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1 Introduction

In this paper we study a class of homogeneous Markov chains (Φ)n≥0 with
values in some measurable space (X , B(X )) defined by a parametrized family
of transition probabilities

(Pϑ
x
)x∈X , ϑ∈Θ , (1.1)

where Θ is a parametric set for this family. For each ϑ ∈ Θ the sequence
Φ = (Φn)n≥0 is a homogeneous Markov chain defined on the measurable space
(X , B(X )) with a transition probability Pϑ, i.e.

P(Φ1 ∈ Γ|Φ0 = x) = Pϑ
x
(Γ) .

Our main goal is to state geometric ergodicity for this class simultaneously
over all values of the parameter ϑ ∈ Θ.

Geometric ergodicity is studied in a number of papers (see, for example,
[1], [16]-[19]). We remind that a chain (Φn)n≥0 on the space (X ,B(X )) with a
invariant measure π is called geometrically ergodic if there exist a X → [1,∞[
function V (x) and some constants R > 0, κ > 0 such that, for any n ≥ 1,

sup
x∈X

sup
0≤g≤V

1

V (x)
|Ex g(Φn)− π(g)| ≤ Re−κn . (1.2)

As we shall see later (see, Definition 6.1 below) the function V , providing the
drift condition, is given by the Lyapunov functions (see, e.g. [13] in the case
of diffusion processes and [7], [11], [12] for Markov chains). For this reason, in
the sequel, we shall call such functions by the Lyapunov functions.

The property (1.2) is useful in applied problems related to the identifica-
tion of stochastic systems, described by stochastic processes with dependent
values, in particular, governed by stochastic difference or stochastic differential
equations. Necessity of simultaneous geometric ergodicity appears in statistics,
when one studies a minimax risk with respect to some family of distributions
related to a statistical experiment. In particular, in this paper we shall ap-
ply simultaneous geometric ergodicity to nonparametric estimating the drift
coefficient in the stochastic differential equation (see [2]):

dyt = S(yt) dt+ σ(yt)dWt , 0 ≤ t ≤ T , (1.3)

where S and σ are unknown functions and S has to be estimated from observa-
tions (yt)0≤t≤T . In studying minimax risks for kernel estimators we need to use
geometric ergodicity for the process (1.3) simultaneously over all coefficients
S and σ from some functional class (see (2.7) below). In this case, ϑ = (S, σ)
is the class parameter.

It is clear that to apply the property (1.2) to some distribution family we
have to find some explicit expressions for the parameters R > 0 and κ >
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0. It is a well-known problem in the Markov Chain Monte Carlo (MCMC)
theory, when a stopping rule for simulations is based on the accuracy of n-
step approximations. Therefore, we need to find computable bounds in (1.2).
Note that some explicit expressions for R and κ were calculated in [1], [17],
[21] and [22] for ψ-irreducible homogeneous Markov chains. These results
are not applicable in our case because it is not clear what does it mean ψ-
irreducibility for a class of parametrized Markov chains. Note that in [1] and
[17] the parameters R and κ were obtained by making use of the Kendall
theorem. In [22] these parameters are obtained through the direct coupling
method for the Markov chain. To this end the authors impose in [21]–[22]
some additional assumptions which are not satisfied in the case of the diffusion
process (1.3) (see Remark 3.1 in Section 3). Moreover, it should be noted that
the upper bound in (1.2) given in [21] is calculated under the assumption that
the minorization condition holds on the whole state space. This assumption is
never true for the model (1.3).

In the paper we apply the coupling method to the renewal process generated
by entrance times of the process into the minorization set. Note, that Meyn
and Tweedie use the same approach in order to obtain convergence results
(see, [16], chapter 13). Their results imply the power convergence rate. To
obtain the geometric rate we make use of the Lyapunov functions method for
the related coupling process.

In order to explain the novelty of the method introduced in the paper,
we give the scheme of proving the property (1.2). The first step consists in
passing to a splitting chain, which yields a chain with an accessible atom.
Then, one makes use of the Regenerative Decomposition for splitting chains
in order to evaluate the convergence rate (see [10], [16]). Let us remind that
the principal term in this decomposition gives the deviation in the renewal
theorem, which may be evaluated thanks to the Kendall renewal theorem that
provides a geometric convergence rate. In our case the same convergence rate
is obtained thanks to making use of the Lyapunov functions method for the
coupling renewal process (see Theorem 4.1 in Section 4). This upper bound
enables us to find the explicit non asymptotic exponential upper bound in
the ergodic theorem for which we can find the supremum over the transition
probability family in (1.1).

In this paper we find some sufficient conditions which provide simultaneous
geometric ergodicity of the family (1.1) over all values of the parameter ϑ. We
check these conditions for the diffusion model (1.3). As corollary, we obtain
explicit upper bounds for geometric convergence rate in the ergodic theorem for
diffusion processes. These bounds may be used in the Monte Carlo technique
to calculate some functionals of ergodic diffusion processes. In that case one
can replace these functionals by the corresponding integrals with respect to
the invariant density which has a simple explicit form. The accuracy of this
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approximation is given by the explicit non asymptotic bounds in the geometric
convergence rate for diffusion processes.

The paper is organized as follows. In the next section the main results
are stated. Section 3 provides the explicit formulas for parameters in the
geometric convergence rate. Section 4 is devoted to related coupling renewal
processes. In section 5 geometric ergodicity is proved for a parametrized class of
homogeneous Markov chains. In section 6 we apply this property to stochastic
differential equations. Some basic results on homogeneous Markov chains are
given in the Appendix.

2 Main results

Assume now, that the family of transition probabilities (Pϑ)ϑ∈Θ satisfies the
following conditions

H1) There exist 0 < δ < 1, some set C ∈ B(X ) and some probability measure
ν on B(X ) with ν(C) = 1 such that, for any A ∈ B(X ) with ν(A) > 0,

inf
x∈C

(
inf
ϑ∈Θ

Pϑ(x,A)− δν(A)

)
> 0 . (2.1)

For the sequel we denote

η = inf
x∈C

(
inf
ϑ∈Θ

Pϑ(x, C)− δ

)
. (2.2)

H2) There exist X → [1,∞) function V , some constants 0 < ρ < 1, D ≥ 1,
and a set C from B(X ) such that

V ∗ = sup
x∈C

V (x) <∞

and, for any x ∈ X ,

sup
ϑ∈Θ

Eϑ
x
(V (Φ1)) ≤ (1− ρ)V (x) + D1C(x) . (2.3)

Here Eϑ
x
means the expectation with respect to the transition probability

Pϑ(x, ·).

Remark 2.1. Condition H2) is called the uniform drift condition and that of
H1) is the uniform minorization condition.
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Theorem 2.1. Assume the conditions H1)–H2) hold true with the same set
C ∈ B(X ). Then, for each θ ∈ Θ, the chain Φ admits an invariant distribution
πϑ on B(X ). Moreover, for any n ≥ 2,

sup
ϑ∈Θ

sup
x∈X

sup
0<f≤V

1

V (x)

∣∣∣∣E
ϑ
x
f(Φn)−

∫

X

f(z) πϑ(dz)

∣∣∣∣ ≤ R∗ e−κ∗n , (2.4)

where the parameters R∗ = R∗(ρ, δ,D, η, V ∗) and κ∗ = κ∗(ρ, δ,D, η1, V
∗) are

given in (3.5).

Apply now to the process (1.3). To this end we have to introduce some func-
tional class of functions ϑ = (S, σ). First, for some x∗ ≥ 1, M > 0 and
L > β > 0, we denote by V1 the class of functions S from C1(R) such that

sup
|x|≤x

∗

(
|S(x)|+ |Ṡ(x)|

)
≤ M

and
−L ≤ inf

|x|≥x
∗

Ṡ(x) ≤ sup
|x|≥x

∗

Ṡ(x) ≤ −β .

Second, for some fixed reals σmin > 0 and σmax > σmin, we denote by V2 the
class of functions σ from C2(R) such that, for all x ∈ R,

σmin ≤ min (|σ(x)| , |σ̇(x)| , |σ̈(x)|) ≤ max (|σ(x)| , |σ̇(x)| , |σ̈(x)|) ≤ σmax .

Finally, we set
Θ = V1 × V2 . (2.5)

Note that (see, for example, [6]), for any function ϑ from Θ, the equation
(1.3) admits a unique strong solution, which is an ergodic process having an
invariant measure πϑ with the invariant density qϑ defined as

qϑ(x) =
σ−2(x) exp{

∫ x

0
S1(v)dv}∫ +∞

−∞
σ−2(z) exp{

∫ z

0
S1(v)dv}dz

, (2.6)

where S1(v) = 2S(v)/σ2(v).

Theorem 2.2. For any 0 < ǫ ≤ 1/2 and t > 0,

sup
ϑ∈Θ

sup
x∈R

sup
0<g≤1

∣∣∣Eϑ
x
g(yt)−

∫
R
g(x)qϑ(x)dx

∣∣∣
(1 + x2)ǫ

≤ Rǫ e
−κǫt , (2.7)

where the parameters Rǫ > 0 and κǫ > 0 are given in (3.13).
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Remark 2.2. Note that the property (2.7) is called simultaneous geometric
ergodicity. As is shown in Section 6, the function (1 + x2)ǫ is a Lyapunov
function. It should be said that in [20], for the process (1.3) with a constant
diffusion coefficient (i.e. for σ = 1), an exponential bound for deviation (2.7)
was obtained. The proof of that result was based on the coupling method applied
directly to the diffusion process (1.3) provided the existence of a Lyapunov
function. In contrast with [20], in our paper an explicit family of Lyapunov
functions is given that is of help in applications.

Remark 2.3. It should be noted that the inequality (2.7) may be applied to
Monte Carlo calculation of the expectation Eϑ

x
g(yt). Indeed, the previous ex-

pectation can be replaced with the integral of g with respect to the invariant
density (2.6). The precision of such approximation is given in (2.7).

3 Computable bounds for geometric conver-

gence rate

In this section we introduce the parameters R∗ and κ∗ which make explicit the
upper bound for geometric ergodicity in (2.4). For any 0 < γ < 1, we denote

B∗ = Ǔ∗

(
1 +

Ǔ∗V ∗

1− (1− δη1)
γ

)
, (3.1)

where η1 = η/(1− δ) and

Ǔ∗ = max

(
1− ρ+D

(1− δ)(1− ρ)1−γ (1− (1− ρ)γ)
,

V ∗

(1− ρ)1−γ

)
.

We remind that the parameter η appears in the condition H1). Moreover, we
put 




r∗ =
(1− γ)2| ln(1− ρ)| | ln(1− δη1)|

ln(Ǔ∗V ∗) + | ln(1− δη1)|
;

l̃ = 2 +

[
ln(V ∗B∗)

r∗
+

ln q̃(1− e−r
∗)−1

2r∗

]
,

(3.2)

where

q̃ =
1− B̌∗

1

2
and B̌∗

1
= min

(
e−r

∗ ,
δ

er∗ − 1 + δη1

)
.

Here [a] means the integer part of a reel number a > 0. Next,

Ã =
V ∗B∗ + 1

(1− e−r
∗)(1− e−γr

∗)
and ˜̺1 =

(1− γ)2r̃ | ln(1− ǫ̃)|
ln Ã+ r∗l̃ + | ln(1− ǫ̃)|

, (3.3)
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where r̃ = | ln(1 − q̃)| and ǫ̃ = δη1(1 − δ)l̃−2. Now we introduce the following
parameter

Ã3 =
1− γ

γ


3 + 2

er∗ Ã
(
1 + Ãer∗ l̃

)

(1− (1− ǫ̃)γ) (er∗ − 1)


 V ∗B∗ + eκ̃ (3.4)

and

κ̃ =
(1− γ)˜̺1r∗
˜̺1 + lnV ∗B∗

.

We define the parameters R∗ and κ∗ in the Theorem 2.1 as





κ∗ = κ∗(ρ, δ,D, V ∗) =
(1− γ)˜̺1r∗

2(˜̺1 + lnV ∗B∗)
;

R∗ = R∗(ρ, δ,D, V ∗) = 2
(Ã2 + 1)eκ

∗

+ 1

eκ∗ − 1
V ∗ (B∗)2 .

(3.5)

Further we define the upper bound in the ergodic Theorem 2.2. First of all, we
take the set C in the minorization condition H1) as the interval C = [−K,K]
for some K > 0 and we chose the measure ν as the uniform distribution on C,
i.e. for any measurable set A from B(R),

ν(A) =
1

2K
mes(A ∩ [−K , K]) , (3.6)

where mes(·) is the Lebesgue measure on R.
In order to define the threshold δ > 0 we need the quadratic function

Ω∗(z) = ω∗
1
z2 + ω∗

2
z + ω∗

3
(3.7)

with ω∗
1
= 4(Lσ∗)

2 + Lσ∗ + 1, ω∗
2
= Lσ∗σmax + H∗

0
and ω∗

3
= H∗

1
+ 2(H∗

0
)2,

where

H∗
0
=
M + σ∗
σmin

, H∗
1
=M(1 + σ∗) + L+ 2σ2

∗
and σ∗ =

σmax

σmin

.

We chose the parameter δ as

δK =
3Ke−Ω

∗
(K̃)

2
√
2πσmax

, (3.8)

where K̃ = K/σmin. Now we set

K0 =
√
M1 + 8σmin + 8σ̌∗ + 4

√
σ̌∗(M1 +M2) + 16σ̌2

∗
, (3.9)
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where σ̌∗ = σ2
max

/(β(1− e−β)),

M1 =
(M + βx∗)

2 + σ2
max

β

β2
and M2 = M1(1− e−β) .

We set

ηK = 1− δK − 4σ̌∗ (K
2 +M2)

(K2 −M1)
2 . (3.10)

Note, that for any K ≥ K0

δK ≤ 3K̃e−K̃2

2
√
2π

≤ 3

4
√
eπ

and ηK ≥ 3(
√
eπ − 1)

4
√
eπ

.

Therefore, Propositions A.7–A.8 imply the condition H1) with the parameters
δK and ηK defined in (3.8) and (3.10) for any K ≥ K0. To check the condition
H2) we set

b∗
0
= β(2 + x∗)(1 + x∗) + (M + 3)(3 + x∗) and b∗

1
=

b∗
0

2β
. (3.11)

Propositions 6.3–6.4 imply, that for any 0 < ǫ ≤ 1/2, the diffusion process
(1.3) satisfies the drift condition H2) with V (x) = (1 + x2)ǫ, C = [−Kǫ, Kǫ],

ρǫ = (1− ǫ̌) (1− e−2ǫβ) and Dǫ = V ∗
ǫ
e−2ǫβ + b∗

1
(1− e−2ǫβ) , (3.12)

where

Kǫ = K0 +

√(
b∗
1

ǫ̌

)1/ǫ

− 1 and V ∗
ǫ
= (1 +K2

ǫ
)ǫ .

Now we define

κǫ = κ∗(ρǫ, δǫ, Dǫ, ηǫ, V
∗
ǫ
) and Rǫ = R∗(ρǫ, δǫ, Dǫ, ηǫ, V

∗
ǫ
) , (3.13)

where the functions κ∗ and R∗ are defined in (3.5), δǫ = δKǫ
, ηǫ = ηKǫ

and
Dǫ = DKǫ

.

Remark 3.1. Note that we can not apply the bounds for geometric convergence
rate from the paper [22] (Theorem 12) and [21] (Theorem 8) since there the
bounds were obtained under the condition

(1 +K2)ǫ >
2DK

ρǫ
. (3.14)

This condition is not satisfied in our case for sufficiently small values of the
parameter ǫ > 0. In fact, we apply the bounds (2.7) in [5] to point-wise esti-
mating the drift coefficient S under observations of the process (1.3) at discrete
times (tk)k≥1. The question of interest is the behavior of kernel estimators that
are nonlinear functionals of observations. In order to study the non asymptotic
estimating precision one needs of some concentration inequalities [4] based on
the bounds (2.7) with the parameter ǫ > 0 no matter how small.

8



In order to illustrate the behavior of the geometric rate, we suppose that the
parameters satisfy the following conditions:





limδ→0 η = 1 , limδ→0

1− η

δ
= +∞ ,

limρ→1

D

V ∗
= 0 and limρ→1

lnV ∗

| ln(1− ρ)| = 1 .

(3.15)

It should remark that these conditions hold true for the process (1.3) with the
parametric set (2.5) as L > β → ∞ and ǫ̌→ 0 for some fixed ǫ > 0.
It should be noted, that the geometric rate in (1.2) obtained in [17] satisfies

κ∗ = O(δ8) as δ → 0 .

In [22] under the condition (3.14) this rate is “best“, i.e.

κ∗ = O(δ) as δ → 0 .

Under the conditions (3.15) the coefficient κ∗ defined in (3.5)

κ∗ = (c1 + o(1))
δ13/2+µ0(γ)

| ln δ|2 as δ → 0 , ρ→ 1 ,

where c1 > 0 and µ0(γ) → 0 as γ → 0.

Remark 3.2. Note that the condition L, β → ∞ on the drift function of the
process (1.3) concerns the behavior of the function only outside of the interval
[−x∗ , x∗], i.e. outside of the informative part of the function S. Remind
(see, [3]), that the class (2.5) is used to bound the function S on the interval
[−x∗ , x∗] and outside of the interval the conditions are imposed to preserve
ergodicity.

Remark 3.3. It should remark that, unfortunately, the bounds from the pa-
pers [1], [17] are not applicable, in general case, to classes of Markov chains.
Indeed, irreducibility is one of conditions providing the geometrical rate in [17].
Therefore, in the case of a parametric Markov chain class, irreducibility mea-
sure should depend on a class parameter. It is not clear, what will going on this
measure when one takes the supremum over the class parameter and how one
needs to change the irreducibility condition in order to obtain uniform bounds
over the class parameter ϑ ∈ Θ by using the proof in [17].

4 Coupling Renewal Method

In this Section we shall obtain a non asymptotic upper bound with explicit
constants in the renewal theorem by making use of the coupling method. The
notions used here can be found in [8], [11], [14].
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Let (Yj)j≥0 and (Y ′
j
)j≥0 be two independent sequences of random variables

taking values in N. Assume that the initial random variables Y0 and Y ′
0
have

distributions a = (a(k))k≥0 and b = (b(k))k≥0, respectively, i.e. for any k ≥ 0,

P(Y0 = k) = a(k) and P(Y ′
0
= k) = b(k) .

The sequences (Yj)j≥1 and (Y ′
j
)j≥1 are supposed to be the i.i.d. sequences with

the same distribution p = (p(k))k≥0, i.e. for any k ≥ 0,

P(Y1 = k) = P(Y ′
1
= k) = p(k) .

We assume also that p(0) = P(Y1 = 0) = 0, i.e. the sequences (Yj)j≥1 and
(Y ′

j
)j≥1 take values in N

∗ = N \ {0}. Moreover, we suppose that the distribu-
tions a, b and p satisfy the following condition

C) There exists a real number r > 0 such that

ln
(
max (E erY0 , E erY1)

)
≤ υ∗(r) and ln

(
E erY

′

0

)
≤ υ

′

∗
(r) . (4.1)

For any n ≥ 0, we define the following stopping times

tn = inf{k ≥ 0 :
k∑

i=0

Yi > n} and t′
n
= inf{k ≥ 0 :

k∑

i=0

Y ′
i
> n} .

Further, we set

Wn =

tn∑

j=0

Yj − n and W ′
n
=

t′
n∑

j=0

Y ′
j
− n . (4.2)

It is easy to see that the sequences (Wn)n≥1 and (W ′
n
)n≥1 are homogeneous

Markov chains taking values in N
∗ such that, for any n, k and l from N

∗,

P
(
Wn = k|Wn−1 = l

)
= P

(
W ′

n
= k|W ′

n−1
= l
)

= p(k)1{l=1} + 1{k=l−1}1{l≥2} . (4.3)

Firstly we study the entrance times (sk)k≥0 of the chain (Wn)n≥0 to the state
{1} which are defined as s−1 = 0 and for k ≥ 0

sk = inf{l ≥ sk−1 + 1 : Wl = 1} . (4.4)

One can check directly that the stopping times sk, k ≥ 1, can be represented
as

sk = s0 +
k∑

j=1

ςj . (4.5)
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One can check directly that in this case (ςj)j≥1 are i.i.d. random variables
independent of s0 and, for any l ∈ N

∗,

P(ς1 = l) = P(s0 = l|W0 = 1) = p(l) , (4.6)

i.e. the random variables (ςj)j≥1 have the same distribution as Y1. Now we
study the properties of the stopping time s0.

Proposition 4.1. Assume that the condition C) holds. Then

E ers0 ≤ 3 eυ∗(r) .

Proof. First of all, note that, for k ≥ 2 and l ≥ 0,

P(s0 = l|W0 = k) = 1{l=k−1} .

Moreover, taking into account that, for any k ≥ 1,

P(W0 = k) = a(0)p(k) + a(k) , (4.7)

we obtain that

E ers0 = P(W0 = 1)E erY1 +

∞∑

k=2

er(k−1)P(W0 = k)

≤ E erY1 + a(0)e−r E erY1 + e−r E erY0 ≤ 3 eυ∗(r) .

Hence Proposition 4.1.
Now, we introduce the embedded Markov chain (Zk)k≥0 by

Zk = W ′
sk

(4.8)

and the corresponding entrance time to the state {1}:
̟ = inf{k ≥ 1 : Zk = 1} . (4.9)

In order to study the property of this stopping time, we need of the following
notations

l∗ = l∗(r) = 2 +

[
ln
(
e2υ∗(r)(1− e−r)−1q(r)

)

2r

]
, (4.10)

where q(r) = (1 − eυ1(r))/2 and the parameter υ1(r) < 0 will be specified
below. Moreover, for any 0 < γ , ǫ∗ < 1, we set

A∗
1
(r) = A∗(r)

1 + A∗(r)erl∗

1− (1− ǫ∗)
γ
, (4.11)

where

A∗(r) =
1 +Q∗(r)erl∗+υ

∗
(r)

(1− q(r))1−γ (1− (1− q(r))γ)
and Q∗(r) =

eυ∗(r)

1− e−r
.
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Proposition 4.2. Assume the condition C). Then, for any 0 < γ < 1, for
any ǫ∗ > 0 and υ1(r) ≤ −r for which

0 < ǫ∗ ≤ min
1≤j≤l

∗
−1
p(j) and lnEe−rY1 ≤ υ1(r) , (4.12)

one has
E e̺∗̟ ≤ Q∗

1
(r)A∗

1
(r) ,

where Q∗
1
(r) = eυ∗(r) + eυ

′

∗
(r) +Q∗(r) and

̺∗ = ̺∗(r) =
(1− γ)2| ln(1− q(r))| | ln(1− ǫ∗)|

lnA∗(r) + rl∗ + | ln(1− ǫ∗)|
. (4.13)

Proof. Firstly we note that the sequence (4.8) is a homogeneous Markov
chain with values in N

∗ such that, for any m and l from N
∗ and for any k ≥ 1,

P(Zk = m|Zk−1 = l) = P(W ′
ς1−l

= m|Y ′
0
= 0) . (4.14)

Note, that W ′
k
= −k for k < 0 under the condition Y ′

0
= 0. Therefore, for any

positive function V ,

E [V (Z1)|Z0 = l] = E V (l − ς1) 1{ς1<l} + EQ(ς1 − l)1{ς1≥l} , (4.15)

where Q(n) = E (V (Wn)|Y0 = 0). Using the distribution (4.3) yields

Q(n) ≤ E
(
V (Wn−1 − 1)|Y0 = 0

)
+ EV (Y1)P

(
Wn−1 = 1|Y0 = 0

)
.

Choosing now V (x) = erx one has

Q(n) ≤ e−rQ(n− 1) + EV (Y1) .

From the last inequality, taking into account that Q(0) = EV (Y1), it follows
that, for any n ≥ 1,

Q(n) ≤ e−nrQ(0) + EV (Y1)
n∑

j=1

e−(n−j)r ≤ Q∗(r) , (4.16)

where the upper bound Q∗(r) is defined in (4.10). This implies that the last
term in (4.15) can be estimated as

EQ(ς1 − l)1{ς1≥l} ≤ Q∗(r)eυ∗(r)−rl .

Therefore,
E (V (Z1)|Z0 = l)

V (l)
≤ eυ1(r) +Q∗(r)eυ∗(r)−2rl .
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By making use of the definition of l∗ in (4.10), we obtain

sup
l≥l

∗

E (V (Z1)|Z0 = l)

V (l)
≤ 1 + eυ1(r)

2
= 1− q(r) < 1 . (4.17)

Moreover, for any 1 ≤ l ≤ l∗,

E (V (Z1)|Z0 = l) ≤ (1− ρ)V (l) + eυ1(r)V (l) +Q∗(r)eυ∗(r)−rl ,

i.e. the chain (Zk)k≥1 satisfies the condition (A.2) in the Appendix with

C = {1, . . . , l∗ − 1} and D = erl∗+υ
∗
(r)Q∗(r) .

Therefore, by Proposition A.2 for a∗ = −(1− γ) ln(1− q(r)), one gets

sup
l≥1

UC(l, a∗, V )

V (l)
≤ A∗(r) ,

where the upper bound A∗(r) is given in (4.11). Moreover, from (4.12) and
(4.14) we get that, for 2 ≤ l ≤ l∗ − 1,

P(Z1 = 1|Z0 = l) ≥ p(l − 1) ≥ ǫ∗ .

Therefore, putting in Proposition A.3 k∗ = ǫ∗, a = ̺∗ defined in (4.13) and
the set B = {1} we obtain that, for any l ≥ 1,

E (e̺∗̟|Z0 = l) ≤ V (l)A∗
1
(r) ,

where the parameters ̺∗ and A
∗
1
(r) are defined in (4.11) and (4.13). This upper

bound implies
E (e̺∗̟) ≤ A∗

1
(r)E V (Z0) .

Moreover, note now that

E V (Z0) =

∞∑

j=1

E
(
V (Z0)|W

′

0
= j
)
P(W

′

0
= j) .

Similarly to (4.15) we obtain

E
(
V (Z0)|W

′

0
= j
)
= E V (j − s0) 1{s0<j} + EQ(s0 − j)1{s0≥j} .

Using here the inequality (4.16) yields

E
(
V (Z0)|W

′

0
= j
)
≤ V (j) +Q∗(r) .

Moreover, similarly to (4.7) we obtain that, for any j ≥ 1,

P(W ′
0
= j) = b(0)p(j) + b(j) .

Thus,
EV (Z0) ≤ b(0)EV (Y1) + EV (Y

′

0
) +Q∗(r)

and we come to the inequality (4.12). Hence Proposition 4.2.
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Proposition 4.3. Assume the condition C). Then, for any ǫ∗ > 0 satisfying
the condition (4.2) and for any 0 < γ < 1, there exists κ > 0 such that

Eeκs̟ ≤ A∗
2
(r) , (4.18)

where

A∗
2
(r) =

(1− γ)
(
3e2υ∗(r) +Q∗

1
(r)A∗

1
(r)
)

γ
and κ = κ(r) =

(1− γ)̺∗r

̺∗ + υ∗(r)
,

the coefficients A∗
1
(r) and ̺∗ are defined in (4.11) and (4.13).

Proof. Indeed, we have

E eκs̟ = κ

∫ ∞

0

eκtP(s̟ > t) dt

≤ κ

∫ ∞

0

eκt (P(sN > t) dt+P(̟ > N)) dt ,

where N = N(t) = 1 + [ϑt], and ϑ is some positive parameter which will be
chosen later. Note now that, for 0 < ϑ < r/υ∗(r),

P(sN > t) ≤ 3eυ∗(r)(N+1)−rt ≤ 3e2υ∗(r) e−(r−υ
∗
(r)ϑ)t .

Moreover, due to Proposition 4.2

P(̟ > N) ≤ Q∗
1
(r)A∗

1
(r) e−N̺

∗ ≤ Q∗
1
(r)A∗

1
(r) e−ϑ̺

∗
t .

Therefore, denoting

ι∗(ϑ) = min ((r − υ∗(r)ϑ) , ϑ̺∗) ,

one gets

E eκs̟ ≤ κ
(
3e2υ∗(r) +Q∗

1
(r)A∗

1
(r)
) ∫ ∞

0

e−(ι
∗
(ϑ)−κ)t dt .

Maximizing now ι∗(ϑ) yields

max
0<ϑ<υ

∗
(r)/r

ι∗(ϑ) = ι∗(ϑmax) =
r̺∗

̺∗ + υ∗(r)
, ϑmax =

r

̺∗ + υ∗(r)
.

Therefore, choosing now ϑ = ϑmax and κ = (1 − γ)ι∗(ϑmax), we come to the
inequality (4.18). Hence Proposition 4.3.
Let us define the renewal sequence (u(n))n≥0 as follows

u(n) =
∞∑

j=0

p∗j(n) , (4.19)
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where p∗j denotes the jth convolution power. For j = 0 we set p0(n) = 1 for
n = 0 and p0(n) = 0 for n ≥ 1. We remind that, for two sequences (a(j))j≥0

and (u(j))j≥0, the convolution sequence (a ∗ u(j))j≥0 is defined for any j ≥ 0
as

a ∗ u(j) =
j∑

i=0

a(i)u(j − i) .

Proposition 4.4. Assume that the condition C) holds and there exists ǫ∗ > 0
satisfying the inequality (4.12). Then, for any 0 < γ < 1 and n ≥ 2,

|∆(n)| ≤ A∗
2
e−κn ,

where ∆(n) = a∗u(n)−b∗u(n), the coefficients κ and A∗
2
are given in (4.18).

Proof. Obviously, that for n ≥ 1,

a ∗ u(n) = P

(
∪j=0

{
j∑

i=0

Yi = n

})
= P(Wn−1 = 1)

and

b ∗ u(n) = P

(
∪j=0

{
j∑

i=0

Y ′
i
= n

})
= P(W ′

n−1
= 1) .

Therefore,

∆(n) = P(Wn−1 = 1 , W ′
n−1

≥ 2)−P(W ′
n−1

= 1 , Wn−1 ≥ 2) .

Now, we introduce the “coupling” stopping time τ as

τ = inf{k ≥ 1 : (Wk,W
′
k
) = (1, 1)} .

Note that, for any n ≥ 2, by the Markov property for the chain (Wk,W
′
k
)k≥1,

one has

P(Wn = 1 , W ′
n
≥ 2, τ ≤ n− 1) =

n−1∑

k=1

P(Wn = 1 , W ′
n
≥ 2, τ = k)

=
n−1∑

k=1

P(τ = k) vn−k .

where vk = P(Wk = 1 |W0 = 1)P(Wk ≥ 2 |W0 = 1). Similarly, one gets

P(W ′
n
= 1 , Wn ≥ 2, τ ≤ n− 1) =

n−1∑

k=1

P(τ = k)vn−k .
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This implies that
∆(n) = α1(n− 1)− α2(n− 1) ,

where α1(n) = P(Wn = 1 , W ′
n
≥ 2 , τ > n) and

α2(n) = P(W ′
n
= 1 , Wn ≥ 2 , τ > n) .

Therefore, for any n ≥ 2,

|∆(n)| ≤ max (α1(n− 1) , α2(n− 1)) ≤ P(τ > n) .

Taking into account that τ ≤ s̟ a.s., we obtain

|∆(n)| ≤ P(s̟ > n) ≤ e−κn Eeκs̟ .

Proposition 4.3 implies the upper bound (4.18). Hence Proposition 4.4

Theorem 4.1. Assume that there exists r > 0 such that

ln E erY1 ≤ υ∗(r) .

Then, for any 0 < γ < 1, n ≥ 2 and ǫ∗ > 0 satisfying the inequality (4.12),
∣∣∣∣u(n)−

1

E Y1

∣∣∣∣ ≤ A∗
3
(r) e−κn ,

where

A∗
3
(r) =

1− γ

γ

(
3 + 2

er A∗(r)
(
1 + A∗(r)erl∗

)

(1− (1− ǫ∗)
γ) (er − 1)

)
eυ∗(r) (4.20)

and the parameter κ > 0 is defined in (4.18).

Proof. We obtain the inequality (4.20) through Proposition 4.4 in which we
choose a(0) = 1 with a(j) = 0 for j ≥ 1. Moreover, we choose the distribution
(b(j))j≥0 as

b(j) =
1

EY1
P(Y1 > j) =

1

EY1

∞∑

i=j+1

p(i) .

It is easy to see directly that, for any j ≥ 1,

b ∗ u(j) = 1

EY1
.

Note now, that through the condition of this theorem we obtain

ern b(n) =
ernP(Y1 > n)

EY1
≤ EerY11(Y1 > n)

EY1
→ 0 , as n→ ∞ .

Therefore, the summing by parts yields

∑

j≥0

erjb(j) =
E erY1 − 1

(er − 1)EY1
≤ eυ∗(r) − 1

er − 1
:= eυ

′

∗
(r) .

and Proposition 4.4 implies the inequality (4.20). Hence Theorem 4.1.
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5 Proof of Theorem 2.1

First we fix some 0 < γ < 1 and we set a1 = −(1− γ) ln(1− ρ). We start with
studying the properties of the function

Uϑ
C
(x, a1, V ) = Eϑ

x

τC∑

j=1

ea1j V (Φj)

where τC = inf{n ≥ 1 : Φn ∈ C}. The condition H2) and Proposition A.2
imply immediately that, for any 0 < γ < 1,

sup
ϑ∈Θ

sup
x∈X

Uϑ
C
(x, a1, V )

V (x)
≤ 1− ρ+D

(1− ρ)1−γ(1− (1− ρ)γ)
:= U∗ . (5.1)

Now, we introduce a splitting chain family as in [16], p. 108 (see also [18]).
We set X̌ = X × {0, 1}, X0 = X × {0} and X1 = X × {1}. Let B(Xi) be the
σ−fields generated by the set Ai = A × {i} with A ∈ B(X ), i = 0, 1. In the
sequel we will denote by < x̌ >i the ith component of x̌ ∈ X̌ . It is clear, that
< x̌ >0∈ X and < x̌ >1∈ {0, 1}. Furthermore, we define the σ - field B(X̌ )
as a σ−field generated by B(X0) ∪ B(X1) and for any measure λ on B(X ) we
relate the measure λ∗ on B(X̌ ) as

λ∗(A0) = (1− δ)λ(A ∩ C) + λ(A ∩ Cc) and λ∗(A1) = δλ(A ∩ C) .

Now, for each ϑ ∈ Θ, we introduce a homogeneous Markov chain (Φ̌n)n≥0 by
the following transition probabilities

P̌ϑ(x̌, ·) =





Pϑ(x, ·)∗ , if x̌ ∈ X0 \ C0 ;

Pϑ(x, ·)∗ − δν∗(·)
1− δ

, if x̌ ∈ C0 ;

ν∗(·) , if x̌ ∈ X1 .

(5.2)

Note, that for any x̌ ∈ X1,

P̌ϑ(x̌, C0 ∪ C1) = ν∗(C0 ∪ C1) = ν(C) = 1 . (5.3)

Obviously, that the set α = C1 is an accessible atom for the chain (Φ̌n)n≥1, i.e.

for any positive X̌ → R function g

Ěϑ
x̌
g(Φ̌1) = Ěϑ

y̌
g(Φ̌1) , for any x̌ , y̌ ∈ α .

This implies directly that, for any nonnegative random variable ξ measur-
able with respect to the σ−field generated by the chain (Φ̌n)n≥1, one has

Ěϑ
x̌
ξ = Ěϑ

y̌
ξ for any x̌ , y̌ ∈ α .
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In the sequel we denote by Ěϑ
α
(·) the such expectations. Moreover, one can

check directly that the chain (Φ̌n)n≥1 is ν∗-irreducible. Next, for any set Č

from B(X̌ ) we introduce the corresponding entrance time

τ̌Č = inf
{
n ≥ 1 : Φ̌n ∈ Č

}
(5.4)

and the corresponding entrance function

Ǔϑ
Č
(x̌, a1, V̌ ) = Ěϑ

x̌

τ̌Č∑

j=1

ea1j V̌ (Φ̌j) , (5.5)

where V̌ (x̌) = V (< x̌ >1). By Proposition A.5 we obtain that, for any x ∈ X ,

Uϑ
C
(x, a1, V ) = (1− δ)Ǔϑ

C0∪C1

(x0, a1, V̌ ) 1{x∈C} + Ǔϑ
C0∪C1

(x0, a1, V̌ ) 1{x∈Cc}

+ δǓϑ
C0∪C1

(x1, a1, V̌ ) 1{x∈C} ,

where xi = (x, i) for i = 0, 1. Note now, that due to the property (5.3),

Ǔϑ
C0∪C1

(x1, a1, V̌ ) = Ěϑ
x1

ea1 V̌ (Φ̌1) ≤ ea1 V ∗ =
V ∗

(1− ρ)1−γ
.

Therefore, using the upper bound (5.1) and the coefficient Ǔ∗ given in (3.1),
we obtain

sup
ϑ∈Θ

sup
x̌∈X̌

Ǔϑ
C0∪C1

(x̌, a1, V̌ )

V̌ (x̌)
≤ Ǔ∗ .

Note now that, for x̌ ∈ C0 by the definition (5.2)

P̌ϑ(x̌, α) = P̌ϑ(x̌, C1) = δ
Pϑ(x, C)− δ

1− δ
≥ δη1 ,

where the parameter 0 < η1 ≤ 1 is defined in (3.1). By making use of Propo-
sition A.3 with a∗ = a1 = −(1− γ) ln(1− ρ) and k∗ = δη1, one gets

sup
ϑ∈Θ

sup
x̌∈X̌

Ǔϑ
α
(x̌, r∗, V̌ )

V̌ (x̌)
≤ B∗ , (5.6)

where B∗ and r∗ are given in (3.1) and (3.2). Therefore, by Proposition A.1,
the chain (Φ̌n)n≥0 is ergodic for each ϑ ∈ Θ with the invariant measure given
as

π̌ϑ(Γ̌) =
1

Ěϑ
α
τ̌α

Ěϑ
α

τ̌α∑

j=1

1{Φ̌j∈Γ̌}
. (5.7)
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Now, for any n ≥ 2, we define ι̌ = max{1 ≤ j ≤ n − 1 : Φ̌j ∈ α} and we

put ι̌ = 0 if τ̌α ≥ n. Moreover, note that, for any X̌ → R function f and any
n ≥ 2,

Ěϑ
x̌
f(Φ̌n) 1{τ̌α<n} =

n−1∑

j=1

Ěϑ
x̌
f(Φ̌n) 1{τ̌α≤j}1{ι̌=j}

=

n−1∑

j=1

Ěϑ
x̌
1{τ̌α≤j} Ě

ϑ
x̌

(
f(Φ̌n) 1{ι̌=j}|Φ̌1, . . . , Φ̌j

)
.

Now, taking into account that (Φ̌n)n≥1 is a homogeneous Markov chain, we
can calculate the last conditional expectation as follows

Ěϑ
x̌

(
f(Φ̌n) 1{ι̌=j}|Φ̌1, . . . , Φ̌j

)
= 1{Φ̌j∈α}

Ěϑ
α

(
f(Φ̌n−j) 1{Φ̌1 /∈α ,...,Φ̌n−j−1 /∈α}

)

= 1{Φ̌j∈α}
gf,α(n− j) , (5.8)

where gf,α(k) = Ěϑ
α
f(Φ̌k) 1{τ̌α≥k}. By convention, we set gf,α(0) = 0. There-

fore,

Ěϑ
x̌
f(Φ̌n) 1{τ̌α<n} =

n∑

j=1

P̌ϑ
x̌
(τ̌α ≤ j) gf,α(n− j) = hx̌ ∗ gf,α(n) ,

where hx̌(0) = 0 and, for j ≥ 1,

hx̌(j) = P̌ϑ
x̌
(τ̌α ≤ j) = P̌ϑ

x̌

(
Φ̌j ∈ α

)
.

Moreover, for j ≥ 1,

hx̌(j) =

j∑

l=1

P̌ϑ
x̌

(
τ̌α = l , Φ̌j ∈ α

)
=

j∑

l=1

ax̌(l) u(l− j) = ax̌ ∗ u(j) ,

where
ax̌(l) = P̌ϑ

x̌
(τ̌α = l) and u(l) = P̌ϑ

α

(
Φ̌l ∈ α

)
. (5.9)

It is clear that ax̌(0) = 0 and u(0) = 1, i.e. ax̌ ∗ u(0) = 0. This implies that

hx̌(j) = ax̌ ∗ u(j) ,

for all j ≥ 0. Finally, taking into account that ax̌ ∗ u ∗ gf,α(1) = 0, we obtain
that for any n ≥ 1,

Ěϑ
x̌
f(Φ̌n) 1{τ̌α<n} = ax̌ ∗ u ∗ gf,α(n) . (5.10)

19



Note that the sequence (u(n))n≥0 is a renewal sequence, i.e.

u(n) =

∞∑

j=0

p∗j(n) with p(k) = P̌ϑ
α
(τ̌α = k) .

Now, we set Y0 = τ̌α and Yj = inf{j ≥ Yj−1 + 1 : Φ̌j ∈ α}. One can check
directly that (Yj)j≥1 is i.i.d. sequence with the distribution (p(k))k≥1, i.e.
u(n)n≥0 is the renewal function for the sequence (Yj)j≥1. We denote

ω(n) =

∣∣∣∣∣u(n)−
1

Ěϑ
α
Y1

∣∣∣∣∣ .

We estimate this term by Theorem 4.1. First we have to check the condition
C1) uniformly over the parameter ϑ ∈ Θ, i.e. to show that, for any j ≥ 1,

inf
ϑ∈Θ

P̌ϑ
α
(τ̌α = j) ≥ δ η1(1− δ)j−1 . (5.11)

Let us check this property for j = 1. We remind that, by the condition H1),
one has ν(C) = 1. Thus, the definition (5.2) implies

P̌ϑ
α
(τ̌α = 1) = ν∗(C1) = δ ≥ δ η1 .

To show the property (5.11) for j ≥ 2 note, that P̌ϑ
α
(X0) = ν∗(X0) = 1 − δ.

Moreover, taking into account that Pϑ(z,X0)
∗ ≥ 1 − δ we obtain the same

lower bound for the splitting distribution (5.2), i.e. for any ž ∈ X0

P̌ϑ(ž,X0) = 1{ž∈C0}

(
Pϑ(z,X0)

∗ − δν∗(X0)

1− δ

)

+ 1{ž∈X0\C0}
Pϑ(z,X0)

∗ ≥ (1− δ) .

Similarly, for any ž ∈ X0 we obtain

P̌ϑ(ž, C1) = 1{ž∈C0}

(
Pϑ(z, C1)

∗ − δν∗(C1)

1− δ

)

+ 1{ž∈X0\C0}
Pϑ(z, C1)

∗ ≥ δ
Pϑ(z, C)− δ

1− δ
≥ δη1 .

Now through the induction we can show, that for any j ≥ 1

P̌ϑ
α

(
Φ̌1 ∈ X0 , . . . , Φ̌j ∈ X0

)
≥ (1− δ)j .
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Therefore, taking into account that for any x̌ ∈ X̌ we have P̌ϑ(x̌,X1 \C1) = 0,
we obtain for j ≥ 2

P̌ϑ
α
(τ̌α = j) = P̌ϑ

α

(
Φ̌1 /∈ α , . . . , Φ̌j−1 /∈ α , Φ̌j ∈ α

)

= P̌ϑ
α

(
Φ̌1 ∈ X0 , . . . , Φ̌j−1 ∈ X0 , Φ̌j ∈ C1

)

≥ δ η1 P̌
ϑ
α

(
Φ̌1 ∈ X0 , . . . , Φ̌j−1 ∈ X0

)
.

This yields the lower bound (5.11). Similarly we can show

sup
j≥1

sup
ϑ∈Θ

P̌ϑ
α
(τ̌α = j)

(1− δη1)
j−1 ≤ δ

and

sup
ϑ∈Θ

Ěϑ
α
e−r

∗
Y1 ≤ δ

er∗ − 1 + δη1
.

Moreover, taking into account that Ěϑ
α
e−r

∗
Y1 ≤ e−r

∗ we obtain that

sup
ϑ∈Θ

Ěϑ
α
e−r

∗
Y1 ≤ B̌∗

1
< 1 ,

where B̌∗
1
is given in (3.2). Therefore, the sequence (Yj)j≥0 satisfies the condi-

tion of Theorem 4.1 with r = r∗, υ∗(r) = ln (V ∗B∗), l∗ = l̃,

ǫ∗ = δ η1 (1− δ)l̃−2 and υ1(r) = ln B̌∗
1
,

where l̃ is defined in (3.2). Therefore, for n ≥ 2,

ω(n) ≤ Ã3 e
−κ̃n ,

where the parameters Ã3 and κ̃ are defined in (3.4). Taking into account that

Ã3 ≥ eκ̃ we obtain that, for any n ≥ 0,

ω(n) ≤ Ã3 e
−κ̃n .

Therefore, for any 0 < κ < κ̃

ω̂(κ) =
∑

n≥0

eκnω(n) ≤ Ã3

eκ̃−κ

eκ̃−κ − 1
. (5.12)

Now, taking into account that

π̌ϑ(f) =
1

ĚαY1

+∞∑

j=0

gf,α(j)

21



and that ĚαY1 ≥ 1, one obtains, for any n ≥ 1,

|Ěϑ
x̌
f(Φ̌n) 1{τ̌α<n} − π̌ϑ(f)| ≤ ax̌ ∗ ω ∗ gf,α(n) +Qx̌ ∗ gf,α(n) +Gf,α(n) ,

where
Qx̌(n) = P̌ϑ

x̌
(τα > n) and Gf,α(n) =

∑

j=n+1

gf,α(j) .

Therefore, for any n ≥ 0,

∆x̌(n) = |Ěϑ
x̌
f(Φ̌n) − π̌ϑ(f)| ≤ ax̌ ∗ ω ∗ gf,α(n)

+Qx̌ ∗ gf,α(n) + gf,x̌(n) +Gf,α(n) , (5.13)

where gf,x̌(n) = Ěϑ
x̌
f(Φ̌n) 1{τ̌α≥n}. Now for any sequence (b(n))n≥0 we denote

by b̂(κ) the Laplace transformation, i.e.

b̂(κ) =
∑

n≥0

eκn b(n) .

Therefore, from (5.13) we obtain for any 0 < κ < r∗,

∆̂x̌(κ) ≤ âx̌(κ)ω̂(κ)ĝf,α(κ) + Q̂x̌(κ)ĝf,α(κ) + ĝf,x̌(κ) + Ĝf,α(κ) . (5.14)

It is clear
ĝf,x̌(κ) = Ǔϑ

α
(x̌,κ, f̌) with f̌(x̌) = f(< x >1) .

Moreover, note that

âx̌(κ) = Ěx̌ e
κτ̌α ≤ Ǔϑ

α
(x̌,κ, f̌) , Q̂x̌(κ) =

Ěx̌ e
κτ̌α − 1

eκ − 1
≤ Ǔϑ

α
(x̌,κ, f̌)

eκ − 1

and

Ĝf,α(κ) =
ĝf,x̌(κ)− ĝf,x̌(0)

eκ − 1
≤
Ǔϑ
α
(α,κ, f̌)

eκ − 1
.

Therefore, taking into account that κ̃ ≤ r∗, we obtain, that for any function
1 ≤ f ≤ V and for any 0 < κ < κ̃,

∆̂x̌(κ) ≤
(
ω̂(κ) +

eκ + 1

eκ − 1

)
Ǔϑ
α
(x̌,κ, V̌ )Ǔϑ

α
(α,κ, V̌ )

≤
(
Ã3

eκ̃−κ

eκ̃−κ − 1
+
eκ + 1

eκ − 1

)
Ǔϑ
α
(x̌,κ, V̌ )Ǔϑ

α
(α,κ, V̌ ) .

Now, putting here κ = κ∗ = κ̃/2 and taking into account the inequality (5.6)
we get, for any x̌ ∈ X̌ , that

∆̂x̌(κ
∗) ≤

(
(Ã3 + 1)eκ

∗

+ 1

eκ∗ − 1

)
V (< x >1) V

∗ (B∗)2 .
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Moreover, note that the chain (Φn)n≥1 is ergodic with the invariant measure
πϑ defined in (5.7) and (A.12). By applying Proposition A.5 with λ equals to
the Dirac measure at x, we obtain that, for any function 0 < f ≤ V ,

Eϑ
x
f(Φn)− πϑ(f) = (1− δ)

(
Ěϑ

x0

f̌(Φ̌n)− π̌ϑ(f̌)
)
1{x∈C}

+ δ
(
Ěϑ

x1

f̌(Φ̌n)− π̌ϑ(f̌)
)
1{x∈C}

+
(
Ěϑ

x0

f̌(Φ̌n)− π̌ϑ(f̌)
)
1{x∈Cc} .

Therefore, for any x ∈ X , one gets

|Eϑ
x
f(Φn)− πϑ(f)| ≤ |Ěϑ

x0

f̌(Φ̌n)− π̌ϑ(f̌)|+ |Ěϑ
x1

f̌(Φ̌n)− π̌ϑ(f̌)| ,

i.e. ∑

n≥0

eκ
∗n |Eϑ

x
f(Φn)− πϑ(f)| ≤ ∆̂x0

(κ∗) + ∆̂x1
(κ∗) .

From here it follows the inequality (2.4). Hence Theorem 2.1.

6 Application to diffusion processes

In order to study geometric ergodicity for the process (1.3) we start with the
chain (Φy

n)n≥0, where Φy
n = yn.

Proposition 6.1. For any ϑ ∈ Θ, the sequence (Φy
n)n≥0 is a homogeneous

Markov chain aperiodic and ψ-irreducible, where ψ is the Lebesgue measure on
B(R).
Proof. Taking into account (see, for example, [6]) that the solution of the
equation (1.3) is a homogeneous Markov process, we obtain immediately that
(Φy

n)n≥0 is a homogeneous Markov chain. In this case (see [6]), for any ϑ, the
process (yt)t≥0 admits the transition density υϑ(t, x, y) as follows :

υϑ(t, x, y) =
Υ(t, x, y)√
2πtσ(y)

exp

{∫ ς(y)

ς(x)

Hϑ(u)du−
(ς(y)− ς(x))2

2t

}
, (6.1)

Here,

Hϑ(z) =
S(ς̌(z))

σ(ς̌(z))
− σ̇(ς̌(z))

2σ2(ς̌(z)
, ς(x) =

∫ x

0

σ−1(u) du

and ς̌(·) is the inverse function of ς, i.e. it is the unique solution of the equation
z = ς(ς̌). Moreover,

Υ(t, x, y) = E exp

{
−1

2

∫ t

0

H̃ϑ(w
∗
u,t
(x, y))du

}
,
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H̃ϑ(x) = Ḣϑ(x) +H2
ϑ
(x) and

w∗
u,t
(x, y) = ς(x) +

u

t
(ς(y)− ς(x)) + wu −

u

t
wt .

It means that, for any n ≥ 1, for any A ∈ B(R) and for any x ∈ R,

Pϑ(Φy
n ∈ A|Φy

0
= x) =

∫

A

υϑ(n, x, z)dz . (6.2)

Thus, the chain (Φy
n)n≥0 is ψ-irreducible, where ψ is the Lebesgue measure on

B(R). Moreover, in this case the chain is aperiodic.
Now, we check the minorization condition H1) for the chain (Φy

n
)n≥0.

Proposition 6.2. For any K ≥ 8σmin, the chain (Φy
n
)n≥0 satisfies the mi-

norization condition H1) with C = [−K,K], δ = δK and η = ηK defined in
(3.10), and the probability measure νK defined in (3.6).

Proof. We start with studying the properties of the function Hϑ defined in
(6.1). From definition of the class Θ we find immediately that, for any z ∈ R,

|ς̌(z)| ≤ |z| σmax .

Moreover, note that, for any ϑ from Θ and for any y from R,

|Ṡ(y)| ≤M + L and |S(y)| ≤M + L|y| . (6.3)

Therefore,
sup
|z|≤z

∗

sup
ϑ∈Θ

|Hϑ(z)| ≤ H∗
0
+ Lσ∗ z∗ ,

where H∗
0
is given in (3.6). Note now, that the derivative of Hϑ can be repre-

sented as Ḣϑ(z) = Fϑ(ς̌(z)) with

Fϑ(y) = Ṡ(y)− S(y)σ̇(y)

σ(y)
− σ̈(y)

2σ(y)
+

(σ̇(y))2

σ2(y)
.

By making use of the upper bounds (6.3), we obtain

sup
ϑ∈Θ

|Fϑ(y)| ≤ H∗
1
+ Lσ∗|y|

and, therefore, for any z∗ > 0,

sup
|z|≤z

∗

sup
ϑ∈Θ

|H̃ϑ(z)| ≤ H̃∗(z∗) ,
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where H̃∗(z) = H∗
1
+ 2(H∗

0
)2 + Lσ∗σmax z + 2(Lσ∗)

2 z2 and the coefficient H∗
1

is given in (3.6). Moreover, we note that on the set

ΓK = { sup
0≤u≤1

|wu| ≤ K̃/2} with K̃ = K/σmin ,

the process (w∗
v,t
(x, y))0≤v≤t≤1 is bounded :

sup
x,y∈C

sup
0≤u≤t≤1

|w∗
u,t
(x, y)| ≤ 2K̃ .

Therefore, for any x, y from C,

Υ(1, x, y) ≥ P(ΓK) e
− 1

2
H̃

∗
(2K̃) .

By making use of the Doob inequality we obtain

P(ΓK) ≥ 1−
4E sup

0≤t≤1
w2

t

K2
1

≥ 1−
16σ2

min

K2
,

i.e. for K ≥ 8σmin,

P(ΓK) ≥ 3/4 and Υ(1, x, y) ≥ 3

4
e−

1

2
H̃

∗
(2K̃) .

Moreover, for any x, y ∈ C,

sup
ϑ∈Θ

∣∣∣∣∣

∫ ς(y)

ς(x)

Hϑ(u)du

∣∣∣∣∣ ≤
(
H∗

0
+ Lσ∗K̃

)
K̃ .

This implies that

inf
x,z∈C

υϑ(1, x, z) ≥ 3(4
√
2πσmax)

−1 e−Ω
∗
(K̃) ,

where Ω∗(z) is introduced in (3.10). Therefore, taking into account that, for
any A from B(X ),

Pϑ(Φy
1 ∈ A|Φy

0
= x) =

∫

A

υϑ(1, x, z)dz ,

yields the inequality (2.1) with δK and νK(·) defined in (3.10) and (3.6) respec-
tively. Moreover, the inequality (2.2) follows directly from Proposition A.8.
Hence Proposition 6.2.

Now, for any C2(R) → R function V , we introduce the generator

Aϑ(V )(x) = V̇ (x)S(x) +
1

2
σ2(x)V̈ (x) . (6.4)
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Definition 6.1. Any R → [1,∞) twice continuously differentiable function V
is called uniform over ϑ ∈ Θ Lyapunov function for the equation (1.3) if the
following conditions fulfill:

• for some constants γ > 0, b∗ > 0 and for any x ∈ R,

sup
ϑ∈Θ

Aϑ(V )(x) ≤ −γV (x) + b∗ ; (6.5)

• limx→∞ V (x) = ∞ and there exists m > 0 such that

sup
x∈R

V (x) + |V̇ (x)|
1 + |x|m <∞ . (6.6)

Proposition 6.3. For any 0 < ǫ ≤ 1/2, the function V (x) = (1+x2)ǫ satisfies
the inequality (6.5) with γ = 2ǫβ and b∗ = ǫb∗

0
, where b∗

0
is given in (3.11).

Proof. The definition of the space Θ implies directly that, for |x| ≥ x∗,

xS(x) ≤ |x|(M + βx∗)− βx2 .

Therefore, we get, for any ϑ ∈ Θ,

Aϑ(V )(x) ≤
2ǫV (x)xS(x)

1 + x2
+ ǫσ2

max

≤ 2ǫ V (x)xS(x)

1 + x2
1{|x|≥x

∗
} + ǫ

(
(1 + x2

∗
)ǫM + σ2

max

)

≤ −2ǫV (x)β + b∗ .

Hence Proposition 6.3.

Proposition 6.4. Let V (x) be a uniform over ϑ ∈ Θ Lyapunov function for
equation (1.3) from definition 6.1 with constants γ and b∗. Then, for any
K > 0 and 0 < ε̌ < 1 for which

inf
|x|≥K

V (x) ≥ b∗

ε̌γ
,

the chain (Φy
n)n≥0 satisfies the following inequality

sup
ϑ∈Θ

Eϑ
x
V (Φy

1) ≤ (1− ρ)V (x) +DK 1{|x|≤K} , (6.7)

where ρ = (1−ε̌)(1−e−γ), DK = V ∗
K
e−γ+b∗(1−e−γ)/γ and V ∗

K
= sup

|x|≤K
V (x).
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Proof. By the Ito formula, one gets

V (yt) = V (y0) +

∫ t

0

Aϑ(V )(ys)ds+

∫ t

0

V̇ (ys)σ(ys)dws .

In Proposition A.7, we have proved that the moments of the solution of equa-
tion (1.3) are bounded. This implies that the stochastic integral is a martingale
in the above Ito formula. Therefore, by setting Z(t) = Eϑ

x
V (yt), one has

Ż(t) = Eϑ
x
Aϑ(V )(yt) = −γZ(t) + ψt ,

where ψt = Eϑ
x
(Aϑ(V )(yt) + γyt). The inequality (6.5) gives ψt ≤ b∗. Resolv-

ing this differential equation, we obtain, that for 0 ≤ t ≤ 1

Z(t) = Z(0)e−γt +

∫ t

0

e−γ(t−s)ψsds

≤ Z(0)e−γt + b∗
1− e−γ

γ
= V (x)e−γt + b∗

1− e−γ

γ
.

Therefore,

sup
ϑ∈Θ

Eϑ
x
V (Φy

1) ≤ V (x)e−γ + b∗
1− e−γ

γ
.

From here we obtain the inequality (6.7). Hence Proposition 6.4.

6.1 Proof of Theorem 2.2

First note, that thanks to Propositions 6.1 the diffusion process (1.3) with the
parameter ϑ = (S, σ) from Θ introduced in (2.5), satisfies the condition H1)
with the set C = [−K,K] for K ≥ K0 given (3.7) and the measure ν defined
in (3.6). Moreover, Propositions 6.3 – 6.4 imply that for any 0 < ǫ ≤ 1/2 this
process satisfies the condition H2) with the parameters (3.12). Moreover, for
any t ≥ 1 and any R →]0, 1] function g, we set

g̃(x) = Eϑ
x
g(yt) = Eϑ

x
g(y{t}) .

Moreover, taking into account that π(g) = π(g̃), one has

Eϑ
x
g(yt)− π(g) = Eϑ

x
g̃(Φy

[t])− π(g̃) .

Therefore by applying Theorem 2.1 to the chain (Φy
n)n≥0, we come to the upper

bound (2.7). Hence Theorem 2.2.
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A Appendix

A.1 Homogeneous Markov chains with atoms

We follow the Meyn-Tweedie approach (see [16]). We remind some definitions
from [16] for a homogeneous Markov chains (Φn)n≥0 defined on a measurable
state space (X ,B(X )). Denote by P (x, ·) , x ∈ X , the transition probability
of this chain, i.e. for any A ∈ B(X ), x ∈ X ,

P (x,A) = Px(Φ1 ∈ A) = P(Φ1 ∈ A|Φ0 = x) .

The n−step transition probability is

P n(x,A) = Px(Φn ∈ A) .

We remind that a measure π on B(X )) is called invariant for this chain if, for
any A ∈ B(X ),

π(A) =

∫

X

P (x,A)π(dx) .

If there exists an invariant positive measure π with π(X ) = 1 then the
chain is called positive.

Definition A.1. The chain (Φn)n≥0 is ϕ-irreducible if there exists a nontrivial
measure ϕ on B(X ) such that, whenever ϕ(A) > 0, one has

L(x,A) = Px(∪∞
n=1

{Φn ∈ A}) > 0 for any x ∈ X .

One can show that, for any ϕ-irreducible chain, there exists a ”maximal”
irreducible measure which is noted as ψ and the chain is called ψ-irreducible.
A irreducible measure ψ is maximal if and only if ψ(A) = 0 implies

ψ(x ∈ R : L(x,A) > 0) = 0 .

In the sequel, we denote

B+(X ) = {A ∈ B(X ) : ψ(A) > 0} .

Definition A.2. The chain (Φn)n≥0 is Harris recurrent if it is ψ-irreducible
and, for any A ∈ B+(X ), one has

Px

(
∞∑

n=1

1{Φn∈A}

)
= 1 , for any x ∈ A .
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Definition A.3. The Markov ψ-irreducible chain (Φn)n≥0 is called periodic of
period d if there exist disjoint sets Γ1, . . . ,Γd in B(X ) with

ψ
(
∩d
j=1

Γc
j

)
= 0

such that, for 1 ≤ i ≤ d− 1 and for any x ∈ Γi, one has

Px(Φ1 ∈ Γi+1) = 1

and for x ∈ Γd one has Px(Φ1 ∈ Γ1) = 1. The chain is aperiodic if d = 1.

Definition A.4. We will say that the chain (Φn)n≥0 satisfies the minorization
condition if, for some δ > 0, some set C ∈ B(X ) and some probability
measure ν with ν(C) = 1, one has

inf
A∈B(X )

(
inf
x∈C

P (x,A)− δ ν(A)

)
≥ 0 . (A.1)

Definition A.5. A set α ∈ B+(X ) is called accessible atom if, for any x and
y from α,

P(x,Γ) = P(y,Γ) , ∀ Γ ∈ B(X ) .

In order to study the ergodicity property, we associate to any set C ∈ B(X )
the stopping time

τC = inf{k ≥ 1 : Φk ∈ C} .

Proposition A.1. Suppose that the Markov chain Φ is ψ-irreducible and con-
tains an accessible atom α such that

Eατα <∞ .

Then the chain is ergodic with the invariant probability measure π defined as

π(Γ) =
1

Eα τα
Eα

τα∑

j=1

1{Φj∈Γ}
.

Proof. Indeed, by the definition of π, for any set Γ ∈ B(X ), one has

∫

X

π(dz)P(z,Γ) =
1

Eα τα
Eα

∞∑

j=1

1{j≤τα}
Eα

(
1{Φj+1∈Γ}

|Φ1, . . . ,Φj

)

=
1

Eα τα


Eα

τα∑

j=2

1{Φj∈Γ}
+Pα

(
Φτα+1 ∈ Γ

)

 .
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Moreover, it is easy to see that

Pα

(
Φτα+1 ∈ Γ

)
= Pα (Φ1 ∈ Γ) .

This implies the relationship

∫

X

π(dz)P(z,Γ) = π(Γ) ,

i.e. the measure π is invariant. Obviously, that π(X ) = 1, i.e. π is a probability
measure.

A.2 Lyapunov functions method for Markov chains

We start with the definition of a ”Lyapunov function”. For this we impose the
following drift condition to the chain (Φn)n≥0, i.e.

D) There exist a X → [1,∞) function V , constants 0 < ρ < 1, D ≥ 1 and
a set C from B(X ) such that for all x ∈ X

Ex (V (Φ1)) ≤ (1− ρ)V (x) + D1C(x) . (A.2)

In this case we call V the Lyapunov function.
Now, for any X → [1,+∞) function f and any set A ∈ B(X ), we set

UA(x, r, f) = Ex

τA∑

j=1

erj f(Φj) . (A.3)

Proposition A.2. Assume, that the condition D) holds. Then, for any
0 < a < − ln(1− ρ), one has

sup
x∈X

UC(x, a, V )

V (x)
≤ U∗(a) , (A.4)

where

U∗(a) =
(1− ρ)ea +D ea

1− (1− ρ)ea
.

Proof. The condition (A.2) implies immediately

UC(x, a, V ) ≤ (1− ρ)eaV (x) + (1− ρ)eaUC(x, a, V ) +D ea .

Taking into account that V (x) ≥ 1, we obtain the inequality (A.4).
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Proposition A.3. Assume that for some a = a∗ > 0 the Markov chain
(Φn)n≥1 satisfies the property (A.4) with the C - bounded function V , i.e.

V ∗ = sup
x∈C

V (x) <∞ . (A.5)

Let B be a set from B(X ) such that, for some k∗ > 0,

inf
x∈C\B

P(x,B) ≥ k∗ . (A.6)

Then, for any 0 < γ < 1 and

0 < a ≤ (1− γ)| ln(1− k∗)|
lnV ∗U∗(a∗) + | ln(1− k∗)|

a∗ , (A.7)

one has

sup
x∈X

1

V (x)
UB(x, a, V ) ≤ U∗

1
(a) , (A.8)

where

U∗
1
(a) = U∗(a)

(
1 +

U∗(a)V ∗

1− (1− k∗)
γ

)
.

Proof. First, we introduce the sequence of stopping times (τC(n))n≥0 as
follows : τC(0) = 0 and, for n ≥ 1,

τC(n) = inf{k ≥ τC(n− 1) + 1 : Φk ∈ C} .

Obviously, that τC(1) = τC . Moreover, the condition (A.4) implies that
ExτC(n) < ∞ for any n ≥ 1 and x ∈ X . Using this sequence we obtain
that for 0 < a ≤ a∗

UB(x, a, V ) =
∞∑

n=0

Ex

τC(n+1)∑

j=τC(n)+1

eaj V (Φj) 1{τB≥j}

≤ UC(x, a, V ) +
∞∑

n=1

Ex 1{τB>τC(n)} e
aτC (n) UC(zn, a, V ) ,

where zn = ΦτC(n). Moreover, taking into account the inequalities (A.4) and
(A.5), we get that, for a ≤ a∗,

UB(x, a, V ) ≤ U∗(a)V (x) + U∗(a)V ∗
∞∑

n=1

Υn(x, a) ,

where
Υn(x, a) = Ex 1{τB>τC(n)} e

aτC (n) .
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Note now that, for n = 1,

Υ1(x, a) ≤ V (x)U∗(a) .

Let now n ≥ 2. We have

Υn(x, a) = Ex 1{τB>τC(n)} e
aτC (n)

= Ex 1{τB>τC(n−1)} e
aτC (n−1)Ezn−1

eaτC 1{τB>τC} .

Therefore, for n ≥ 2,

Υn(x, a) ≤ Υn−1(x, a) sup
z∈C\B

Ez e
aτC 1{τB>1} .

By the Hölder inequality and the condition (A.5), we get

sup
z∈C\B

Ez e
aτC 1{τB>1} ≤ (V ∗U∗(a∗))

a/a
∗ (1− k∗)

1−a/a
∗ := g(a) .

Therefore, for any a satisfying the condition (A.7) we obtain

g(a) ≤ (1− k∗)
γ

and, for any n ≥ 2,

Υn(x, a) ≤ Υ1(x, a) g(a)
n−1 ≤ V (x)U∗(a) (1− k∗)

γ(n−1) .

This implies directly the bound (A.8). Hence Proposition A.3.

A.3 Properties of splitting chains

Now, we study some property of the splitting chain (Φ̌n)n≥1 constructed in
Section 4 , which we represent as

Φ̌n = (φ̌n, ι̌n) , (A.9)

where φ̌n ∈ X and ι̌n ∈ {0, 1}.

Proposition A.4. For any measure λ on B(X ) and any set Γ̌ ∈ B(X̌ ),

∫

X̌

P̌ϑ(x̌, Γ̌) λ∗(dx̌) = λ∗
1
(Γ̌) , (A.10)

where

λ1(·) =
∫

X

Pϑ(x, ·) λ(dx) .
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Proof. Indeed, by the definition of the ∗ operation and of the transition
probability P̌ϑ(·, ·) we obtain

∫

X̌

P̌ϑ(x̌, Γ̌) λ∗(dx̌) =

∫

X

Pϑ(x, Γ̌)∗ λ(dx) = λ∗
1
(Γ̌) .

Proposition A.5. For any n ≥ 1, any measurable positive X n → R function
G and for any measure λ on B(X ), one has

∫

X

Eϑ
x
Gn(Φ1, . . . ,Φn) λ(dx) =

∫

X̌

Ěϑ
x̌
Gn(φ̌1, . . . , φ̌n) λ

∗(dx̌) . (A.11)

Proof. It is clear, that it suffices to check this equality for positive functions
of the form

Gn(x1, . . . , xn) =

n∏

j=1

gj(xj) .

First, we check this equality for n = 1. Note that, for any X → R function g
and for any x ∈ X , one has

∫

X̌

g(< y̌ >1)P
∗(x, dy̌) =

∫

X

g(y)P(x, dy) ,

where < y̌ >1 denotes the first component of the y̌ ∈ X̌ = X ×{0, 1}. Making
use of this equality implies easy (A.11) for n = 1. Assume now that the
equality (A.11) is true until n− 1. We check it for n. Indeed, we have

Ěϑ
x̌
Gn(φ̌1, . . . , φ̌n) = Ěϑ

x̌

n∏

j=1

gj(xj) = Ěϑ
x̌
g1(φ̌1) T (Φ̌1) ,

where

T (y̌) = Ěϑ
y̌

n−1∏

j=1

gj+1(φ̌j) .

Now, we set

µ(Γ) =

∫

Γ

g1(y) λ1(dy) ,

where the measure λ1(·) is defined in (A.10). Therefore, taking into account
Proposition A.4 , we can represent the integral on the right hand side of the
equality (A.11) as

∫

X̌

Ěϑ
x̌
Gn(φ̌1, . . . , φ̌n) λ

∗(dx̌) =

∫

X̌

T (y̌)µ∗(dy̌) .
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By the induction assumption, one has

∫

X̌

T (y̌)µ∗(dy̌) =

∫

X

Ey

n−1∏

j=1

gj+1(Φj) µ(dy) =

∫

X

ExGn(Φ1, . . . ,Φn) λ(dx) .

Hence, the Proposition A.5.

Proposition A.6. Assume that the splitting chain (Φ̌n)n≥1 has an invariant
probability measure π̌. Then, the chain (Φn)n≥1 has the invariant probability
measure π on B(X ) which is given as

π(Γ) = π̌(Γ0) + π̌(Γ1) . (A.12)

Moreover, π̌ = π∗.

Proof. First we check directly that π̌ = π∗. Moreover, for any Γ ∈ B(X )

π(Γ) = π̌(Γ0 ∪ Γ1) =

∫

X̌

π̌(dž) P̌ϑ(ž,Γ0 ∪ Γ1)

=

∫

X̌

π∗(dž) P̌ϑ(ž,Γ0 ∪ Γ1) .

Therefore, applying here Proposition A.5 we obtain that

π(Γ) =

∫

X

P(z,Γ) π(dz) ,

i.e. π is the invariant measure for the chain (Φn)n≥1. Hence Proposition A.6.

A.4 Moment inequality for the process (1.3)

Proposition A.7. Let (yt)t≥0 be a solution of the equation (1.3). Then, for
any m ≥ 1 and for any x ∈ R,

sup
t≥0

sup
ϑ∈Θ

Eϑ
x
(yt)

2m ≤ (2m− 1)!! (x2 +M∗/β)
m , (A.13)

where M∗ = (M + βx∗)
2/β + 2σ2

max
.

Proof. To obtain this inequality we make use of the method proposed in ([9],
p.20) for linear stochastic equation. First of all note that thanks to Theorem
4.7 from [15], for any T > 0, there exists some ǫ > 0 such that for each ϑ ∈ Θ
and x ∈ R

sup
0≤t≤T

Eϑ
x
eǫy

2

t <∞ . (A.14)
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Applying the Ito formula to y2m
t

and denoting

Bϑ(y) = 2yS(y) + σ2(y) + βy2 ,

yield

dy2m
t

= −mβy2m
t

dt +my2(m−1)
t

(
Bϑ(yt) + 2(m− 1)σ2(yt)

)
dt

+ 2my2m−1
t

σ(yt)dWt .

Therefore, taking into account that y0 = x we can represent the last equation
in the following integral form

y2m
t

= e−mβt x2m +m

∫ t

0

e−mβ(t−s) y2(m−1)
s

(
Bϑ(ys) + 2(m− 1)σ2(ys)

)
ds

+ 2m

∫ t

0

e−mβ(t−s) y2m−1
s

σ(ys)dWs . (A.15)

One can check directly that

sup
ϑ∈Θ

sup
y∈R

|Bϑ(y)| ≤
(M + βx∗)

2

β
+ σ2

max
.

Moreover, the property (A.14) yields that, for any m ≥ 1,

Eϑ

∫ t

0

e−mβ(t−s) y2m−1
s

σ(ys)dWs = 0 .

Therefore, setting zt(m) = Eϑ
x
y2m
t

, we obtain

zt(m) ≤ x2m +m(2m− 1)M∗

∫ t

0

e−mβ(t−s) zs(m− 1) ds .

The induction implies directly the bound (A.13). Hence Proposition A.7.

Proposition A.8. Let (yt)t≥0 be a solution of the equation (1.3). Then, for

any K >
√
M1,

sup
|x|≤K

sup
ϑ∈Θ

Pϑ
x
(|y1| ≥ K) ≤ 4σ2

max
(K2 +M2)

β(1− e−β) (K2 −M1)
2 , (A.16)

where M2 and M1 are given in (3.9).

35



Proof. First, putting in (A.15) m = 1, we obtain

sup
t≥0

Eϑ
x
y2
t
≤ x2 +M2

and
Pϑ

x

(
y2
1
≥ K2

)
≤ P

(
2ζ ≥

(
K2 −M1

)
(1− e−β)

)
,

where ζ =
∫ 1

0
e−β(1−s) ysσ(ys)dWs. Now, taking into account that for |x| ≤ K

Eϑ
x
ζ2 =

∫ 1

0

e−2β(1−s)Eϑ
x
y2
s
σ2(ys)ds ≤ σ2

max

(
K2 +M2

) 1− e−β

β
.

The Chebyshev inequality implies now the bound (A.16). Hence Proposi-
tion A.8.
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