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Abstract

In this paper we find nonasymptotic exponential upper bounds for
the deviation in the ergodic theorem for families of homogeneous Markov
processes. We find some sufficient conditions for geometric ergodicity
uniformly over a parametric family. We apply this property to the
nonasymptotic nonparametric estimation problem for ergodic diffusion
processes.
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1 Introduction

In this paper we consider a family of homogeneous Markov chains

(®")geo ; (1.1)

where © is a parametric set for this family and for each ¢ € © the sequence
®” = (®”),-, is a homogeneous Markov chain defined on some measurable
space (X, B(X)) with a transition probability P?.

Our main goal is to study the geometric ergodicity property for this family
uniformly over the parameter 9 € ©.

The geometric ergodicity property is studied in a number of papers (see,
for example, [[-[[4]) for the case of single Markov chain. An important con-
tribution is given by Meyn and Tweedie. The principal Meyn-Tweedie result
concerning the geometric ergodicity is the following one (see, for example, [[J]).

Let (9,)),,~, be an ergodic homogeneous Markov chain on the space (X, B(X))
with an invariant measure 7. If there exists R — [1,00[ function V(z) for
which the chain (P,),~, satisfies the drift condition, then there exist some
constants R > 0 and k > 0 such that, for anyn > 1,

1
sup sup
TEX 1<g<V V(z)

B, 9(®,) —7(g)] < Re ™. (1.2)

This property is called geometric ergodicity. It is useful in applied problems
related to identification of stochastic systems, described by stochastic pro-
cesses with dependent values, in particular, governed by stochastic difference
or stochastic differential equations. As we will see later (see, Definition B.1|
below) the function V', providing the drift condition, is given by the Lyapunov
functions (see [f]) in the case of diffusion processes and (see [@], [, B]) for
Markov chains. For this reason, in the sequel, we will call such functions by
Lyapunov functions.

Necessity of the uniform geometric ergodicity appears in statistics, when
one studies nonasymptotic risk and has to evaluate the maximum of expected
losses over the family of distributions related to a statistical experiment. In
particular, in this paper we will apply the geometric ergodicity property to
the nonasymptotic nonparametric estimation problem (see []) for the ergodic
diffusion process governed by the stochastic differential equation

dy, = S(y,) dt + o(y,)dW,, 0<t<T, (1.3)

where S is a unknown function from some functional class, o(y) is supposed
to be known. To construct an optimal estimator of S we need to apply the
geometric ergodicity property to the homogeneous Markov process uniformly
over S from some functional class (see (B.4)) below). Note that the function S
is the family parameter ¢, in this case.



In order to explain the novelty of the introduced in the paper method, we
give the scheme of proving the property ([.9) in the case of a single chain. The
first step consists in passing to splitting chains, which yields a chain with an
atom. Then, one makes use of the Regenerative Decomposition for splitting
chains to evaluate the convergence rate (see [A], [L]). Let us remember that the
principal term in this decomposition gives a deviation in the renewal theorem,
which may be evaluated thanks to the Kendall renewal theorem that provides
a geometric convergence rate.

Unfortunately, in the case of a family of Markov chains this method is
inapplicable because the Kendall renewal theorem does not provide the explicit
constant in the upper bound. The Kendall theorem claims only the existence
of some finite constant that depends, in our case, on the parameter 9 and there
is no method to make obvious this dependence on the family parameter. As
consequence, the constant R will depend on the parameter ¥ as well.

Therefore, the problem is to find a nonasymptotic exponential upper bound
of type (L) with explicit constants involved in.

To that end in the paper we apply the coupling approach (see [[(]) instead
of the Kendall theorem. Note that in their book Meyn and Tweedie apply
this approach for obtaining a polynomial convergence rate. We obtain an
exponential convergence rate thanks to making use of Lyapunov functions for
coupling renewal process which turn out to be independent of the parameter
(see Theorem B.1] in Section J).

This upper bound enables us to find the explicit nonasymptotic exponential
upper bound in the ergodic theorem for which we can find the supremum over
all Markov processes family in ([L.1]).

In this paper we find some sufficient conditions which provide the geometric
ergodicity for the homogeneous Markov chain family uniformly over this family.
We check these conditions for the diffusion model ([[.3).

The paper is organized as follows. In the next Section the main results are
formulated. In Section f we give the coupling renewal methods. In Section [
the geometric ergodicity is proved for a family of homogeneous Markov chains.
In Section [ we apply this property to nonasymptotic nonparametric estima-
tion in stochastic differential equations. In the Appendix some basic results
are given on homogeneous Markov chains.

2 Main results

Assume that the transition probability family (P?), g satisfies the properties

H,) There exist X — [1,00) function V', some constants p, D, 0 < p < 1,



D >0, and a set C' from B(X) such that

V* =sup V(z) < o0
zeC

and, for any x € X,

zugEﬁ V(@) < (A =p)V(z) + Dig(x). (2.1)

H,) There exist 6,0 < § < 1/2, some set C € B(X) and some probability
measure v on B(X) with v(C) = 1 such that, for any x € X and any A €
B(¥),
gng P’(z,A) > 261,(2) v(A). (2.2)
S

Here Ez means the expectation with respect to the transition probability
PY(x,-).

Remark 2.1. Condition Hy) is called the uniform drift condition and that of
H,) is the uniform minorization condition.

Theorem 2.1. Assume that the family (L) satisfies the conditions Hy)-H,)
with same set C € B(X).

Then, for each @ € ©, the chain ®° admits an invariant distribution 7 on
B(X). Moreover, there exists k > 0 such that

sup e sup sup sup < 00. (2.3)

n>0 V€O zEX 1<f<V V(z)

B’ f(®,) - / f(2) 7 (d2)

X

Apply now to the process ([[.J). We assume that the function S belongs to
the functional class ¥, , ; introduced in [J], i.e.

Sirar =415 € By, : inf S(z)>—L, supS(z) < —1/L}

lz|>a |z|>a

with
By, = {S € CYR) : sup |S(z)| < M},
|z|<a

where M >0, L > 1 and a > 0 are some fixed real numbers.

As concerning the diffusion coefficient, we suppose that o(x) is twice con-
tinuously differentiable and 0 < 09 < o(z) < 07 < 0.

Note that (see, for example, [{]), for any function S from X, , ;, the equa-
tion ([[.3) admits a unique strong solution, which is an ergodic process with
an invariant density mg having the following form

(1/0%(x)) exp{2 [y (S(v)/0?(v))dv} .
fj;o (1/02(2)) exp{2 [; (S(v)/o*(v))dv}dz

ms(2) = g, () =



Theorem 2.2. For any € > 0, there ezist constants R = R(e) > 0 and
Kk = k(€) > 0 such that

E — ) —
sup ¢ sup sup sup 1Es (9(y)]vo 2932 ms(9)]
>0 lgll, <1 2€R SEX,;, 1 (1+2?)

<R, (2.4)

where

gl = sup[g(z)].
zeR

Remark 2.2. Note that the property (B.4) is called geometric ergodicity. As
is shown in Section [J the function (1 + x?)¢ is the Lyapunov function.

3 Coupling Renewal Methods

In this Section we will obtain a nonasymptotic upper bound with explicit
constants in the renewal theorem by making use of the coupling method. The

used here notions can be found in ([H], [@], [L0]).

Let (Y});50 and (Y));5o be two independent sequences of random variables
taking values in N. Assume that the initial random variables Y and Y have
distributions a = (a(k));>o and b = (b(k)),>o, respectively, i.e. for any k > 0,

P(Y,=k)=a(k) and P(Y=Fk)=b(k).

The sequences (Y;);5; and (Y]);, are supposed to be the i.i.d. sequences with

the same distribution p = (p(k));>0, i-e. for any k > 0,
P(Y, = k) =P(Y]=k) =p(k).

We assume also that a(0) > 0 and p(0) = P(Y; = 0) = 0, i.e. the sequences

(Y;);>, and (Y]./)j21 take values in N* = N\ {0}. Moreover, we suppose that

the distributions a, b and p satisfy the following conditions

C,) For any k > 1,
p(k) > 0.

C,) There exists a real number r > 0 such that

In (E e L+ Ee™o + EeTY1> < v*(r) < oo. (3.1)
For any n > 0, we define the following stopping times

k
t,=inf{k >0 : ZY;>n},
i=0

5



k
t =inf{k>0:) Y/ >n}

1=0

and we set
t

n b
Wn:ZYj—n and W;:Z}/j,—n.
=0

J=0

Further we introduce the sequence of stopping times (o},) k0"

o, =inf{i{ >0, ;+1: W,=1},0,=0.

Proposition 3.1. Assume that the conditions C,;) — C,) hold. Then

Ec <3¢V
Proof. First of all, note that
P(oy, =Wy = 1) = p(])

and, for k > 2,
P(oy =1|W,=k) = Loiop1y-

Furthermore,

P(W, =k) =a(0)p(k) + a(k) .
This implies that, for any [ > 1,

P(o, =1) =a(0)p(Dp(1) + a()p(l) + a(0)p(l+ 1) +a(l+1).

Thus we calculate

Ec =P(W,=1)Ee™ + Y EetVPW, =k)
k=2

<Ee™M 4 a(0)Ee™ + Ee™o.
This implies the desired inequality, due to the condition C,).

U
Now, we introduce the embedded Markov chain (C},),~o by

k

and the corresponding entrance time

w=inf{k>1: 27, =1}.

(3.3)

(3.4)

(3.5)

(3.6)



In order to study the property of this stopping time, we need the following
notations

o . l—emn
= 20%(r)’ p= 2 ’
(3.7)
. vt (r)+r/2 2 2A*(r)
A(T) :W and l*:{;ln(l—e_rl)}+1

Moreover, we set

iy = VI (L4 AT(r))ents
Aj(r) = i : (3.8)

Proposition 3.2. Assume that the conditions C,) and C,) hold. Then

Een® < A;‘(r)e“*(r) , (3.9)

1
where v, = min(v,,t,), 7* = —3 In(1 — p*),

B rin(l —g,) B 9
= = 0 U

and

5 (1) eril
A;(T) = A’{("’) (1 + 1 jlé i g*)1/4) :

Proof. First of all, note that the sequence (W,,), >, is a homogeneous Markov
chain taking values in N*, i.e. for any n, k and [ from N*

PW, =klW,_,=1)= p(k)]-{lzl} + 1{k:l71}1{l22} :

Hence, the sequence o, can be represented as
k
j=2

where (€;),5, are i.i.d. random variables such that, for any [ € N*,
P& =1)=Plo, =1[W,=1) =p().

Therefore, the process (Z,.) defined in (B.F) is a homogeneous Markov chain.



For any positive function V', one can calculate directly
EV(Z)|Z,=l|=EV(l—0y) 1{01<l} +EV(n —oy+1) 1{0121} )
where
t;l
e 3w
j=t, +1
Choosing now V(z) = €"1* with r, defined in (B.7) yields

E [V(Z1)|Z0 = l]
V(D)

= Ee % 1{al<l} + Eerl(m*ﬁ) 1{012” .

Taking into account that ! <n + 1, we estimate the exponential moment for

M as

Eem1g, oy < Z (E e"lyl)nJrl P(o, =n).
n=l

By the Holder inequality (with p = r/r;), one has
E]erlY1 < 67"/2 )

Thus .
Bl oy <) ¢ "EP(g =n).

n=I

By making use of the upper bound from Proposition B.]], we find
P(o, =n) <3¢V e,
Therefore, for any [ > 1,
Een™m 1,5y < A*(r) e T2

where A*(r) is defined in (B.7). Moreover, taking into account the definition
of I, in (B.7), we obtain

E[V(Z)|Z,=1] B 1—em
su <e "+
e V() 2

=1-p<1,

i.e. the chain (Z,),, satisfies the condition ([A.J) in the Appendix with

C={1,...,1,} and D= (1+A*(r))e.



Therefore, by using Proposition [A.3 with v* defined in (B.7), one gets

Ly, V
SupUC<777 )

vy <A,

where A% (r) is given in (B.§). Moreover, note that, for any [ > 1,

P(Z,=11Z,=1)=P(o, = 1= 1)+ Y _ Plo, =j)P(n = 1+j—1)
j=l

Therefore, from (B.4) we estimate from below as
P(Z, =1Zy =1) = a(0)p(D)p*(1),

Le.

min P(Z; =117, = 1) 2 a(0)p* (1) (L) = <.,

1<i<l,
where p,,,;,, (k) = min,,; p(l). Now the condition C,) implies the inequality
([A3) for the set B = {1}. Then Proposition [A.3 implies directly the inequality

B3. O

Let us define the renewal sequence (u(n)), s, as follows

u(n) =3 p(n), (3.11)

Jj=0

where p* denotes the jth convolution power. We remind that for j = 0, we
set p°(n) =1 for n =0 and p°(n) = 0 for n > 1.

Proposition 3.3. Assume that the conditions C,) and C,) hold. Then, for
any n > 2,
laxu(n) —bxu(n)| < M e "™, (3.12)

where a x u(n) = Z?:o a(j)u(n —j),

3AL(r)ev en/t

* _ _ nr
M*(r) = T and k= 50 (r)

Proof. Obviously, that for n > 1,

axu(n) =P (Ujo {XJ:YZ = n}) =P(W,_,=1)

9



and

bxu(n) =P <Uj:0 {i Y/ = n}) =PW' _ =1).

Thus,
A(n) =axu(n) —bxu(n)=PW,_ =1, W  >2)

Now, we introduce the “coupling” stopping time 7 as
T=inf{k >1: (W,,W)) = (1,1)}.

Note that, for any n > 2, by strong Markov property, one has

n—1
PW,=1,W >27<n-1)=) PW,=1,W >27=k)
k=1

n—1
=Y P(r=kP*(W, ,=1|W,=1).
k=1

Similarly, one gets

n—1

n
k=1

Therefore, putting
a(n)=PW,=1,W'>2,17>n)

and
ay(n)=P(W' =1, W, >2,7>n)

n

yields, for any n > 2,
[A(n)] = lay(n = 1) = ay(n —1)]
< max(a;(n—1), ay(n—1)) <P(r>n).
Taking into account that 7 < o_ a.s., we obtain
|A(n)| < P(o, >n) < e ™ Ee“=.

Note now that

B =3 B 1, < 3 VEA PSR
k=1 k=1

10



Moreover, by Proposition B.J] and by the Holder inequality, one has
Ec“r =Ee™ (E e“Yl)k_1 < 3efmn/?,
Now, the inequality (B.9) implies the upper bound (B:13). O

Theorem 3.1. Assume that the distribution of Y, satisfies the condition C,)
and, for somer >0,

Ee™ < o00. (3.13)
Then, for any n > 2,
(n) = —| < M*(r) e (3.14)
uln) — r)e .
EY,| ~ ’

where the coefficient M*(r) is given in (B.19) with

v*(r) = In <1 T : Eeryl) : (3.15)

er —

Proof. We choose the distribution a(0) = 1, i.e. Y, =0 a.s. and

[e.9]

b(j) = % p(i).

i=j+1

It is easy to see directly that, for any 7 > 1,

) 1
1

Moreover,
jf

0 00 1

, 1 4 1

rj N — : KPS E rY;
E}le b(j) Eylglp(J)E s ——F B,
J= J=

1=0

i.e. the distributions a, b and p satisfy the condition C,) with v*(r) given by

(B13).
0

4 Proof of Theorem 2.1

First of all note that, the condition H,) and Proposition A3 with
1
r=-3 In(1 —p)

11



imply immediately that

Us(x,r,V
D,(r) = sup sup M

< 00, 4.1
9EO zEX V() (1)

where

Uﬁer Eﬂz V(@) and To=inf{n>1:®, €C}.

Now, we introduce a splitting chain family as in [[7], p. 108 (see also [[J]).
We set X = X x {0,1}, &, = & x {0} and &, = X X {1} Let B(X;) be the
o—fields generated by the set A, = Ax{i} with A € B(X),i =0, 1. Further we
define the o—field B(X) as a o—field generated by B(X,) U B(&X;). Moreover,

for any measure A on B(X') we relate the measure \* on B(X) as
N(A) =1 =)ANANC)+ ANANCY)

and

N (A;) = SMANC).

Now, for each ¥ € ©, we define a homogeneous Markov chain (‘i)i)nzo by the
following transition probabilities PY(&, ) = QY(, -)* with

PY(x,-), it ieX\Cy;
Py ) — .
Q"(z,) = <x’1 >_ 55”< ) o if ieCy; (4.2)
v(+), if TEXN,.

Obviously, that the set o = C is an accessible atom for the chain ((i)i)ngp ie.
for any positive X — R function ¢

EZg(ch”f) = Egg(cfff) , forany 7,y€a.

Moreover, the chain (@;’;)@1 is v* —irreducible, thus 1)—irreducible. Indeed, let
v*T' > 0 for some set I'. Then one can see directly that, for any & € X, U,

P(z,T)>0.
Moreover, for € X \ C,,

P?(z,,T) :[ P(%,d2)P(3T) > P*(z, X)) P(z,T) > ov*(T).

12



This implies directly that, for any nonnegative random variable £ measur-
able with respect to the o—field generated by the chain (<I> )n>1, One has

Egng;?g forany #,9y€a.

In the sequel denote by Ez() the such expectations.
For any set C' from B(X), we denote

fe=inf{n>1:9"eC}. (4.3)
Now, we define the X — [1, 00) function V as

Vz)=V(<z >, (4.4)

where < # >, is the first component of & € X which belongs to X'. We set
Ul(% =E’ Z IV ($ (4.5)

By Proposition [A.f we obtain that, for any = € X,
Ug(xv T, V) = ( 5)U2~ uc, (xov T, V) 1{a:eC} + UC uc, (xm T, V) 1{a:eCC}
+ 5Ug uc, (@, V) 1{xec} )

where z, = (:p i) for i = 0,1. Taking into account that, for any z, y from X
and any set C' from B(X),

Ug(l‘la r, V) - Ug(ylv T, V) ’
we obtain from ([L.1])

U’ T,r, vV .
sup sup COUC}<V ) <D(r) < oo,
YO FcX V(7)
where ]
) V*D
(1) = 575 V0

Note now that, for # € C, by the definition ({.9) and the condition H,),

§ P?(x,C) — 5v(0) S 52
=5 S5




Hence, taking into account that 0 < § < 1/2, one gets

. 52
inf inf P?(%,a) > . 4.6
a:«elcrolucl €O (#,0) 2 1—9 (46)
Thus, by Proposition [A-4, one obtains that
TN &, r, V
D,(r) = sup sup o ) < 00. (4.7)

YEO FeX ‘7( T

)
Therefore, by Proposition &2, the chain (®?),., is ergodic for each ¥ € ©
with the invariant measure given as

7

. R |
(1) =y B Lgvery, where puy = =50 (4.8)
j=1 a o

Now, for any n > 1, we define
F=max{1<j<n-—1: é?EOz}

and we put ¢* = 0 if 7, > n. Moreover, note that, for any X — R function f
and any n > 2,

n—1
ns U _ Nk =N
ELA(®) L = D BLA@) L <y 1pemy

J=1

n—1

i nL =XV =XV x
=Y E'1, B <f(<I>n) 1{L*:j}\q>1,...,q>j> .

j=1

Note that, for j < n — 2,

x_ . 50 50 50
{v :j}:{CI)j €a,®j+1¢a,...,®n_1¢a}

and
{L*:n—l}:{vi_lea}.

Now, taking into account that (Cﬁz)nzl is a homogeneous Markov chain, we
can calculate the last conditional expectation as follows

= 1{&>;?e(l}tf,z9(” —J)s

14



where, for k> 1,
oK) =B F(@) 1, ). (4.9)

By convention, we set ¢, ,(0) = 0. Therefore,
Ez f@i) 1{7‘a<n} = Z 152 (Ta < J) tf,ﬁ<n —Jj) = Uz 9 * tf,ﬁ(”) )
j=1
where v; 4(0) = 0 and, for j > 1,
vpo(i) = P (7, < j) = P2 (80 €a) |
Moreover, for j > 1,

J
vz 9(J) = Z PY (%a =1, i)? € a)

=1
j
= Z Vao(D) wg(l = J) = Yz * uy(d)

where

Yao(l) = PY(7,=1) and uy(l)=P’ (¢ €a). (4.10)
It is clear that v, 4(0) = 0, i.e. 7, * uy(0) = 0. This implies that
Uz,ﬁ(j) = Vi * uy(j)
for all 7 > 0. Finally, for any n > 2,
Eﬁ f( )l{T <} = fyjﬁ*uﬁ*tfﬁ(n). (4.11)

Note that the sequence (uy(n)),>q is a renewal sequence, i.e.

=2 v
=0
where py(k) = P?(7, = k). Now, we set

Ay(n) = lug(n) — gl -

We estimate this term by Theorem B.I. First we have to check the condition
C,) uniformly over the parameter ¥ € O, i.e. to show that, for any k£ > 1,

inf min PY(7, =4)>0. (4.12)

9eo 1<j<k > ¢

15



Let us check this property for k = 1. We remind that, by the condition H,),
one has v(C') = 1. Thus, the definition (f.2) implies

P'(7,=1)=v"(C)) =0>0.
Moreover, for Z € C, i.e. Z=(z,0) with z € C, one has
P’(3,Cy) = PY(2,C) — ov(C) > sv(C) = 4.
By induction, one can show that, for any 7 > 1,
Y ()€ Cyrons, € Cy) > (1—8) 5.
Therefore, taking into account ([L.g) yields, for j > 2,
]:r’z(i'a =7) :PZ (@, §éa,...,<i>j_1 ¢ oz,(i)j € a)

>PY (0, €Cy,....,_,€C,, P, €C)

. 5Pg((i>160$,..5.,<i>j1600) ey

Hence, by Theorem B.J], there exists a constant x, 0 < k < r/2 such that

A* = sup e*"sup Ay(n) < oo. (4.13)
n>1 JeO

Moreover, noting that
+00
7(f) = oy Z tf,ﬁ(j) 5
§=0
and that p; <1 one obtains, for any n > 2,

|Ez f((i)i) 1{7‘a<n} - ﬁﬁ(f” < Yz ¥ Ay * tf,ﬁ(n) + Gz * tf,ﬁ(n) + Sf,ﬁ(n) )

where

G59(n) =P (1, >n) and spy(n)= Y t;,()).

j=n+1

Therefore, for any n > 2,
|Ez f((i)i) - 7vTﬂ(f)| < Vi * Ay * tf,ﬂ(n) + Gz * tf,ﬁ(n)
+EY f(P0) 1ps 0y + 850(n) - (4.14)
Note now, that from (f£7) we obtain, for n > 2 and for any function 1 < f <V,
" EY f(D7) Tir ony < U’(&,7,V) < Dy(r)V(a).

16



Similarly,

Putting
o(&,9) = " |BY f(®)) — 7(f)] (4.15)
n>2
yields
0:(k, ) < (FrDy + Top)lyg + Ds(r) V(i)
where
Te = €M vgn), Dy=D"emA)n), Goy=> " q;y(K)(n)
n>0 n>0 n>0
and )
D, (r) = 2 D2V

er/2 — 1

Now, one obtains the following estimates

Similarly,

The inequality (f.13) implies

el{

e —1

A"

Ay <

Thus,
I,
0" = sup sup g(va:,v ) <
zex veo V(T)

Note that the chain (®,,),, is ergodic with the invariant measure 7 defined
in ({.§) and (A14). By applying Proposition [A.q with A equals to the Dirac
measure of x, we obtain that, for any function 0 < f <V,

ELf(®,) —7(f) = (1-0) (B f(@,) = #(/)) Lpuecy
+6 (B2 f(®,) = 7"(1) Leey
+ (B2 f(®,) = (1) Ljpecr)
where f(Z) = f(< & >,). Thus, for any = € X, one gets
E2f(@,) = n'(H)] < |BY f(®,) = #"(/)] + B2, f(3,) - ().

17



Taking into account that, for any x € X,
V() = V(1) = V(z) = V(ay)
yields the inequality

N e BV f(@,) — 7' (f)] < 207V (x).

n>2
Using here the condition H,) we obtain, for any X — R function 0 < f <V,

> e EN(®,) — 7 ()] < (14 e"(1+ D) +20") V(x) .

n>0

5 Application to diffusion processes

In order to study the geometric ergodicity for the process ([[.3) we start with
the chain (®4),,, where ® = y,.

Proposition 5.1. Forany S € X, , ;, the sequence (®}),,~ is a homogeneous

Markov chain aperiodic and -irreducible, where 1) is the Lebesque measure on

B(R).

Proof. Taking into account (see, for example, [f]) that the solution of the
equation ([[.3) is a homogeneous Markov process, we obtain immediately that
(®Y),,>0 is a homogeneous Markov chain. In this case (see [{]), the transition
density of the process (1) has the following form :

Gt,2,Y) (1 Gy S@=F@)?
PS<yt = y|y0 — qj) = g<t7x’y) _— \/TT‘(y)eff(x) (u) 2t , (51)

where
1! ) : ,
CmezEwm%iémﬁwMM,W$@25@+5@%

SN (10) N VO L 1)
5 = 228 - 3ot @ = [

1
2
e = f() + ()~ @) +we = Jw,

g(z) is the inverse function of f, i.e. g¢(z) is the solution of the equation

z = Og %. The solution exists since o does not change the sign.

18



This means that, for any n > 1, for any A € B(R) and for any = € R,
P, (®) € A|P) = x) = / g(n,z,z)dz. (5.2)
A

Thus, the chain (®Y),, is ¢-irreducible, where 1 is the Lebesgue measure on
B(R). Moreover, in this case the chain is aperiodic, i.e. d = 1.
]
Now, we check the minorization condition H,) for the chain (®Y), ..

Proposition 5.2. For any K > 0, the chain (®Y), -, satisfies the minorization
condition with C = [~ f(K), f(K)] uniformly over S, i.e. for any K > 0, there
exist 6 = 0 > 0 and some probability measure vy on B(R) with v, (C) = 1
such that, for any set A € B(R),

inf inf Pg(dY € A|DY = ) > v (A). (5.3)

z€C SEX )y 4 1,

Proof. From (f.9) it follows that

Py (0] € A|PY =) :/ g(l,z,2)dz.
A
Now, setting v, = Pg(maxy., |w,| < K) and

mx= sp sup (|B<s><z>|+2 /K |S<u>|du),

SE€X s 4,1 |2|S3K

one finds that, for x € C' and y € C,

Uy g e 2K _ 2 V] g V3 i e Y2,k
Lay) > ———F W02 .= & :
g( y) — /—271_0_1 \/%0_1 QK(y)
with .
_ 42 o
ox(y) = —e/ ) lyecy and vy g :2/ e~
Vs K o

This implies the inequality (p.3) with

— .
5 Uy gUg g€ 2K

o= O () = / o (y)dy

A
0

Definition 5.1. A R — [1,00) function V is called uniform over S Lyapunov
function for the equation ([.J) if it is twice continuously differentiable and such
that, for some constants v > 0 and > 0 and for any x € R,

o)y

sup <V(ZL‘)S(ZL‘) + V(x)) < —Vi(x) + 5. (5.4)

SE€X N a,L
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Moreover, lim,_,, V(z) = oo and there exists m > 0 such that

sup V(z)

< 00. 5.5
U T [l (5:5)

Remark 5.1. For any ¢ > 0 and 0 < e <1, the function
V(z) = (14 2%)F (5.6)
satisfies the inequality (B.4) with v = €¢/(2L) and

2

B = sup (V(az)(M + Lz*) + c ;x)V(a:) + ny(a:)) ,

|z|<a*

where x* > a. Indeed, one has

Sw) _ Sa) | SOz M1 Lae 1 pcy,
x x x x L x 2L
provided |x| > a* = 2L(M + a L). Therefore
2
V(x)S) + 7 §x>v<x> —
z? S(x) o?(x) 220% ()

1 L7t + o2 €

< T S S ) P g —

< eV(x)( 7 + T ) < QLV(RC) YV ()

provided (L™' + 03)/(1 + 2?) < 1/(2L), i.e. |x] > /1 + 2Lo?.
Choosing x* = max[2L(M + aL) , /1 + 2Lo?%] yields

sup  sup[V(z)S(z) + Jz(sU)V(:c) +V(z)] < B.

S€X¥prq0, TER 2

Proposition 5.3. Assume that

S
oy 502
zeR 1 + ‘SL’|

< 00 (5.7)

and there exists a Lyapunov function for the equation ([I.3). Then the chain
(®Y),>0 satisfies the drift condition uniformly over S, i.e. there exist constants
K>0,D=Dy >0and0 < p=p, <1 such that, for any v € R, one has

sup  Eg (V(97)[®, = 2) < (1= p)V(2) + D1y cky - (5-8)

S€X N a,L
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Proof. By the Ito formula, one gets

Vi) = Vi) + [ (Vs + T ) as + [ Vo,

In Proposition 4.1 from [P, we have proved that the moments of the solution
of equation ([L.3) are bounded, when o(x) = 1, i.e. for any d > 0,

swp sup sup Bg (ly Yy =) < @+ )P, (5.9)
t>0 |2|<K S€S) .1

o*(y,)
9

where ¢* and o = g, are some positive constants independent of d. The same
kind bounds are true when 0 < 09 < o(z) < 07 < co. This implies that the
stochastic integral is a martingale in the above Ito formula.

Therefore, by setting

g(t) =Eg (V(y)|yo = )

one has

o0 = [ By (V) + ZL00,)l = o) du

This relationship and the definition give
9(t) < —vg(t) + 8.
By the Gronwall inequality, it follows
g(t) < g(0)e™ + B/7.
This implies
sup  Eg (V(®Y)|yg =) <V(x)e " + /7.

SE€X N a,L

It is clear now that there exists K > 0 for which the inequality (5.§) holds
with p=1—e"2 and D = 3/7.
O

5.1 Proof of Theorem 2.2

For any ¢ > 1 and any R —]0, 1] function g, we set

g(x) = Eg (g(yt)\ym = x) = Eg (g(y{t})\yo = x) .

Moreover, taking into account that 7(g) = m(g), one has

Es(9(y)lyo = 7) = 7(9) = Eg (3(@})lyp = ) = 7(3) .

Therefore by applying Theorem P.1] to the chain (¥%),5,, we come the upper
bound (R.4). Hence Theorem P.2. O
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A Appendix

A.1 Homogeneous Markov chains with atoms

We follow the Meyn-Tweedie approach (see [[2]). We remind some definitions
from for a homogeneous Markov chains (®,,),,~, defined on a measurable
state space (X,B(X)). Denote by P(z,-),z € X, the transition probability
of this chain, i.e. for any A € B(X),z € X,

P(z,A) = P (P, € A) =P(P, € A|Dy = ).
Therefore, the nth convolution power of this distribution is
P'(z,A) = P (P, € A).

We remind that a measure 7 on B(X)) is called invariant for this chain if, for

any A € B(X),
m(A) = /X P(z, A)m(dx).

If there exists an invariant positive measure m with 7(X) = 1 then the
chain is called positive.

Definition A.1. The chain (®,,), >, is p-irreducible if there exists a nontrivial
measure @ on B(X) such that, whenever p(A) > 0, one has

L(z,A) =P (U2 {®, € A}) >0 forany z € X.

One can show that, for any @-irreducible chain, there exists a "maximal”
irreducible measure which is noted as 1) and the chain is called 1-irreducible.
An irreducible measure ¢ is maximal if and only if /(A) = 0 implies

Y(xeR : L(z,A) >0)=0.
In the sequel, we denote
B (X) = {A € B(X):y(A4) > 0}.

Definition A.2. The chain (®,),s, is Harris recurrent if it is y-irreducible
and, for any A € B, (X), one has

P, <Z 1{%&1}) =1, forany z € A.
n=1
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Definition A.3. The Markov y-irreducible chain (®,,),, is called periodic of
period d if there exist disjoint sets I'y,..., Ty in B(X) with
v (nLrs) = o
such that, for 1 < 1 < d—1 and for any x € T';, one has
P (P ey, =1
and for x € T'q one has P (&, € I'y) = 1. The chain is aperiodic if d = 1.

Definition A.4. We will say that the chain (®,),,-, satisfies the minorization
condition if, for some 6 > 0, some set C € B(X) and some probability
measure v with v(C') = 1, one has

P(z,A) > 261c(z)v(A), A€ B(X) and z € X. (Al

Obviously, that the minorization condition implies that the chain is v -
irreducible, therefore - irreducible.

Definition A.5. A set a € B (X) is called accessible atom if, for any x and

y from «,
P(z,T)=P(y,I), VI eBX).

In order to study the ergodicity property, we associate to any set C' € B(X)
the stopping time
To=inf{k>1:®, € C}.

Proposition A.1. Suppose that the Markov chain ® is - irreducible and
contains an accessible atom o such that

E, 7, <oo.
Then the chain is ergodic with the invariant probability measure w defined as

1 -
W(F) == EaTa Ea Zl 1{<I>JEI‘}'
]:

Proof. Indeed, by the definition of 7, for any set I' € B(X'), one has

1 (o]
/X 7(d2) P(=T) = =B, Y 1,0, ) B, (1{¢j+ler}\q>1, . ..,cpj)
1 o
=55 | B > Lg,ery + P <<I>Ta+1 € r)

j=2
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Moreover, it is easy to see that
P, (cpm+1 € r) —P_(d,eT).

This implies the relationship
/ m(dz)P(z,T) = =([),
X

i.e. the measure 7 is invariant. Obviously, that 7(&X’) = 1, i.e. 7 is a probability
measure. U

A.2 Lyapunov functions method for Markov chains

We start with the definition of a ” Lyapunov function”.

Definition A.6. We will say that the chain (®,),, satisfies the drift con-
dition if there exists X — [1,00) function V' such that for some constants p,
0<p<1,D >0 and a small set C from B(X) one has

E,(V(®)) < A-p)V(z) + Dlg(z) (A.2)
for all x € X. In this case the function V' 1is called the Lyapunov function.

We remind that E, denotes the expectation with respect to the measure

P,()
Now, for any X — [1,+00) function f and any set A € B(X), we set

Up(a,r, f) =B, Y e’ f(2)). (A.3)

Proposition A.2. Assume that for the Markov chain (®,),, the condition
([AQ) holds. Then, for anyr, 0 <r < —In(l — p), one has

Ua(z,r, V)
sup ——— < D (r), A4
v = A
where 1 ) D
—ple" +De"
D, (r) =

1—(1—per
Proof. The condition (A.3) implies immediately

Ua(z,r, V)< (1—=p)e"V(z)+ (1 —p)eUs(x,r,V)+ De".
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Taking into account that V' (z) > 1, we obtain the inequality (A4). O
Further, for any set C' from B(X'), we introduce the sequence of stopping
times (75(n)),>o as follows : 7,(0) = 0 and, for n > 1,

To(n) =inf{k > 7, (n—1)+1: &, € C}.
Obviously, that 7-(1) = 7. We use the following property.
Proposition A.3. Let C and B be two sets from B(X) such that

inf P(z,B) >¢, >0. (A.5)

zeC

Then, for any n > 1,

sSup P:B(TC(n) < 7—B) < (]' - g*)n—l .
zeX

Proof. First, note that, for any =z € C,
P,(ro.<15) <P, (1<15)=1-P(2,B) <1-—g,.
Indeed, using the strong Markov property and denoting
2, =@ (1 (A.6)

7c(n) “H{rc(n)<oo} >

one gets, for n > 2 and for any x € X,
Px (7-6’(”) < TB) = EJ: (1{TC(7L—1)<TB}PZR71<TC < 7-B>)
<1 =c)P, (rc(n—1) <7p) .
Obviously, that for n = 2,

supP, (15(2) <75) <1—g,.
reX

Therefore, by induction method, we obtain the desired inequality.
O

Proposition A.4. Assume that there exist a set C' € B(X), a real r > 0 and
a R = [1,400) function V' such that

1
D*(r)=1 — A.
(r) + :1612 V) Uo(z,r, V) < 00 (A.7)
and
V* =sup V(z) < 00. (A.8)
zeC

25



Then, for any set B € B(X) satisfying the condition (AH), one has

1
sip — U (2.4 V) < D" A9
R Vi = B v
where
—min(r.), =" BO=6)
Y =man(r, Ly), Ly = 2 1n(D*(T)V*)
and

b= o) (1 -2V,

Proof. Indeed, note that

T (n+1)

Up(z, 7, V) =) B, > €7V(®)1 5
n=0

j=1c(n)+1

< Uc(z,7,V)+ Z E, 1{TB>TC(n)} erTe ™ Uo7, V),

n=1
where z, is defined in (A.§). Taking into account that 0 < v < r and the
conditions (A7) and (A.§), we get

sup Un(z,7, V) < D*(r) V™.

zeC

Therefore, setting

T(r) =D Byly,or @™, (A.10)

n=1

we obtain

Ug(z,~, V) < D*(r)V(z) + D*(r)V*Y(x).
By the strong Markov property, we find, for any v > 0,
To(n) To(n—1) T, To(n—1)
E ¢ =E e'c E, e <py)E, e
with
p(y) =sup E_e7"c .
zeC

By the induction method, we obtain

E, 0™ < p" 1 (1)E, 7
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and, for 0 < a < r, it follows that
E, e ™ <V (z)D*(r)p" (a).

From here by the Cauchy - Schwartz inequality, we give

E 1

x ~{rg>1o(n)} BHTC(TL) < \/P:B(TB > TC(n)) Em e2r7o(n)
< D'(r)V(z)q" ",

where
q=q(r) = V(1 =<)p(2k).
By the Holder inequality and the definition of s, we obtain

p(2k) < (D (V> < /T,

ie.
g(k) < (1= )"
This implies the inequality ([A.9). Hence, the Proposition A.4. O

A.3 Properties of splitting chains

Now, we study some property of the splitting chain (ci)z)n21 constructed in
Section 4 | which we represent as

8 = (G 1), (A1)
where ¢, € X and i, € {0,1}.

Proposition A.5. For any measure A on B(X) and any set I € B(X),

l/iI%f,f)A%df)::Aﬁfﬁ, (A.12)

where

MOzLHwMW%

Proof. Indeed, by the definition of the * operation and of the transition
probability P(, ) we obtain

LP@DszfP@WMm:;m,

X
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Proposition A.6. For any n > 1, any measurable positive X™ — R function
G and for any measure X\ on B(X), one has

/ E, G, (0,...,®)\dr) = / E'G,(dy,...,0,) X(di). (A.13)
X X

Proof. It is clear, that it suffices to check this equality for positive functions
of the form

G, (Ty,...,x,) = H g;(x;) .

First, we check this equality for n = 1. Note that, for any X — R function g
and for any x € X', one has

l/gk@>0PW%®%=/g@ﬂN%®%

X

where < § >, denotes the first component of the § € X = X x {0,1}. Making
use of this equality implies easy (AI3) for n = 1. Assume now that the
equality (A.13) is true until n — 1. We check it for n. Indeed, we have

n

Ean(g{)l, KR an) = Ei H g;(x;) = Ei 91(?131) T(é?) ;
j=1
where

T(y) = EZ H 9j+1(¢3j)-

Now, we set
() = [ (o) M),
r

where the measure A, (-) is defined in ([A-I2). Therefore, taking into account
Proposition [A.J , we can represent the integral on the right hand side of the
equality (A.13) as

X

[ BLG b van) = [ T ().
X
By the induction assumption, one has
n—1
[ @@ = [ B T] g () = [ B.G (@100, M),
X X i1 X

Hence, the Proposition A.6. O
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Proposition A.7. Assume that the splitting chain ((i)Z)nzl has an invariant
probability measure 7. Then, the chain (®,),~, has the invariant probability
measure ™ on B(X) which is given as

7(I') =#(y) + 7(Ty) . (A.14)
Moreover, ® = m*.

Proof. Define the measure 7(-) on B(X) as follows
w() = [ #(d9) Qe
X

where the kernel Q(-, -) is defined in ([L.2). It is clear, that 7(-) is a probability
measure on B(X) such that, for I' € B(X),

X

fr(f):/fr(dé)f)(é,f):w(f)*.

H
=
=
\'UJ
A
Z
I

7(L'y) + 7(L,) for any set I' from B(X). Moreover,

=(1 —5)/0 7(dz) Q(%, ) +/ 7(dz) Q(%, )

CC
+5/ m(dz) Q(z,T).
c
Taking into account the definition (f.2)) we obtain
m(I) :/ P(z,T')n(dz),
x

i.e. 7 is the invariant measure for the chain (®,),,-,. Hence Proposition [A.7.

O
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