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A global high-gain finite-time observer

A global finite-time observer is designed for nonlinear systems which are uniformly observable and globally Lipschitz. This result is based on a high-gain approach combined with recent advances on finite-time stability using Lyapunov function and homogeneity concepts.

I. INTRODUCTION

Nonlinear observer design has a long standing history for more than twenty years (see [START_REF] Besancon | Nonlinear Observers and Applications[END_REF]). The main stream being to use linear observer ideas. As a result, linearization of nonlinear system with algebraic methods have been investigated in [START_REF] Conte | Algrebraic Methods for Nonlinear Control Systems[END_REF], [START_REF] Krener | nonlinear observers with linearizable error dynamics[END_REF] and [START_REF] Glumineau | New algebro-geometric conditions for the linearization by input-output injection[END_REF]. Another way to tackle such design is to use high-gain. The resulting observer, which is closely related to a triangular structure, has been developed by Gauthier et al. (see [START_REF] Gauthier | A simple observer for nonlinear systems. applications to bioreactors[END_REF], [START_REF] Gauthier | Observability and observers for nonlinear systems[END_REF]) and is derived from the uniform observability of nonlinear systems. Let us just mention few other ones: Kazantzis and Kravaris observer which uses the Lyapunov auxiliary theorem and a direct coordinate transformation in [START_REF] Kazantzis | Nonlinear observer design using lyapunov's auxiliary theorem[END_REF] ; backstepping design in [START_REF] Li | Global finite-time stabilization by dynamic output feedback for a class of continuous nonlinear systems[END_REF] ; adaptive observer in [START_REF] Young | A systematic approach to adaptive observer synthesis for nonlinear systems[END_REF] ; and many other ones . . . All these approaches result in asymptotic convergence of the observer error dynamics whereas in some applications, finite-time convergence is needed: for instance like in secure communication where synchronization of chaotic signal is of major importance or for walking robots (see for instance [START_REF] Azemi | Sliding-mode adaptive observer approach to chaotic synchronization[END_REF], [START_REF] Perruquetti | Finite-time observers: application to secure communication[END_REF], [START_REF] Plestan | Stable walking of a 7-dof biped robot[END_REF]), for which each step has obviously to be completed in finite time. Less attention was paid to finite-time observer design except using some nonsmooth techniques (see for example the sliding mode observers [START_REF] Drakunov | Sliding mode observers. tutorial[END_REF], [START_REF] Haskara | On sliding mode observers via equivalent control approach[END_REF] especially the step by step observer [START_REF] Floquet | Super twisting algorithm based step-bystep sliding mode observers for nonlinear systems with unknown inputs[END_REF], [START_REF] Floquet | On the robust fault detection via sliding mode perturbation observer[END_REF]). Another approach based on the moving horizon observer was developed in [START_REF] Michalska | Moving horizon observers and observerbased control[END_REF]. Recently, finite-time stability (FTS) and stabilization (in the continuous time domain) using Lyapunov theory and homogeneity concept, has attracted a lot of attention: Bhat and Bernstein in [START_REF] Bhat | Geometric homogeneity with applications to finite-time stability[END_REF], [START_REF] Bhat | Finite-time stability of continuous autonomous systems[END_REF], Moulay and Perruquetti in [START_REF] Moulay | Finite-time stability of nonlinear systems[END_REF], [START_REF] Moulay | Finite time stability and stabilization of a class of continuous systems[END_REF]. Continuous finite time observers are considered here. Such an observer has been designed for linear systems in [START_REF] Engel | A continuous-time observer which converges in finite-time[END_REF] and extended to linear time-varying system in [START_REF] Menold | finite-time convergent observers for linear time varying systems[END_REF] and [START_REF] Sauvage | Design of a nonlinear finite-time converging observer for a class of nonlinear systems[END_REF]. Let us mention [START_REF] Hong | Finite-time control for robot manipulators[END_REF] by Hong et al. dealing with output finite-time stabilization of fully actuated manipulators for which a finite-time observer (FTO) is designed for this special class of nonlinear systems. More recently, a global FTO for a linearizable system via input output injection has been designed in [START_REF] Perruquetti | Finite-time observers: application to secure communication[END_REF] and extended to uniformly observable (UO) systems in [START_REF] Shen | Semi-global finitetime observers for multi-output nonlinear systems[END_REF], [START_REF] Shen | Semi-global finite-time observers for nonlinear systems[END_REF] in a semi-global way. Semi-global means that the gains of the observer depend on a compact set wilfrid.perruquetti@ec-lille.fr (which can be chosen arbitrarily large) leading to finite-time convergence of the observer for any initial conditions within this compact set. This paper provides a global observer for uniformly observable systems which means that the parameters of the observer can be set once and then will provide finite time convergence whatever the initial conditions. The observer design is based on the observability normal form, Lyapunov theory and homogeneity. The paper is organized as follows. The class of considered systems, the definitions and the properties of finite time stable systems are given in section II. Section III presents a global finite-time observer followed by the proof of its convergence. Section IV gives a convincing illustrative simulation of the obtained results.

II. PRELIMINARIES

Notations:

• R + = {x ∈ R : x > 0}, R -= {x ∈ R : x < 0}, where
R is the set of real number. • For f a continuous vector field, t → x(t, x t0 ) denotes a solution starting from x t0 at t 0 for system:

ẋ = f (x), x ∈ R n , f (0) = 0. (1) 
• ⌈x⌋ α = sign(x).|x| α , with α > 0 and x ∈ R,

• . i,k denotes the i-norm on R k , • if x ∈ R n , x i denotes the vector in R i with the i th first components of x (1 ≤ i ≤ n), • B . (ε)
is the ball centered at the origin and of radius ε, w.r.t. (with respect to) the norm . . Context: Let us consider the following analytic system:

ż = F (z) + m i=1 G i (z)u i , z ∈ Ω, y = h(z), (2) 
where Ω is an open subset of R n , u = (u 1 , . . . , u m ) ∈ R m , y ∈ R (the measured output). If system (2) is UO for any bounded input (see [START_REF] Gauthier | A simple observer for nonlinear systems. applications to bioreactors[END_REF]), then, a coordinate change can be found to transform system (2) into the form (see [START_REF] Hammouri | High gain observer based on a triangular structure[END_REF]):

                     ẋ1 = x 2 + m j=1 g 1,j (x 1 )u j ẋ2 = x 3 + m j=1 g 2,j (x 1 , x 2 )u j . . . ẋn-1 = x n + m j=1 g n-1,j (x 1 , . . . , x n-1 )u j ẋn = ϕ(x) + m j=1 g n,j (x)u j y = x 1 = Cx (3)
where C = (1 0 • • • 0), ϕ and g i,j (i = 1, . . . , n, j = 1, . . . , m) are analytic functions with ϕ(0) = 0, g ij (0, . . . , 0) = 0. We assume furthermore that the functions g i,j and ϕ are globally Lipschitz with constant l and u is bounded by u 0 ∈ R + , that is u ∞ ≤ u 0 . Thus we concentrate here on systems of form [START_REF] Besancon | Nonlinear Observers and Applications[END_REF].

Finite-time stability: Since the main concern is finitetime observer (FTO), the main definitions and properties for FTS are recalled now. In system (1), f is a continuous but not necessarily a Lipschitzian function, so it may happen that any solution of the system converges to zero in finite time (for example, the solutions of ẋ = -sign(x) |x|

1 3 , for x ∈ R).
It is aimed here to exploit this property of such dynamical nonlinear systems to design a FTO. Due to the non Lipschitz condition on the right hand side of (1) backward uniqueness may be lost, and thus we only consider forward uniqueness (see [START_REF] Perruquetti | Finite-time observers: application to secure communication[END_REF]). We recall the definition of finite-time stability. Definition 1. The origin of system ( 1) is said to be finite time stable (FTS) (at the origin, on an open neighborhood of the origin V ⊂ R n ) if:

1) there exists a function T :

V \ {0} → R + , such that for all x 0 ∈ V \ {0}, x(t, x 0 ) is defined (and unique) on [0, T (x 0 )), x(t, x 0 ) ∈ V \ {0} for all t ∈ [0, T (x 0 )) and lim t→T (x0)
x(t, x 0 ) = 0. T is called the settling-time function of the system (1). 2) for all ǫ > 0, there exists δ (ǫ) > 0 such that for every

x 0 ∈ B . 2,n (δ (ǫ)) \ {0} ∩ V, x(t, x 0 ) ∈ B . 2,n (ǫ) for all t ∈ [0, T (x 0 )).

Furthermore, if only 1) is fulfilled then the origin of system (1) is said to be finite-time attractive.

The following result gives a sufficient condition for system (1) to be finite time stable (see [START_REF] Moulay | Finite-time stability conditions for non-autonomous continuous systems[END_REF], [START_REF] Perruquetti | Finite time stability and stabilisation[END_REF] for ordinary differential equations, and [START_REF] Moulay | Finite time stability of differential inclusions[END_REF] for differential inclusions): Lemma 1. [32, lemma 1] Suppose there exists a Lyapunov function V (x) defined on a neighborhood U ⊂ R n of the origin of system ( 1) and some constants τ, γ > 0 and 0

< β < 1 such that d dt V (x) |(1) ≤ -τ V (x) β + γV (x), ∀x ∈ U\{0}.
Then the origin of system ( 1) is FTS. The set

Ω = x ∈ U : V (x) 1-β < τ γ
is contained in the domain of attraction of the origin. The settling time satisfies

T (x) ≤ ln(1-γ τ V (x) 1-β ) γ(β-1) , x ∈ Ω.
To circumvent the standard design of Lyapunov functions, one can use homogeneity conditions recalled hereafter.

Homogeneity:

Definition 2. A function V : R n → R is homoge- neous of degree d w.r.t. the weights (r 1 , . . . , r n ) ∈ R n + if V (λ r1 x 1 , . . . , λ rn x n ) = λ d V (x 1 , . . . , x n ), ∀λ > 0. A vector field f is homogeneous of degree d w.r.t. the weights (r 1 , . . . , r n ) ∈ R n + if for all 1 ≤ i ≤ n, the i-th component f i is a homogeneous function of degree r i + d. The system (1) is homogeneous of degree d if the vector field f is homogeneous of degree d.
Previous observers: Our observer is directly based on the observer introduced by Shen and Xia in [START_REF] Shen | Semi-global finite-time observers for nonlinear systems[END_REF]. Let us recall this semi-global result.

Theorem 1. [32, Theorem 1] System (3) admits a semi-global observer of the form:

           ẋ1 = x2 + k 1 ⌈y -x1 ⌋ α1 + m j=1 g 1,j (x 1 )u j ẋ2 = x3 + k 2 ⌈y -x1 ⌋ α2 + m j=1 g 2j (x 1 , x2 )u j . . . ẋn = ϕ(x) + k n ⌈y -x1 ⌋ αn + m j=1 g n,j (x)u j (4)
where the α i are defined by

α i = iα -(i -1), i = 1, . . . , n, α ∈ 1 - 1 n , 1 . (5)
The gains are given by

K = [k 1 , . . . , k n ] T = S -1 ∞ (θ)C T , (6) 
where S ∞ (θ) is the unique solution of the matrix equation:

θS ∞ (θ) + A T S ∞ (θ) + S ∞ (θ)A -C T C = 0 S ∞ (θ) = S T ∞ (θ) (7) 
where (A) i,j = δ i,j-1 , 1 ≤ i, j ≤ n, and C = (1 0 . . . 0).

The special case g i,j = 0 and ϕ = 0, yields the observer by Perruquetti et al. (see [START_REF] Perruquetti | Finite-time observers: application to secure communication[END_REF]) which is based on homogeneity property (specifically on Theorem 5.8 in [START_REF] Bacciotti | Lyapunov Functions and Stability in Control Theory[END_REF]).

III. GLOBAL OBSERVER

In this section, Theorem 2 provides a global finite-time observer for system (3) based on the semi-global finite-time observer (4) designed by Shen and Xia in [START_REF] Shen | Semi-global finite-time observers for nonlinear systems[END_REF] and rooted in [START_REF] Perruquetti | Finite-time observers: application to secure communication[END_REF] : Theorem 2. Let us consider system (3) with a bounded input u. Then there exists 0 < θ * < ∞ and ε > 0 such that for all θ > θ * and α ∈]1ε, 1[, system (3) admits the following global finite-time high-gain observer:

           ẋ1 = x2 + k 1 (⌈e 1 ⌋ α1 + ρe 1 ) + m j=1 g 1,j (x 1 )u j ẋ2 = x3 + k 2 (⌈e 1 ⌋ α2 + ρe 1 ) + m j=1 g 2,j (x 1 , x2 )u j . . . ẋn = k n (⌈e 1 ⌋ αn + ρe 1 ) + ϕ(x) + m j=1
g n,j (x)u j where e 1 = x 1 -x1 , the powers α i are defined by [START_REF] Bhat | Geometric homogeneity with applications to finite-time stability[END_REF], the gains k i by [START_REF] Conte | Algrebraic Methods for Nonlinear Control Systems[END_REF], and ρ = n 2 θ 2 3 S1+1 2

, where

S 1 = max 1≤i,j≤n |S ∞ (1) i,j |.|S -1 ∞ (1) j,1 |. ( 8 
)
In addition, the settling time T (e 0 ) (where e 0 = x 0 -x 0 ) of the error dynamics is bounded by

ln 4r 2
V (e 0 ) κ(θ)

+ ln 1- b 1 b 2 (4r 2 ) 1-α b2(α-1)
(where all the parameters and the Lyapunov function V are given in the proof).

To prove our result, we need the following technical lemmas: Remark 1] Assume that ( 2) is globally asymptotically stable and finite-time attractive on a neighborhood of the origin. Then system (2) is globally finite-time stable. Lemma 3. The matrix S ∞ (θ) and S -1 ∞ (θ) verify the following properties:

Lemma 2. [16,
S ∞ (θ) i,j = S ∞ (1) i,j 1 θ i+j-1 (9) S -1 ∞ (θ) i,j = S -1 ∞ (1) i,j θ i+j-1 (10) 
for any θ > 0 and 1 ≤ i, j ≤ n.

The proof of lemma 3 is not given here, but an explicit computation (straightforward but lengthy) gives the first equality from which the second easily follows. 

σ(t) ≤ kσ(t), a ≤ t ≤ b, for some constant k ∈ R. Then σ(t) ≤ σ(a)e -k(a-t) , for a ≤ t ≤ b.
Proof of Theorem 2: Denote e = x -x. By using

D(x, x, u) = Φ(x) -Φ(x) + m j=1 (g j (x) -g j (x))u j (t),
where Φ(x) = (0, . . . , 0, ϕ(x)), g j = (g 1,j , . . . , g n,j ), and

F (K, e) = (k 1 ⌈e 1 ⌋ α1 , . . . , k n ⌈e 1 ⌋ αn ) T ,
the error dynamics is given by:

ė = Ae -F (K, e) -ρS -1 ∞ (θ)C T Ce + D(x, x, u). ( 11 
)
The proof of the global finite-time convergence of the observer is split into two parts. Part 1 proves the existence of a "Lyapunov function" V for [START_REF] Gauthier | A simple observer for nonlinear systems. applications to bioreactors[END_REF] which is positive definite on R n , radially unbounded and whose derivative is negative definite on P r = R n -B . S∞ (θ) (r) (for some r > 1). Then part 2 proves that ( 11) is FTS at the origin on B . S∞ (θ) (2r). Since V is negative on P r and the FTS on B . S∞ (θ) (2r) yield that ( 11) is globally asymptotic stable and locally FTS at the origin. We apply then Lemma 2 to complete the proof.

Part 1: Follow [START_REF] Gauthier | A simple observer for nonlinear systems. applications to bioreactors[END_REF], and consider:

V (e) = e T S ∞ (θ)e.
For all θ > 0, the function V is positive definite positive and radially unbounded, since, according to [START_REF] Gauthier | A simple observer for nonlinear systems. applications to bioreactors[END_REF], there exists δ θ >0, such that:

S ∞ (θ) ≥ δ θ I n ,
where I n is the identity matrix of dimension n. By using ( 7) and ( 11), the derivative of V along the solutions of ( 11) is given by:

d dt (e T S ∞ (θ)e) = -θe T S ∞ (θ)e -(2ρ -1)(Ce) 2 -2e T S ∞ (θ)F (K, e) + 2e T S ∞ (θ)D(x, x, u).
It leads to:

d dt (e T S ∞ (θ)e) ≤ -θ e 2 S∞(θ) -(2ρ -1)(Ce) 2 -2e T S ∞ (θ)F (K, e) + 2 e S∞(θ) D(x, x, u) S∞(θ) .
Since ϕ and g ij (i = 1, . . . , n, j = 1, . . . , m) are globally Lipschitzian functions with a constant l and u ∞ is bounded by u 0 , by using [START_REF] Floquet | Super twisting algorithm based step-bystep sliding mode observers for nonlinear systems with unknown inputs[END_REF] and following the same computations as in [START_REF] Gauthier | A simple observer for nonlinear systems. applications to bioreactors[END_REF], we obtain:

D(x, x, u) S∞(θ) ≤ nl(u 0 + 1)mC 1 √ S e S∞(θ) ,
where S = max 1≤i,j≤n |S ∞ (1) i,j | and by norm equivalence, there exists C 1 > 0 such that:

x 1,n ≤ C 1 x S∞(1) , ∀x ∈ R n . (12) 
Hence,

d dt V (e) ≤ (-θ + M )V (e) -(2ρ -1)(Ce) 2 -2e T S ∞ (θ)F (K, e), (13) 
where M = 2nl(u 0 + 1)mC 1 √ S. According to [START_REF] Glumineau | New algebro-geometric conditions for the linearization by input-output injection[END_REF], to prove that V is negative definite on P r = R n -B . S∞ (θ) (r), use an overvaluation of e T S ∞ (θ)F (K, e). According to Lemma 3, the following equalities hold:

e T S ∞ (θ)F (K, e) = 1≤i,j≤n e i (S ∞ (1)) i,j θ i+j-1 S -1 ∞ (1) j,1 θ j ⌈e 1 ⌋ αj , = n j=1 S -1 ∞ (1) j,1 ⌈e 1 ⌋ αj n i=1 e i θ i-1 (S ∞ (1)) i,j .
Overvalue e T S ∞ (θ)F (K, e) in two steps. For this, the set P r is partitioned in two complementary parts:

P r <1 = {e ∈ P r : |e 1 | < 1}, P r ≥1 = {e ∈ P r : |e 1 | ≥ 1}. On P r <1 , one have |e 1 | αi < 1, i = 1, . . . , n. Hence |e T S ∞ (θ)F (K, e)| ≤ nS 1 θ n i=1 ei θ i ,
where S 1 is defined by [START_REF] Engel | A continuous-time observer which converges in finite-time[END_REF]. Let ξ i = ei θ i for i = 1, . . . , n, it follows:

|e T S ∞ (θ)F (K, e)| ≤ nS 1 θ ξ 1,n .
Now, using [START_REF] Gauthier | Observability and observers for nonlinear systems[END_REF] and

ξ 2 S∞(1) = 1 θ e 2 S∞(θ) , one gets |e T S ∞ (θ)F (K, e)| ≤ nS 1 C 1 √ θ e S∞(θ) . Let C 2 = nSC 1 . Taking r > 1, then e S∞(θ) ≤ e 2
S∞(θ) for e ∈ P r , thus:

|e T S ∞ (θ)F (K, e)| ≤ C 2 √ θ e 2 S∞(θ) .
It leads to:

d dt V (e) ≤ (-θ + M + C 2 √ θ)V (e). ( 14 
) On P r ≥1 , one has |e 1 | ≥ 1 so |e 1 | αi ≤ |e 1 | for i = 1, . . . , n. Hence |e T S ∞ (θ)F (K, e)| ≤ nS 1 θ n i=1 e i θ i .|e 1 |, = nS 1 n i=1 θ 2 3 e i θ i θ 1 3 |e 1 | , ≤ nS 1 θ 4 3 2 ξ 2 2,n + n 2 θ 2 3 S 1 2 |e 1 | 2 . But ξ 2 2,n ≤ C 3 ξ 2 S∞(1) and ξ 2 S∞(1) = 1 θ e 2 S∞(θ) , hence |e T S ∞ (θ)F (K, e)| ≤ C 4 θ 1 3 e 2 S∞(θ) + n 2 θ 2 3 S 1 2 |e 1 | 2 , ( 15 
)
where

C 4 = nS1C3 2 
. Combining ( 13) and ( 15), we have:

d dt V (e) ≤ -θ + M + 2C 4 θ 1 3 V (e). ( 16 
)
Combining the two inequalities ( 14) and ( 16), with r > 1, there exists θ 1 > 0 such that for all θ ≥ θ 1 , d dt V (e) < 0, ∀e ∈ P r and more precisely:

d dt V (e) ≤ κ(θ)V (e), (17) 
where κ(θ) = max{(-θ + M + 2C 4 θ

1 3 ), (-θ + M + C 2 √ θ)}. Thus applying Lemma 4 to inequality [START_REF] Kazantzis | Nonlinear observer design using lyapunov's auxiliary theorem[END_REF], one gets V (e(t)) ≤ V (e 0 )e κ(θ)t . Since we look for trajectories entering into B . S∞ (θ) (2r), it is sufficient to have V (e 0 )e κ(θ)t ≤ 4r 2 or equivalently t ≥

ln 4r 2 V (e 0 ) κ(θ)
. Which is an overvaluation of T 1 (e 0 ) the time for a trajectory starting at e 0 to enter into B . S∞ (θ) (2r):

T 1 (e 0 ) ≤ ln 4r 2 V (e0) κ(θ) . (18) 
Part 2: The proof of FTS of the error dynamics (11) on B . S∞ (θ) (2r) is broken into two steps: firstly, prove that the linear part contributes to the convergence of the error and secondly, finite-time stability on this compact is obtained following similar lines as in the semi-global case (see the proof of the main result in [START_REF] Shen | Semi-global finite-time observers for nonlinear systems[END_REF]). Consider the following Lyapunov function:

Ṽα (e) = ẽT S ∞ (θ)ẽ,

where ẽ = ⌈e 1 ⌋ 1 q ⌈e 2 ⌋ 1 α 1 q . . . ⌈e n ⌋ 1 α n-1 q , q = n-1 i=1 [(i - 1)α -(i -2)
] is the product of the weights. It is obvious that Ṽα is homogeneous of degree 2 q with respect to the weights {(i -1)α -(i -2)} 1≤i≤n . The function Ṽα is positive definite and radially unbounded, since according to [START_REF] Gauthier | A simple observer for nonlinear systems. applications to bioreactors[END_REF], for all θ > 0, there exists δ θ such that for all x = (x 1 , . . . , x n ) ∈ R n :

Ṽα (x) = xT S ∞ (θ)x ≥ δ θ xT x = δ θ n i=1 |x i | 2 α i-1 q ,
and 2 αi-1q > 0, for i = 1, . . . , n. We have:

d dt Ṽα (e) = W 1 + W 2 + W 3
where

W 1 = 2ẽ T S ∞ (θ)                1 q |e 1 | 1 q -1 ( 1 2 e 2 -k 1 ⌈e 1 ⌋ α 1 ) . . . 1 α n-1 q |e n-1 | 1 α n-2 q -1 ( 1 2 en -k n-1 ⌈e 1 ⌋ α n-1 ) 1 αn q |en | 1 α n-1 q -1 (-kn ⌈e 1 ⌋ αn )                , W 2 = 2ẽ T S ∞ (θ)                1 q |e 1 | 1 q -1 ( 1 2 e 2 -ρk 1 e 1 )
.

. .

1 α n-1 q |e n-1 | 1 α n-2 q -1 ( 1 2 en -ρk n-1 e 1 ) 1 αn q |en | 1 α n-1 q -1 (-ρkn e 1 )                , W 3 = 2ẽ T S ∞ (θ)                1 q |e 1 | 1 q -1 D 1 . . . 1 α n-2 q |e n-1 | 1 α n-2 q -1 D n-1 1 α n-1 q |en | 1 α n-1 q -1 Dn               
.

Overvaluation of W 1 : this term is homogeneous, Lemma 4.2 in [START_REF] Bhat | Geometric homogeneity with applications to finite-time stability[END_REF] leads to:

W 1 ≤ -b 1 (α, θ) Ṽα (e) 2 q +α-1 2 q
, where b 1 verifies lim α→1 b 1 (α, θ) = θ 2 (see Lemma 4 in [START_REF] Shen | Semi-global finite-time observers for nonlinear systems[END_REF]). Overvaluation of W 2 : use the tube lemma as done in [START_REF] Perruquetti | Finite-time observers: application to secure communication[END_REF]. Since V is proper, B . S∞ (θ) (2r) is a compact set of R n . Define the function ϕ : R + × B . S∞ (θ) (2r) → R by ϕ(α, e) = W 2 By using the same technique as in [START_REF] Gauthier | A simple observer for nonlinear systems. applications to bioreactors[END_REF], it is easily proved that ϕ(1, e) < 0 for e ∈ R n . Since ϕ is continuous,

ϕ -1 (R -) is an open subset of R + × B . S∞ (θ) (2r) containing the slice {1} × B . S∞ (θ) (2r). Since B . S∞ (θ) (2r) is compact, it follows from the tube lemma that ϕ -1 (R -) contains some tube (1-µ 1 , 1+ µ 2 )×B . S∞ (θ) (2r) about {1}×B . S∞ (θ) (2r). For all (α, e) ∈ (1 -µ 1 , 1 + µ 2 ) × B . S∞ (θ) (2r) one has ϕ(α, e) < 0. Thus there exists ε 1 > 0 such that for all α ∈ (1 -ε 1 , 1) : W 2 ≤ 0. Overvaluation of W 3 : noting that d dt ⌈e i ⌋ αi = α i |e i | αi-1 , one obtains W 3 ≤ 2l(u 0 + 1)m ẽT S ∞ (θ)ẽ 1 2 ×         1≤i,j≤n |S∞ (1) i,j | θ i+j-1 |e i | 1 α i-1 q -1 i k=1 |e k | α i-1 q × |e j | 1 α j-1 q -1 j k=1 |e k | α j-1 q         1 2 
.

By using Young's inequality, for any reals x, y and p > 0 one has |x||y| p-1 ≤ 1 p |x| p + p-1 p |y| p . This leads to

|e k ||e i | 1 α i-1 q -1 ≤ α i-1 q|e k | 1 α i-1 q +(1-α i-1 q)|e i | 1 α i-1 q , thus i k=1 |e i | 1 α i-1 q -1 |e k | ≤ i k=1 (1 -α i-1 q)|e i | 1 α i-1 q + α i-1 q|e k | 1 α i-1 q , △ = i k=1 b i,k |e k | 1 α i-1 q , where b i,k > 0. Let b = max i,k b i,k . Thus W 3 ≤ 2bl(u0+1)mS 1 2 θ 1 2 1 α k-1 q θ k . Thus, using ξ k = ⌈e k ⌋ 1 α k-1 q θ k , one obtains 1≤i,j≤n   i k=1 e 2 α k-1 q k θ 2k   1 2   j k=1 e 2 α k-1 q k θ 2k   1 2 ≤ n 2 n k=1 ξ 2 k .
On the other hand, according to [START_REF] Gauthier | A simple observer for nonlinear systems. applications to bioreactors[END_REF], there exists δ 1 > 0 such that: S ∞ (1) ≥ δ 1 I and using ξ = (ξ 1 , ξ 2 , . . . , ξ n ) T , we have

n k=1 ξ 2 k ≤ 1 δ 1 ξ T S ∞ (1)ξ ≤ 1 θδ 1 1≤i,j≤n ⌈e i ⌋ 1 α i-1 q S(1) i,j θ i+j-1 ⌈e j ⌋ 1 α j-1 q ≤ 1 θδ 1 
Ṽα (e).

Thus W 3 ≤ 2bl(u0+1)mn 2 S 1 2

αn-1qδ

1 2 1 
Ṽα (e). Finally, one obtains:

d dt Ṽα (e) (11) ≤ -b 1 (α, θ) Ṽα 2 q +α-1 2 q + b 2 (α) Ṽα (e), (19) 
where b 2 (α) = 2bl(u0+1)mn 2 S 1 2

αn-1qδ

1 2 1
. By [START_REF] Krener | nonlinear observers with linearizable error dynamics[END_REF] and Theorem 1, the domain of attraction of the observer is given by:

Ω = e : Ṽα (e) < b 1 b 2 2 q(1-α) . (20) 
From ( 20) and the inequality Ṽα (e) ≤ e T 0 S ∞ (θ)e 0 , ∀t > 0 (see Lemma 6 in [START_REF] Shen | Semi-global finite-time observers for nonlinear systems[END_REF]), one has

U = e : V (e) = e T S ∞ (θ)e < b 1 b 2 2 q(1-α) ⊂ Ω, (21) since lim α→1 b 1 (α, θ) = θ 2 there exists ε 2 > 0 such that b 1 (α, θ) ≥ θ 4 , for α ∈]1 -ε 2 , 1[, thus for α ∈ (1 -ε 2 , 1), we have: b 1 b 2 → +∞, θ → ∞, for α ∈]1 -ε 2 , 1[. (22) 
Considering ( 21) and ( 22), there exists θ 3 > 0 such that for all θ ≥ θ 3 :

B . S∞ (θ) (2r) ⊂ Ω.
Finally, take θ * = max{θ 1 , θ 2 , θ 3 } and ε = min{ε 1 , ε 2 }.

According to equation ( 19) and Lemma 1, for a trajectory starting in Ω at e 0 , the following inequality is obtained for the settling time T 2 (e 0 ) ≤ , where α = 2 q +α-1 2 q

.

According to Lemma 6 in [START_REF] Shen | Semi-global finite-time observers for nonlinear systems[END_REF], Ṽα (e 0 ) ≤ e T 0 S ∞ (θ)e 0 . Hence a straightforward computation yields:

T 2 (e 0 ) ≤ ln 1 -b1 b2 4r 2 1-α b 2 (α -1) (23) 
Combining ( 18) and ( 23), one obtains the following overvaluation for the settling time of the observer :

T (e 0 ) ≤ . The simulations in Figure 1 show effectiveness of our algorithm even in the case of a noisy measurement (a Gaussian white noise with 0.01 correlation and 0.05 covariance) for different values of α and θ. As it can seen in Figure 1.b) and 1.d) for θ = 5, the gain-selection is noisesensitive as usual for such high-gain observers. Thus, a future research topic will be to design adaptive tuning gain using only local informations on the non linearities. On the contrary the parameter α seems not to be much sensitive w.r.t. the noise.

V. CONCLUSION

A global finite-time observer for uniformly observable systems with the global Lipschitzian properties has been introduced. This was achieved through an extension of a sufficient condition for local finite-time stability and Lyapunov theories.

Lemma 4 .

 4 [START_REF] Khalil | Nonlinear Systems[END_REF] Lemma 2.5 p. 85] Let σ : R → R be a smooth function such that

ln 4r 2 Vx 2 ,

 22 (e0) κ(θ) + ln 1 -b1 b2 4r 2 1-α b 2 (α -1)IV. EXAMPLE Consider the following system (which is already in the form(ẋ2 = x 3 + x 1 sin(x 2 ), ẋ3 = sin(x 1 + x 2 + x 3 ).Following the line of our result, the observer dynamics is chosen as:k 1 (⌈e 1 ⌋ α + ρe 1 ), ẋ2 = x3 + x1 sin(x 2 )k 2 (⌈e 1 ⌋ 2α-1 + ρe 1 ), ẋ3 = sin(x 1 + x2 + x3 )k 3 (⌈e 1 ⌋ 3α-2 + ρe 1 ),with gains set as follows: k 1 = 3θ, k 2 = 3θ, k 3 = θ and ρ