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Introduction

In this paper, we are interested in the second-order equation    ∂w ∂t + H(x, t, Dw, D 2 w) + G(x, t, Dw, D 2 w) = 0 in IR N × (0, T ),

w(x, 0) = ψ(x) in IR N , (1) 
where N ≥ 1, T > 0, the unknown w is a real-valued function defined in IR N × [0, T ], Dw and D 2 w denote respectively its gradient and Hessian matrix and ψ is a given initial condition. The Hamiltonians H, G : IR N × [0, T ] × IR N × S N (IR) → IR are continuous in all their variables and have the form H(x, t, p, X) = inf α∈A b(x, t, α), p + ℓ(x, t, α) -Tr σ(x, t, α)σ T (x, t, α)X

and G(x, t, p, X) = sup β∈B -g(x, t, β), p -f (x, t, β) -Tr c(x, t, β)c T (x, t, β)X .

This kind of equation is of particular interest for applications since it relies on differential game theory (Isaacs equations) or on deterministic and stochastic control problems when either H ≡ 0 or G ≡ 0 (Hamilton-Jacobi-Bellman equations). Notations and precise assumptions are given in Section 2 but we point out that we allow one of the control set A or B to be unbounded and the solutions to (1) may have quadratic growth. Our model case is the well-known stochastic linear quadratic problem. We refer to Bensoussan [START_REF] Bensoussan | Stochastic control by functional analysis methods[END_REF], Fleming and Rishel [START_REF] Fleming | Deterministic and stochastic optimal control[END_REF], Fleming and Soner [START_REF] Fleming | Controlled Markov processes and viscosity solutions[END_REF], Øksendal [START_REF]Stochastic differential equations[END_REF], Yong and Zhou [START_REF] Yong | of Applications of Mathematics[END_REF] and the references therein for an overview and to Examples 2.2 and 3.1 below. This problem can be described as follows. Let (Ω, F , (F t ) t≥0 , P ) be a filtered probability space and let (W t ) t be a F t -adapted standard M -Brownian motion. The control set is A = IR k for some k > 0 and we consider the linear stochastic differential equation dX s = [A(s)X s + B(s)α s ]ds + [C(s)X s + D(s)]dW s , for t ≤ s ≤ T X t = x where α s ∈ A t , the set of A-valued F t -progressively measurable controls and the adapted process X s is the solution. The linear quadratic problem consists in minimizing the quadratic cost

V (x, t) = inf αs∈At E{ T t [ X s , Q(s)X s + R|α s | 2 ] ds + X T , SX T }, (4) 
where A(•), B(•), C(•), D(•), Q(•) and S are deterministic matrix-valued functions of suitable size and R > 0 to simplify the presentation. The Hamilton-Jacobi equation associated to this problem is

   - ∂w ∂t -A(t)x, Dw -x, Q(t)x + 1 4R |B(t) T Dw| 2 -Tr a(x, t)D 2 w = 0 w(x, T ) = x, Sx , (5) 
where a(x, t) = (C(t)x + D(t))(C(t)x + D(t)) T /2. Note that this equation is of type (1) (with

G ≡ 0) since 1 4R |B(t) T Dw| 2 = sup α∈I R k -B(t)α, Dw -R|α| 2 . (6) 
In this paper, we are concerned with two issues about this problem.

The first question relies on the partial differential equation [START_REF] Barles | An approach of deterministic control problems with unbounded data[END_REF]. We note that the quadratic cost with unbounded controls leads to a quadratic term with respect to the gradient variable. From the terminal condition, we expect the solutions have quadratic growth. Moreover, the diffusion matrix may be degenerate. Therefore, we cannot hope to obtain smooth solutions in general. We need to consider weak solutions, namely viscosity solutions. (We refer the reader who is not familiar with this notion of solutions to Crandall, Ishii and Lions [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF], Fleming and Soner [START_REF] Fleming | Controlled Markov processes and viscosity solutions[END_REF], Bardi and Capuzzo Dolcetta [START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations[END_REF] and Barles [START_REF] Barles | Solutions de viscosité des équations de Hamilton-Jacobi[END_REF] and all the references therein). We obtain the existence of a unique continuous viscosity solution for [START_REF] Barles | An approach of deterministic control problems with unbounded data[END_REF] and for a large class of equations of type [START_REF] Alvarez | A quasilinear elliptic equation in R N[END_REF] (see Theorem 2.1 and Corollary 2.1).

We point out that the results obtained in this paper are beyond the classical comparison results for viscosity solutions (see e.g. [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF]) because of the growth both of the solutions and the Hamiltonians. In fact, most of the comparison results in the literature require that either the solutions are uniformly continuous or the Hamiltonian is uniformly continuous with respect to the gradient uniformly in the x variable (in our case this amounts to assume that both controls sets are compact). Let us mention that uniqueness and existence problems for a class of first-order Hamiltonians corresponding to unbounded control sets and under assumptions including deterministic linear quadratic problems have been addressed by several authors, see, e.g. the book of Bensoussan [START_REF] Bensoussan | Stochastic control by functional analysis methods[END_REF], the papers of Alvarez [START_REF] Alvarez | Bounded-from-below viscosity solutions of Hamilton-Jacobi equations[END_REF], Bardi and Da Lio [START_REF] Bardi | On the Bellman equation for some unbounded control problems[END_REF], Cannarsa and Da Prato [START_REF] Cannarsa | Nonlinear optimal control with infinite horizon for distributed parameter systems and stationary Hamilton-Jacobi equations[END_REF], Rampazzo and Sartori [START_REF] Rampazzo | Hamilton-Jacobi-Bellman equations with fast gradient-dependence[END_REF] in the case of convex operators, and the papers of Da Lio and McEneaney [START_REF] Da Lio | Finite time-horizon risk-sensitive control and the robust limit under a quadratic growth assumption[END_REF] and Ishii [START_REF] Ishii | Comparison results for Hamilton-Jacobi equations without growth condition on solutions from above[END_REF] for more general operators. As for second-order Hamiltonians under quadratic growth assumptions, Ito [START_REF] Ito | Existence of solutions to Hamilton-Jacobi-Bellman equation under quadratic growth conditions[END_REF] obtained the existence of locally Lipschitz solutions to particular equations of the form (1) under more regularity conditions on the data, by establishing a priori estimates on the solutions. Whereas Crandall and Lions in [START_REF] Crandall | Quadratic growth of solutions of fully nonlinear second order equations in IR n[END_REF] proved a uniqueness result for very particular operators depending only on the Hessian matrix of the solution. Kobylanski [START_REF] Kobylanski | Backward stochastic differential equations and partial differential equations with quadratic growth[END_REF] studied equations with the same kind of quadratic nonlinearity in the gradient than ours, but her existence and uniqueness results hold in the class of bounded viscosity solutions. Finally, one can find existence and uniqueness results for viscosity solutions which may have a quadratic growth in [START_REF] Barles | Uniqueness results for quasilinear parabolic equations through viscosity solutions' methods[END_REF] for quasilinear degenerate parabolic equations.

The second question we deal with in this paper concerns the link between the control problem (4) and Equation [START_REF] Barles | An approach of deterministic control problems with unbounded data[END_REF]. The rigorous connection between the Hamilton-Jacobi-Bellman and optimal control is usually performed by means of a principle of optimality. For deterministic control problems which lead to a first-order Hamilton-Jacobi equation, see Bardi and Capuzzo Dolcetta [3] and Barles [6]; for the connections between stochastic control problems and second-order Hamilton-Jacobi-Bellmann equations we refer to Fleming and Rishel [START_REF] Fleming | Deterministic and stochastic optimal control[END_REF], Krylov [START_REF] Krylov | Controlled diffusion processes[END_REF], Lions [START_REF] Lions | Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations. I. The dynamic programming principle and applications[END_REF][START_REF] Lions | Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations. II. Viscosity solutions and uniqueness[END_REF][START_REF] Lions | Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations. III. Regularity of the optimal cost function[END_REF], Fleming and Soner [START_REF] Fleming | Controlled Markov processes and viscosity solutions[END_REF], Yong and Zhou [START_REF] Yong | of Applications of Mathematics[END_REF]Theorem 3.3] and the references therein.

However, for stochastic differential equations with unbounded controls as in stochastic linear quadratic problems, additional difficulties arise. Some results in this direction were obtained for infinite horizon problems, in the deterministic case by Barles [5] and in the stochastic case by Alvarez [START_REF] Alvarez | A quasilinear elliptic equation in R N[END_REF]. In this paper, we characterize the value function (4) as the unique solution of [START_REF] Barles | An approach of deterministic control problems with unbounded data[END_REF]. Actually, our results apply for a larger class of unbounded stochastic control problems

V (x, t) = inf αs∈At E{ T t ℓ(X s , s, α s ) ds + ψ(X T )} (7)
where the process X s is governed by

dX s = b(X s , s, α s )ds + σ(X s , s, α s )dW s X t = x, (8) 
where A is a possibly unbounded subset of a normed linear space and all the datas are continuous with the following restricted growths: b grows at most linearly with respect to both the control and the state, σ grows at most linearly with respect to the state and is bounded in the control variable, ψ can have a quadratic growth and ℓ grows at most quadratically with respect to both the control and the state with a coercitivity assumption

ℓ(x, α, t) ≥ ν 2 |α| 2 -C(1 + |x| 2 ). (9) 
In this case, the Hamilton-Jacobi equation looks like [START_REF] Alvarez | A quasilinear elliptic equation in R N[END_REF] with G ≡ 0 (see Section 3 for details). Because of the unbounded framework, the use of an optimality principle to establish the connection between the control problem and the equation is more delicate than usual. Thus we follow another strategy which consists in comparing directly the value function with the unique solution of the Hamilton-Jacobi equation as long as this latter exists (see Theorem 3.1).

It is worth noticing that, surprisingly, for the general stochastic linear problem, it is not even clear how to give sense to the partial differential equation associated to the stochastic control problem! For instance, consider again the above linear quadratic problem where σ(x, t, α) = C(t)x+D(t) is replaced by C(t)x+ D(t)α which depends now both on the state and the control. Taking A, C, Q ≡ 0 and B, R, D ≡ 1 to simplify, the Hamiltonian in [START_REF] Barles | An approach of deterministic control problems with unbounded data[END_REF] becomes

sup α∈I R k -α, Dw -|α| 2 - |α| 2 2 ∆w ( 10 
)
which is +∞ as soon as ∆w ≤ -2. The connection between the control problem and the equation in this case was already investigated (see Yong and Zhou [START_REF] Yong | of Applications of Mathematics[END_REF] and the references therein). The results need a priori knowledges about the value function (the value function and its derivatives are supposed to remain in the domain of the Hamiltonian). We do not consider the case when σ is unbounded in the control variable in this paper. It is the aim of a future work. When finishing this paper, we learnt that Krylov [START_REF] Krylov | Stochastic linear controlled systems with quadratic cost revisited[END_REF] succeeded in treating the general stochastic linear regulator. But his assumptions are designed to solve this latter problem (the datas are supposed to be polynomials of degree 1 or degree 2 in (x, α)) and the proofs rely heavily on the particular form of the datas.

Another important example of equations of type [START_REF] Alvarez | A quasilinear elliptic equation in R N[END_REF] where concave and convex Hamiltonians appear is the first-order equation

∂w ∂t + min α∈I R k γ 2 2 |α| 2 -σ(x)α, Dw + max β∈B {-g(x, β), Dw -f (x, β)} = 0 ( 11 
)
in IR N ×(0, T ). Such kind of equation is related to the so-called H ∞ -Robust control problem. This problem can be seen as a deterministic differential game. We refer the reader to Example 3.3 and McEneaney [START_REF] Mceneaney | Robust control and differential games on a finite time horizon[END_REF][START_REF] Mceneaney | Uniqueness for viscosity solutions of nonstationary Hamilton-Jacobi-Bellman equations under some a priori conditions (with applications)[END_REF][START_REF] Mceneaney | A uniqueness result for the Isaacs equation corresponding to nonlinear H∞ control[END_REF], Nagai [START_REF] Nagai | Bellman equations of risk-sensitive control[END_REF] and the references therein for details. Finally, we point out that one of the main fields of application of these types of equations and problems is mathematical finance, see e.g. Lamberton and Lapeyre [START_REF] Lamberton | Introduction au calcul stochastique appliqué à la finance[END_REF], Fleming and Soner [START_REF] Fleming | Controlled Markov processes and viscosity solutions[END_REF], Øksendal [START_REF]Stochastic differential equations[END_REF] and the references therein for an introduction. For recent papers which deal with equations we are interested in, we refer to Pham [START_REF] Pham | Smooth solutions to optimal investment models with stochastic volatilities and portfolio constraints[END_REF] and Benth and Karlsen [START_REF] Benth | A PDE representation of the density of the minimal entropy martingale measure in stochastic volatility markets[END_REF] (see Example 3.2).

Let us now describe how the paper is organized. Section 2 is devoted to the study of [START_REF] Alvarez | A quasilinear elliptic equation in R N[END_REF]. More precisely, we prove a uniqueness result for (1) in the set of continuous functions growing at most quadratically in the state variable under the assumption that either A or B is an unbounded control set, the functions b, g and ℓ, f grow respectively at most linearly and quadratically with respect to both the control and the state. Instead the functions σ, c are assumed to grow at most linearly with respect to the state and bounded in the control variable.

One of the main tools within the theory of viscosity solutions to obtain a uniqueness result is to show a comparison result between viscosity upper semicontinuous subsolutions and lower semicontinuous supersolutions to [START_REF] Alvarez | A quasilinear elliptic equation in R N[END_REF], see Theorem 2.1. Indeed, the existence and the uniqueness (Corollary 2.1) follow as a by-product of the comparison result and Perron's method of Ishii [START_REF] Ishii | Perron's method for Hamilton-Jacobi equations[END_REF]. However, under our general assumptions one cannot expect the existence of a solution for all times as Example 2.2 shows.

The method we use in proving the comparison Theorem 2.1 is similar in the spirit to the one applied by Ishii in [START_REF] Ishii | Comparison results for Hamilton-Jacobi equations without growth condition on solutions from above[END_REF] in the case of first order Hamilton-Jacobi equations and it is based on a kind of linearization procedure of the equation. Roughly speaking, it consists in three main steps: 1) one computes the equations satisfied by Ψ µ = U -µV (U, V being respectively the sub and supersolution of the original pde and 0 < µ < 1 a parameter); 2) for all R > 0 one constructs a strict supersolution χ µ R of the linearized equation such that χ µ R (x, t) → 0 as R → ∞; 3) one shows that Ψ µ (x, t) ≤ χ µ R (x, t) and then one concludes by letting first R → ∞ and then µ → 1.

In Section 3, we give applications to finite horizon stochastic control problems previously mentioned and we provide some examples.

In Section 4, we deal with particular cases where both controls are unbounded but H (or G) is "predominant" in H + G (see Remark 2.2 and Theorem 4.1). For instance, we are able to deal with equations of the form

∂w ∂t - |Σ 1 (x)Dw| 2 2 + |Σ 2 (x)Dw| 2 2 = 0 in IR N × (0, T )
where Σ 1 , Σ 2 are N ×k matrices, which corresponds to the case α, β ∈ IR k , σ ≡ c ≡ 0, b(x, t, α) = Σ 1 (x)α, g(x, t, β) = Σ 2 (x)β and ℓ(x, t, α) = |α| 2 /2, f (x, t, β) = |β| 2 /2 in (2) and (3). The comparison result applies if either (Σ

1 Σ T 1 )(x) > (Σ 2 Σ T 2 )(x) or (Σ 1 Σ T 1 )(x) < (Σ 2 Σ T 2 )(x).
When neither H nor G) is "predominant", the problem seems to be very difficult and our only result takes place in dimension N = 1: we have comparison for

∂w ∂t + h(x, t)|Dw| 2 = 0 in IR N × (0, T ), (12) 
where the function h may change sign (see (A5) for details). Finally, we point out that assumptions and proofs in Section 4 essentially differ from those of Theorem 2.1 (see Remark 4.1).
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2 Comparison result for the Hamilton-Jacobi equation [START_REF] Alvarez | A quasilinear elliptic equation in R N[END_REF] In order to give precise assumptions upon Equation ( 1) and ( 2), (3), we need to introduce some notations. For all integers N, M ≥ 1 we denote by M N,M (IR) (respectively S N (IR), S + N (IR)) the set of real N × M matrices (respectively real symmetric matrices, real symmetric nonnegative N × N matrices). All the norms which appear in the sequel are denoting by | • |. The standard Euclidean inner product in IR N is written •, • . We recall that a modulus of continuity m : IR → IR + is a nondecreasing continuous function such that m(0) = 0. Finally B(x, r) = {y ∈ IR N : |x -y| < r} is the open ball of center x and radius r > 0.

We list the basic assumptions on H, G and ψ. We assume that there exist positive constants C and ν such that: (A1) (Assumptions on H given by (2)) :

(i) A is a subset of a separable complete normed space. The main point here is the possible unboundedness of A. Therefore, to enlight this property in the sequel, we take A = IR k for some k ≥ 1 (see Remark 2.1 above);

(ii) b ∈ C(IR N × [0, T ] × IR k ; IR N ) satisfying for x, y ∈ IR N , t ∈ [0, T ], α ∈ IR k , |b(x, t, α) -b(y, t, α)| ≤ C(1 + |α|)|x -y| |b(x, t, α)| ≤ C(1 + |x| + |α|) ; (iii) ℓ ∈ C(IR N × [0, T ] × IR k ; IR) satisfying for x ∈ IR N , t ∈ [0, T ], α ∈ IR k , C(1 + |x| 2 + |α| 2 ) ≥ ℓ(x, t, α) ≥ ν 2 |α| 2 + ℓ 0 (x, t, α) with ℓ 0 (x, t, α) ≥ -C(1 + |x| 2 ),
and for every R > 0, there exists a modulus of continuity m R such that for all x, y ∈ B(0, R), t ∈ (A2) (Assumptions on G given by(3)) :

[0, T ], α ∈ IR k , |ℓ(x, t, α) -ℓ(y, t, α)| ≤ (1 + |α| 2 ) m R (|x -y|) ; ( 13 
) (iv) σ ∈ C(IR N × [0, T ] × IR k ; M N,M ( 
(i) B is a bounded subset of a normed space;

(ii) g ∈ C(IR N × [0, T ] × B; IR N ) is locally Lipschitz continuous with respect to x uniformly for (t, β) ∈ [0, T ] × B and satisfies for every Remark 2.1 (i) About (A1)(i): we choose to take A = IR k in this section to enlight the possible unboundedness of A in the notation. Indeed, the calculations when A is any subset of a complete separable normed space are the same and are based on the following inequality: for every ρ > 0, γ ∈ IR,

x ∈ IR N , t ∈ [0, T ], β ∈ B, |g(x, t, β)| ≤ C(1 + |x|) ; (iii) f ∈ C(IR N × [0, T ] × B; IR) is locally uniformly continuous with respect to x uniformly in (t, β) ∈ [0, T ] × B and satisfies for every x ∈ IR N , t ∈ [0, T ], β ∈ B, |f (x, t, β)| ≤ C(1 + |x| 2 ); (iv) c ∈ C(IR N × [0, T ] × B; M N,M ( 
inf α∈A ρ|α| 2 + γ|α| = inf α∈A √ ρ|α| 2 + γ 2 √ ρ 2 - γ 2 4ρ ≥ - γ 2 4ρ . (14) 
(ii) Note that, with respect to the gradient variable, H is a concave function and G is a convex function. Under Assumptions (A1) and (A2), classical computations show that H and G are continuous in all their variables.

Example 2.1 The typical case we have in mind is when H is quadratic in the gradient variable, for instance A = IR k , ℓ(x, t, α) = |α| 2 /2, σ ≡ 0 and b(x, t, α) = a(x)α where a ∈ C(IR N ; M N,k (IR)) is locally Lipschitz continuous and bounded for all x ∈ IR N . It leads to

H(x, p) = inf α∈I R k { a(x)α, p + |α| 2 2 } = - |a(x) T p| 2 2 . ( 15 
)
This particular example is treated both in Ishii [START_REF] Ishii | Comparison results for Hamilton-Jacobi equations without growth condition on solutions from above[END_REF] and in Da Lio and McEneaney [START_REF] Da Lio | Finite time-horizon risk-sensitive control and the robust limit under a quadratic growth assumption[END_REF] in the case of first order Hamilton-Jacobi-Bellman equations under more restrictive assumptions than ours. In particular, a has to be a nonsingular matrix in [START_REF] Ishii | Comparison results for Hamilton-Jacobi equations without growth condition on solutions from above[END_REF]. See also Section 4 for some further comments.

For any O ⊆ IR K , we denote by U SC(O) the set of upper semicontinuous functions in O and by LSC(O) the set of lower semicontinuous functions in O.

The main result of this section is the

Theorem 2.1 Assume (A1)-(A3). Let U ∈ U SC(IR N × [0, T ]
) be a viscosity subsolution of ( 1) and V ∈ LSC(IR N × [0, T ]) be a viscosity supersolution of [START_REF] Alvarez | A quasilinear elliptic equation in R N[END_REF]. Suppose that U and V have quadratic growth, i.e. there exists Ĉ > 0 such that, for all x ∈ IR N , t ∈ [0, T ],

|U (x, t)|, |V (x, t)| ≤ Ĉ(1 + |x| 2 ). ( 16 
)
Then U ≤ V in IR N × [0, T ].
The question of the existence of a continuous solution to (1) is not completely obvious. In the framework of viscosity solutions, existence is usually obtained as a consequence of the comparison principle by means of Perron's method as soon as we can build a sub-and a super-solution to the problem. Here, the comparison principle is proved in the class of functions satisfying the quadratic growth condition [START_REF] Da Lio | Finite time-horizon risk-sensitive control and the robust limit under a quadratic growth assumption[END_REF]. Therefore, to perform the above program of existence, we need to be able to build quadratic sub-and super-solutions to [START_REF] Alvarez | A quasilinear elliptic equation in R N[END_REF]. In general one can expect to build such sub-and super-solutions only for short time (see the following lemma and Corollary 2.1). In Example 2.2, we see that solutions may not exist for all time.

Lemma 2.1 Assume (A1)-(A3). If K ≥ C + 1 and ρ are large enough, then u(x, t) = -Ke ρt (1 + |x| 2 ) is a viscosity subsolution of (1) in IR N ×[0, T ] and there exists 0 < τ ≤ T such that u(x, t) = Ke ρt (1+|x| 2 ) is a viscosity supersolution of (1) in IR N × [0, τ ].
Proof of Lemma 2.1. We only verify that u is a supersolution (the proof that u is a subsolution being similar and simpler). Since K ≥ C + 1, we have u(x, 0) = K(1 + |x| 2 ) ≥ ψ(x). Moreover, since u is smooth and using (A1), (A2) and ( 14), we have

∂u ∂t + H(x, t, Du, D 2 u) + G(x, t, Du, D 2 u) = Kρe ρt (1 + |x| 2 ) + H(x, t, 2Ke ρt x, 2Ke ρt Id) + G(x, t, 2Ke ρt x, 2Ke ρt Id) ≥ Kρe ρt (1 + |x| 2 ) + inf α∈I R k {-C(1 + |x| + |α|)}2Ke ρt |x| + ν 2 |α| 2 -C(1 + |x| 2 ) -C2 (1 + |x|) 2 2Ke ρt } + sup β∈B {-C(1 + |x|)2Ke ρt |x| -C(1 + |x| 2 ) -C2 (1 + |x|) 2 2Ke ρt } ≥ Kρe ρt (1 + |x| 2 ) -K(10 C + 12 C2 )e ρt (1 + |x| 2 ) + inf α∈I R k {-2K Ce ρt |x||α| + ν 2 |α| 2 } ≥ ρ -10 C -12 C2 - 2 C2 Ke ρt ν Ke ρt (1 + |x| 2 ).
We notice that if tρ ≤ 1 and ρ > 0 is large enough, then the quantity between the brackets is nonnegative.

Hence the result follows with 0 < τ = 1/ρ. As explained above, Theorem 2.1 together with Perron's method implies the following result. We omit its proof since it is standard.

Corollary 2.1 Assume (A1)-(A3).

Then there is τ > 0 such that there exists a unique continuous viscosity solution of ( 1) in IR N × [0, τ ] satisfying the growth condition ( 16). Remark 2.2 (i) For global existence results under further regularity assumptions on the data we refer the reader to Ito [START_REF] Ito | Existence of solutions to Hamilton-Jacobi-Bellman equation under quadratic growth conditions[END_REF]. For a case where blowup in finite time occurs, see Example 2.2 which follows.

(ii) Theorem 2.1 and Corollary 2.1 hold when replacing "inf" by "sup" and "ℓ" by "-ℓ" in H or/and "sup" by "inf" and "f " by "-f " in G. To adapt the proofs, one can use the change of function w ′ := -w or to consider µU -V instead of U -µV in the proof of Theorem 2.1. Therefore it is possible to deal either with unbounded controls in the "sup" in order to have a convex quadratic Hamiltonian or to deal with unbounded control in the "inf" in order to have a concave quadratic Hamiltonian.

(iii) Up to replace t by T -t, all our results hold for

   - ∂w ∂t + H(x, t, Dw, D 2 w) + G(x, t, Dw, D 2 w) = 0 in IR N × (0, T ), w(x, T ) = ψ(x) in IR N (17) 
This latter equation with terminal condition is the one which arises usually in control theory, see Example 2.2 and Section 3.

(iv) In this section, we are not able to consider the case when both α in H and β in G are unbounded controls. Roughly speaking, one of the reason is that unbounded controls lead to quadratic Hamiltonians. When both controls are unbounded, we then obtain two quadratic-type Hamiltonians, a concave and a convex one. Let us explain the difficulty on a model case where

H(x, p) = inf α∈I R k { a 1 (x)α, p + |α| 2 2 } = - |a 1 (x) T p| 2 2 , G(x, p) = sup β∈I R k { a 2 (x)β, p - |β| 2 2 } = |a 2 (x) T p| 2 2 , with a 1 , a 2 ∈ C(IR N ; M N,k (IR)
) are locally Lipschitz continuous and bounded. The difficulty to treat such a case is related to our strategy of proof which relies on a kind of "linearization procedure" (see Lemma 2.2 and its proof). In this simple case, this "linearization" uses in a crucial way the convex inequality

|p| 2 µ -|q| 2 ≥ - |p -q| 2 1 -µ for all p, q ∈ IR N and 0 < µ < 1,
which does not work at the same time for a concave and a convex Hamiltonian. Of course, in this simple case, there are alternative ways to solve the problem: we have

H(x, p) + G(x, p) = 1 2 (a 1 + a 2 )(a 2 -a 1 ) T p, p , (18) 
which allows to apply Theorem 2.1 up to add some assumptions on a 1 or a 2 (for instance (a 1 +a 2 )(a 2 -a 1 ) T is a nonnegative symmetric matrix with a locally Lipschitz squareroot). In Section 4, we provide another approach to solve such equations (see Theorem 4.1 and Remark 4.1).

Example 2.2 A deterministic linear quadratic control problem. Linear quadratic control problems (see also Section 3 for stochastic linear quadratic control problems) are the typical examples we have in mind since they lead to Hamilton-Jacobi equations with quadratic terms. On the other hand, the value function can blow up in finite time. Consider the control problem (in dimension 1 for sake of simplicity)

dX s = α s ds, s ∈ [t, T ], 0 ≤ t ≤ T, X t = x ∈ IR,
where the control α ∈ A t := L 2 ([t, T ]; IR) and the value function is given by

V (x, t) = inf α∈At {ρ T t (|α s | 2 + |X s | 2 ) ds -|X T | 2 } for some ρ > 0.
Then the value function, when it is finite, is the unique viscosity solution of the Hamilton-Jacobi equation of type (1) which reads

-w t + 1 4ρ |w x | 2 = ρx 2 in IR × (0, T ), w(x, T ) = -x 2 , (19) 
(see Theorem 3.1 for a proof of this result). Looking for a solution w under the form w(x, t) = ϕ(t)x 2 , we obtain that ϕ is a solution of the differential equation

-ϕ ′ + ϕ 2 ρ = ρ in (0, T ), ϕ(T ) = -1. (20) 
We distinguish two cases: Case 1.-If ρ ≥ 1, then the solution of ( 20) is defined in the whole interval [0, T ] for all T > 0 and is given by

ϕ(t) = ρ (ρ -1)e 2(T -t) -(ρ + 1) (ρ -1)e 2(T -t) + ρ + 1 . (21) 
which is a function decreasing from ϕ(0) to -1. Therefore ( 19) admits a unique viscosity solution in IR × [0, T ] which is the value function of the control problem

V (x, t) = ϕ(t)x 2 .
Note that, if ρ > 1 and T > ln((ρ + 1)/(ρ -1))/2, then ϕ(0) > 0. It follows that the value function satisfies [START_REF] Da Lio | Finite time-horizon risk-sensitive control and the robust limit under a quadratic growth assumption[END_REF] but is neither bounded from above neither bounded from below. Case 2.-If 0 < ρ < 1 and T > ln((1 + ρ)/(1 -ρ))/2, then the solution of ( 20) is given by ( 21) in (τ , T ], where

τ := T - 1 2 ln 1 + ρ 1 -ρ ,
and blows up at t = τ . Therefore we have existence for [START_REF] Fleming | Controlled Markov processes and viscosity solutions[END_REF] only in IR × (τ , T ].

Proof of Theorem 2.1. We divide the proof of the theorem in two steps.

Step 1. We first assume that ℓ 0 ≥ 0, f ≤ 0 and ψ ≤ 0 in (A1), (A2) and (A3). The proof is based on the two following lemmas whose proofs are postponed. Lemma 2.2 ("Linearization" of Equation ( 1)). Let 0 < µ < 1 and set Ψ = U -µV. Suppose ℓ 0 ≥ 0, f ≤ 0 and ψ ≤ 0. Then Ψ is an U SC viscosity subsolution of

L[w] := ∂w ∂t - C2 2ν(1 -µ) |Dw| 2 -2 C(1 + |x|)|Dw| (22) 
-

sup α∈I R k Tr σ(x, t, α)σ T (x, t, α)D 2 w -sup β∈B Tr c(x, t, β)c T (x, t, β)D 2 w = 0 in IR N × (0, T ), with the initial condition w(•, 0) ≤ (1 -µ)ψ ≤ 0. ( 23 
)
Lemma 2.3 Consider the parabolic problem

ϕ t -r 2 ϕ rr -rϕ r = 0 in [0, +∞) × (0, T ] ϕ(r, 0) = ϕ R (r) in [0, +∞), ( 24 
)
where ϕ R (r) = max{0, r -R} for some R > 0. Then ( 24) has a unique solution

ϕ ∈ C([0, +∞) × [0, T ]) ∩ C ∞ ([0, +∞) × (0, T ]) such that, for all t ∈ (0, T ], ϕ(•, t) is positive, nondecreasing and convex in [0, +∞). Moreover, for every (r, t) ∈ [0, +∞) × (0, T ], ϕ(r, t) ≥ ϕ R (r), 0 ≤ ϕ r (r, t) ≤ e T and ϕ(r, t) -→ R→+∞ 0. ( 25 
) Let Φ(x, t) = ϕ(C(1 + |x| 2 )
e Lt , M t)+ ηt where ϕ is given by Lemma 2.3, L, M, η are positive constants to be determined and C > max{ C, Ĉ}, where C and Ĉ are the constants appearing in the assumptions.

Claim :We can choose the constants L and M such that Φ is a strict supersolution of ( 22) at least in IR N × (0, τ ] for small τ.

To prove the claim, we have to show that L[Φ] > 0 in IR N × (0, τ ] for some τ > 0. The function Φ ∈ C(IR N × [0, T ]) ∩ C ∞ (IR N × (0, T ]) and we have, for t > 0,

Φ t = η + LC(1 + |x| 2 )e Lt ϕ r + M ϕ t , DΦ = 2Cxe Lt ϕ r and D 2 Φ = 2C Id e Lt ϕ r + 4C 2 e 2Lt ϕ rr x ⊗ x.
Using (A1) and (A2), for all (x, t) ∈ IR N × (0, T ], we get

L[Φ] ≥ η + LC(1 + |x| 2 )e Lt ϕ r + M ϕ t - C2 2ν(1 -µ) |2Cxe Lt ϕ r | 2 -2 C(1 + |x|)|2Cxe Lt ϕ r | -2 C2 (1 + |x|) 2 |2C Id e Lt ϕ r + 4C 2 e 2Lt x ⊗ x ϕ rr |.
Setting r = C(1 + |x| 2 )e Lt and since C > C, we obtain

L[Φ] ≥ η + M ϕ t -16C 2 r 2 ϕ rr -8C(C + 1)rϕ r + L - 2C 3 e Lt ϕ r ν(1 -µ) rϕ r .
Our aim is to fix the parameters M and L in order to make L[Φ] positive.

We first choose M > 16C 2 + 8C. Since ϕ is a solution of (24) (Lemma 2.3), we obtain

L[Φ] > η + L - 2C 3 e Lt ϕ r ν(1 -µ) rϕ r . (26) 
Then, taking L > 2C 3 e T +1 ν(1 -µ) , we get L[Φ] > η > 0 for all x ∈ IR N and t ∈ (0, τ ], where τ = 1/L. This proves the claim. We continue by considering max

I R N ×[0,τ ] {Ψ -Φ}, ( 27 
)
where Ψ is the function defined in Lemma 2.2 which is a viscosity subsolution of ( 22) and Φ is the strict supersolution of [START_REF] Ishii | Comparison results for Hamilton-Jacobi equations without growth condition on solutions from above[END_REF] in IR N × (0, τ ] we built above. From (25), we have Φ(x, t) ≥ C(1

+ |x| 2 ) > C(1 + |x| 2 ) ≥ Ψ(x, t) for |x| ≥ R.
It follows that the maximum ( 27) is achieved at a point (x, t) ∈ IR N × [0, τ ]. We claim that t = 0. Indeed suppose by contradiction that t > 0. Then since Ψ is a viscosity subsolution of [START_REF] Ishii | Comparison results for Hamilton-Jacobi equations without growth condition on solutions from above[END_REF], by taking Φ as a test-function, we would have L[Φ](x, t) ≤ 0 which contradicts the fact that Φ is a strict supersolution.

Thus, for all (x, t)

∈ IR N × [0, τ ], Ψ(x, t) -Φ(x, t) ≤ Ψ(x, 0) -Φ(x, 0) ≤ (1 -µ)ψ(x),
where the last inequality follows from [START_REF] Ito | Existence of solutions to Hamilton-Jacobi-Bellman equation under quadratic growth conditions[END_REF] and the fact that Φ ≥ 0. Since we assumed that ψ is nonpositive, for every (x, t) ∈ IR N × [0, τ ], we have Ψ(x, t) ≤ Φ(x, t). Letting η go to 0 and R to +∞, we get by Lemma

2.3, Ψ ≤ 0 in IR N × [0, τ ].
By a step-by-step argument, we prove that Ψ ≤ 0 in

IR N × [0, T ]. Therefore Ψ = U -µV ≤ 0 in IR N × [0, T ].
Letting µ go to 1, we obtain U ≤ V as well which concludes the Step 1.

Step 2. The general case. The idea is to reduce to the first case by a suitable change of function (see Ishii [START_REF] Ishii | Comparison results for Hamilton-Jacobi equations without growth condition on solutions from above[END_REF]). Suppose that w is a solution of (1). Then, a straightforward computation shows that w(

x, t) = w(x, t) -C(1 + |x| 2 )e ρt , for C > C, Ĉ and ρ > 0, is a solution of          wt + inf α∈I R k b(x, t, α), D w + l(x, t, α) -Tr σ(x, t, α)σ T (x, t, α)D 2 w + sup β∈B -g(x, t, β), D w -f (x, t, β) -Tr c(x, t, β)c T (x, t, β)D 2 w = 0, w(x, 0) = ψ(x) -C(1 + |x| 2 ), (28) 
where l(x, t, α) = ℓ(x, t, α) + 2Ce ρt b(x, t, α), x -2Ce ρt Tr σ(x, t, α)σ T (x, t, α)

+ 1 2 Cρe ρt (1 + |x| 2 ), f (x, t, β) = f (x, t, β) + 2Ce ρt g(x, t, β), x + 2Ce ρt Tr c(x, t, β)c T (x, t, β) - 1 2 Cρe ρt (1 + |x| 2 ).
We observe that l and f still satisfy respectively the assumptions (A1)(iii) and (A2)(iii). Moreover from (A3), we can choose C > C in order that ψ ≤ 0. Next we show that if ρ > 0 is chosen in a suitable way then l(x, t, α) ≥ ν|α| 2 /2 for all (x, t, α) ∈

IR N × [0, 1/ρ] × IR k and f (x, t, β) ≤ 0 for all (x, t, β) ∈ IR N × [0, 1/ρ] × B. Indeed for all (x, t, α) ∈ IR N × [0, 1/ρ] × IR k by (A1) we have l(x, t, α) ≥ ν 2 |α| 2 -C(1 + |x| 2 ) -2C Ce ρt (1 + |x| + |α|)|x| -2C C2 e ρt (1 + |x|) 2 + 1 2 Cρe ρt (1 + |x| 2 ) ≥ ν 2 |α| 2 -( C + 4C C + 4C C2 )e ρt (1 + |x| 2 ) -2C Ce ρt |α||x| + 1 2 Cρe ρt (1 + |x| 2 ). But 2C Ce ρt |α||x| ≤ ν 4 |α| 2 + 16C 2 C2 e 2ρt ν |x| 2 ;
Therefore, by choosing

ρ > 2 C C + 8 C + 8 C2 + 32C C2 e ν , (29) 
we have l

(x, t, α) ≥ ν 4 |α| 2 for all (x, t, α) ∈ IR N × [0, 1/ρ] × IR k ,
which is the desired estimate with ν = ν/2 > 0 and ℓ 0 ≡ 0. The next step consists in choosing ρ such that f ≤ 0 . Using (A2), the same kind of calculation as above shows that, taking ρ > 8( C + C2 ) + 2 [START_REF] Ley | Lower-bound gradient estimates for first-order Hamilton-Jacobi equations and applications to the regularity of propagating fronts[END_REF] ensures f ≤ 0. Finally if we choose C > C and ρ as the maximum of the two quantities appearing in ( 29) and ( 30), we are in the framework of Step 1 in

IR N × [0, ρ]. Setting Ū = U -C(1 + |x| 2 )e ρt and V = V -C(1 + |x| 2 )e ρt , from Step 1 we get Ū ≤ V in IR N × [0, 1/ρ]; thus U ≤ V in IR N × [0, 1/ρ].
Then by a step-by-step argument we obtain the comparison in

IR N × [0, T ].
Remark 2.3 A key fact in the proof to build a strict supersolution of ( 22) is to use a function which is the solution of the auxiliary -and simpler -pde [START_REF] John | Partial differential equations[END_REF]. This idea come from mathematical finance to deal with equations related to Blake and Scholes formula. See for instance Lamberton and Lapeyre [START_REF] Lamberton | Introduction au calcul stochastique appliqué à la finance[END_REF] and Barles et al. [START_REF] Barles | Critical stock price near expiration[END_REF].

We turn to the proof of the lemmas 2.2 and 2.3. Proof of Lemma 2.2. For 0 < µ < 1, let Ṽ = µV and Ψ = U -Ṽ . We divide the proof in different steps.

Step 1. A new equation for Ṽ .

It is not difficult to see that, if V is a supersolution of (1), then Ṽ is a supersolution of Ṽt + µ H x, t, D Ṽ µ , D 2 Ṽ µ + µ G x, t, D Ṽ µ , D 2 Ṽ µ ≥ 0 in IR N × (0, T ) Ṽ (x, 0) ≥ µ ψ(x) in IR N . ( 31 
)
Step 2. Viscosity inequalities for U and Ṽ . This step is classical in viscosity theory. Let ϕ ∈ C 2 (IR N × (0, T ]) and (x, t) ∈ IR N × (0, T ] be a local maximum of Ψ -ϕ. We can assume that this maximum is strict in the same ball B(x, r) × [ t -r, t + r] (see [START_REF] Barles | Solutions de viscosité des équations de Hamilton-Jacobi[END_REF] or [START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations[END_REF]). Let Θ(x, y, t) = ϕ(x, t) + |x -y| 2 ε 2 and consider

M ε := max x,y∈B(x,r), t∈[ t-r, t+r] {U (x, t) -Ṽ (y, t) -Θ(x, y, t)}.
This maximum is achieved at a point (x ε , y ε , t ε ) and, since the maximum is strict, we know ( [START_REF] Barles | Solutions de viscosité des équations de Hamilton-Jacobi[END_REF], [START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations[END_REF]) that

|x ε -y ε | 2 ε 2 → 0 as ε → 0,
and

M ε = U (x ε , t ε ) -Ṽ (y ε , t ε ) -Θ(x ε , y ε , t ε ) -→ U (x, t) -Ṽ (x, t) -ϕ(x, t) = Ψ(x, t) -ϕ(x, t).
It means that, at the limit ε → 0, we obtain some information on Ψ -ϕ at (x, t) which will provide the new equation for Ψ. Before that, we can take Θ as a test-function to use the fact that U is a subsolution and Ṽ a supersolution. Indeed (x, t) ∈ B(x, r) × [ t -r, t + r] → U (x, t) -Ṽ (y ε , t) -Θ(x, y ε , t) achieves its maximum at (x ε , t ε ) and (y, t) ∈ B(x, r) × [ t -r, t + r] → -U (x ε , t) + Ṽ (y, t) + Θ(x ε , y, t) achieves its minimum at (y ε , t ε ). Thus, by Theorem 8.3 in the User's guide [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF] , for every ρ > 0, there exist a 1 , a 2 ∈ IR and X, Y ∈ S N such that

(a 1 , D x Θ(x ε , y ε , t ε ), X) ∈ P2,+ (U )(x ε , t ε ), (a 2 , -D y Θ(x ε , y ε , t ε ), Y ) ∈ P2,-( Ṽ )(y ε , t ε ), a 1 -a 2 = Θ t (x ε , y ε , t ε ) = ϕ t (x ε , t ε ) and -( 1 ρ + |M |)I ≤ X 0 0 -Y ≤ M + ρM 2 where M = D 2 Θ(x ε , y ε , t ε ). ( 32 
)
Setting

p ε = 2 x ε -y ε ε 2 , we have D x Θ(x ε , y ε , t ε ) = p ε + Dϕ(x ε , t ε ) and D y Θ(x ε , y ε , t ε ) = -p ε , and 
M = D 2 ϕ(x ε , t ε ) + 2I/ε 2 -2I/ε 2 -2I/ε 2 2I/ε 2 .
Thus, from [START_REF] Lions | Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations. II. Viscosity solutions and uniqueness[END_REF], it follows

Xp, p -Y q, q ≤ D 2 ϕ(x ε , t ε )p, p + 2 ε 2 |p -q| 2 + m ρ ε 4 , ( 33 
)
where m is a modulus of continuity which is independent of ρ and ε. In the sequel, m will always denote a generic modulus of continuity independent of ρ and ε.

Writing the subsolution viscosity inequality for U and the supersolution inequality for Ṽ by means of the semi-jets and subtracting the inequalities, we obtain

ϕ t (x ε , t ε ) + H x ε , t ε , Dϕ(x ε , t ε ) + p ε , X) -µ H y ε , t ε , p ε µ , Y µ + G x ε , t ε , Dϕ(x ε , t ε ) + p ε , X) -µ G y ε , t ε , p ε µ , Y µ ≤ 0. ( 34 
)
Step 3. Estimate of

G := G x ε , t ε , Dϕ(x ε , t ε ) + p ε , X) -µ G y ε , t ε , p ε µ , Y µ .
For sake of simplicity, we set

c(x ε , t ε , β) = c x and c(y ε , t ε , β) = c y .
We have

G = sup β∈B -g(x ε , t ε , β), Dϕ(x ε , t ε ) + p ε -f (x ε , t ε , β) -Tr c x c T x X -sup β∈B -g(y ε , t ε , β), p ε -µf (y ε , t ε , β) -Tr c y c T y Y ≥ inf β∈B { g(y ε , t ε , β) -g(x ε , t ε , β), p ε -g(x ε , t ε , β), Dϕ(x ε , t ε ) -(1 -µ)f (y ε , t ε , β) + f (y ε , t ε , β) -f (x ε , t ε , β) -Tr c x c T x X -c y c T y Y From (A2), if L g,r is the Lipschitz constant of g in B(x, r) × [ t -r, t + r], then we have g(y ε , t ε , β) -g(x ε , t ε , β), p ε ≤ L g,r |y ε -x ε ||p ε | ≤ 2L g,r |y ε -x ε | 2 ε 2 = m(ε)
and

-g(x ε , t ε , β), Dϕ(x ε , t ε ) ≥ -C(1 + |x ε |)|Dϕ(x ε , t ε )| . By assumption, f ≤ 0 thus -(1 -µ)f (y ε , t ε , β) ≥ 0. Again from (A2) it follows that f (y ε , t ε , β) -f (x ε , t ε , β) ≥ -m(|y ε -x ε |).
Let us denote by (e i ) 1≤i≤N the canonical basis of IR N . By using [START_REF] Lions | Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations. III. Regularity of the optimal cost function[END_REF], we obtain

Tr c x c T x X -c y c T y Y = N i=1 Xc x e i , c x e i -Y c y e i , c y e i ≤ Tr c x c T x D 2 ϕ(x ε , t ε ) + 2 ε 2 |c x -c y | 2 + m ρ ε 4 ≤ Tr c x c T x D 2 ϕ(x ε , t ε ) + 2L 2 c,r |x ε -y ε | 2 ε 2 + m ρ ε 4 ≤ Tr c x c T x D 2 ϕ(x ε , t ε ) + m(ε) + m ρ ε 4 ,
where L c,r is a Lipschitz constant for c in B(x, r). Hence, since all the modulus are independent of ε, ρ and the control, we have

G ≥ -C(1 + |x ε |)|Dϕ(x ε , t ε )| + inf β∈B -Tr c(x ε , t ε , β)c(x ε , t ε , β) T D 2 ϕ(x ε , t ε ) + m(ε) + m ρ ε 4 .
Step 4. Estimate of

H := H x ε , t ε , Dϕ(x ε , t ε ) + p ε , X) -µ H y ε , t ε , p ε µ , Y µ .
With the same notations as in Step 3, we have

H ≥ inf α∈I R k { b(x ε , t ε , α) -b(y ε , t ε , α), p ε + b(x ε , t ε , α), Dϕ(x ε , t ε ) +(1 -µ)ℓ(y ε , t ε , α) + ℓ(x ε , t ε , α) -ℓ(y ε , t ε , α) -Tr σ x σ T x X -σ y σ T y Y .
From (A1) the following estimates follow:

b(x ε , t ε , α) -b(y ε , t ε , α), p ε ≥ -C(1 + |α|)|x ε -y ε ||p ε | ≥ -C|α|m(ε) + m(ε) ; b(x ε , t ε , α), Dϕ(x ε , t ε ) ≥ -C(1 + |x ε |)|Dϕ(x ε , t ε )| -C|α||Dϕ(x ε , t ε )| ; ℓ(x ε , t ε , α) -ℓ(y ε , t ε , α) ≥ -(1 + |α| 2 )m r (|x ε -y ε |) ≥ -|α| 2 m(ε) + m(ε). (1 -µ)ℓ(y ε , t ε , α) ≥ (1 -µ) ν 2 |α| 2 + ℓ 0 (x, t, α) ≥ ν(1 -µ) 2 |α| 2 ,
where the last inequality follows from the fact that by assumption, ℓ 0 (x, t, α) ≥ 0. By proceeding exactly as in Step 3 one can show that

Tr σ x σ T x X -σ y σ T y Y ≤ Tr σ x σ T x D 2 ϕ(x ε , t ε ) + m(ε) + m ρ ε 4 ,
where m is independent of α. Thus, using ( 14), we have

H ≥ inf α∈I R k ν(1 -µ) 2 + m(ε) |α| 2 -C(|Dϕ(x ε , t ε )| + m(ε))|α| + inf α∈I R k -Tr σ(x ε , t ε , α)σ(x ε , t ε , α) T D 2 ϕ(x ε , t ε ) -C(1 + |x ε |)|Dϕ(x ε , t ε )| + m(ε) + m ρ ε 4 ≥ - ( C|Dϕ(x ε , t ε )| + m(ε)) 2 2ν(1 -µ) + m(ε) -C(1 + |x ε |)|Dϕ(x ε , t ε )| + inf α∈I R k -Tr σ(x ε , t ε , α)σ(x ε , t ε , α) T D 2 ϕ(x ε , t ε ) + m(ε) + m ρ ε 4 . ( 35 
)
Step 5. Finally, from ( 34), ( 35), [START_REF] Mceneaney | Uniqueness for viscosity solutions of nonstationary Hamilton-Jacobi-Bellman equations under some a priori conditions (with applications)[END_REF], letting first ρ go to 0 and then sending ε to 0, we obtain

L[ϕ](x, t) = ϕ t (x, t) - C2 2ν(1 -µ) |Dϕ(x, t)| 2 -2 C(1 + |x|)|Dϕ(x, t)| + inf α∈I R k -Tr σ(x, t, α)σ(x, t, α) T D 2 ϕ(x, t) + inf β∈B -Tr c(x, t, β)c(x, t, β) T D 2 ϕ(x, t) ≤ 0
which means exactly that Ψ is a subsolution of [START_REF] Ishii | Comparison results for Hamilton-Jacobi equations without growth condition on solutions from above[END_REF].

Proof of Lemma 2.3. Set χ(s, t) = ϕ(e s , t) for (s, t) ∈ IR × [0, +∞). A straightforward calculation shows that ϕ satisfies [START_REF] John | Partial differential equations[END_REF] if and only if χ is a solution of the heat equation

χ t -χ ss = 0 in IR × (0, T ) χ(s, 0) = ϕ R (e s ) in IR. (36) 
Since the initial data satisfies the growth estimate |χ(s, 0)| < e s 2 , by classical results on the heat equation (John [START_REF] John | Partial differential equations[END_REF], Evans [START_REF] Evans | Partial differential equations[END_REF]), we know there exists a unique classical solution χ ∈ C(IR×[0, T ])×C ∞ (IR×(0, T ]) of [START_REF] Mceneaney | A uniqueness result for the Isaacs equation corresponding to nonlinear H∞ control[END_REF]. It is given by the representation formula: for every (s, t)

∈ IR × [0, T ], χ(s, t) = 1 √ 4πt I R e -(s-y) 2 4t ϕ R (e y ) dy = 1 √ 4πt +∞ log R e -(s-y) 2 4t
(e y -R) dy.

From the above formula, it follows χ(s, t) > 0 for all (s, t) ∈ IR × (0, T ]. Let h > 0. We have ϕ R (e s ) ≤ ϕ R (e s+h ) for all s ∈ IR. Since χ(• + h, •) is a solution of [START_REF] Mceneaney | A uniqueness result for the Isaacs equation corresponding to nonlinear H∞ control[END_REF] with initial data ϕ R (e s+h ), by the maximum principle, we obtain χ(s, t) ≤ χ(s + h, t). This proves that χ is nondecreasing with respect to s. It follows that ϕ(r, t) = χ(log r, t) is the unique solution of ( 24) and ϕ ∈ C([0, +∞) × [0, T ]) ∩ C ∞ ((0, +∞) × (0, T ]) is positive and nondecreasing. Moreover, if the initial data is convex, we know that the solution of a quasilinear equation like [START_REF] John | Partial differential equations[END_REF] is convex in the space variable for every time (see e.g. Giga et al. [START_REF] Giga | Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains[END_REF]). Thus ϕ(•, t) is convex in [0, +∞) for all t ∈ [0, T ]. It remains to prove the estimates [START_REF] Karatzas | Brownian motion and stochastic calculus[END_REF]. Noticing that ϕ R (e s ) ≤ e s and that (s, t) → ϕ R (e s ) and (s, t) → e s+t are respectively sub-and supersolution (in the viscosity sense for example) of [START_REF] Mceneaney | A uniqueness result for the Isaacs equation corresponding to nonlinear H∞ control[END_REF], by the maximum principle, we obtain ϕ R (e s ) ≤ χ(s, t) ≤ e s+t ≤ e s+T for (s, t)

∈ IR × [0, T ]. It follows ϕ R (r) ≤ ϕ(r, t) ≤ e T r for (r, t) ∈ [0, +∞] × [0, T ]. ( 38 
)
This gives the first estimate. To prove the second estimate, we note that ϕ(•, t) is a convex nondecreasing function satisfying [START_REF]Stochastic differential equations[END_REF]. It follows 0 ≤ ϕ r (r, t) ≤ e T for (r, t) ∈ [0, +∞] × (0, T ]. The last assertion is obvious, using the dominated convergence theorem in [START_REF] Nagai | Bellman equations of risk-sensitive control[END_REF]. It completes the proof of the lemma.

Applications

This Section is divided in two parts. In the first part we consider a finite horizon unbounded stochastic control problem and we characterize the value function as the unique viscosity solution of the corresponding Dynamic Programming Equation, which is a particular case of the equation (1). In the second part we list some concrete examples of model cases to which the results of Section 1 can be applied.

Unbounded stochastic control problems

Let (Ω, F , (F t ) t≥0 , P ) be a filtered probability space, W t be a F t -adapted standard M -Brownian motion such that W 0 = 0 a.s. and let A be a subset of a separable normed space (possibly unbounded). We consider a finite horizon unbounded stochastic control problem for controlled diffusion processes X t,x s whose dynamic is governed by a stochastic differential equation of the form

dX t,x s = b(X t,x s , s, α s )ds + σ(X t,x s , s, α s )dW s , s ∈ (t, T ), 0 ≤ t ≤ T, X t,x t = x ∈ IR N , (39) 
where the control α s ∈ A, b : IR N × IR × A → IR N is a continuous vector field, σ is a continuous real N × M matrix. The pay-off to be minimized is

J(t, x, α) = E tx { T t ℓ(X t,x s , s, α s ) ds + ψ(X t,x T )}
where E tx is the expectation with respect to the event X t,x t = x, the functions ℓ :

IR N × [0, T ] × A → IR and ψ : IR N → IR are continuous, α s ∈ A t , the set of A-valued F t -progressively measurable controls such that E tx ( T t |α s | 2 ds) < +∞ (40) 
and X t,x s is the solution of (39). The value function is defined by

V (x, t) = inf αs∈At J(t, x, α s ). (41) 
At least formally, the Dynamic Programming Equation associated to this control problem is

- ∂w ∂t + sup α∈A {-b(x, t, α), Dw -ℓ(x, t, α) - 1 2
Tr (σ(x, t, α)σ(x, t, α) T D 2 w)} = 0 (42) in IR N × (0, T ), with the terminal value condition w(x, T ) = ψ(x).

Our main goal is to characterize the value function V as the unique continuous viscosity solution of (42) with the terminal value condition V (x, T ) = ψ(x). We recall that the fact that the value function is a viscosity solution of the equation ( 42) is in general obtained by a direct use of the Dynamic Programming Principle. Since we are in an unbounded control framework, the proof of the Dynamic Programming Principle is rather delicate, thus we follow another strategy which consists in comparing directly V with the unique viscosity solution U of (42) obtained by Corollary 2.1 when this latter exists.

We make the following assumptions on the data.

(S0) A is a subset (possibly unbounded) of a separable complete normed space.

(S1) b ∈ C(IR N × [0, T ] × A; IR N
) and there exists C > 0 such that, for all x, y ∈ IR N , t ∈ [0, T ] and α ∈ A we have

|b(x, t, α) -b(y, t, α)| ≤ C|x -y|, |b(x, t, α)| ≤ C(1 + |x| + |α|); (S2) σ ∈ C(IR N × [0, T ] × A; M N,M
) and there exists C > 0 such that, for all x, y ∈ IR N , t ∈ [0, T ] and α ∈ A we have

|σ(x, t, α) -σ(y, t, α)| ≤ C|x -y|, |σ(x, t, α)| ≤ C(1 + |x|).
Moreover we assume that ℓ and ψ satisfy respectively (A1)(iii) and (A3).

We first observe that under the current assumptions (S1) and (S2) on b and σ, for any control α ∈ A t satifying [START_REF] Rampazzo | Hamilton-Jacobi-Bellman equations with fast gradient-dependence[END_REF] and any random variable Z such that E[Z] < ∞, there exists a unique strong solution of the stochastic differential equation [START_REF] Pham | Smooth solutions to optimal investment models with stochastic volatilities and portfolio constraints[END_REF] which satisfies

E sup t≤s≤T |X t,Z s | 2 < ∞
(see e.g. Appendix D in [START_REF] Fleming | Controlled Markov processes and viscosity solutions[END_REF]). Moreover, we have better estimates on the trajectories of (39).

Lemma 3.1 Assume (S0), (S1) and (S2). For every (x, t) ∈ IR N × [0, T ] and every α s ∈ A t , the solution X t,x s of ( 39) corresponding to α s , satisfies the following properties:

(i) there exists a constant C > 0 such that

E tx sup t≤s≤T |X t,x s | 2 ≤ (|x| 2 + C(T -t) + CE tx T t |α s | 2 ds) e C(T -t) ; ( 43 
)
(ii) there exists C x,α > 0 which depends on x and on the control α s such that, for all s, s ′ ∈ [t, T ],

E tx {|X t,x s -X t,x s ′ |} ≤ C x,α |s -s ′ | 1/2 . ( 44 
)
In particular for all τ ∈ [t, T ] we have

E tx sup t≤s≤τ |X t,x s -x| ≤ C x,α |τ | 1/2 . ( 45 
)
Proof of Lemma 3.1. We start by proving (i). Let us take an increasing sequence of C 2 functions ϕ R : IR + → IR + such that for all R > 0, ϕ ′ R (r) = 0 if r > 2R, ϕ ′′ R (r) ≤ 0 and ϕ R (r) ↑ r, ϕ ′ R (r) ↑ 1, as R → +∞. By applying Ito's formula to the process ϕ R (|X t,x s | 2 ), for a.e. t ≤ τ ≤ T, we have (dropping the argument of ϕ R and its derivatives)

ϕ R (|X t,x τ | 2 ) = ϕ R (|x| 2 ) + τ t 2ϕ ′ R X t,x s , b(X t,x s , s, α s ) ds + τ t ϕ ′ R Tr[σσ T (X t,x s , s, α s )] + 2ϕ ′′ R |σ T (X t,x s , s, α s )X t,x s | 2 ds + τ t 2ϕ ′ R X t,x s , σ(X t,x s , s, α s )dW s .( 46 
)
By using the current assumptions on b and σ the following estimate holds

τ t 2ϕ ′ R X t,x s , b(X t,x s , s, α s ) + ϕ ′ R Tr[σσ T (X t,x s , s, α s )] + 2ϕ ′′ R |σ T (X t,x s , s, α s )X t,x s | 2 ds ≤ 2C τ t ϕ ′ R |X t,x s |(1 + |X t,x s | + |α s |) ds + C τ t ϕ ′ R (1 + |X t,x s | 2 ) ds a.s.,
where the constant C does not depend neither on the control α s nor on R. Moreover we observe that since ϕ ′ R = 0 for t > 2R we have

E tx τ t |ϕ ′ R X t,x s , σ(X s , s, α s ) | 2 ds < +∞
hence the expectation of the stochastic integral is zero. By taking the expectation in (46) and applying Fubini's Theorem we obtain

E tx {ϕ R (|X t,x τ | 2 )} ≤ ϕ R (|x| 2 ) + C τ t E tx {ϕ ′ R [2 + 5|X t,x s | 2 + |α s | 2 ]} ds.
Since ϕ R , ϕ ′ R are increasing sequences , we can applying Beppo Levi's Theorem. Therefore by letting R → ∞ we obtain, for every t ≤ τ ≤ T,

E tx {|X t,x τ | 2 } ≤ |x| 2 + C τ t E tx {2 + 5|X t,x s | 2 + |α s | 2 } ds ≤ |x| 2 + 5C τ t E tx |X t,x s | 2 ds + CE tx { τ t |α s | 2 ds} + 2C(T -t)
Applying Gronwall's Inequality we obtain

E tx {|X t,x τ | 2 } ≤ |x| 2 + 2C(T -t) + C E tx { T t |α s | 2 ds} e 5C(T -t) .
We conclude by Doob's maximal inequality, (see, e.g [START_REF] Karatzas | Brownian motion and stochastic calculus[END_REF]).

The proof of (ii) is an extension of the one in the Appendix D in [START_REF] Fleming | Controlled Markov processes and viscosity solutions[END_REF] and we leave it to the reader.

Proposition 3.1 Assume (S0), (S1), (S2), (A1)(iii) for ℓ and (A3) for ψ. Then there exists 0 ≤ τ < T such that the value function V is finite and satisfies the quadratic growth condition [START_REF] Da Lio | Finite time-horizon risk-sensitive control and the robust limit under a quadratic growth assumption[END_REF] in

IR N × [τ, T ].
Proof of Proposition 3.1. We aim at showing that that if the constants ρ, C > 0 are large enough then there exists τ > 0 depending on ρ such that |V (x, t)| ≤ C(1 + |x| 2 )e ρ(T -t) for all (x, t) ∈ IR N × [τ, T ]. The upper estimate is obtained by majorizing directly the value function with the cost functional corresponding to a constant control and using the estimates of the trajectories in Lemma 3.1. The most difficult is to prove the estimate from below since V is defined by an infimum. To this purpose we take any control α s ∈ A t . By applying Ito's formula to the process (1 + |X t,x s | 2 )e ρ(t-s) , X t,x s being the trajectory corresponding to α s , we have the following estimate

d[(1 + |X t,x s | 2 )e ρ(T -s) ] = -ρe ρ(T -s) (1 + |X t,x s | 2 )ds + e ρ(T -s) Tr (σσ T (X t,x s , s, α s ))ds +2e ρ(T -s) X t,x
s , b(X t,x s , s, α s )ds + σ(X t,x s , s, α s )dW s .

(47)

Integrating both sides of (47) from t to T and taking the expectation we get:

E tx {1 + |X t,x T | 2 } -(1 + |x| 2 )e ρ(T -t) (48) = E tx T t -ρ(1 + |X t,x s | 2 ) + 2 X t,x
s , b(X t,x s , s, α s ) + Tr(σσ T (X s , s, α s ) e ρ(T -s) ds .

We notice that in the above estimate we supposed that the expectation of the stochastic integral is zero. This is false in general but we can overcome such a difficulty by an approximation argument which is similar to the one used in the proof of Lemma 3.1. Now for any ε-optimal control α s for V (x, t), by using (48), we get

V (x, t) + C(1 + |x| 2 )e ρ(T -t) + ε ≥ E tx T t ℓ(X t,x s , s, α s ) -2Ce ρ(T -s) X t,x s , b(X t,x s , s, α s ) -Ce ρ(T -s) Tr(σσ T (X t,x s , s, α s )) + ρe ρ(T -s) C(1 + |X s | 2 ) ds +ψ(X t,x T ) + C(1 + |X t,x T | 2 ) = E tx { T t l(X t,x s , s, α s ) ds + ψ(X t,x T )},
where l(x, t, α) := ℓ(x, t, α) -2Ce ρ(T -t) b(x, t, α), x -2Ce ρ(T -t) Tr a(x, t, α) + Cρe ρ(T -t) (1 + |x| 2 ) and ψ(x) := ψ(x) + C(1 + |x| 2 ). By analogous arguments as those used in Section 2 one can see that for ρ, C > 0 large enough there is τ > 0 such that l and ψ are nonnegative in IR N × [τ, T ]. Thus we can conclude since ε is arbitrary.

Remark 3.1 If ℓ, ψ are bounded from below, namely they satisfy, for some C > 0, the following two conditions ℓ(x, t, α) ≥ ν|α| 2 -C and ψ(x) ≥ -C, then V is finite and satisfies the growth condition [START_REF] Da Lio | Finite time-horizon risk-sensitive control and the robust limit under a quadratic growth assumption[END_REF] in IR N × [0, T ] (i.e. for all time).

Next we prove that V is the unique viscosity solution of (42). We start with the following Proposition.

Proposition 3.2 Under the assumptions of Proposition 3.1 we have (i) (Super-optimality principle) for all t ∈ (τ, T ] and 0 < h ≤ T -t and for all stopping time t ≤ θ ≤ T, we have

V (x, t) ≥ inf αs∈At E tx { (t+h)∧θ t ℓ(X t,x s , s, α s ) ds + V * (X t,x (t+h)∧θ , (t + h) ∧ θ)}. ( 49 
) (ii) the function V is a supersolution of (42) in IR N × [τ, T ].
Proof of Proposition 3.2. The proof of (i) is a standard routine and we refer the reader for instance to the book of Yong and Zhou [START_REF] Yong | of Applications of Mathematics[END_REF]. The opposite inequality is more delicate, see Krylov [START_REF] Krylov | Controlled diffusion processes[END_REF][START_REF] Krylov | Stochastic linear controlled systems with quadratic cost revisited[END_REF].

We turn to the proof of (ii), showing that the super-optimality principle implies that V * is a viscosity supersolution of (42). Let φ ∈ C 2 (IR N × [0, T ]) and (x, t) ∈ IR N × (τ, T ) be a local minimum of V * -φ. We can assume that V * (x, t) = φ(x, t) and that the maximum is strict, i.e. V * (x, t) > φ(x, t) for all (x, t) ∈ B(x, ε) × [ t -ε, t + ε] with (x, t) = (x, t) (see [START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations[END_REF] or [START_REF] Barles | Solutions de viscosité des équations de Hamilton-Jacobi[END_REF] ). We assume by contradiction that there exists δ ε > 0 such that for all (x, t)

∈ B(x, ε) × [ t -ε, t + ε], we have -φ t (x, t) + sup α∈A {-b(x, t, α), Dφ(x, t) -ℓ(x, t, α) -Tr [ 1 2 σσ T (x, t, α)D 2 φ(x, t)]} ≤ -δ ε . (50) 
Since (x, t) is a strict minimum of V * -φ, it follows that there exists η ε such that

V * (x, t) ≥ φ(x, t) + η ε for all (x, t) ∈ ∂B(x, ε) × [ t -ε, t + ε]. (51) 
From now on, we fix 0 < h < ε/2 such that hδ ε < η ε . Let us denote by τ t,x the exit time of the trajectory X t,x s from the ball B(x, ε). We first observe that by the continuity of the trajectory (see Lemma 3.1), we have τ t,x > t for all (x, t) ∈ B(x, ε) × [0, T ). For every (x, t) ∈ B(x, ε) × ( t -ε/2, t + ε/2), there exists a control α s ∈ A t such that

V (x, t) + δ ε h 2 ≥ E tx (t+h)∧τt,x t ℓ(X t,x s , s, α s ) ds + V * (X t,x (t+h)∧τt,x , (t + h) ∧ τ t,x ) . Since V * ≥ φ in B(x, ε) × [ t -ε, t + ε], if τ t,x < t + h, then, from (51), we have V * (X t,x (t+h)∧τt,x , (t + h) ∧ τ t,x ) ≥ φ(X t,x τt,x , τ t,x ) + η ε .
Therefore the following estimate holds

V (x, t) + δ ε h 2 ≥ E tx τt,x t ℓ(X t,x s , s, α s ) ds + φ(X t,x τt,x , τ t,x ) + η ε 1 1 {τt,x<t+h} +E tx t+h t ℓ(X t,x s , s, α s ) ds + φ(X t,x t+h , t + h) 1 1 {τt,x≥t+h} ≥ E tx [I(τ t,x ) + η ε ]1 1 {τt,x<t+h} + E tx I(t + h)1 1 {τt,x≥t+h} , (52) 
where for all τ ′ > 0

I(τ ′ ) = τ ′ t ℓ(X t,x s , s, α s ) ds + φ(X t,x τ ′ , τ ′ ).
Applying Ito's formula to the process φ(X t,x τ ′ , τ ′ ), we obtain

I(τ ′ ) = τ ′ t ℓ(X t,x s , s, α s ) + φ t (X t,x s , s) + Dφ(X t,x s , s), b(X t,x s , s, α s ) + 1 2 Tr [σσ T (X t,x s , s, α s )D 2 φ] ds + φ(x, t) + τ ′ t
Dφ(X t,x s , s), σ(X t,x s , s, α s )dW s a.s.

Note that the expectation of the above stochastic integral is zero for τ ′ ∈ [t, t + ε]. Now we can estimate the two last terms in (52). For the first term, we have

E tx [I(τ t,x ) + η ε ]1 1 {τt,x<t+h} ≥ -E tx τt,x t -φ t (X t,x s , s) + sup α∈A {-ℓ(X t,x s , s, α) -Dφ(X t,x s , s), b(X t,x s , s, α) - 1 2 Tr [σσ T (X t,x s , s, α)D 2 φ]} ds -φ(x, t) -η ε 1 1 {τt,x<t+h} .
Since X t,x s ∈ B(x, ε) when s ≤ τ t,x and since t + h < t + ε, from (50), we get

E tx [I(τ t,x ) + η ε ]1 1 {τt,x<t+h} ≥ -E tx τt,x t (-δ ε ) ds -φ(x, t) -η ε 1 1 {τt,x<t+h} ≥ δ ε E tx (τ t,x -t)1 1 {τt,x<t+h} + (η ε + φ(x, t))P ({τ t,x < t + h}) ≥ (η ε + φ(x, t))P ({τ t,x < t + h}). (53) 
For the second term, we proceed in the same way, noting that, if τ t,x ≥ t + h, then for all t ≤ s ≤ t + h, X t,x s ∈ B(x, ε) and it allows us to apply (50). More precisely we have

E tx I(t + h)1 1 {τt,x≥t+h} (54) 
≥ -E tx t+h t -φ t (X t,x s , s) + sup α∈A {-ℓ(X t,x s , s, α) -Dφ(X t,x s , s), b(X t,x s , s, α)

- 1 2 Tr [σσ T (X t,x s , s, α)D 2 φ]} ds -φ(x, t) 1 1 {τt,x≥t+h} ≥ (δ ε h + φ(x, t))P ({τ t,x ≥ t + h}).
Combining (52), ( 53) and (54), we get

V (x, t) + δ ε h 2 ≥ η ε P ({τ t,x < t + h}) + δ ε h P ({τ t,x ≥ t + h}) +φ(x, t) [P ({τ t,x < t + h}) + P ({τ t,x ≥ t + h})] .
Since η ε > δ ε h and P ({τ t,x < t + h}) + P ({τ t,x ≥ t + h}) = 1, we get

V (x, t) ≥ φ(x, t) + δ ε h 2 .
The above inequality is valid for all (x, t) ∈ B(x, ε) × ( t -ε/2, t + ε/2), thus we have lim inf

(x,t)→(x, t) V (x, t) = V * (x, t) ≥ φ(x, t) + δ ε h 2 
which is a contradiction with the choice of φ.

Theorem 3.1 Under the assumptions of Proposition 3.1, the function V is the unique continuous viscosity solution of (42

) in IR N × [τ, T ].
Proof of Theorem 3.1. Let U be the unique solution of (42) in IR N × [τ, T ] such that U (x, T ) = ψ(x) given by Theorem 2.1. Our goal is to prove that V ≡ U in IR N × [τ, T ]. The inequality U ≤ V * follows by combining Proposition 3.2 and Theorem 2.1. To show that V * ≤ U in IR N × [τ, T ], we proceed as follows:

Step 1. We consider the functions V (x, t)

:= V (x, t) -C(1 + |x| 2 )e ρ(T -t) and U (x, t) := U (x, t) - C(1 + |x| 2 )e ρ(T -t) . As it is proved in Step 2 of the proof of Theorem 2.1, U is the unique solution of    -w t + sup α∈A {- 1 2 Tr(σσ T (x, t, α)D 2 w) -b(x, t, α), Dw -l(x, t, α)} = 0 in IR N × (τ, T ), w(x, T ) = ψ(x), (55) 
where l(x, t, α)

:= ℓ(x, t, α) + 2Ce ρ(T -t) b(x, t, α), x + Ce ρ(T -t) Tr σσ T (x, t, α) -Cρe ρ(T -t) (1 + |x| 2 ) and ψ(x) := ψ(x) -C(1 + |x| 2 ).
Step 2. Claim: for all (x, t)

∈ IR N × [τ, T ], V satisfies V (x, t) ≤ inf αs∈At E tx { T t l(X s , s, α s ) ds + ψ(X t )}. ( 56 
)
To prove the claim let us take any α s ∈ A t . Arguing exactly as in the proof of Proposition 3.1, from (48), we have

V (x, t) ≤ E tx T t ℓ(X x,t s , s, α s ) + 2e ρ(T -s) X x,t s , b(X x,t s , t, α s ) +e ρ(T -s) Tr(σσ T (X x,t s , s, α s )) -ρe ρ(T -s) (1 + |X x,t s | 2 ) ds + ψ(X x,t T ) -C(1 + |X x,t T | 2 ) = E tx { T t l(X x,t s , s, α s ) ds + ψ(X x,t T )}.
Since α s is arbitrary we get (56) and prove the claim.

Step 3. Choose C, ρ > 0 large enough so that, for all (x, t, α) ∈ IR N × [τ, T ] × A, we have

-Ce 2ρ(T -t) (1 + |x| 2 ) + ν 4 |α| 2 ≤ l(x, t, α) ≤ -Ce ρ(T -t) (1 + |x| 2 ) + Ce ρ(T -t) (1 + |α| 2 ), -2C(1 + |x| 2 ) ≤ ψ(x) ≤ 0,
where C depends only on C and ν. For all real R > 0 and all integer n > 0, we set A n := {α ∈ A : |α| ≤ n}, lR (x, t, α) := max{ l(x, t, α), -R} and ψR (x, t) := max{ ψ(x, t), -R}. We observe that lR : n is now the value function of a stochastic control problem with bounded controls and uniformly continuous datas b, σ, lR and ψR . These assumptions enter the framework of Yong and Zhou [START_REF] Yong | of Applications of Mathematics[END_REF]. We deduce that V R n is the unique continuous viscosity solution of

IR N × [τ, T ] × A n → IR
- ∂V R n ∂t + H R n (x, t, DV R n , D 2 V R n ) = 0 in IR N × (τ, T ), (57) 
with terminal condition V R n (x, T ) = ψR (x) in IR N . Moreover for all compact subsets K ⊂ IR N there exists M > 0 independent on R and n such that

||V R n || ∞ ≤ M in K × [τ, T ]
. Indeed, take any constant control α s = ᾱ ∈ A 1 , by definition of V R n for all R, n > 0 and for every (x, t) ∈ IR N × [τ, T ] we have

V R n (x, t) ≤ E tx { T t lR (X x,t s , s, ᾱ) ds + ψR (X x,t T )} ≤ T t Ce ρ(T -s) (1 + ᾱ2 ) ds ≤ C ρ e ρ(T -t) (1 + ᾱ2 ),
and on the other hand we have V R n (x, t) ≥ V (x, t) ≥ -Ce 2ρ(T -t) (1 + |x| 2 ). Finally one can readily see that H R n converges locally uniformly to H as n, R → ∞. Thus by applying the half-relaxed limits method (see Barles and Perthame [START_REF] Barles | Exit time problems in optimal control and vanishing viscosity method[END_REF]), the functions

V (x, t) = lim sup * V R n (x, t) = lim sup (y,s)→(x,t) n,R→+∞ V R n (y, s) and V (x, t) = lim inf * V R n (x, t) = lim inf (y,s)→(x,t) n,R→+∞ V R n (y, s)
are respectively viscosity sub and supersolution of (55). Theorem 2.1 yields V (x, t) ≤ U (x, t) ≤ V (x, t).

On the other hand by construction we have also V * (x, t) ≤ lim sup * V R n (x, t). It follows V * (x, t) ≤ U (x, t) and we can conclude.

Some examples

Example 3.1 A model case we have in mind is the so-called stochastic linear regulator problem which is a stochastic perturbation of the deterministic linear quadratic problem. In this case, the stochastic differential [START_REF] Pham | Smooth solutions to optimal investment models with stochastic volatilities and portfolio constraints[END_REF] is linear and reads dX t,x s = [B(s)X t,x s + C(s)α s ]ds + j [C j (s)X t,x s + D j (s)]dW j s and the expected total cost to minimized is

J(x, t, α s ) = E tx { T t [ X t,x s , Q(s)X t,x s + α s , R(s)α s ] ds + X t,x T , GX t,x T }.
The previous results apply if the functions B(•), C(•), C j (•), D j (•), Q(•), R(•) and G are deterministic continuous matrix-valued functions of suitable size and if R(s) is a positive definite symmetric matrix. Deterministic and stochastic linear quadratic problems were extensively studied. For a survey we refer for instance to the books of Bensoussan [START_REF] Bensoussan | Stochastic control by functional analysis methods[END_REF], Fleming and Rishel [START_REF] Fleming | Deterministic and stochastic optimal control[END_REF], Fleming and Soner [START_REF] Fleming | Controlled Markov processes and viscosity solutions[END_REF], Øksendal [START_REF]Stochastic differential equations[END_REF], Yong and Zhou [START_REF] Yong | of Applications of Mathematics[END_REF] and references therein.

Example 3.2 Equations of the type (42) are largely considered in mathematical finance. See the introductory books quoted in the introduction or Pham [START_REF] Pham | Smooth solutions to optimal investment models with stochastic volatilities and portfolio constraints[END_REF]. In particular recently Benth and Karlsen [START_REF] Benth | A PDE representation of the density of the minimal entropy martingale measure in stochastic volatility markets[END_REF] studied the following semilinear elliptic partial equation:

-w t - 1 2 β 2 w xx + F (x, w x ) = 0 in IR × (0, T ), (58) 
with the final condition w(x, T ) = 0. The nonlinear function F is given by

F (x, p) = 1 2 δ 2 p 2 -{α(x) - µ(x)βρ σ(x) }p - µ 2 (x) σ 2 (x)
where δ, β, ρ are real constant and α(x) and µ σ (x) are C 1 functions satisfying

|α(x)|, | µ σ (x)| ≤ C|x|, for all x ∈ IR.
Their main motivation is to determine via the solution of (58) the minimal entropy martingale measure in stochastic market. The conditions they assume on data fall within the assumptions of Section 2.

Example 3.3 Another application of the results obtained in Section 2 is given by the finite time-horizon risk-sensitive limit problem for nonlinear systems. In the stochastic risk-sensitive problem, (39) reads

dX t,x,ε s = g(X t,x,ε s , β s ) dt + ε γ 2 c(X t,x,ε s ) dW s , (59) 
where X t,x,ε s ∈ IR N depends on the parameter ε > 0, g represents the nominal dynamics with control β s ∈ B, a compact normed space and c is an N × k-valued diffusion coefficient, ε is a measure of the risk-sensitivity and γ is the disturbance attenuation level. The cost criterion is of the form

J ε (x, t, β s ) = E exp 1 ε T t f (X t,x,ε s , β s ) dt + ψ(X t,x,ε T ) (60)
and the value function is

V ε (x, t) = inf βs∈Bt ε log J ε (x, t, β s ) = ε log inf βs∈Bt J ε (x, t, β s ), (61) 
where B t is the set of B-valued, F t -progressively measurable controls such that there exists a strong solution to (59). The dynamic programming equation associated to this problem is

   - ∂w ∂t - 1 2γ 2 Dw, a(x)Dw + G(x, Dw) - ε 2γ 2 Tr(a(x)D 2 w) = 0 in IR N × [τ, T ], w(x, T ) = ψ(x), (62) 
where a(x) = c(x)c(x) T and

G(x, p) = max β∈B { -g(x, β), p -f (x, β)}. We note that - 1 2γ 2 p, a(x)p = min α∈I R k γ 2 2 |α| 2 -c(x)α, p . (63) 
In [START_REF] Da Lio | Finite time-horizon risk-sensitive control and the robust limit under a quadratic growth assumption[END_REF] it is shown that as ε ↓ 0 (i.e. as the problem becomes infinitely risk averse), the value function of the risk-sensitive problem converges to that of a H ∞ robust control problem. This problem can be considered as a differential game with the following cost functional:

J(x, t, α, β) = T t f (y x (s), β s ) - γ 2 2 |α s | 2 ds + ψ(y x (T )), (64) 
The question of existence faces same problems as in Section 2. We have existence and uniqueness of a continuous viscosity solution for (66) and (67) in the class of functions with quadratic growth at least for short time (as in Corollary 2.1). But solutions can blow up in finite time.

Before giving the proof of the theorem, we give some comments on the equations and the assumptions.

Remark 4.1 (i) In the same way as in Remark 2.2, above results hold replacing Σ by -Σ in (66) and h by -h in (67) and when dealing with terminal data in both equations.

(ii) Coming back to Remark 2.2(iii), we note (a 1 + a 2 )(a 2 -a 1 ) T is not necessarily symmetric in (18) whereas we assume Σ to be symmetric in (A4) (and h is therefore symmetric in (A5)). This is not a restriction of generality since comparison for (66) with Σ symmetric implies obviously comparison for (66) for any matrix Σ, using that, for any Σ ∈ M N (IR), (Σ + Σ T )/2 ∈ S N (IR).

(iii) Coming back to Remark 2.2(iv) again, we see that (A4) corresponds to the case where the convex Hamiltonian is predominant with respect to the concave one in (1) with [START_REF] Fleming | Deterministic and stochastic optimal control[END_REF]. Assumption (A5) corresponds to (18) when a 1 and a 2 are real-valued but h is allowed to change its sign. For example, we have comparison for

w t + φ(x) 3 |Dw| 2 = 0,
where φ ∈ C 2 (IR N ; IR) is any bounded function. Let us compare [START_REF] Cannarsa | Nonlinear optimal control with infinite horizon for distributed parameter systems and stationary Hamilton-Jacobi equations[END_REF] with first-order Hamilton-Jacobi equations whose Hamilonians are Lipschitz continuous both in the state and gradient variables, or, to make simple, with the Eikonal equation

∂w ∂t + a(x)|Dw| = 0 in IR N × (0, T ),
where a is Lipschitz continuous function. We know ( [START_REF] Crandall | Viscosity solutions of Hamilton-Jacobi equations[END_REF], [START_REF] Ley | Lower-bound gradient estimates for first-order Hamilton-Jacobi equations and applications to the regularity of propagating fronts[END_REF]) we have existence and uniqueness of a continuous viscosity solution for any continuous initial data without any restriction on the growth. In this case, the sign of a does not play any role whereas it seems to be the case for the sign of h in [START_REF] Cannarsa | Nonlinear optimal control with infinite horizon for distributed parameter systems and stationary Hamilton-Jacobi equations[END_REF]. We would like to know if comparison for ( 12) is true under weaker assumptions than (A5) and in dimension N > 1 (i.e. when Σ is neither positive nor negative definite in (66)).

(iv) There are some links between Theorem 2.1 and Theorem 4.1. Nevertheless we point out that, if Equation (1) under assumptions of Section 2 is naturally associated with a control problem, this is not necessarily the case under the assumptions of the current section. To be more precise, let us compare [START_REF] Alvarez | A quasilinear elliptic equation in R N[END_REF] with H given by ( 15) and (66) under (A4). The matrix a can be singular in [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF] whereas we impose the nondegeneracy condition Σ > 0 in (66). The counterpart is that the regularity assumption with respect to x on Σ is weaker (Σ is supposed to be merely continuous) than the locally lipschitz regularity we assume for a. Therefore (66) does not enter in the framework of Section 2 in general. A natural consequence is that proofs differ: in both proofs of Theorem 2.1 and 4.1, the main argument is a kind of linearization procedure, but while in the proof of Theorem 2.1 we use essentially the convexity (or concavity) of the operator corresponding to the unbounded control set, here we use the locally Lipschitz continuity of the Hamiltonian with respect to the gradient uniformly in the state variable.

(v) Note that we are able to deal with a second order term in (66) but not in (67).

Proof of Theorem 4.1. We divide the proof in two parts, corresponding respectively to the case of equation ( 66) and (67). The main argument in both proofs is a kind of linearization procedure as the one of Lemma 2.2. The rest of the proof is close to the one of Theorem 2.1.

Part 1. We assume (A2), (A3) and (A4). The estimates of G are exactly the same than in Lemma 2.2 so, for sake of simplicity, we choose to take G ≡ 0. The linearization procedure is the subject of the following lemma whose proof is postponed at the end of the section.

Lemma 4.1 Let 0 < λ < 1 and set Ψ = λU -V. Then Ψ is an U SC viscosity subsolution of    ∂w ∂t - 2 C 1 -λ |Dw| 2 ≤ 0 in IR N × (0, T ), w(x, 0) ≤ (λ -1)ψ(x) in IR N . (68) 
If ψ ≥ 0, then it follows Ψ(x, 0) ≤ 0 in IR N and using the above lemma with the same supersolution as in the proof of Theorem 2.1, we obtain Ψ ≤ 0 in IR N × [0, T ]. Note that the boundedness of Σ (see (A4)) is crucial to build the supersolution. In the particular case when G = 0, we can also choose a simpler supersolution such as for instance

(x, t) → K [(|x| -R) + ] 2 1 -Lt + ηt, K, L, R, η > 0 (69) Letting λ go to 1, we conclude that U ≤ V in IR N × [0, T ].
It remains to prove that we can assume ψ ≥ 0 without loss of generality. To this end we use an argument similar to the one of Step 2 in the proof of Theorem 2.1: let Ū = U + M (1 + |x| 2 )e ρt , V = V + M (1 + |x| 2 )e ρt , for some positive constants M and ρ and set Ψ = λ Ū -V . We can easily prove that, for ρ > 16M 2 Ce, Ψ is a subsolution of (68) (with a larger constant 4 C instead of 2 C) in IR N × (0, τ ] for τ = 1/ρ. Moreover Ψ(x, 0) ≤ (λ -1)(ψ(x) + M (1 + |x| 2 )e ρt ) ≤ 0 for M sufficiently large (since ψ has quadratic growth). Letting λ go to 1, it follows that U ≤ V in IR N × [0, τ ] and we conclude by a step-by-step argument.

Part 2. We assume (A3) and (A5).

Set Ω + = {x ∈ IR N : h(x) > 0} and Ω -= {x ∈ IR N : h(x) < 0} which are open subsets of IR N . Define Ψ = λ Ū -V for 0 < λ < 1, Ū = U + M (1 + |x| 2 )e ρt and V = V + M (1 + |x| 2 )
e ρt with M larger than the constants which appear in (A3) and in the growth condition [START_REF] Da Lio | Finite time-horizon risk-sensitive control and the robust limit under a quadratic growth assumption[END_REF]. Arguing as in Lemma 4.1 and noticing that all arguments are local, we obtain that Ψ is a subsolution in Ω + of the same kind of equation as (68), namely

   ∂w ∂t - C 1 -λ |Dw| 2 ≤ 0 in Ω + × (0, τ ), w(x, 0) ≤ 0 in Ω + , (70) 
for some constant C = 16 ||h|| ∞ , ρ > 4M Ce and τ = 1/ρ > 0 which are independent of λ. Note that Ψ(•, 0) ≤ 0 in IR N because of the choice of M.

The sign of Ψ on Γ is the subject of the following lemma the proof of which uses (A5) and is postponed.

Lemma 4.2 For all x ∈ Γ, t ∈ [0, T ], we have U (x, t) ≤ ψ(x) ≤ V (x, t).

Noticing that {Γ, Ω + , Ω -} is a partition of IR N , we set

Ψ := sup{ Ψ, 0} in (Γ ∪ Ω + ) × [0, T ], 0 in Ω -× [0, T ]
From the lemma, Ψ ≤ 0 in Γ × [0, T ]. Therefore the function Ψ is continuous in IR N × (0, T ). Moreover we claim that Ψ is a subsolution of (70) in IR N × (0, τ ). This claim is clearly true in Ω -× (0, T ) (since 0 is clearly a subsolution) and in Ω + × (0, τ ) (since Ψ is the supremum of two subsolutions). It remains to prove the result on Γ. Let ϕ ∈ C 1 (IR N × (0, τ )) such that Ψ -ϕ achieves a local maximum at a point (x, t) ∈ Γ × (0, τ ). Let (x, t) be in a neighborhood of (x, t). If x ∈ Γ ∪ Ω + , then 0 ≤ Ψ(x, t) and if x ∈ Ω -, then 0 = Ψ(x, t). In any case, (0 -ϕ)(x, t) ≤ ( Ψ -ϕ)(x, t) ≤ ( Ψ -ϕ)(x, t). But Ψ(x, t) ≤ 0 since (x, t) ∈ Γ × (0, τ ). Therefore (x, t) is a local maximum of 0 -ϕ which ends the proof of the claim. The initial condition Ψ ≤ 0 in IR N × {0} is trivially satisfied. From the comparison principle proved in Part 1 (for example using (69) as a supersolution), we obtain Ψ ≤ 0 in IR N × [0, τ ]. Since τ does not depend on λ, we can send λ to 1. We obtain U ≤ V in (Γ ∪ Ω + ) × [0, τ ]. We conclude in (Γ ∪ Ω + ) × [0, T ] by a step-by-step procedure.

Repeating the same kind of arguments replacing Ω + by Ω -and Ψ by U -M (1 + |x| 2 )e ρt -µ(V -M (1 + |x| 2 )e ρt ), 0 < µ < 1, we obtain that U -V ≤ 0 in (Γ ∪ Ω -) × [0, T ] which ends the proof.

Proof of Lemma 4.1. We proceed as in the proof of Lemma 2.2. We can assume that G ≡ 0 since the computations with G are exactly the same than in Lemma 2. The above maximum is achieved at some point (x ε , y ε , t ε ). Writing the viscosity inequalities and subtracting them, we obtain

ϕ t ( x ε + y ε 2 , t ε ) + 1 λ Σ(x ε , t ε ) 1 2 Dϕ( x ε + y ε 2 , t ε ) + 2 x ε -y ε ε 2 , 1 2 Dϕ( x ε + y ε 2 , t ε ) + 2 x ε -y ε ε 2 -Σ(y ε , t ε ) - 1 2 Dϕ( x ε + y ε 2 , t ε ) + 2 x ε -y ε ε 2 , - 1 2 Dϕ( x ε + y ε 2 , t ε ) + 2 x ε -y ε ε 2 ≤ 0.
In the sequel, we omit to write the dependence in t ε and the point ((x ε + y ε )/2, t ε ) in the derivatives of ϕ. Set p ε = 2(x ε -y ε )/ε 2 , p x = Dϕ/2 + p ε and p y = -Dϕ/2 + p ε . We have Letting ε go to 0, we get 0 ≥ ϕ t (x, t) -2 1 -λ Σ(x, t)Dϕ(x, t), Dϕ(x, t) which proves the result.

0 ≥ ϕ t + 1 λ Σ(x ε )p x ,
Proof of Lemma 4.2. We make the proof for U, the second inequality being similar. Let x 0 ∈ Γ and consider, for η > 0, sup t∈[0,T ] {U (x 0 , t) -ηt}.

This supremum is achieved at a point t 0 ∈ [0, T ] and we can assume, up to subtract |t -t 0 | 2 that it is a strict local maximum. Consider, for ε > 0, sup

B(x0,1)×[0,T ] {U (x, t) - |x -x 0 | 2 ε 2 -ηt}.
This supremum is achieved at a point (x ε , t ε ) and it is easy to see that (x ε , t ε ) → (x 0 , t 0 ) when ε → 0. Suppose that t ε > 0. It allows us to write the viscosity inequality for the subsolution U at (x ε , t ε ) and we get

η + h(x ε ) 2 x ε -x 0 ε 2 2 ≤ 0. (72) 
Since h ∈ W 2,∞ in a neighborhood of Γ, we can write a Taylor expansion of h at x 0 for ε small enough h(x ε ) = h(x 0 ) + Dh(x 0 ), x ε -x 0 + 1 2 D 2 h(x 0 )(x ε -x 0 ), x ε -x 0 + o(|x ε -x 0 | 2 ).

From (72) and (A5), it follows

η -(2C + m(|x ε -x 0 | 2 )) |x ε -x 0 | 2 ε 2 2 ≤ 0,
where m is a modulus of continuity. Since |x ε -x 0 | 2 /ε 2 → 0 as ε → 0, we obtain a contradiction for small ε. Therefore t ε = 0 for ε small enough. It follows that, for all (x, t) ∈ B(x 0 , 1) × [0, T ], we have

U (x, t) - |x -x 0 | 2 ε 2 -ηt ≤ U (x ε , 0) - |x ε -x 0 | 2 ε 2 ≤ ψ(x ε ).
Setting x = x 0 and sending ε and then η to 0, we obtain the conclusion.
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 1 p x -Σ(y ε )p y , p y ≥ ϕ t + 1 λ -1 Σ(x ε )p x , p x + (Σ(x ε ) -Σ(y ε ))p x , p x + Σ(y ε )p x , p x -Σ(y ε )p y , p y ≥ ϕ t + 1 λ -1 Σ(x ε )p x , p x -m K (|x ε -y ε |)|p x | 2 + Σ(y ε )p x , p x -Σ(y ε )p y , p ywhere m K is a modulus of continuity for Σ in the compact subset K. Since Σ(y ε ) is a symmetric matrix, we haveΣ(y ε )p x , p x -Σ(y ε )p y , p y = Σ(y ε )(p x + p y ), p x -p y = 2 Σ(y ε )p ε , Dϕ = -Σ(y ε )Dϕ, Dϕ + 2 Σ(y ε )p x , Dϕ .For any α > 0, denoting by Σ(y ε ) the positive symmetric squareroot of the positive symmetric matrix Σ(y ε ), we get2 Σ(y ε )p x , Dϕ = 2 Σ(y ε )p x , Σ(y ε )Dϕ ≤ α Σ(y ε )Dϕ, Dϕ + 1 α Σ(y ε )p x , p x ≤ α Σ(y ε )Dϕ, Dϕ + 1 α Σ(x ε )p x , p x + 1 α m K (|x ε -y ε |)p x , p x . |x ε -y ε |)Id p x , p x -(1 + α) Σ(y ε )Dϕ, Dϕ . > 0.We recall that Σ > 0 by (A4), hence for ε small enough the above scalar product is nonnegative. Thus 0 ≥ ϕ t -(1 + α) Σ(y ε , t ε )Dϕ, Dϕ = ϕ t -1 + λ 1 -λ Σ(y ε , t ε )Dϕ, Dϕ .

  is bounded and uniformly continuous in x ∈ IR N uniformly with respect to (t, α) ∈ [τ, T ] × A n and ψ R : IR N → IR is bounded and uniformly continuous in IR N . is the set of A n -valued F t -progressively measurable controls such that (40) holds. The function V R

	where A n t					
							Set
		H(x, t, p, X) := sup α∈A	{-	1 2	Tr(σσ T (x, t, α)X) -b(x, t, α), p -l(x, t, α)},
		H R n (x, t, p, X) := sup α∈An	{-	1 2	Tr(σσ T (x, t, α)X) -b(x, t, α), p -lR (x, t, α)}
	and define	V R n (x, t) = inf αs∈A n t	E tx	t	T	lR (X x,t s , s, α s ) ds + ψR (X x,t T ) ,

where α s ∈ A t := L 2 ([t, T ], IR k ) is the control of the maximizing player, β s ∈ B t := {measurable functions [t, T ] → B} is the control of the minimizing player, and y x (•) is the unique solution of the following dynamical system: y ′ (s) = g(y(s), β s ) + c(y(s))α s , y(t) = x.

Note that we switch notation from X t to y(t) to emphasize that the paths are now (deterministic) solutions of ordinary differential equations rather than (stochastic) solutions of stochastic differential equations.

The dynamic programing equation associated to the robust control problem is a first order equation given by

with the terminal condition w(T, x) = ψ(x). One of the key tools to get this convergence result is the uniqueness property for (65). In Da Lio and McEneaney [START_REF] Da Lio | Finite time-horizon risk-sensitive control and the robust limit under a quadratic growth assumption[END_REF], the authors characterized the value function of the H ∞ control as the unique solution to (65) in the set of locally Lipschitz continuous functions growing at most quadratically with respect to the state variable. Moreover the uniqueness result in [START_REF] Da Lio | Finite time-horizon risk-sensitive control and the robust limit under a quadratic growth assumption[END_REF] is obtained by using representation formulas of locally Lipschitz solutions of (65). We remark that the Comparison Theorem 2.1 not only improves the uniqueness result for (65) obtained in [START_REF] Da Lio | Finite time-horizon risk-sensitive control and the robust limit under a quadratic growth assumption[END_REF] (in the sense it holds in a larger class of functions) but it also should allow us to prove the convergence result in [START_REF] Da Lio | Finite time-horizon risk-sensitive control and the robust limit under a quadratic growth assumption[END_REF] under weaker assumptions, only the equi-boundedness estimates of the solutions of (62) being enough by means of the half-relaxed limit method.

Study of related equations

In this Section we focus our attention to Hamilton-Jacobi equations of the form

where Σ(x, t) ∈ M N (IR) and G is given by (3) and

where h : IR N → IR. Our aim is to investigate comparison (and existence) results for (66) and (67) under assumptions which include Hamiltonians like [START_REF] Fleming | Deterministic and stochastic optimal control[END_REF] in Remark 2.2(iii) (see Remark 4.1 for further comments). More precisely, we introduce two new assumptions: ) be a viscosity subsolution of (66) (respectively (67)) and V ∈ LSC(IR N × [0, T ]) be a viscosity supersolution of (66) (respectively (67)) satisfying the quadratic growth condition [START_REF] Da Lio | Finite time-horizon risk-sensitive control and the robust limit under a quadratic growth assumption[END_REF]. Then U ≤ V in IR N × [0, T ].