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1 Introduction

In this paper we consider a family of homogeneous Markov chains

(Φϑ)ϑ∈Θ , (1.1)

where Θ is a parametric set for this family and for each ϑ ∈ Θ the sequence
Φϑ = (Φϑ

n
)n≥0 is a homogeneous Markov chain defined on some measurable

space (X , B(X )) with a transition probability Pϑ.
Our main goal is to study the geometric ergodicity property for this family

uniformly over the parameter ϑ ∈ Θ.
The geometric ergodicity property is studied in a number of papers (see,

for example, [12]-[14]) for the case of single Markov chain. An important con-
tribution is given by Meyn and Tweedie. The principal Meyn–Tweedie result
concerning the geometric ergodicity is the following one (see, for example, [12]).

Let (Φn)n≥1 be an ergodic homogeneous Markov chain on the space (X ,B(X ))
with an invariant measure π. If there exists R → [1,∞[ function V (x) for
which the chain (Φn)n≥1 satisfies the drift condition, then there exist some
constants R > 0 and κ > 0 such that, for any n ≥ 1,

sup
x∈X

sup
1≤g≤V

1

V (x)
|Ex g(Φn)− π(g)| ≤ Re−κn . (1.2)

This property is called geometric ergodicity. It is useful in applied problems
related to identification of stochastic systems, described by stochastic pro-
cesses with dependent values, in particular, governed by stochastic difference
or stochastic differential equations. As we will see later (see, Definition 5.1
below) the function V , providing the drift condition, is given by the Lyapunov
functions (see [9]) in the case of diffusion processes and (see [4], [7], [8]) for
Markov chains. For this reason, in the sequel, we will call such functions by
Lyapunov functions.

Necessity of the uniform geometric ergodicity appears in statistics, when
one studies nonasymptotic risk and has to evaluate the maximum of expected
losses over the family of distributions related to a statistical experiment. In
particular, in this paper we will apply the geometric ergodicity property to
the nonasymptotic nonparametric estimation problem (see [1]) for the ergodic
diffusion process governed by the stochastic differential equation

dyt = S(yt) dt+ σ(yt)dWt , 0 ≤ t ≤ T , (1.3)

where S is a unknown function from some functional class, σ(y) is supposed
to be known. To construct an optimal estimator of S we need to apply the
geometric ergodicity property to the homogeneous Markov process uniformly
over S from some functional class (see (2.4) below). Note that the function S
is the family parameter ϑ, in this case.
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In order to explain the novelty of the introduced in the paper method, we
give the scheme of proving the property (1.2) in the case of a single chain. The
first step consists in passing to splitting chains, which yields a chain with an
atom. Then, one makes use of the Regenerative Decomposition for splitting
chains to evaluate the convergence rate (see [6], [12]). Let us remember that the
principal term in this decomposition gives a deviation in the renewal theorem,
which may be evaluated thanks to the Kendall renewal theorem that provides
a geometric convergence rate.

Unfortunately, in the case of a family of Markov chains this method is
inapplicable because the Kendall renewal theorem does not provide the explicit
constant in the upper bound. The Kendall theorem claims only the existence
of some finite constant that depends, in our case, on the parameter ϑ and there
is no method to make obvious this dependence on the family parameter. As
consequence, the constant R will depend on the parameter ϑ as well.

Therefore, the problem is to find a nonasymptotic exponential upper bound
of type (1.2) with explicit constants involved in.

To that end in the paper we apply the coupling approach (see [10]) instead
of the Kendall theorem. Note that in their book Meyn and Tweedie apply
this approach for obtaining a polynomial convergence rate. We obtain an
exponential convergence rate thanks to making use of Lyapunov functions for
coupling renewal process which turn out to be independent of the parameter
(see Theorem 3.1 in Section 3).

This upper bound enables us to find the explicit nonasymptotic exponential
upper bound in the ergodic theorem for which we can find the supremum over
all Markov processes family in (1.1).

In this paper we find some sufficient conditions which provide the geometric
ergodicity for the homogeneous Markov chain family uniformly over this family.
We check these conditions for the diffusion model (1.3).

The paper is organized as follows. In the next Section the main results are
formulated. In Section 3 we give the coupling renewal methods. In Section 4
the geometric ergodicity is proved for a family of homogeneous Markov chains.
In Section 5 we apply this property to nonasymptotic nonparametric estima-
tion in stochastic differential equations. In the Appendix some basic results
are given on homogeneous Markov chains.

2 Main results

Assume that the transition probability family (Pϑ)ϑ∈Θ satisfies the properties

H1) There exist X → [1,∞) function V , some constants ρ,D, 0 < ρ < 1,
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D > 0, and a set C from B(X ) such that

V ∗ = sup
x∈C

V (x) <∞

and, for any x ∈ X ,

sup
ϑ∈Θ

Eϑ
x
(V (Φ1)) ≤ (1− ρ)V (x) + D1C(x) . (2.1)

H2) There exist δ, 0 < δ < 1/2, some set C ∈ B(X ) and some probability
measure ν on B(X ) with ν(C) = 1 such that, for any x ∈ X and any A ∈
B(X ),

inf
ϑ∈Θ

Pϑ(x,A) ≥ 2 δ 1C(x) ν(A) . (2.2)

Here Eϑ
x
means the expectation with respect to the transition probability

Pϑ(x, ·).

Remark 2.1. Condition H1) is called the uniform drift condition and that of
H2) is the uniform minorization condition.

Theorem 2.1. Assume that the family (1.1) satisfies the conditions H1)–H2)
with same set C ∈ B(X ).

Then, for each θ ∈ Θ, the chain Φϑ admits an invariant distribution πϑ on
B(X ). Moreover, there exists κ > 0 such that

sup
n≥0

eκn sup
ϑ∈Θ

sup
x∈X

sup
1≤f≤V

1

V (x)

∣∣∣∣E
ϑ
x
f(Φn)−

∫

X

f(z) πϑ(dz)

∣∣∣∣ < ∞ . (2.3)

Apply now to the process (1.3). We assume that the function S belongs to
the functional class ΣM,a,L introduced in [2], i.e.

ΣM,a,L = {S ∈ BM,a : inf
|x|≥a

Ṡ(x) ≥ −L , sup
|x|≥a

Ṡ(x) ≤ −1/L}

with
BM,a = {S ∈ C1(R) : sup

|x|≤a

|S(x)| ≤M} ,

where M > 0, L ≥ 1 and a > 0 are some fixed real numbers.
As concerning the diffusion coefficient, we suppose that σ(x) is twice con-

tinuously differentiable and 0 < σ0 ≤ σ(x) ≤ σ1 <∞.
Note that (see, for example, [3]), for any function S from ΣM,a,L, the equa-

tion (1.3) admits a unique strong solution, which is an ergodic process with
an invariant density πS having the following form

πS(x) = πS,σ(x) =
(1/σ2(x)) exp{2

∫ x

0
(S(v)/σ2(v))dv}

∫ +∞

−∞
(1/σ2(z)) exp{2

∫ z

0
(S(v)/σ2(v))dv}dz

.
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Theorem 2.2. For any ǫ > 0, there exist constants R = R(ǫ) > 0 and
κ = κ(ǫ) > 0 such that

sup
t≥0

eκt sup
‖g‖

∗
≤1

sup
x∈R

sup
S∈ΣM,a,L

|ES (g(yt)|y0 = x)− πS(g)|
(1 + x2)ǫ

≤ R , (2.4)

where
‖g‖∗ = sup

x∈R

|g(x)| .

Remark 2.2. Note that the property (2.4) is called geometric ergodicity. As
is shown in Section 5 the function (1 + x2)ǫ is the Lyapunov function.

3 Coupling Renewal Methods

In this Section we will obtain a nonasymptotic upper bound with explicit
constants in the renewal theorem by making use of the coupling method. The
used here notions can be found in ([5], [7], [10]).

Let (Yj)j≥0 and (Y ′
j
)j≥0 be two independent sequences of random variables

taking values in N. Assume that the initial random variables Y0 and Y ′
0
have

distributions a = (a(k))k≥0 and b = (b(k))k≥0, respectively, i.e. for any k ≥ 0,

P(Y0 = k) = a(k) and P(Y ′
0
= k) = b(k) .

The sequences (Yj)j≥1 and (Y ′
j
)j≥1 are supposed to be the i.i.d. sequences with

the same distribution p = (p(k))k≥0, i.e. for any k ≥ 0,

P(Y1 = k) = P(Y ′
1
= k) = p(k) .

We assume also that a(0) > 0 and p(0) = P(Y1 = 0) = 0, i.e. the sequences
(Yj)j≥1 and (Y ′

j
)j≥1 take values in N

∗ = N \ {0}. Moreover, we suppose that
the distributions a, b and p satisfy the following conditions

C1) For any k ≥ 1,
p(k) > 0 .

C2) There exists a real number r > 0 such that

ln
(
E erY0 + E erY

′

0 + E erY1

)
≤ υ∗(r) < ∞ . (3.1)

For any n ≥ 0, we define the following stopping times

tn = inf{k ≥ 0 :
k∑

i=0

Yi > n} ,
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t′
n
= inf{k ≥ 0 :

k∑

i=0

Y ′
i
> n}

and we set

Wn =

tn∑

j=0

Yj − n and W ′
n
=

t′
n∑

j=0

Y ′
j
− n . (3.2)

Further we introduce the sequence of stopping times (σk)k≥0:

σk = inf{l ≥ σk−1 + 1 : Wl = 1} , σ0 = 0 . (3.3)

Proposition 3.1. Assume that the conditions C1)−C2) hold. Then

E erσ1 ≤ 3 eυ
∗(r) .

Proof. First of all, note that

P(σ1 = l|W0 = 1) = p(l)

and, for k ≥ 2,
P(σ1 = l|W0 = k) = 1{l=k−1} .

Furthermore,
P(W0 = k) = a(0)p(k) + a(k) .

This implies that, for any l ≥ 1,

P(σ1 = l) = a(0)p(l)p(1) + a(1)p(l) + a(0)p(l + 1) + a(l + 1) . (3.4)

Thus we calculate

E erσ1 = P(W0 = 1)E erY1 +

∞∑

k=2

E er(k−1)P(W0 = k)

≤ E erY1 + a(0)E erY1 + E erY0 .

This implies the desired inequality, due to the condition C2).

Now, we introduce the embedded Markov chain (Ck)k≥0 by

Ck =W ′
σk

(3.5)

and the corresponding entrance time

̟ = inf{k ≥ 1 : Zk = 1} . (3.6)
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In order to study the property of this stopping time, we need the following
notations

r1 =
r2

2υ∗(r)
, ρ∗ =

1− e−r1

2
,

A∗(r) =
3eυ

∗(r)+r/2

1− e−r/2
and l∗ =

[
2

r
ln

(
2A∗(r)

1− e−r1

)]
+ 1 .

(3.7)

Moreover, we set

A∗
1
(r) =

√
1− ρ∗ + (1 + A∗(r))er1l∗

1−√
1− ρ∗

. (3.8)

Proposition 3.2. Assume that the conditions C1) and C2) hold. Then

E eγ1̟ ≤ A∗
2
(r)eυ

∗(r) , (3.9)

where γ1 = min(γ∗, ι∗), γ
∗ = −1

2
ln(1− ρ∗) ,

ι∗ = − r ln(1− ς∗)

2(lnA∗(r) + r1l∗)
, ς∗ = a(0)p2(1)pmin(l∗)

and

A∗
2
(r) = A∗

1
(r)

(
1 +

A∗
1
(r)er1l∗

1− (1− ς∗)
1/4

)
.

Proof. First of all, note that the sequence (Wn)n≥0 is a homogeneous Markov
chain taking values in N

∗, i.e. for any n, k and l from N
∗

P(Wn = k|Wn−1 = l) = p(k)1{l=1} + 1{k=l−1}1{l≥2} .

Hence, the sequence σk can be represented as

σk = σ1 +
k∑

j=2

ξj , (3.10)

where (ξj)j≥2 are i.i.d. random variables such that, for any l ∈ N
∗,

P(ξ2 = l) = P(σ1 = l|W0 = 1) = p(l) .

Therefore, the process (Zk) defined in (3.5) is a homogeneous Markov chain.
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For any positive function V , one can calculate directly

E [V (Z1)|Z0 = l] = E V (l − σ1) 1{σ1<l} + E V (η1 − σ1 + l) 1{σ1≥l} ,

where

η1 =

t′
σ1∑

j=t′
σ0

+1

Y ′
j
.

Choosing now V (x) = er1x with r1 defined in (3.7) yields

E [V (Z1)|Z0 = l]

V (l)
= E e−r1σ1 1{σ1<l} + E er1(η1−σ1) 1{σ1≥l} .

Taking into account that t′
n
≤ n+ 1, we estimate the exponential moment for

η1 as

E er1η1 1{σ1≥l} ≤
∞∑

n=l

(
E er1Y1

)n+1
P(σ1 = n) .

By the Hölder inequality (with p = r/r1), one has

E er1Y1 ≤ er/2 .

Thus

E er1η1 1{σ1≥l} ≤
∞∑

n=l

er(n+1)/2P(σ1 = n) .

By making use of the upper bound from Proposition 3.1, we find

P(σ1 = n) ≤ 3eυ
∗(r)e−rn .

Therefore, for any l ≥ 1,

E er1η1 1{σ1≥l} ≤ A∗(r) e−rl/2 ,

where A∗(r) is defined in (3.7). Moreover, taking into account the definition
of l∗ in (3.7), we obtain

sup
l≥l

∗

E [V (Z1)|Z0 = l]

V (l)
≤ e−r1 +

1− e−r1

2
= 1− ρ∗ < 1 ,

i.e. the chain (Zk)k≥1 satisfies the condition (A.2) in the Appendix with

C = {1, . . . , l∗} and D = (1 + A∗(r))er1l∗ .
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Therefore, by using Proposition A.2 with γ∗ defined in (3.7), one gets

sup
l≥1

UC(l, γ
∗, V )

V (l)
≤ A∗

1
(r) ,

where A∗
1
(r) is given in (3.8). Moreover, note that, for any l ≥ 1,

P(Z1 = 1|Z0 = l) = P(σ1 = l − 1) +

∞∑

j=l

P(σ1 = j)P(η1 = 1 + j − l)

≥ P(σ1 = l)p(1) .

Therefore, from (3.4) we estimate from below as

P(Z1 = 1|Z0 = l) ≥ a(0)p(l)p2(1) ,

i.e.
min
1≤l≤l

∗

P(Z1 = 1|Z0 = l) ≥ a(0)p2(1)pmin(l∗) := ς∗ ,

where pmin(k) = min1≤l≤k p(l). Now the condition C1) implies the inequality
(A.5) for the set B = {1}. Then Proposition A.3 implies directly the inequality
(3.9).

Let us define the renewal sequence (u(n))n≥0 as follows

u(n) =

∞∑

j=0

p∗j(n) , (3.11)

where p∗j denotes the jth convolution power. We remind that for j = 0, we
set p0(n) = 1 for n = 0 and p0(n) = 0 for n ≥ 1.

Proposition 3.3. Assume that the conditions C1) and C2) hold. Then, for
any n ≥ 2,

|a ∗ u(n)− b ∗ u(n)| ≤M∗ e−κn , (3.12)

where a ∗ u(n) =
∑n

j=0
a(j)u(n− j),

M∗(r) =

√
3A∗

2
(r)eυ∗(r)eγ1/4

eγ1/4 − 1
and κ =

γ1r

2υ∗(r)
.

Proof. Obviously, that for n ≥ 1,

a ∗ u(n) = P

(
∪j=0

{
j∑

i=0

Yi = n

})
= P(Wn−1 = 1)
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and

b ∗ u(n) = P

(
∪j=0

{
j∑

i=0

Y ′
i
= n

})
= P(W ′

n−1
= 1) .

Thus,

∆(n) = a ∗ u(n)− b ∗ u(n) = P(Wn−1 = 1 , W ′
n−1

≥ 2)

−P(W ′
n−1

= 1 , Wn−1 ≥ 2) .

Now, we introduce the “coupling” stopping time τ as

τ = inf{k ≥ 1 : (Wk,W
′
k
) = (1, 1)} .

Note that, for any n ≥ 2, by strong Markov property, one has

P(Wn = 1 , W ′
n
≥ 2, τ ≤ n− 1) =

n−1∑

k=1

P(Wn = 1 , W ′
n
≥ 2, τ = k)

=

n−1∑

k=1

P(τ = k)P2(Wn−k = 1 |W0 = 1) .

Similarly, one gets

P(W ′
n
= 1 , Wn ≥ 2, τ ≤ n− 1) =

n−1∑

k=1

P(τ = k)P2(Wn−k = 1 |W0 = 1) .

Therefore, putting

α1(n) = P(Wn = 1 , W ′
n
≥ 2 , τ ≥ n)

and
α2(n) = P(W ′

n
= 1 , Wn ≥ 2 , τ ≥ n)

yields, for any n ≥ 2,

|∆(n)| = |α1(n− 1)− α2(n− 1)|

≤ max (α1(n− 1) , α2(n− 1)) ≤ P(τ > n) .

Taking into account that τ ≤ σ̟ a.s., we obtain

|∆(n)| ≤ P(σ̟ > n) ≤ e−κnEeκσ̟ .

Note now that

Eeκσ̟ =
∞∑

k=1

E eκσk 1{̟=k} ≤
∞∑

k=1

√
E e2κσk

√
P(̟ ≥ k) .
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Moreover, by Proposition 3.1 and by the Hölder inequality, one has

E eκσk = E eκσ1
(
E eκY1

)k−1 ≤ 3 ekγ1/2 .

Now, the inequality (3.9) implies the upper bound (3.12).

Theorem 3.1. Assume that the distribution of Y1 satisfies the condition C1)
and, for some r > 0,

E erY1 <∞ . (3.13)

Then, for any n ≥ 2,
∣∣∣∣u(n)−

1

E Y1

∣∣∣∣ ≤ M∗(r) e−κn , (3.14)

where the coefficient M∗(r) is given in (3.12) with

υ∗(r) = ln

(
1 +

er

er − 1
E erY1

)
. (3.15)

Proof. We choose the distribution a(0) = 1, i.e. Y0 = 0 a.s. and

b(j) =
1

EY1

∞∑

i=j+1

p(i) .

It is easy to see directly that, for any j ≥ 1,

b ∗ u(j) = 1

EY1
.

Moreover,

∞∑

j=1

erj b(j) =
1

EY1

∞∑

j=1

p(j)

j−1∑

i=0

eri ≤ 1

er − 1
E erY1 ,

i.e. the distributions a, b and p satisfy the condition C2) with υ
∗(r) given by

(3.15).

4 Proof of Theorem 2.1

First of all note that, the condition H1) and Proposition A.2 with

r = −1

2
ln(1− ρ)
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imply immediately that

D1(r) = sup
ϑ∈Θ

sup
x∈X

Uϑ
C
(x, r, V )

V (x)
< ∞ , (4.1)

where

Uϑ
C
(x, r, V ) = Eϑ

x

τC∑

j=1

erj V (Φj) and τC = inf{n ≥ 1 : Φn ∈ C} .

Now, we introduce a splitting chain family as in [12], p. 108 (see also [13]).
We set X̌ = X × {0, 1}, X0 = X × {0} and X1 = X × {1}. Let B(Xi) be the
σ−fields generated by the set Ai = A×{i} with A ∈ B(X ), i = 0, 1. Further we
define the σ−field B(X̌ ) as a σ−field generated by B(X0) ∪ B(X1). Moreover,
for any measure λ on B(X ) we relate the measure λ∗ on B(X̌ ) as

λ∗(A0) = (1− δ)λ(A ∩ C) + λ(A ∩ Cc)

and
λ∗(A1) = δλ(A ∩ C) .

Now, for each ϑ ∈ Θ, we define a homogeneous Markov chain (Φ̌ϑ
n
)n≥0 by the

following transition probabilities P̌ϑ(x̌, ·) = Qϑ(x̌, ·)∗ with

Qϑ(x̌, ·) =





Pϑ(x, ·) , if x̌ ∈ X0 \ C0 ;

Pϑ(x, ·)− δν(·)
1− δ

, if x̌ ∈ C0 ;

ν(·) , if x̌ ∈ X1 .

(4.2)

Obviously, that the set α = C1 is an accessible atom for the chain (Φ̌ϑ
n
)n≥1, i.e.

for any positive X̌ → R function g

Ěϑ
x̌
g(Φ̌ϑ

1
) = Ěϑ

y̌
g(Φ̌ϑ

1
) , for any x̌ , y̌ ∈ α .

Moreover, the chain (Φ̌ϑ
n
)n≥1 is ν

∗−irreducible, thus ψ−irreducible. Indeed, let

ν∗Γ̌ > 0 for some set Γ̌. Then one can see directly that, for any x̌ ∈ X1 ∪ C0,

P̌(x̌, Γ̌) > 0 .

Moreover, for x̌ ∈ X0 \ C0,

P̌2(x0, Γ̌) =

∫

X̌

P̌(x̌, dž) P̌(ž, Γ̌) ≥ P∗(x,X1) P̌(ž, Γ̌) ≥ δν∗(Γ̌) .
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This implies directly that, for any nonnegative random variable ξ measur-
able with respect to the σ−field generated by the chain (Φ̌ϑ

n
)n≥1, one has

Ěϑ
x̌
ξ = Ěϑ

y̌
ξ for any x̌ , y̌ ∈ α .

In the sequel denote by Ěϑ
α
(·) the such expectations.

For any set Č from B(X̌ ), we denote

τ̌Č = inf
{
n ≥ 1 : Φ̌ϑ

n
∈ Č

}
. (4.3)

Now, we define the X̌ → [1,∞) function V̌ as

V̌ (x̌) = V (< x̌ >1) , (4.4)

where < x̌ >1 is the first component of x̌ ∈ X̌ which belongs to X . We set

Ǔϑ
Č
(x̌, r, V̌ ) = Ěϑ

x̌

τ̌Č∑

j=1

erj V̌ (Φ̌ϑ
j
) . (4.5)

By Proposition A.6 we obtain that, for any x ∈ X ,

Uϑ
C
(x, r, V ) = (1− δ)Ǔϑ

C0∪C1
(x0, r, V̌ ) 1{x∈C} + Ǔϑ

C0∪C1
(x0, r, V̌ ) 1{x∈Cc}

+ δǓϑ
C0∪C1

(x1, r, V̌ ) 1{x∈C} ,

where xi = (x, i) for i = 0, 1. Taking into account that, for any x, y from X̌
and any set Č from B(X̌ ),

Ǔϑ
Č
(x1, r, V̌ ) = Ǔϑ

Č
(y1, r, V̌ ) ,

we obtain from (4.1)

sup
ϑ∈Θ

sup
x̌∈X̌

Ǔϑ
C0∪C1

(x̌, r, V̌ )

V̌ (x̌)
≤ Ď(r) < ∞ ,

where

Ď(r) =
1

δ(1− δ)
V ∗D(r) .

Note now that, for x̌ ∈ C0 by the definition (4.2) and the condition H2),

P̌ϑ(x̌, α) = P̌ϑ(x̌, C1) = δ
Pϑ(x, C)− δν(C)

1− δ
≥ δ2

1− δ
.

Similarly, for x̌ ∈ C1,

P̌ϑ(x̌, α) = P̌ϑ(x̌, C1) = δν(C) = δ .
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Hence, taking into account that 0 < δ < 1/2, one gets

inf
x̌∈C0∪C1

inf
ϑ∈Θ

P̌ϑ(x̌, α) ≥ δ2

1− δ
. (4.6)

Thus, by Proposition A.4, one obtains that

D2(r) = sup
ϑ∈Θ

sup
x̌∈X̌

Ǔϑ
α
(x̌, r, V̌ )

V̌ (x̌)
< ∞ . (4.7)

Therefore, by Proposition A.1, the chain (Φ̌ϑ
n
)n≥0 is ergodic for each ϑ ∈ Θ

with the invariant measure given as

π̌ϑ(Γ̌) = µϑ Ě
ϑ
α

τ̌α∑

j=1

1{Φ̌ϑ
j
∈Γ̌} , where µϑ =

1

Ěϑ
α
τ̌α
. (4.8)

Now, for any n ≥ 1, we define

ι∗ = max{1 ≤ j ≤ n− 1 : Φ̌ϑ
j
∈ α}

and we put ι∗ = 0 if τ̌α ≥ n. Moreover, note that, for any X̌ → R function f
and any n ≥ 2,

Ěϑ
x̌
f(Φ̌ϑ

n
) 1{τ̌α<n} =

n−1∑

j=1

Ěϑ
x̌
f(Φ̌ϑ

n
) 1{τ̌α≤j}1{ι∗=j}

=

n−1∑

j=1

Ěϑ
x̌
1{τ̌α≤j} Ě

ϑ
x̌

(
f(Φ̌ϑ

n
) 1{ι∗=j}|Φ̌ϑ

1
, . . . , Φ̌ϑ

j

)
.

Note that, for j ≤ n− 2,

{ι∗ = j} =
{
Φ̌ϑ

j
∈ α , Φ̌ϑ

j+1
/∈ α , . . . , Φ̌ϑ

n−1
/∈ α

}

and
{ι∗ = n− 1} =

{
Φ̌ϑ

n−1
∈ α

}
.

Now, taking into account that (Φ̌ϑ
n
)n≥1 is a homogeneous Markov chain, we

can calculate the last conditional expectation as follows

Ěϑ
x̌

(
f(Φ̌ϑ

n
) 1{ι∗=j}|Φ̌ϑ

1
, . . . , Φ̌ϑ

j

)
= 1{Φ̌ϑ

j
∈α}Ě

ϑ
x̌

(
f(Φ̌ϑ

n
) 1{Φ̌ϑ

j+1
/∈α ,...,Φ̌ϑ

n−1
/∈α}|Φ̌ϑ

j

)

= 1{Φ̌ϑ
j
∈α}Ě

ϑ
α

(
f(Φ̌ϑ

n−j
) 1{Φ̌ϑ

1
/∈α ,...,Φ̌ϑ

n−j−1
/∈α}

)

= 1{Φ̌ϑ
j
∈α}tf,ϑ(n− j) ,
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where, for k ≥ 1,
tf,ϑ(k) = Ěϑ

α
f(Φ̌ϑ

k
) 1{τ̌α≥k} . (4.9)

By convention, we set tf,ϑ(0) = 0. Therefore,

Ěϑ
x̌
f(Φ̌ϑ

n
) 1{τ̌α<n} =

n∑

j=1

P̌ϑ
x̌
(τ̌α ≤ j) tf,ϑ(n− j) = υx̌,ϑ ∗ tf,ϑ(n) ,

where υx̌,ϑ(0) = 0 and, for j ≥ 1,

υx̌,ϑ(j) = P̌ϑ
x̌
(τ̌α ≤ j) = P̌ϑ

x̌

(
Φ̌ϑ

j
∈ α
)
.

Moreover, for j ≥ 1,

υx̌,ϑ(j) =

j∑

l=1

P̌ϑ
x̌

(
τ̌α = l , Φ̌ϑ

j
∈ α
)

=

j∑

l=1

γx̌,ϑ(l) uϑ(l − j) = γx̌,ϑ ∗ uϑ(j) ,

where
γx̌,ϑ(l) = P̌ϑ

x̌
(τ̌α = l) and uϑ(l) = P̌ϑ

α

(
Φ̌ϑ

l
∈ α
)
. (4.10)

It is clear that γx̌,ϑ(0) = 0, i.e. γx̌,ϑ ∗ uϑ(0) = 0. This implies that

υx̌,ϑ(j) = γx̌,ϑ ∗ uϑ(j) ,

for all j ≥ 0. Finally, for any n ≥ 2,

Ěϑ
x̌
f(Φ̌ϑ

n
) 1{τ̌α<n} = γx̌,ϑ ∗ uϑ ∗ tf,ϑ(n) . (4.11)

Note that the sequence (uϑ(n))n≥0 is a renewal sequence, i.e.

uϑ(n) =
∞∑

j=0

p∗j
ϑ
(n) ,

where pϑ(k) = P̌ϑ
α
(τ̌α = k). Now, we set

∆ϑ(n) = |uϑ(n)− µϑ| .

We estimate this term by Theorem 3.1. First we have to check the condition
C1) uniformly over the parameter ϑ ∈ Θ, i.e. to show that, for any k ≥ 1,

inf
ϑ∈Θ

min
1≤j≤k

P̌ϑ
α
(τ̌α = j) > 0 . (4.12)
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Let us check this property for k = 1. We remind that, by the condition H2),
one has ν(C) = 1. Thus, the definition (4.2) implies

P̌ϑ
α
(τ̌α = 1) = ν∗(C1) = δ > 0 .

Moreover, for ž ∈ C0, i.e. ž = (z, 0) with z ∈ C, one has

P̌ϑ(ž, C0) = Pϑ(z, C)− δν(C) ≥ δν(C) = δ .

By induction, one can show that, for any j ≥ 1,

P̌ϑ
α

(
Φ̌1 ∈ C0 , . . . , Φ̌j ∈ C0

)
≥ (1− δ) δj−1 .

Therefore, taking into account (4.6) yields, for j ≥ 2,

P̌ϑ
α
(τ̌α = j) = P̌ϑ

α

(
Φ̌1 /∈ α , . . . , Φ̌j−1 /∈ α , Φ̌j ∈ α

)

≥ P̌ϑ
α

(
Φ̌1 ∈ C0 , . . . , Φ̌j−1 ∈ C0 , Φ̌j ∈ C1

)

≥
δ P̌ϑ

α

(
Φ̌1 ∈ C0 , . . . , Φ̌j−1 ∈ C0

)

1− δ
≥ δj−1 .

Hence, by Theorem 3.1, there exists a constant κ, 0 < κ ≤ r/2 such that

∆∗ = sup
n≥1

e2κn sup
ϑ∈Θ

∆ϑ(n) < ∞ . (4.13)

Moreover, noting that

π̌ϑ(f) = µϑ

+∞∑

j=0

tf,ϑ(j) ,

and that µϑ ≤ 1 one obtains, for any n ≥ 2,

|Ěϑ
x̌
f(Φ̌ϑ

n
) 1{τ̌α<n} − π̌ϑ(f)| ≤ γx̌,ϑ ∗∆ϑ ∗ tf,ϑ(n) + qx̌,ϑ ∗ tf,ϑ(n) + sf,ϑ(n) ,

where
qx̌,ϑ(n) = P̌ϑ

x̌
(τα > n) and sf,ϑ(n) =

∑

j=n+1

tf,ϑ(j) .

Therefore, for any n ≥ 2,

|Ěϑ
x̌
f(Φ̌ϑ

n
) − π̌ϑ(f)| ≤ γx̌,ϑ ∗∆ϑ ∗ tf,ϑ(n) + qx̌,ϑ ∗ tf,ϑ(n)

+ Ěϑ
x̌
f(Φ̌ϑ

n
) 1{τ̌α≥n} + sf,ϑ(n) . (4.14)

Note now, that from (4.7) we obtain, for n ≥ 2 and for any function 1 ≤ f ≤ V̌ ,

ern Ěϑ
x̌
f(Φ̌ϑ

n
) 1{τ̌α≥n} ≤ Ǔϑ

α
(x̌, r, V̌ ) ≤ D2(r)V̌ (x̌) .
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Similarly,

ernsf,ϑ(n) ≤ Ǔϑ
α
(α, r, V̌ ) ≤ D2(r)V

∗ ≤ D2(r)V
∗ V̌ (x̌) .

Putting

̺(x̌, ϑ) =
∑

n≥2

eκn |Ěϑ
x̌
f(Φ̌ϑ

n
) − π̌ϑ(f)| (4.15)

yields
̺x̌(κ, ϑ) ≤ (γ̂x̌,ϑ∆̂ϑ + q̂x̌,ϑ)t̂f,ϑ +D3(r) V̌ (x̌) ,

where

γ̂x̌,ϑ =
∑

n≥0

eκn γx̌,ϑ(n) , ∆̂ϑ =
∑

n≥0

eκn∆ϑ(n) , q̂x̌,ϑ =
∑

n≥0

eκn qx̌,ϑ(κ)(n)

and

D3(r) = 2
D2(r)V

∗er/2

er/2 − 1
.

Now, one obtains the following estimates

γ̂x̌,ϑ = Ěϑ
x̌
eκτ̌α ≤ Ǔϑ

α
(x̌, r, V̌ ) ≤ D2(r)V̌ (x̌) .

Similarly,
q̂x̌,ϑ ≤ 1 + Ǔϑ

α
(x̌, r, V̌ ) ≤ (1 +D2(r))V̌ (x̌) .

The inequality (4.13) implies

∆̂ϑ ≤ eκ

eκ − 1
∆∗ .

Thus,

̺∗ = sup
x̌∈X̌

sup
ϑ∈Θ

̺(x̌, ϑ)

V̌ (x̌)
< ∞ .

Note that the chain (Φn)n≥1 is ergodic with the invariant measure πϑ defined
in (4.8) and (A.14). By applying Proposition A.6 with λ equals to the Dirac
measure of x, we obtain that, for any function 0 < f ≤ V ,

Eϑ
x
f(Φn)− πϑ(f) = (1− δ)

(
Ěϑ

x0
f̌(Φ̌n)− π̌ϑ(f̌)

)
1{x∈C}

+ δ
(
Ěϑ

x1
f̌(Φ̌n)− π̌ϑ(f̌)

)
1{x∈C}

+
(
Ěϑ

x0
f̌(Φ̌n)− π̌ϑ(f̌)

)
1{x∈Cc} ,

where f̌(x̌) = f(< x̌ >1). Thus, for any x ∈ X , one gets

|Eϑ
x
f(Φn)− πϑ(f)| ≤ |Ěϑ

x0
f̌(Φ̌n)− π̌ϑ(f̌)|+ |Ěϑ

x1
f̌(Φ̌n)− π̌ϑ(f̌)| .
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Taking into account that, for any x ∈ X ,

V (x) = V̌ (x̌) = V̌ (x0) = V̌ (x1)

yields the inequality

∑

n≥2

eκn |Eϑ
x
f(Φn)− πϑ(f)| ≤ 2̺∗V (x) .

Using here the condition H1) we obtain, for any X → R function 0 < f ≤ V ,

∑

n≥0

eκn |Eϑ
x
f(Φn)− πϑ(f)| ≤ (1 + eκ(1 +D) + 2̺∗) V (x) .

5 Application to diffusion processes

In order to study the geometric ergodicity for the process (1.3) we start with
the chain (Φy

n)n≥0, where Φy
n = yn.

Proposition 5.1. For any S ∈ ΣM,a,L, the sequence (Φ
y
n)n≥0 is a homogeneous

Markov chain aperiodic and ψ-irreducible, where ψ is the Lebesgue measure on
B(R).

Proof. Taking into account (see, for example, [3]) that the solution of the
equation (1.3) is a homogeneous Markov process, we obtain immediately that
(Φy

n)n≥0 is a homogeneous Markov chain. In this case (see [3]), the transition
density of the process (yt) has the following form :

PS(yt = y|y0 = x) = g(t, x, y) =
G(t, x, y)√
2πtσ(y)

e
∫ f(y)
f(x)

S̃(u)du− (f(y)−f(x))2

2t , (5.1)

where

G(t, x, y) = ES exp{−1

2

∫ t

0

B(S)(ŵu)du} , B(S)(x) = ˙̃S(x) + S̃2(x) ,

S̃(z) =
S(g(z))

σ(g(z))
− 1

2
σ̇(g(z)) , f(x) =

∫ x

0

du

σ(u)
,

ŵu = f(x) +
u

t
(f(y)− f(x)) + wu − u

t
wt ,

g(z) is the inverse function of f , i.e. g(z) is the solution of the equation
z =

∫ g

0
du
σ(u)

. The solution exists since σ does not change the sign.
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This means that, for any n ≥ 1, for any A ∈ B(R) and for any x ∈ R,

PS(Φ
y
n ∈ A|Φy

0 = x) =

∫

A

g(n, x, z)dz . (5.2)

Thus, the chain (Φy
n)n≥0 is ψ-irreducible, where ψ is the Lebesgue measure on

B(R). Moreover, in this case the chain is aperiodic, i.e. d = 1.

Now, we check the minorization condition H2) for the chain (Φy
n
)n≥0.

Proposition 5.2. For any K > 0, the chain (Φy
n
)n≥0 satisfies the minorization

condition with C = [−f(K), f(K)] uniformly over S, i.e. for any K > 0, there
exist δ = δK > 0 and some probability measure νK on B(R) with νK(C) = 1
such that, for any set A ∈ B(R),

inf
x∈C

inf
S∈ΣM,a,L

PS(Φ
y
1 ∈ A|Φy

0 = x) ≥ δνK(A) . (5.3)

Proof. From (5.2) it follows that

PS(Φ
y
1 ∈ A|Φy

0
= x) =

∫

A

g(1, x, z)dz .

Now, setting v1,K = PS(max0≤u≤1 |wu| ≤ K) and

v2,K = sup
S∈ΣM,a,L

sup
|z|≤3K

(
|B(S)(z)|+ 2

∫ K

0

|S̃(u)|du
)
,

one finds that, for x ∈ C and y ∈ C,

g(1, x, y) ≥
v1,K e

−v2,K

√
2πσ1

e−f2(y)/2 :=
v1,K v3,K e

−v2,K

√
2πσ1

̺K(y)

with

̺K(y) =
1

v3,K
e−f2(y) 1{y∈C} and v3,K = 2

∫

C

e−f2(t)dt .

This implies the inequality (5.3) with

δK =
v1,Kv3,Ke

−v2,K

√
2πσ1

and νK(A) =

∫

A

̺K(y)dy .

Definition 5.1. A R → [1,∞) function V is called uniform over S Lyapunov
function for the equation (1.3) if it is twice continuously differentiable and such
that, for some constants γ > 0 and β > 0 and for any x ∈ R,

sup
S∈ΣM,a,L

(
V̇ (x)S(x) +

σ2(x)

2
V̈ (x)

)
≤ −γV (x) + β . (5.4)
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Moreover, limx→∞ V (x) = ∞ and there exists m > 0 such that

sup
x∈R

V (x)

1 + |x|m <∞ . (5.5)

Remark 5.1. For any c > 0 and 0 < ǫ ≤ 1, the function

V (x) = (1 + x2)ǫ (5.6)

satisfies the inequality (5.4) with γ = ǫ/(2L) and

β = sup
|x|≤x∗

(
V̇ (x)(M + Lx∗) +

σ2(x)

2
V̈ (x) + γV (x)

)
,

where x∗ > a. Indeed, one has

S(x)

x
=

S(x)

x
+
Ṡ(θ)(x− a)

x
≤ M

x
− 1

L
+
La

x
≤ − 1

2L
, a ≤ θ ≤ x ,

provided |x| > a∗ = 2L(M + aL). Therefore

V̇ (x)S(x) +
σ2(x)

2
V̈ (x) =

2ǫV (x)
x2

1 + x2
S(x)

x
+ ǫV (x)

σ2(x)

1 + x2
+ 2ǫ(ǫ− 1)V (x)

x2σ2(x)

(1 + x2)2

≤ ǫV (x)

(
− 1

L
+
L−1 + σ2

1

1 + x2

)
≤ − ǫ

2L
V (x) = −γV (x)

provided (L−1 + σ2
1)/(1 + x2) ≤ 1/(2L), i.e. |x| >

√
1 + 2Lσ2

1.

Choosing x∗ = max[2L(M + aL) ,
√
1 + 2Lσ2

1 ] yields

sup
S∈ΣM,a,L

sup
x∈R

[V̇ (x)S(x) +
σ2(x)

2
V̈ (x) + γV (x)] ≤ β .

Proposition 5.3. Assume that

sup
x∈R

|S(x)|
1 + |x| <∞ (5.7)

and there exists a Lyapunov function for the equation (1.3). Then the chain
(Φy

n)n≥0 satisfies the drift condition uniformly over S, i.e. there exist constants
K > 0, D = DK > 0 and 0 < ρ = ρK < 1 such that, for any x ∈ R, one has

sup
S∈ΣM,a,L

ES (V (Φy
1)|Φ0 = x) ≤ (1− ρ)V (x) +D1{|x|≤K} . (5.8)
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Proof. By the Ito formula, one gets

V (yt) = V (y0) +

∫ t

0

(
V̇ (ys)S(ys) +

σ2(ys)

2
V̈ (ys)

)
ds +

∫ t

0

V̇ (ys)σ(ys)dws .

In Proposition 4.1 from [2], we have proved that the moments of the solution
of equation (1.3) are bounded, when σ(x) = 1, i.e. for any d > 0,

sup
t≥0

sup
|x|≤K

sup
S∈ΣM,a,L

ES

(
|yt|d|y0 = x

)
≤ c∗(d+ 1)d/2 ̺d , (5.9)

where c∗ and ̺ = ̺K are some positive constants independent of d. The same
kind bounds are true when 0 < σ0 ≤ σ(x) ≤ σ1 < ∞. This implies that the
stochastic integral is a martingale in the above Ito formula.

Therefore, by setting

g(t) = ES (V (yt)|y0 = x)

one has

g(t) =

∫ t

0

ES

(
V̇ (yu)S(yu) +

σ2(yu)

2
V̈ (yu)|y0 = x

)
du .

This relationship and the definition 5.1 give

ġ(t) ≤ −γg(t) + β .

By the Gronwall inequality, it follows

g(t) ≤ g(0)e−γt + β/γ .

This implies

sup
S∈ΣM,a,L

ES (V (Φy
1)|y0 = x) ≤ V (x)e−γ + β/γ .

It is clear now that there exists K > 0 for which the inequality (5.8) holds
with ρ = 1− e−γ/2 and D = β/γ.

5.1 Proof of Theorem 2.2

For any t ≥ 1 and any R →]0, 1] function g, we set

g̃(x) = ES

(
g(yt)|y[t] = x

)
= ES

(
g(y{t})|y0 = x

)
.

Moreover, taking into account that π(g) = π(g̃), one has

ES(g(yt)|y0 = x)− π(g) = ES

(
g̃(Φy

[t])|y0 = x
)
− π(g̃) .

Therefore by applying Theorem 2.1 to the chain (Φy
n)n≥0, we come the upper

bound (2.4). Hence Theorem 2.2.
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A Appendix

A.1 Homogeneous Markov chains with atoms

We follow the Meyn-Tweedie approach (see [12]). We remind some definitions
from [12] for a homogeneous Markov chains (Φn)n≥0 defined on a measurable
state space (X ,B(X )). Denote by P (x, ·) , x ∈ X , the transition probability
of this chain, i.e. for any A ∈ B(X ), x ∈ X ,

P (x,A) = Px(Φ1 ∈ A) = P(Φ1 ∈ A|Φ0 = x) .

Therefore, the nth convolution power of this distribution is

P n(x,A) = Px(Φn ∈ A) .

We remind that a measure π on B(X )) is called invariant for this chain if, for
any A ∈ B(X ),

π(A) =

∫

X

P (x,A)π(dx) .

If there exists an invariant positive measure π with π(X ) = 1 then the
chain is called positive.

Definition A.1. The chain (Φn)n≥0 is ϕ-irreducible if there exists a nontrivial
measure ϕ on B(X ) such that, whenever ϕ(A) > 0, one has

L(x,A) = Px(∪∞
n=1

{Φn ∈ A}) > 0 for any x ∈ X .

One can show that, for any ϕ-irreducible chain, there exists a ”maximal”
irreducible measure which is noted as ψ and the chain is called ψ-irreducible.
An irreducible measure ψ is maximal if and only if ψ(A) = 0 implies

ψ(x ∈ R : L(x,A) > 0) = 0 .

In the sequel, we denote

B+(X ) = {A ∈ B(X ) : ψ(A) > 0} .

Definition A.2. The chain (Φn)n≥0 is Harris recurrent if it is ψ-irreducible
and, for any A ∈ B+(X ), one has

Px

(
∞∑

n=1

1{Φn∈A}

)
= 1 , for any x ∈ A .
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Definition A.3. The Markov ψ-irreducible chain (Φn)n≥0 is called periodic of
period d if there exist disjoint sets Γ1, . . . ,Γd in B(X ) with

ψ
(
∩d
j=1

Γc
j

)
= 0

such that, for 1 ≤ i ≤ d− 1 and for any x ∈ Γi, one has

Px(Φ1 ∈ Γi+1) = 1

and for x ∈ Γd one has Px(Φ1 ∈ Γ1) = 1. The chain is aperiodic if d = 1.

Definition A.4. We will say that the chain (Φn)n≥0 satisfies the minorization
condition if, for some δ > 0, some set C ∈ B(X ) and some probability
measure ν with ν(C) = 1, one has

P (x,A) ≥ 2δ1C(x)ν(A) , A ∈ B(X ) and x ∈ X . (A.1)

Obviously, that the minorization condition implies that the chain is ν -
irreducible, therefore ψ- irreducible.

Definition A.5. A set α ∈ B+(X ) is called accessible atom if, for any x and
y from α,

P(x,Γ) = P(y,Γ) , ∀ Γ ∈ B(X ) .

In order to study the ergodicity property, we associate to any set C ∈ B(X )
the stopping time

τC = inf{k ≥ 1 : Φk ∈ C} .

Proposition A.1. Suppose that the Markov chain Φ is ψ- irreducible and
contains an accessible atom α such that

Eατα <∞ .

Then the chain is ergodic with the invariant probability measure π defined as

π(Γ) =
1

Eα τα
Eα

τα∑

j=1

1{Φj∈Γ}
.

Proof. Indeed, by the definition of π, for any set Γ ∈ B(X ), one has

∫

X

π(dz)P(z,Γ) =
1

Eα τα
Eα

∞∑

j=1

1{j≤τα}
Eα

(
1{Φj+1∈Γ}

|Φ1, . . . ,Φj

)

=
1

Eα τα


Eα

τα∑

j=2

1{Φj∈Γ}
+Pα

(
Φτα+1 ∈ Γ

)

 .
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Moreover, it is easy to see that

Pα

(
Φτα+1 ∈ Γ

)
= Pα (Φ1 ∈ Γ) .

This implies the relationship

∫

X

π(dz)P(z,Γ) = π(Γ) ,

i.e. the measure π is invariant. Obviously, that π(X ) = 1, i.e. π is a probability
measure.

A.2 Lyapunov functions method for Markov chains

We start with the definition of a ”Lyapunov function”.

Definition A.6. We will say that the chain (Φn)n≥0 satisfies the drift con-
dition if there exists X → [1,∞) function V such that for some constants ρ,
0 < ρ < 1, D > 0 and a small set C from B(X ) one has

Ex (V (Φ1)) ≤ (1− ρ)V (x) + D1C(x) (A.2)

for all x ∈ X . In this case the function V is called the Lyapunov function.

We remind that Ex denotes the expectation with respect to the measure
Px(·).

Now, for any X → [1,+∞) function f and any set A ∈ B(X ), we set

UA(x, r, f) = Ex

τA∑

j=1

erj f(Φj) . (A.3)

Proposition A.2. Assume that for the Markov chain (Φn)n≥1 the condition
(A.2) holds. Then, for any r, 0 < r < − ln(1− ρ), one has

sup
x∈X

UC(x, r, V )

V (x)
≤ D1(r) , (A.4)

where

D1(r) =
(1− ρ)er +D er

1− (1− ρ)er
.

Proof. The condition (A.2) implies immediately

UC(x, r, V ) ≤ (1− ρ)erV (x) + (1− ρ)erUC(x, r, V ) +D er .
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Taking into account that V (x) ≥ 1, we obtain the inequality (A.4).
Further, for any set C from B(X ), we introduce the sequence of stopping

times (τC(n))n≥0 as follows : τC(0) = 0 and, for n ≥ 1,

τC(n) = inf{k ≥ τC(n− 1) + 1 : Φk ∈ C} .

Obviously, that τC(1) = τC . We use the following property.

Proposition A.3. Let C and B be two sets from B(X ) such that

inf
x∈C

P(x,B) ≥ ς∗ > 0 . (A.5)

Then, for any n ≥ 1,

sup
x∈X

Px(τC(n) < τB) ≤ (1− ς∗)
n−1 .

Proof. First, note that, for any x ∈ C,

Px (τC < τB) ≤ Px (1 < τB) = 1−P(x,B) ≤ 1− ς∗ .

Indeed, using the strong Markov property and denoting

zn = ΦτC (n) 1{τC (n)<∞} , (A.6)

one gets, for n ≥ 2 and for any x ∈ X ,

Px (τC(n) < τB) = Ex

(
1{τC(n−1)<τB}Pzn−1

(τC < τB)
)

≤ (1− ς∗)Px (τC(n− 1) < τB) .

Obviously, that for n = 2,

sup
x∈X

Px (τC(2) < τB) ≤ 1− ς∗ .

Therefore, by induction method, we obtain the desired inequality.

Proposition A.4. Assume that there exist a set C ∈ B(X ), a real r > 0 and
a R → [1,+∞) function V such that

D∗(r) = 1 + sup
x∈X

1

V (x)
UC(x, r, V ) <∞ (A.7)

and
V ∗ = sup

x∈C

V (x) <∞ . (A.8)
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Then, for any set B ∈ B(X ) satisfying the condition (A.5), one has

sup
x∈X

1

V (x)
UB(x, γ, V ) ≤ D∗

1
, (A.9)

where

γ = min(r, ι0) , ι0 = −r
2

ln(1− ς∗)

ln(D∗(r)V ∗)

and

D∗
1
(r) = D∗(r)

(
1 +

D∗(r)V ∗

1− (1− ς∗)
1/4

)
.

Proof. Indeed, note that

UB(x, γ, V ) =
∞∑

n=0

Ex

τC(n+1)∑

j=τC(n)+1

eγj V (Φj) 1{τB≥j}

≤ UC(x, γ, V ) +
∞∑

n=1

Ex 1{τB>τC(n)} e
γτC(n) UC(zn, γ, V ) ,

where zn is defined in (A.6). Taking into account that 0 < γ ≤ r and the
conditions (A.7) and (A.8), we get

sup
x∈C

UC(x, γ, V ) ≤ D∗(r) V ∗ .

Therefore, setting

Υ(x) =

∞∑

n=1

Ex 1{τB>τC(n)} e
γτC (n) , (A.10)

we obtain
UB(x, γ, V ) ≤ D∗(r)V (x) +D∗(r)V ∗Υ(x) .

By the strong Markov property, we find, for any γ > 0,

Ex e
γτC (n) = Ex e

γτC(n−1) Ezn−1
eγτC ≤ ρ(γ)Ex e

γτC (n−1)

with
ρ(γ) = sup

z∈C

Ez e
γτC .

By the induction method, we obtain

Ex e
γτC (n) ≤ ρn−1(γ)Ex e

γτC
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and, for 0 < a ≤ r, it follows that

Ex e
aτC (n) ≤ V (x)D∗(r)ρn−1(a) .

From here by the Cauchy - Schwartz inequality, we give

Ex 1{τB>τC(n)} e
κτC(n) ≤

√
Px(τB > τC(n))

√
Ex e

2κτC(n)

≤ D∗(r) V (x) qn−1 ,

where
q = q(κ) =

√
(1− ς∗)ρ(2κ) .

By the Hölder inequality and the definition of κ, we obtain

ρ(2κ) ≤ (D∗(r)V ∗)2κ/r ≤
√

1− ς∗ ,

i.e.
q(κ) ≤ (1− ς∗)

1/4 .

This implies the inequality (A.9). Hence, the Proposition A.4.

A.3 Properties of splitting chains

Now, we study some property of the splitting chain (Φ̌ϑ
n
)n≥1 constructed in

Section 4 , which we represent as

Φ̌ϑ
n
= (φ̌n, ι̌n) , (A.11)

where φ̌n ∈ X and ι̌n ∈ {0, 1}.

Proposition A.5. For any measure λ on B(X ) and any set Γ̌ ∈ B(X̌ ),

∫

X̌

P̌(x̌, Γ̌) λ∗(dx̌) = λ∗
1
(Γ̌) , (A.12)

where

λ1(·) =
∫

X

P(x, ·) λ(dx) .

Proof. Indeed, by the definition of the ∗ operation and of the transition
probability P̌(·, ·) we obtain

∫

X̌

P̌(x̌, Γ̌) λ∗(dx̌) =

∫

X

P(x, Γ̌)∗ λ(dx) = λ∗
1
(Γ̌) .
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Proposition A.6. For any n ≥ 1, any measurable positive X n → R function
G and for any measure λ on B(X ), one has

∫

X

ExGn(Φ1, . . . ,Φn) λ(dx) =

∫

X̌

Ěϑ
x̌
Gn(φ̌1, . . . , φ̌n) λ

∗(dx̌) . (A.13)

Proof. It is clear, that it suffices to check this equality for positive functions
of the form

Gn(x1, . . . , xn) =

n∏

j=1

gj(xj) .

First, we check this equality for n = 1. Note that, for any X → R function g
and for any x ∈ X , one has

∫

X̌

g(< y̌ >1)P
∗(x, dy̌) =

∫

X

g(y)P(x, dy) ,

where < y̌ >1 denotes the first component of the y̌ ∈ X̌ = X ×{0, 1}. Making
use of this equality implies easy (A.13) for n = 1. Assume now that the
equality (A.13) is true until n− 1. We check it for n. Indeed, we have

Ěϑ
x̌
Gn(φ̌1, . . . , φ̌n) = Ěϑ

x̌

n∏

j=1

gj(xj) = Ěϑ
x̌
g1(φ̌1) T (Φ̌

ϑ
1
) ,

where

T (y̌) = Ěϑ
y̌

n−1∏

j=1

gj+1(φ̌j) .

Now, we set

µϑ(Γ) =

∫

Γ

g1(y) λ1(dy) ,

where the measure λ1(·) is defined in (A.12). Therefore, taking into account
Proposition A.5 , we can represent the integral on the right hand side of the
equality (A.13) as

∫

X̌

Ěϑ
x̌
Gn(φ̌1, . . . , φ̌n) λ

∗(dx̌) =

∫

X̌

T (y̌)µ∗(dy̌) .

By the induction assumption, one has

∫

X̌

T (y̌)µ∗(dy̌) =

∫

X

Ey

n−1∏

j=1

gj+1(Φj) µϑ(dy) =

∫

X

ExGn(Φ1, . . . ,Φn) λ(dx) .

Hence, the Proposition A.6.
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Proposition A.7. Assume that the splitting chain (Φ̌ϑ
n
)n≥1 has an invariant

probability measure π̌. Then, the chain (Φn)n≥1 has the invariant probability
measure π on B(X ) which is given as

π(Γ) = π̌(Γ0) + π̌(Γ1) . (A.14)

Moreover, π̌ = π∗.

Proof. Define the measure π(·) on B(X ) as follows

π(·) =
∫

X̌

π̌(dž)Q(ž, ·) ,

where the kernel Q(·, ·) is defined in (4.2). It is clear, that π(·) is a probability
measure on B(X ) such that, for Γ̌ ∈ B(X ),

π̌(Γ̌) =

∫

X̌

π̌(dž) P̌(ž, Γ̌) = π(Γ̌)∗ .

Thus, π(Γ) = π̌(Γ0) + π̌(Γ1) for any set Γ from B(X ). Moreover,

π(Γ) =

∫

X̌

π̌(dž)Q(ž,Γ) =

∫

X̌

π∗(dž)Q(ž,Γ)

= (1− δ)

∫

C

π(dz)Q(z0,Γ) +

∫

Cc

π(dz)Q(z0,Γ)

+ δ

∫

C

π(dz)Q(z1,Γ) .

Taking into account the definition (4.2) we obtain

π(Γ) =

∫

X

P(z,Γ) π(dz) ,

i.e. π is the invariant measure for the chain (Φn)n≥1. Hence Proposition A.7.

29



References

[1] Galtchouk, L. and S. Pergamenshchikov, S. (2005) Nonparametric se-
quential minimax estimation of the drift coefficient in diffusion processes.
Sequential Analysis, 24 (3), 303-330.

[2] Galtchouk, L. and Pergamenshchikov, S.(2007) Uniform concentration
inequality for ergodic diffusion processes. Stochastic Processes and their
applications, 117, 830-839.

[3] Gihman, I.I. and Skorohod, A.V. (1972) Stochastic differential equations.
Springer, New York.

[4] Feigin, P.D. and Tweedie, R.I. (1985) Random coefficient autoregres-
sive processes : a Markov chain analysis of stationary and finiteness of
moments.J. Time Ser. Anal., 6, 1-14.

[5] Feller, W. (1968) An Introduction to Probability Theory and its Applica-
tions. 1, Jonh Wiley & Sons, 3rd edition.

[6] Kingman, J.F.C. (1972)Regenerative Phenomena. Jonh Wiley & Sons,
London.
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