as in Step 3, we have

H ≥ inf
α∈IRk

{〈b(xε, tε, α)− b(yε, tε, α), pε〉+ 〈b(xε, tε, α), Dϕ(xε, tε)〉

+(1− µ)ℓ(yε, tε, α) + ℓ(xε, tε, α) − ℓ(yε, tε, α)− Tr
[
σxσ

T
xX − σyσ

T
y Y

]}
.

From (A1) the following estimates follow:

〈b(xε, tε, α)− b(yε, tε, α), pε〉 ≥ −C̄(1 + |α|)|xε − yε||pε| ≥ −C̄|α|m(ε) +m(ε) ;

〈b(xε, tε, α), Dϕ(xε, tε)〉 ≥ −C̄(1 + |xε|)|Dϕ(xε, tε)| − C̄|α||Dϕ(xε, tε)| ;

ℓ(xε, tε, α)− ℓ(yε, tε, α) ≥ −(1 + |α|2)mr(|xε − yε|) ≥ −|α|2m(ε) +m(ε).

(1 − µ)ℓ(yε, tε, α) ≥ (1− µ)
(ν
2
|α|2 + ℓ0(x, t, α)

)
≥ ν(1− µ)

2
|α|2,

where the last inequality follows from the fact that by assumption, ℓ0(x, t, α) ≥ 0.
By proceeding exactly as in Step 3 one can show that

Tr
[
σxσ

T
xX − σyσ

T
y Y

]
≤ Tr

[
σxσ

T
xD

2ϕ(xε, tε)
]
+m(ε) +m

( ρ
ε4

)
,
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where m is independent of α. Thus, using (14), we have

H ≥ inf
α∈IRk

{(
ν(1 − µ)

2
+m(ε)

)
|α|2 − C̄(|Dϕ(xε, tε)|+m(ε))|α|

}

+ inf
α∈IRk

{
−Tr

[
σ(xε, tε, α)σ(xε, tε, α)

TD2ϕ(xε, tε)
]}

− C̄(1 + |xε|)|Dϕ(xε, tε)|+m(ε) +m
( ρ
ε4

)

≥ − (C̄|Dϕ(xε, tε)|+m(ε))2

2ν(1− µ) +m(ε)
− C̄(1 + |xε|)|Dϕ(xε, tε)|

+ inf
α∈IRk

{
−Tr

[
σ(xε, tε, α)σ(xε, tε, α)

TD2ϕ(xε, tε)
]}

+m(ε) +m
( ρ
ε4

)
. (35)

Step 5. Finally, from (34), (35), (35), letting first ρ go to 0 and then sending ε to 0, we obtain

L[ϕ](x̄, t̄) = ϕt(x̄, t̄)−
C̄2

2ν(1− µ)
|Dϕ(x̄, t̄)|2 − 2C̄(1 + |x̄|)|Dϕ(x̄, t̄)|

+ inf
α∈IRk

{
−Tr

[
σ(x̄, t̄, α)σ(x̄, t̄, α)TD2ϕ(x̄, t̄)

]}
+inf
β∈B

{
−Tr

[
c(x̄, t̄, β)c(x̄, t̄, β)TD2ϕ(x̄, t̄)

]}
≤ 0

which means exactly that Ψ is a subsolution of (22). �

Proof of Lemma 2.3. Set χ(s, t) = ϕ(es, t) for (s, t) ∈ IR × [0,+∞). A straightforward calculation
shows that ϕ satisfies (24) if and only if χ is a solution of the heat equation

{
χt − χss = 0 in IR × (0, T )
χ(s, 0) = ϕR(e

s) in IR.
(36)

Since the initial data satisfies the growth estimate |χ(s, 0)| < es
2

, by classical results on the heat equation
(John [24], Evans [17]), we know there exists a unique classical solution χ ∈ C(IR×[0, T ])×C∞(IR×(0, T ])
of (36). It is given by the representation formula: for every (s, t) ∈ IR × [0, T ],

χ(s, t) =
1√
4πt

∫

IR

e−
(s−y)2

4t ϕR(e
y) dy =

1√
4πt

∫ +∞

logR

e−
(s−y)2

4t (ey −R) dy. (37)

From the above formula, it follows χ(s, t) > 0 for all (s, t) ∈ IR × (0, T ]. Let h > 0. We have ϕR(e
s) ≤

ϕR(e
s+h) for all s ∈ IR. Since χ(·+ h, ·) is a solution of (36) with initial data ϕR(e

s+h), by the maximum
principle, we obtain χ(s, t) ≤ χ(s+ h, t). This proves that χ is nondecreasing with respect to s. It follows
that ϕ(r, t) = χ(log r, t) is the unique solution of (24) and ϕ ∈ C([0,+∞)× [0, T ])∩C∞((0,+∞)× (0, T ])
is positive and nondecreasing. Moreover, if the initial data is convex, we know that the solution of a
quasilinear equation like (24) is convex in the space variable for every time (see e.g. Giga et al. [20]).
Thus ϕ(·, t) is convex in [0,+∞) for all t ∈ [0, T ].

It remains to prove the estimates (25). Noticing that ϕR(e
s) ≤ es and that (s, t) 7→ ϕR(e

s) and
(s, t) 7→ es+t are respectively sub- and supersolution (in the viscosity sense for example) of (36), by the
maximum principle, we obtain ϕR(e

s) ≤ χ(s, t) ≤ es+t ≤ es+T for (s, t) ∈ IR× [0, T ]. It follows

ϕR(r) ≤ ϕ(r, t) ≤ eT r for (r, t) ∈ [0,+∞]× [0, T ]. (38)

This gives the first estimate. To prove the second estimate, we note that ϕ(·, t) is a convex nondecreasing
function satisfying (38). It follows 0 ≤ ϕr(r, t) ≤ eT for (r, t) ∈ [0,+∞] × (0, T ]. The last assertion is
obvious, using the dominated convergence theorem in (37). It completes the proof of the lemma. �
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3 Applications

This Section is divided in two parts. In the first part we consider a finite horizon unbounded stochastic
control problem and we characterize the value function as the unique viscosity solution of the correspond-
ing Dynamic Programming Equation, which is a particular case of the equation (1). In the second part
we list some concrete examples of model cases to which the results of Section 1 can be applied.

3.1 Unbounded stochastic control problems

Let (Ω,F , (Ft)t≥0, P ) be a filtered probability space, Wt be a Ft-adapted standard M -Brownian motion
such that W0 = 0 a.s. and let A be a subset of a separable normed space (possibly unbounded). We
consider a finite horizon unbounded stochastic control problem for controlled diffusion processes Xt,x

s

whose dynamic is governed by a stochastic differential equation of the form
{
dXt,x

s = b(Xt,x
s , s, αs)ds+ σ(Xt,x

s , s, αs)dWs, s ∈ (t, T ), 0 ≤ t ≤ T,

Xt,x
t = x ∈ IRN ,

(39)

where the control αs ∈ A, b : IRN × IR × A → IRN is a continuous vector field, σ is a continuous real
N ×M matrix. The pay-off to be minimized is

J(t, x, α) = Etx{
∫ T

t

ℓ(Xt,x
s , s, αs) ds+ ψ(Xt,x

T )}

where Etx is the expectation with respect to the event Xt,x
t = x, the functions ℓ : IRN × [0, T ]×A→ IR

and ψ : IRN → IR are continuous, αs ∈ At, the set of A-valued Ft-progressively measurable controls such
that

Etx(

∫ T

t

|αs|2 ds) < +∞ (40)

and Xt,x
s is the solution of (39). The value function is defined by

V (x, t) = inf
αs∈At

J(t, x, αs). (41)

At least formally, the Dynamic Programming Equation associated to this control problem is

− ∂w

∂t
+ sup

α∈A
{−〈b(x, t, α), Dw〉 − ℓ(x, t, α)− 1

2
Tr (σ(x, t, α)σ(x, t, α)TD2w)} = 0 (42)

in IRN × (0, T ), with the terminal value condition w(x, T ) = ψ(x).
Our main goal is to characterize the value function V as the unique continuous viscosity solution of

(42) with the terminal value condition V (x, T ) = ψ(x). We recall that the fact that the value function is a
viscosity solution of the equation (42) is in general obtained by a direct use of the Dynamic Programming
Principle. Since we are in an unbounded control framework, the proof of the Dynamic Programming
Principle is rather delicate, thus we follow another strategy which consists in comparing directly V with
the unique viscosity solution U of (42) obtained by Corollary 2.1 when this latter exists.

We make the following assumptions on the data.

(S0) A is a subset (possibly unbounded) of a separable complete normed space.

(S1) b ∈ C(IRN × [0, T ] × A; IRN ) and there exists C̄ > 0 such that, for all x, y ∈ IRN , t ∈ [0, T ] and
α ∈ A we have

|b(x, t, α)− b(y, t, α)| ≤ C̄|x− y|,
|b(x, t, α)| ≤ C̄(1 + |x|+ |α|);
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(S2) σ ∈ C(IRN × [0, T ]×A;MN,M ) and there exists C̄ > 0 such that, for all x, y ∈ IRN , t ∈ [0, T ] and
α ∈ A we have

|σ(x, t, α) − σ(y, t, α)| ≤ C̄|x− y|,
|σ(x, t, α)| ≤ C̄(1 + |x|).

Moreover we assume that ℓ and ψ satisfy respectively (A1)(iii) and (A3).
We first observe that under the current assumptions (S1) and (S2) on b and σ, for any control α ∈ At

satifying (40) and any random variable Z such that E[Z] < ∞, there exists a unique strong solution of
the stochastic differential equation (39) which satisfies

E
{

sup
t≤s≤T

|Xt,Z
s |2

}
<∞

(see e.g. Appendix D in [19]). Moreover, we have better estimates on the trajectories of (39).

Lemma 3.1 Assume (S0), (S1) and (S2). For every (x, t) ∈ IRN × [0, T ] and every αs ∈ At, the
solution Xt,x

s of (39) corresponding to αs, satisfies the following properties:

(i) there exists a constant C > 0 such that

Etx

{
sup

t≤s≤T
|Xt,x

s |2
}
≤ (|x|2 + C(T − t) + CEtx

∫ T

t

|αs|2 ds) eC(T−t) ; (43)

(ii) there exists Cx,α > 0 which depends on x and on the control αs such that, for all s, s′ ∈ [t, T ],

Etx{|Xt,x
s −Xt,x

s′ |} ≤ Cx,α|s− s′|1/2. (44)

In particular for all τ ∈ [t, T ] we have

Etx

{
sup

t≤s≤τ
|Xt,x

s − x|
}
≤ Cx,α|τ |1/2. (45)

Proof of Lemma 3.1. We start by proving (i). Let us take an increasing sequence of C2 functions
ϕR : IR+ → IR+ such that for all R > 0, ϕ′

R(r) = 0 if r > 2R, ϕ′′
R(r) ≤ 0 and ϕR(r) ↑ r, ϕ′

R(r) ↑ 1, as
R → +∞. By applying Ito’s formula to the process ϕR(|Xt,x

s |2), for a.e. t ≤ τ ≤ T, we have (dropping
the argument of ϕR and its derivatives)

ϕR(|Xt,x
τ |2) = ϕR(|x|2) +

∫ τ

t

2ϕ′
R〈Xt,x

s , b(Xt,x
s , s, αs)〉 ds

+

∫ τ

t

(
ϕ′
RTr[σσ

T (Xt,x
s , s, αs)] + 2ϕ′′

R|σT (Xt,x
s , s, αs)X

t,x
s |2

)
ds+

∫ τ

t

2ϕ′
R〈Xt,x

s , σ(Xt,x
s , s, αs)dWs〉.(46)

By using the current assumptions on b and σ the following estimate holds
∫ τ

t

(
2ϕ′

R〈Xt,x
s , b(Xt,x

s , s, αs)〉+ ϕ′
RTr[σσ

T (Xt,x
s , s, αs)] + 2ϕ′′

R|σT (Xt,x
s , s, αs)X

t,x
s |2

)
ds

≤ 2C

∫ τ

t

ϕ′
R|Xt,x

s |(1 + |Xt,x
s |+ |αs|) ds+ C

∫ τ

t

ϕ′
R(1 + |Xt,x

s |2) ds a.s.,

where the constant C does not depend neither on the control αs nor on R. Moreover we observe that
since ϕ′

R = 0 for t > 2R we have

Etx

{∫ τ

t

|ϕ′
R〈Xt,x

s , σ(Xs, s, αs)〉|2 ds
}
< +∞
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hence the expectation of the stochastic integral is zero. By taking the expectation in (46) and applying
Fubini’s Theorem we obtain

Etx{ϕR(|Xt,x
τ |2)} ≤ ϕR(|x|2) + C

∫ τ

t

Etx{ϕ′
R[2 + 5|Xt,x

s |2 + |αs|2]} ds.

Since ϕR, ϕ
′
R are increasing sequences , we can applying Beppo Levi’s Theorem. Therefore by letting

R → ∞ we obtain, for every t ≤ τ ≤ T,

Etx{|Xt,x
τ |2} ≤ |x|2 + C

∫ τ

t

Etx{2 + 5|Xt,x
s |2 + |αs|2} ds

≤ |x|2 + 5C

∫ τ

t

Etx|Xt,x
s |2 ds+ CEtx{

∫ τ

t

|αs|2 ds}+ 2C(T − t)

Applying Gronwall’s Inequality we obtain

Etx{|Xt,x
τ |2} ≤

(
|x|2 + 2C(T − t) + C Etx{

∫ T

t

|αs|2 ds}
)
e5C(T−t).

We conclude by Doob’s maximal inequality, (see, e.g [25]).
The proof of (ii) is an extension of the one in the Appendix D in [19] and we leave it to the reader. �

Proposition 3.1 Assume (S0), (S1), (S2), (A1)(iii) for ℓ and (A3) for ψ. Then there exists 0 ≤ τ < T
such that the value function V is finite and satisfies the quadratic growth condition (16) in IRN × [τ, T ].

Proof of Proposition 3.1. We aim at showing that that if the constants ρ, C > 0 are large enough then
there exists τ > 0 depending on ρ such that |V (x, t)| ≤ C(1+ |x|2)eρ(T−t) for all (x, t) ∈ IRN × [τ, T ]. The
upper estimate is obtained by majorizing directly the value function with the cost functional corresponding
to a constant control and using the estimates of the trajectories in Lemma 3.1. The most difficult
is to prove the estimate from below since V is defined by an infimum. To this purpose we take any
control αs ∈ At. By applying Ito’s formula to the process (1 + |Xt,x

s |2)eρ(t−s), Xt,x
s being the trajectory

corresponding to αs, we have the following estimate

d[(1 + |Xt,x
s |2)eρ(T−s)] = −ρeρ(T−s)(1 + |Xt,x

s |2)ds+ eρ(T−s)Tr (σσT (Xt,x
s , s, αs))ds

+2eρ(T−s)〈Xt,x
s , b(Xt,x

s , s, αs)ds+ σ(Xt,x
s , s, αs)dWs〉. (47)

Integrating both sides of (47) from t to T and taking the expectation we get:

Etx{1 + |Xt,x
T |2} − (1 + |x|2)eρ(T−t) (48)

= Etx

{∫ T

t

(
− ρ(1 + |Xt,x

s |2) + 2〈Xt,x
s , b(Xt,x

s , s, αs)〉+ Tr(σσT (Xs, s, αs)
)
eρ(T−s) ds

}
.

We notice that in the above estimate we supposed that the expectation of the stochastic integral is zero.
This is false in general but we can overcome such a difficulty by an approximation argument which is
similar to the one used in the proof of Lemma 3.1. Now for any ε-optimal control αs for V (x, t), by using
(48), we get

V (x, t) + C(1 + |x|2)eρ(T−t) + ε ≥ Etx

{∫ T

t

(
ℓ(Xt,x

s , s, αs)− 2Ceρ(T−s)〈Xt,x
s , b(Xt,x

s , s, αs)〉

−Ceρ(T−s)Tr(σσT (Xt,x
s , s, αs)) + ρeρ(T−s)C(1 + |Xs|2)

)
ds

+ψ(Xt,x
T ) + C(1 + |Xt,x

T |2)
}

= Etx{
∫ T

t

ℓ̄(Xt,x
s , s, αs) ds+ ψ̄(Xt,x

T )},
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where ℓ̄(x, t, α) := ℓ(x, t, α) − 2Ceρ(T−t)〈b(x, t, α), x〉 − 2Ceρ(T−t)Tr a(x, t, α) + Cρeρ(T−t)(1 + |x|2) and
ψ̄(x) := ψ(x) + C(1 + |x|2). By analogous arguments as those used in Section 2 one can see that for
ρ, C > 0 large enough there is τ > 0 such that ℓ̄ and ψ̄ are nonnegative in IRN × [τ, T ]. Thus we can
conclude since ε is arbitrary. �

Remark 3.1 If ℓ, ψ are bounded from below, namely they satisfy, for some C > 0, the following two
conditions ℓ(x, t, α) ≥ ν|α|2 −C and ψ(x) ≥ −C, then V is finite and satisfies the growth condition (16)
in IRN × [0, T ] (i.e. for all time).

Next we prove that V is the unique viscosity solution of (42). We start with the following Proposition.

Proposition 3.2 Under the assumptions of Proposition 3.1 we have
(i) (Super-optimality principle) for all t ∈ (τ, T ] and 0 < h ≤ T − t and for all stopping time t ≤ θ ≤ T,
we have

V (x, t) ≥ inf
αs∈At

Etx{
∫ (t+h)∧θ

t

ℓ(Xt,x
s , s, αs) ds+ V∗(X

t,x
(t+h)∧θ, (t+ h) ∧ θ)}. (49)

(ii) the function V is a supersolution of (42) in IRN × [τ, T ].

Proof of Proposition 3.2. The proof of (i) is a standard routine and we refer the reader for instance
to the book of Yong and Zhou [41]. The opposite inequality is more delicate, see Krylov [27, 28].

We turn to the proof of (ii), showing that the super-optimality principle implies that V∗ is a viscosity
supersolution of (42). Let φ ∈ C2(IRN × [0, T ]) and (x̄, t̄) ∈ IRN × (τ, T ) be a local minimum of V∗ − φ.
We can assume that V∗(x̄, t̄) = φ(x̄, t̄) and that the maximum is strict, i.e. V∗(x, t) > φ(x, t) for all
(x, t) ∈ B̄(x̄, ε)× [t̄− ε, t̄+ ε] with (x, t) 6= (x̄, t̄) (see [3] or [6] ). We assume by contradiction that there
exists δε > 0 such that for all (x, t) ∈ B̄(x̄, ε)× [t̄− ε, t̄+ ε], we have

− φt(x, t) + sup
α∈A

{−〈b(x, t, α), Dφ(x, t)〉 − ℓ(x, t, α)− Tr [
1

2
σσT (x, t, α)D2φ(x, t)]} ≤ −δε. (50)

Since (x̄, t̄) is a strict minimum of V∗ − φ, it follows that there exists ηε such that

V∗(x, t) ≥ φ(x, t) + ηε for all (x, t) ∈ ∂B(x̄, ε)× [t̄− ε, t̄+ ε]. (51)

From now on, we fix 0 < h < ε/2 such that hδε < ηε. Let us denote by τt,x the exit time of the trajectory
Xt,x

s from the ball B(x̄, ε). We first observe that by the continuity of the trajectory (see Lemma 3.1), we
have τt,x > t for all (x, t) ∈ B(x̄, ε)× [0, T ). For every (x, t) ∈ B(x̄, ε)× (t̄ − ε/2, t̄+ ε/2), there exists a
control αs ∈ At such that

V (x, t) +
δεh

2
≥ Etx

{∫ (t+h)∧τt,x

t

ℓ(Xt,x
s , s, αs) ds+ V∗(X

t,x
(t+h)∧τt,x

, (t+ h) ∧ τt,x)
}
.

Since V∗ ≥ φ in B̄(x̄, ε)× [t̄− ε, t̄+ ε], if τt,x < t+ h, then, from (51), we have

V∗(X
t,x
(t+h)∧τt,x

, (t+ h) ∧ τt,x) ≥ φ(Xt,x
τt,x , τt,x) + ηε.

Therefore the following estimate holds

V (x, t) +
δεh

2
≥ Etx

{[∫ τt,x

t

ℓ(Xt,x
s , s, αs) ds+ φ(Xt,x

τt,x , τt,x) + ηε

]
11{τt,x<t+h}

}

+Etx

{[∫ t+h

t

ℓ(Xt,x
s , s, αs) ds+ φ(Xt,x

t+h, t+ h)
]
11{τt,x≥t+h}

}

≥ Etx

{
[I(τt,x) + ηε]11{τt,x<t+h}

}
+ Etx

{
I(t+ h)11{τt,x≥t+h}

}
, (52)
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where for all τ ′ > 0

I(τ ′) =

∫ τ ′

t

ℓ(Xt,x
s , s, αs) ds+ φ(Xt,x

τ ′ , τ
′).

Applying Ito’s formula to the process φ(Xt,x
τ ′ , τ ′), we obtain

I(τ ′) =

∫ τ ′

t

(
ℓ(Xt,x

s , s, αs) + φt(X
t,x
s , s) + 〈Dφ(Xt,x

s , s), b(Xt,x
s , s, αs)〉

+
1

2
Tr [σσT (Xt,x

s , s, αs)D
2φ]

)
ds+ φ(x, t) +

∫ τ ′

t

〈Dφ(Xt,x
s , s), σ(Xt,x

s , s, αs)dWs〉 a.s.

Note that the expectation of the above stochastic integral is zero for τ ′ ∈ [t, t+ ε].
Now we can estimate the two last terms in (52). For the first term, we have

Etx

{
[I(τt,x) + ηε]11{τt,x<t+h}

}

≥ −Etx

{[∫ τt,x

t

(
− φt(X

t,x
s , s) + sup

α∈A
{−ℓ(Xt,x

s , s, α)− 〈Dφ(Xt,x
s , s), b(Xt,x

s , s, α)〉

−1

2
Tr [σσT (Xt,x

s , s, α)D2φ]}
)
ds− φ(x, t) − ηε

]
11{τt,x<t+h}

}
.

Since Xt,x
s ∈ B(x̄, ε) when s ≤ τt,x and since t+ h < t̄+ ε, from (50), we get

Etx

{
[I(τt,x) + ηε]11{τt,x<t+h}

}
≥ −Etx

{[ ∫ τt,x

t

(−δε) ds− φ(x, t) − ηε

]
11{τt,x<t+h}

}

≥ δεEtx

[
(τt,x − t)11{τt,x<t+h}

]
+ (ηε + φ(x, t))P ({τt,x < t+ h})

≥ (ηε + φ(x, t))P ({τt,x < t+ h}). (53)

For the second term, we proceed in the same way, noting that, if τt,x ≥ t+ h, then for all t ≤ s ≤ t+ h,
Xt,x

s ∈ B(x̄, ε) and it allows us to apply (50). More precisely we have

Etx

{
I(t+ h)11{τt,x≥t+h}

}
(54)

≥ −Etx

{[∫ t+h

t

(
− φt(X

t,x
s , s) + sup

α∈A
{−ℓ(Xt,x

s , s, α)− 〈Dφ(Xt,x
s , s), b(Xt,x

s , s, α)〉

−1

2
Tr [σσT (Xt,x

s , s, α)D2φ]}
)
ds− φ(x, t)

]
11{τt,x≥t+h}

}

≥ (δεh+ φ(x, t))P ({τt,x ≥ t+ h}).
Combining (52), (53) and (54), we get

V (x, t) +
δεh

2
≥ ηεP ({τt,x < t+ h}) + δεhP ({τt,x ≥ t+ h})

+φ(x, t) [P ({τt,x < t+ h}) + P ({τt,x ≥ t+ h})] .
Since ηε > δεh and P ({τt,x < t+ h}) + P ({τt,x ≥ t+ h}) = 1, we get

V (x, t) ≥ φ(x, t) +
δεh

2
.

The above inequality is valid for all (x, t) ∈ B(x̄, ε)× (t̄− ε/2, t̄+ ε/2), thus we have

lim inf
(x,t)→(x̄,t̄)

V (x, t) = V∗(x̄, t̄) ≥ φ(x̄, t̄) +
δεh

2

which is a contradiction with the choice of φ. �
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Theorem 3.1 Under the assumptions of Proposition 3.1, the function V is the unique continuous vis-
cosity solution of (42) in IRN × [τ, T ].

Proof of Theorem 3.1. Let U be the unique solution of (42) in IRN × [τ, T ] such that U(x, T ) = ψ(x)
given by Theorem 2.1. Our goal is to prove that V ≡ U in IRN × [τ, T ]. The inequality U ≤ V∗ follows
by combining Proposition 3.2 and Theorem 2.1. To show that V ∗ ≤ U in IRN × [τ, T ], we proceed as
follows:

Step 1. We consider the functions Ṽ (x, t) := V (x, t) − C(1 + |x|2)eρ(T−t) and Ũ(x, t) := U(x, t) −
C(1 + |x|2)eρ(T−t). As it is proved in Step 2 of the proof of Theorem 2.1, Ũ is the unique solution of





−wt + sup

α∈A
{−1

2
Tr(σσT (x, t, α)D2w)− 〈b(x, t, α), Dw〉 − ℓ̄(x, t, α)} = 0 in IRN × (τ, T ),

w(x, T ) = ψ̄(x),
(55)

where ℓ̄(x, t, α) := ℓ(x, t, α) + 2Ceρ(T−t)〈b(x, t, α), x〉+Ceρ(T−t)TrσσT (x, t, α)−Cρeρ(T−t)(1 + |x|2) and
ψ̄(x) := ψ(x) − C(1 + |x|2).

Step 2. Claim: for all (x, t) ∈ IRN × [τ, T ], Ṽ satisfies

Ṽ (x, t) ≤ inf
αs∈At

Etx{
∫ T

t

ℓ̄(Xs, s, αs) ds+ ψ̄(Xt)}. (56)

To prove the claim let us take any αs ∈ At. Arguing exactly as in the proof of Proposition 3.1, from (48),
we have

Ṽ (x, t) ≤ Etx

{∫ T

t

(
ℓ(Xx,t

s , s, αs) + 2eρ(T−s)〈Xx,t
s , b(Xx,t

s , t, αs)〉

+eρ(T−s) Tr(σσT (Xx,t
s , s, αs))− ρeρ(T−s)(1 + |Xx,t

s |2)
)
ds+ ψ(Xx,t

T )− C(1 + |Xx,t
T |2)

}

= Etx{
∫ T

t

ℓ̄(Xx,t
s , s, αs) ds+ ψ̄(Xx,t

T )}.

Since αs is arbitrary we get (56) and prove the claim.
Step 3. Choose C, ρ > 0 large enough so that, for all (x, t, α) ∈ IRN × [τ, T ]×A, we have

−C̃e2ρ(T−t)(1 + |x|2) + ν

4
|α|2 ≤ ℓ̄(x, t, α) ≤ −Ceρ(T−t)(1 + |x|2) + Ceρ(T−t)(1 + |α|2),

−2C(1 + |x|2) ≤ ψ̄(x) ≤ 0,

where C̃ depends only on C and ν. For all real R > 0 and all integer n > 0, we set An := {α ∈
A : |α| ≤ n}, ℓ̄R(x, t, α) := max{ℓ̄(x, t, α),−R} and ψ̄R(x, t) := max{ψ̄(x, t),−R}. We observe that
ℓ̄R : IRN × [τ, T ]× An → IR is bounded and uniformly continuous in x ∈ IRN uniformly with respect to
(t, α) ∈ [τ, T ]×An and ψR : IRN → IR is bounded and uniformly continuous in IRN . Set

H̄(x, t, p,X) := sup
α∈A

{−1

2
Tr(σσT (x, t, α)X) − 〈b(x, t, α), p〉 − ℓ̄(x, t, α)},

HR
n (x, t, p,X) := sup

α∈An

{−1

2
Tr(σσT (x, t, α)X)− 〈b(x, t, α), p〉 − ℓ̄R(x, t, α)}

and define

V R
n (x, t) = inf

αs∈An
t

Etx

{∫ T

t

ℓ̄R(X
x,t
s , s, αs) ds+ ψ̄R(X

x,t
T )

}
,
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where An
t is the set of An-valued Ft-progressively measurable controls such that (40) holds. The function

V R
n is now the value function of a stochastic control problem with bounded controls and uniformly

continuous datas b, σ, ℓ̄R and ψ̄R. These assumptions enter the framework of Yong and Zhou [41]. We
deduce that V R

n is the unique continuous viscosity solution of

− ∂V R
n

∂t
+HR

n (x, t,DV R
n , D

2V R
n ) = 0 in IRN × (τ, T ), (57)

with terminal condition V R
n (x, T ) = ψ̄R(x) in IRN . Moreover for all compact subsets K ⊂ IRN there

exists M > 0 independent on R and n such that ||V R
n ||∞ ≤ M in K × [τ, T ]. Indeed, take any constant

control αs = ᾱ ∈ A1, by definition of V R
n for all R, n > 0 and for every (x, t) ∈ IRN × [τ, T ] we have

V R
n (x, t) ≤ Etx{

∫ T

t

ℓ̄R(X
x,t
s , s, ᾱ) ds+ ψ̄R(X

x,t
T )} ≤

∫ T

t

Ceρ(T−s)(1 + ᾱ2) ds ≤ C

ρ
eρ(T−t)(1 + ᾱ2),

and on the other hand we have V R
n (x, t) ≥ Ṽ (x, t) ≥ −C̃e2ρ(T−t)(1 + |x|2).

Finally one can readily see that HR
n converges locally uniformly to H̄ as n,R→ ∞. Thus by applying

the half-relaxed limits method (see Barles and Perthame [9]), the functions

V (x, t) = lim sup∗V R
n (x, t) = lim sup

(y,s)→(x,t)
n,R→+∞

V R
n (y, s) and V (x, t) = lim inf∗V R

n (x, t) = lim inf
(y,s)→(x,t)
n,R→+∞

V R
n (y, s)

are respectively viscosity sub and supersolution of (55). Theorem 2.1 yields V (x, t) ≤ Ũ(x, t) ≤ V (x, t).

On the other hand by construction we have also Ṽ ∗(x, t) ≤ lim sup∗V R
n (x, t). It follows Ṽ ∗(x, t) ≤ Ũ(x, t)

and we can conclude. �

3.2 Some examples

Example 3.1 A model case we have in mind is the so-called stochastic linear regulator problem which
is a stochastic perturbation of the deterministic linear quadratic problem. In this case, the stochastic
differential (39) is linear and reads

dXt,x
s = [B(s)Xt,x

s + C(s)αs]ds+
∑

j

[Cj(s)X
t,x
s +Dj(s)]dW

j
s

and the expected total cost to minimized is

J(x, t, αs) = Etx{
∫ T

t

[〈Xt,x
s , Q(s)Xt,x

s 〉+ 〈αs, R(s)αs〉] ds+ 〈Xt,x
T , GXt,x

T 〉}.

The previous results apply if the functions B(·), C(·), Cj(·), Dj(·), Q(·), R(·) and G are deterministic
continuous matrix-valued functions of suitable size and if R(s) is a positive definite symmetric matrix.
Deterministic and stochastic linear quadratic problems were extensively studied. For a survey we refer
for instance to the books of Bensoussan [10], Fleming and Rishel [18], Fleming and Soner [19], Øksendal
[38], Yong and Zhou [41] and references therein.

Example 3.2 Equations of the type (42) are largely considered in mathematical finance. See the intro-
ductory books quoted in the introduction or Pham [39]. In particular recently Benth and Karlsen [11]
studied the following semilinear elliptic partial equation:

− wt −
1

2
β2wxx + F (x,wx) = 0 in IR × (0, T ), (58)
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with the final condition w(x, T ) = 0. The nonlinear function F is given by

F (x, p) =
1

2
δ2p2 − {α(x) − µ(x)βρ

σ(x)
}p− µ2(x)

σ2(x)

where δ, β, ρ are real constant and α(x) and
µ

σ
(x) are C1 functions satisfying

|α(x)|, |µ
σ
(x)| ≤ C|x|, for all x ∈ IR.

Their main motivation is to determine via the solution of (58) the minimal entropy martingale measure
in stochastic market. The conditions they assume on data fall within the assumptions of Section 2.

Example 3.3 Another application of the results obtained in Section 2 is given by the finite time-horizon
risk-sensitive limit problem for nonlinear systems. In the stochastic risk-sensitive problem, (39) reads

dXt,x,ε
s = g(Xt,x,ε

s , βs) dt+

√
ε

γ2
c(Xt,x,ε

s ) dWs, (59)

where Xt,x,ε
s ∈ IRN depends on the parameter ε > 0, g represents the nominal dynamics with control

βs ∈ B, a compact normed space and c is an N × k-valued diffusion coefficient, ε is a measure of the
risk-sensitivity and γ is the disturbance attenuation level. The cost criterion is of the form

Jε(x, t, βs) = E exp

{
1

ε

[∫ T

t

f(Xt,x,ε
s , βs) dt+ ψ(Xt,x,ε

T )

]}
(60)

and the value function is

V ε(x, t) = inf
βs∈Bt

ε log Jε(x, t, βs) = ε log inf
βs∈Bt

Jε(x, t, βs), (61)

where Bt is the set of B-valued, Ft-progressively measurable controls such that there exists a strong
solution to (59). The dynamic programming equation associated to this problem is





−∂w
∂t

− 1

2γ2
〈Dw, a(x)Dw〉 + G̃(x,Dw) − ε

2γ2
Tr(a(x)D2w) = 0 in IRN × [τ, T ],

w(x, T ) = ψ(x),

(62)

where a(x) = c(x)c(x)T and

G̃(x, p) = max
β∈B

{〈−g(x, β), p〉 − f(x, β)}.

We note that

− 1

2γ2
〈p, a(x)p〉 = min

α∈IRk

{
γ2

2
|α|2 − 〈c(x)α, p〉

}
. (63)

In [16] it is shown that as ε ↓ 0 (i.e. as the problem becomes infinitely risk averse), the value function
of the risk-sensitive problem converges to that of a H∞ robust control problem. This problem can be
considered as a differential game with the following cost functional:

J(x, t, α, β) =

∫ T

t

(
f(yx(s), βs)−

γ2

2
|αs|2

)
ds+ ψ(yx(T )), (64)
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where αs ∈ At := L2([t, T ], IRk) is the control of the maximizing player, βs ∈ Bt := {measurable functions [t, T ] →
B} is the control of the minimizing player, and yx(·) is the unique solution of the following dynamical
system: {

y′(s) = g(y(s), βs) + c(y(s))αs,
y(t) = x.

Note that we switch notation fromXt to y(t) to emphasize that the paths are now (deterministic) solutions
of ordinary differential equations rather than (stochastic) solutions of stochastic differential equations.
The dynamic programing equation associated to the robust control problem is a first order equation given
by

− ∂w

∂t
+ min

α∈IRk

{
γ2

2
|α|2 − 〈c(x)α,Dw〉

}
+ G̃(x,Dw) = 0 in IRN × (τ, T ) (65)

with the terminal condition w(T, x) = ψ(x). One of the key tools to get this convergence result is the
uniqueness property for (65). In Da Lio and McEneaney [16], the authors characterized the value function
of theH∞ control as the unique solution to (65) in the set of locally Lipschitz continuous functions growing
at most quadratically with respect to the state variable. Moreover the uniqueness result in [16] is obtained
by using representation formulas of locally Lipschitz solutions of (65). We remark that the Comparison
Theorem 2.1 not only improves the uniqueness result for (65) obtained in [16] (in the sense it holds in a
larger class of functions) but it also should allow us to prove the convergence result in [16] under weaker
assumptions, only the equi-boundedness estimates of the solutions of (62) being enough by means of the
half-relaxed limit method.

4 Study of related equations

In this Section we focus our attention to Hamilton-Jacobi equations of the form





∂w

∂t
+ 〈Σ(x, t)Dw,Dw〉 +G(x, t,Dw,D2w) = 0 in IRN × (0, T ),

w(x, 0) = ψ(x) in IRN ,

(66)

where Σ(x, t) ∈ MN (IR) and G is given by (3) and





∂w

∂t
+ h(x)|Dw|2 = 0 in IRN × (0, T ),

w(x, 0) = ψ(x) in IRN ,

(67)

where h : IRN → IR. Our aim is to investigate comparison (and existence) results for (66) and (67)
under assumptions which include Hamiltonians like (18) in Remark 2.2(iii) (see Remark 4.1 for further
comments). More precisely, we introduce two new assumptions:

(A4) Σ ∈ C(IRN × [0, T ];S+
N(IR)) and, for all x ∈ IRN , t ∈ [0, T ],

0 < Σ(x, t) and |Σ(x, t)| ≤ C̄.

(A5) h ∈ C(IRN ; IR), h ∈W 2,∞(Γ̃) where Γ̃ is an open neighborhood of Γ := {x ∈ IRN : h(x) = 0} and,
for all x ∈ Γ,

Dh(x) = 0.

Theorem 4.1 Assume (A2), (A3) and (A4) (respectively (A3) and (A5)). Let U ∈ USC(IRN ×
[0, T ]) be a viscosity subsolution of (66) (respectively (67)) and V ∈ LSC(IRN × [0, T ]) be a viscosity
supersolution of (66) (respectively (67)) satisfying the quadratic growth condition (16). Then U ≤ V in
IRN × [0, T ].
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The question of existence faces same problems as in Section 2. We have existence and uniqueness of
a continuous viscosity solution for (66) and (67) in the class of functions with quadratic growth at least
for short time (as in Corollary 2.1). But solutions can blow up in finite time.

Before giving the proof of the theorem, we give some comments on the equations and the assumptions.

Remark 4.1 (i) In the same way as in Remark 2.2, above results hold replacing Σ by −Σ in (66) and h
by −h in (67) and when dealing with terminal data in both equations.

(ii) Coming back to Remark 2.2(iii), we note (a1 + a2)(a2 − a1)
T is not necessarily symmetric in (18)

whereas we assume Σ to be symmetric in (A4) (and h is real-valued therefore symmetric in (A5)). This
is not a restriction of generality since comparison for (66) with Σ symmetric implies obviously comparison
for (66) for any matrix Σ, using that, for any Σ ∈ MN (IR), (Σ + ΣT )/2 ∈ SN (IR).

(iii) Coming back to Remark 2.2(iv) again, we see that (A4) corresponds to the case where the
convex Hamiltonian is predominant with respect to the concave one in (1) with (18). Assumption (A5)
corresponds to (18) when a1 and a2 are real-valued but h is allowed to change its sign. For example, we
have comparison for

wt + φ(x)3|Dw|2 = 0,

where φ ∈ C2(IRN ; IR) is any bounded function. Let us compare (12) with first-order Hamilton-Jacobi
equations whose Hamilonians are Lipschitz continuous both in the state and gradient variables, or, to
make simple, with the Eikonal equation

∂w

∂t
+ a(x)|Dw| = 0 in IRN × (0, T ),

where a is Lipschitz continuous function. We know ([13], [30]) we have existence and uniqueness of a
continuous viscosity solution for any continuous initial data without any restriction on the growth. In
this case, the sign of a does not play any role whereas it seems to be the case for the sign of h in (12). We
would like to know if comparison for (12) is true under weaker assumptions than (A5) and in dimension
N > 1 (i.e. when Σ is neither positive nor negative definite in (66)).

(iv) There are some links between Theorem 2.1 and Theorem 4.1. Nevertheless we point out that, if
Equation (1) under assumptions of Section 2 is naturally associated with a control problem, this is not
necessarily the case under the assumptions of the current section. To be more precise, let us compare (1)
with H given by (15) and (66) under (A4). The matrix a can be singular in (15) whereas we impose the
nondegeneracy condition Σ > 0 in (66). The counterpart is that the regularity assumption with respect to
x on Σ is weaker (Σ is supposed to be merely continuous) than the locally lipschitz regularity we assume
for a. Therefore (66) does not enter in the framework of Section 2 in general. A natural consequence is
that proofs differ: in both proofs of Theorem 2.1 and 4.1, the main argument is a kind of linearization
procedure, but while in the proof of Theorem 2.1 we use essentially the convexity (or concavity) of the
operator corresponding to the unbounded control set, here we use the locally Lipschitz continuity of the
Hamiltonian with respect to the gradient uniformly in the state variable.

(v) Note that we are able to deal with a second order term in (66) but not in (67).

Proof of Theorem 4.1. We divide the proof in two parts, corresponding respectively to the case of
equation (66) and (67). The main argument in both proofs is a kind of linearization procedure as the
one of Lemma 2.2. The rest of the proof is close to the one of Theorem 2.1.

Part 1. We assume (A2), (A3) and (A4).
The estimates of G are exactly the same than in Lemma 2.2 so, for sake of simplicity, we choose to take
G ≡ 0. The linearization procedure is the subject of the following lemma whose proof is postponed at
the end of the section.
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Lemma 4.1 Let 0 < λ < 1 and set Ψ = λU − V. Then Ψ is an USC viscosity subsolution of





∂w

∂t
− 2C̄

1− λ
|Dw|2 ≤ 0 in IRN × (0, T ),

w(x, 0) ≤ (λ− 1)ψ(x) in IRN .

(68)

If ψ ≥ 0, then it follows Ψ(x, 0) ≤ 0 in IRN and using the above lemma with the same supersolution as
in the proof of Theorem 2.1, we obtain Ψ ≤ 0 in IRN × [0, T ]. Note that the boundedness of Σ (see (A4))
is crucial to build the supersolution. In the particular case when G = 0, we can also choose a simpler
supersolution such as for instance

(x, t) 7→ K
[(|x| −R)+]2

1− Lt
+ ηt, K, L,R, η > 0 (69)

Letting λ go to 1, we conclude that U ≤ V in IRN × [0, T ].
It remains to prove that we can assume ψ ≥ 0 without loss of generality. To this end we use

an argument similar to the one of Step 2 in the proof of Theorem 2.1: let Ū = U + M(1 + |x|2)eρt,
V̄ = V +M(1 + |x|2)eρt, for some positive constants M and ρ and set Ψ̄ = λŪ − V̄ . We can easily prove
that, for ρ > 16M2C̄e, Ψ̄ is a subsolution of (68) (with a larger constant 4C̄ instead of 2C̄) in IRN × (0, τ ]
for τ = 1/ρ. Moreover Ψ̄(x, 0) ≤ (λ − 1)(ψ(x) +M(1 + |x|2)eρt) ≤ 0 for M sufficiently large (since ψ
has quadratic growth). Letting λ go to 1, it follows that U ≤ V in IRN × [0, τ ] and we conclude by a
step-by-step argument.

Part 2. We assume (A3) and (A5).
Set Ω+ = {x ∈ IRN : h(x) > 0} and Ω− = {x ∈ IRN : h(x) < 0} which are open subsets of IRN . Define
Ψ̄ = λŪ − V̄ for 0 < λ < 1, Ū = U +M(1 + |x|2)eρt and V̄ = V +M(1+ |x|2)eρt with M larger than the
constants which appear in (A3) and in the growth condition (16). Arguing as in Lemma 4.1 and noticing
that all arguments are local, we obtain that Ψ̄ is a subsolution in Ω+ of the same kind of equation as
(68), namely 





∂w

∂t
− C

1− λ
|Dw|2 ≤ 0 in Ω+ × (0, τ),

w(x, 0) ≤ 0 in Ω+,
(70)

for some constant C = 16 ||h||∞, ρ > 4MCe and τ = 1/ρ > 0 which are independent of λ. Note that
Ψ̄(·, 0) ≤ 0 in IRN because of the choice of M.

The sign of Ψ̄ on Γ is the subject of the following lemma the proof of which uses (A5) and is postponed.

Lemma 4.2 For all x ∈ Γ, t ∈ [0, T ], we have U(x, t) ≤ ψ(x) ≤ V (x, t).

Noticing that {Γ,Ω+,Ω−} is a partition of IRN , we set

Ψ̂ :=

{
sup{Ψ̄, 0} in (Γ ∪ Ω+)× [0, T ],

0 in Ω− × [0, T ]

From the lemma, Ψ̄ ≤ 0 in Γ× [0, T ]. Therefore the function Ψ̂ is continuous in IRN × (0, T ). Moreover
we claim that Ψ̂ is a subsolution of (70) in IRN × (0, τ). This claim is clearly true in Ω− × (0, T ) (since
0 is clearly a subsolution) and in Ω+ × (0, τ) (since Ψ̂ is the supremum of two subsolutions). It remains
to prove the result on Γ. Let ϕ ∈ C1(IRN × (0, τ)) such that Ψ̂ − ϕ achieves a local maximum at a
point (x̄, t̄) ∈ Γ× (0, τ). Let (x, t) be in a neighborhood of (x̄, t̄). If x ∈ Γ ∪ Ω+, then 0 ≤ Ψ̂(x, t) and if
x ∈ Ω−, then 0 = Ψ̂(x, t). In any case, (0−ϕ)(x, t) ≤ (Ψ̂−ϕ)(x, t) ≤ (Ψ̂−ϕ)(x̄, t̄). But Ψ̂(x̄, t̄) ≤ 0 since
(x̄, t̄) ∈ Γ × (0, τ). Therefore (x̄, t̄) is a local maximum of 0 − ϕ which ends the proof of the claim. The
initial condition Ψ̂ ≤ 0 in IRN × {0} is trivially satisfied. From the comparison principle proved in Part
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1 (for example using (69) as a supersolution), we obtain Ψ̂ ≤ 0 in IRN × [0, τ ]. Since τ does not depend
on λ, we can send λ to 1. We obtain U ≤ V in (Γ ∪ Ω+)× [0, τ ]. We conclude in (Γ ∪ Ω+) × [0, T ] by a
step-by-step procedure.

Repeating the same kind of arguments replacing Ω+ by Ω− and Ψ̄ by U −M(1 + |x|2)eρt − µ(V −
M(1 + |x|2)eρt), 0 < µ < 1, we obtain that U − V ≤ 0 in (Γ ∪ Ω−)× [0, T ] which ends the proof. �

Proof of Lemma 4.1. We proceed as in the proof of Lemma 2.2. We can assume that G ≡ 0 since the
computations with G are exactly the same than in Lemma 2.2.

Note first that λU is an USC subsolution of




∂w

∂t
+

1

λ
〈Σ(x, t)Dw,Dw〉 ≤ 0 in IRN × (0, T ),

w(x, 0) ≤ λψ(x) in IRN .
(71)

Let ϕ ∈ C(IRN × [0, T ]) and suppose that Ψ − ϕ reaches a strict local maximum at (x̄, t̄) ∈ IRN × (0, T ]
in some compact subset K ⊂ IRN × (0, T ]. We have

max
(x,t),(y,t)∈K,

{λU(x, t)− V (y, t)− ϕ(
x+ y

2
, t)− |x− y|2

ε2
}−→

ε↓0
Ψ(x̄, t̄)− ϕ(x̄, t̄).

The above maximum is achieved at some point (xε, yε, tε). Writing the viscosity inequalities and sub-
tracting them, we obtain

ϕt(
xε + yε

2
, tε) +

1

λ

〈
Σ(xε, tε)

(
1

2
Dϕ(

xε + yε
2

, tε) + 2
xε − yε
ε2

)
,
1

2
Dϕ(

xε + yε
2

, tε) + 2
xε − yε
ε2

〉

−
〈
Σ(yε, tε)

(
−1

2
Dϕ(

xε + yε
2

, tε) + 2
xε − yε
ε2

)
,−1

2
Dϕ(

xε + yε
2

, tε) + 2
xε − yε
ε2

〉
≤ 0.

In the sequel, we omit to write the dependence in tε and the point ((xε + yε)/2, tε) in the derivatives of
ϕ. Set pε = 2(xε − yε)/ε

2, px = Dϕ/2 + pε and py = −Dϕ/2 + pε. We have

0 ≥ ϕt +
1

λ
〈Σ(xε)px, px〉 − 〈Σ(yε)py, py〉

≥ ϕt +

(
1

λ
− 1

)
〈Σ(xε)px, px〉+ 〈(Σ(xε)− Σ(yε))px, px〉+ 〈Σ(yε)px, px〉 − 〈Σ(yε)py, py〉

≥ ϕt +

(
1

λ
− 1

)
〈Σ(xε)px, px〉 −mK(|xε − yε|)|px|2 + 〈Σ(yε)px, px〉 − 〈Σ(yε)py, py〉

where mK is a modulus of continuity for Σ in the compact subset K. Since Σ(yε) is a symmetric matrix,
we have

〈Σ(yε)px, px〉 − 〈Σ(yε)py, py〉 = 〈Σ(yε)(px + py), px − py〉 = 2 〈Σ(yε)pε, Dϕ〉
= −〈Σ(yε)Dϕ,Dϕ〉+ 2 〈Σ(yε)px, Dϕ〉.

For any α > 0, denoting by
√
Σ(yε) the positive symmetric squareroot of the positive symmetric matrix

Σ(yε), we get

2〈Σ(yε)px, Dϕ〉 = 2〈
√
Σ(yε)px,

√
Σ(yε)Dϕ〉 ≤ α〈Σ(yε)Dϕ,Dϕ〉+

1

α
〈Σ(yε)px, px〉

≤ α〈Σ(yε)Dϕ,Dϕ〉+
1

α
〈Σ(xε)px, px〉+

1

α
〈mK(|xε − yε|)px, px〉.

It follows

0 ≥ ϕt +

〈[(
1

λ
− 1− 1

α

)
Σ(xε)−

(
1 +

1

α

)
mK(|xε − yε|)Id

]
px, px

〉
− (1 + α)〈Σ(yε)Dϕ,Dϕ〉.
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Take α =
2λ

(1− λ)
> 0 in order to have

1

λ
− 1− 1

α
=

1

2
(
1

λ
− 1) > 0. We recall that Σ > 0 by (A4), hence

for ε small enough the above scalar product is nonnegative. Thus

0 ≥ ϕt − (1 + α)〈Σ(yε, tε)Dϕ,Dϕ〉 = ϕt −
1 + λ

1− λ
〈Σ(yε, tε)Dϕ,Dϕ〉.

Letting ε go to 0, we get

0 ≥ ϕt(x̄, t̄)−
2

1− λ
〈Σ(x̄, t̄)Dϕ(x̄, t̄), Dϕ(x̄, t̄)〉

which proves the result. �

Proof of Lemma 4.2. We make the proof for U, the second inequality being similar. Let x0 ∈ Γ and
consider, for η > 0,

sup
t∈[0,T ]

{U(x0, t)− ηt}.

This supremum is achieved at a point t0 ∈ [0, T ] and we can assume, up to subtract |t− t0|2 that it is a
strict local maximum. Consider, for ε > 0,

sup
B̄(x0,1)×[0,T ]

{U(x, t)− |x− x0|2
ε2

− ηt}.

This supremum is achieved at a point (xε, tε) and it is easy to see that (xε, tε) → (x0, t0) when ε→ 0.
Suppose that tε > 0. It allows us to write the viscosity inequality for the subsolution U at (xε, tε) and

we get

η + h(xε)

∣∣∣∣2
xε − x0
ε2

∣∣∣∣
2

≤ 0. (72)

Since h ∈ W 2,∞ in a neighborhood of Γ, we can write a Taylor expansion of h at x0 for ε small enough

h(xε) = h(x0) + 〈Dh(x0), xε − x0〉+
1

2
〈D2h(x0)(xε − x0), xε − x0〉+ o(|xε − x0|2).

From (72) and (A5), it follows

η − (2C +m(|xε − x0|2))
( |xε − x0|2

ε2

)2

≤ 0,

where m is a modulus of continuity. Since |xε − x0|2/ε2 → 0 as ε → 0, we obtain a contradiction for
small ε.

Therefore tε = 0 for ε small enough. It follows that, for all (x, t) ∈ B̄(x0, 1)× [0, T ], we have

U(x, t)− |x− x0|2
ε2

− ηt ≤ U(xε, 0)−
|xε − x0|2

ε2
≤ ψ(xε).

Setting x = x0 and sending ε and then η to 0, we obtain the conclusion. �
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