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Abstract

We study the Full Bayesian Updating rule for convex capacities. Following a

route suggested by Jaffray (1992), we define some properties one may want

to impose on the updating process, and identify the classes of (convex and

strictly positive) capacities that satisfy these properties for the Full Bayesian

Updating rule. This allows us to characterize two parametric families of con-

vex capacities: (ε, δ)−contaminations (which were introduced, in a slightly

different form, by Huber (1981)) and ε−contaminations.



1 Introduction

Non additive measures (capacities) have proved to be useful for (i) describing

the available information in situations of uncertainty (statistical perspective)

and (ii) representing individuals’ behavior in situations of complete uncer-

tainty, especially through Schmeidler’s (1989) Choquet Expexted Utility model

(decision-theoretic perspective). However, although a large body of research

has been successfully devoted to the investigation of the properties of capaci-

ties, there is still no consensus on how they should be updated as new informa-

tion arrives. This question is crucial from a statistical and a decision-theoretic

point of view. On one hand, as pointed out by Gilboa and Schmeidler (1993),

“it may be viewed as the problem statistical inference is trying to solve” (p.35);

on the other hand, a consistent theory of updating is needed in order to use

the Choquet Expected Utility model in a dynamic setting.

As noted by Eichberger, Grant, and Kelsey (2007), there have been two

main approaches to this problem in the literature. The first takes the sta-

tistical point of view, and focus on the effects that different updating rules

may have on capacities (see e.g. Dempster (1967), Dempster (1968), Wasser-

man and Kadane (1990), Fagin and Halpern (1991), Walley (1991), Jaffray

(1992)). The second approach aims at deriving updating rules from patterns

of individuals’ unconditional and conditional preferences (see, e.g., Gilboa and

Schmeidler (1993), Eichberger, Grant, and Kelsey (2007), Wang (2003)). Both

approaches have delivered important results. It is thus surprising that – to the

best of our knowledge – these two strands of literature remained separated.

This can be explained, of course, by the fact that capacities viewed as a way

to represent objective information, and capacities used to represent a deci-

sion maker’s subjective attitudes towards uncertainty are very different from

a conceptual point of view. Nevertheless, one may expect some gain from

confronting the statistical and the decision-theoretic approach.

This suggests a third and complementary approach, initiated by Jaffray

(1992), that has received little attention. Assume that we want (i) to use an a

priori given upating rule and (ii) that the updating process satisfies some de-

sirable properties. It might be the case that the updating rule does not satisfy

these properties for all capacities. Does this mean that we should abandon

the updating rule? A less extreme solution consists in identifying the domain

1



on which the rule can be safely applied. We will then have a coherent theory

of updating, on a smaller domain. Note that, actually, classical updating rules

of capacities only apply to particular (namely, convex) capacities. Assume

that, moreover, we are able to provide a behavorial characterization (say, for

uncertainty averse Choquet Expected Utility maximizers) of decision makers

that use this updating rule in such a way that it always satisfy the desirable

properties. This would force the capacities used in the representation of the

decision maker’s preference to belong to a specific class. We would thus ob-

tain a more precise representation of individuals’ preference, that might be

tractable for applications.

This is precisely the route we follow in this paper. In the first part of the

paper, we focus on the so-called Full Bayesian Updating rule (FBU) proposed,

among others, by Dempster (1967). To any such capacity, one can associate

its core, which is the set of probability measures that dominate the capacity.

A convex capacity is the lower envelope of its core. In this sense, a convex

capacity represents its core. The FBU rule consists in first updating all the

probability measures in the core of the unconditional capacity, and then taking

the lower envelope of the updated core. This defines a new capacity, which

is the updated capacity. A natural question is whether the updated capacity

represents the updated core. If such is the case for all non-null event, we

say that the capacity satisfies the regular updating property for the FBU rule.

Observe that this property is important insofar it implies that the updating

process does not entail any loss of information. Jaffray (1992) showed that

this property is not always satisfied, and identified necessary and sufficient

conditions for beliefs to satisfy it. We go a step further, and identify the

subset of strictly positive and convex capacities which satisfy this property. If

the state space is finite, the set of regular strictly positive and convex positive

capacities is the set of (ε, δ)−contaminations, a parametric class of capacities

introduced by Huber (1981) in a slightly different form, and that have, to

the best of our knwoledge, not been studied from a decision theoretic point

of view. Moreover any (ε, δ)−contaminations satisfies the regular updating

property for the FBU rule. If the state space is infinite countable, the set

of strictly positive, convex and regular capacities reduces to the well-known

ε−contaminations (which are special cases of (ε, δ)−contaminations).

As we noticed, there is no consensus on how capacities should be updated.
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Beside the FBU rule, the most popular updating rule is probably the so called

Dempster-Shafer updating (DSU) rule, that has initially be proposed for be-

liefs (see e.g. Dempster (1967), Dempster (1968), Shafer (1976)), but can be

extended to convex capacities (see Gilboa and Schmeidler (1993)). We may

want not to choose between the DSU and the FBU rules. We will say that

a convex capacity satisfies the Dempster-Shafer Consistency property for the

FBU rule if for any non-null event, the updated capacities obtained by apply-

ing the FBU and the DSU rules coincide. It turns out that, if the state space

is finite, the set of strictly positive, convex and Dempster-Shafer Consistent

capacities is the set of ε−contaminations.

The rest of the paper is organized as follows. Notations and preliminary

results are presented in section 2. Section 3 is devoted to regular bayesian

updating. In Section 4, we identify the set of convex and strictly positive ca-

pacities for which full bayesian and Dempster-Shafer updating rules coincides.

Section 5 concludes.

2 Setup and preliminaries

When facing uncertainty, it is often the case that the available information is

not precise enough to infer a unique probability measure on possible events.

Such is the case, for instance, if one relies on large-scale sampling with incom-

plete information. Another classical example is the collection of probabilistic

opinions given by experts to the decision maker. The available information

may then be summarized by a subset P of P,the set of all simply additive

probability measures on some measurable space (S, Σ). One can associate to

P its lower envelope ν:

ν(A) = inf
P∈P

P (A), ∀A ∈ Σ.

Observe that we have ν(∅) = 0, ν(S) = 1 and ν(A) ≥ ν(B) whenever B ⊆ A.

Such a set function is called a capacity. Formally,

Definition 1. A capacity is a mapping ν : Σ → [0, 1] satisfying ν(∅) = 0,

ν(S) = 1 and ν(A) ≤ ν(B) for all A, B ∈ Σ such that A ⊆ B. Moreover, a

capacity is said to be:

(i) convex if for all A, B ∈ Σ, ν(A ∪ B) + ν(A ∩ B) ≥ ν(A) + ν(B);
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(ii) a belief function if for all n ≥ 2 and A1, . . . , An ∈ Σ,

ν

(

n
⋃

i=1

Ai

)

≥
∑

{I|∅6=I⊆{1,...,n}}

(−1)|I|+1ν

(

⋂

i∈I

Ai

)

;

(iii) strictly positive if for all A ∈ Σ, A 6= ∅, A 6= S, 1 > ν(A) > 0 1;

(iv) weakly lower continuous if for all A 6= S, and any non-decreasing se-

quence {An}n such that An ↑ A, ν(An) ↑ ν(A).

Conversely, one can associate to the capacity ν a (possibly empty) set of

probability measures, called the core of ν:

core(ν) = {P ∈ P|P (A) ≥ ν(A), ∀A ∈ Σ}.

In general, a set of probability measures P is not representable by its

lower envelope ν, that is core(ν) 6= P (see, e.g., Huber (1981)). Nevertheless,

in many situations, ν represents P. Such is the case, for instance, if P

is compatible with data generated by a random set. Actually, such set of

probability measures can even be represented by a belief. More generaly, any

convex capacity represents its core.

A particular class of capacities, called (ε, δ)−contamination will play a

crucial role in the sequel. They are defined as follows.

Definition 2. A capacity ν on Σ is an (ε, δ)−contamination of a probability

measure P0 ∈ P if ν(∅) = 0, ν(S) = 1 and

∀A ∈ Σ, A 6= S, ν(A) = max ((1 − ε)P0(A) − δ, 0) ,

where δ ∈ [0, 1) and ε ∈ [−δ, 1].

Note that usual ε−contaminations are special cases of (ε, δ)−contaminations,

with δ = 0 and ε ∈ [0, 1].

Remark 1. If a capacity ν is an (ε, δ)−contamination, then ν is convex.

1Note that a convex capacity ν is strictly positive if and only if for all A ∈ Σ, A 6= ∅,
A 6= S, ν(A) > 0.
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Proof. Let ν be an (ε, δ)−contamination. Observe first that, by construction,

ν(∅) = 0, ν(S) = 1 and 0 ≤ ν(A) ≤ 1. We first show that ν is monotone.

Let A, B ∈ Σ be such that A ⊆ B. If ν(A) = 0 or ν(B) = 1, we obviously

have ν(A) ≤ ν(B). If ν(A) > 0 and ν(B) < 1, then ν(A) = (1−ε)P0(A)−δ ≤

(1 − ε)P0(B) − δ = ν(B). Thus ν(A) ≥ ν(B), i.e., ν is monotone.

It remains to check that ν is convex. Let A, B ∈ Σ. If ν(A) = 0, then

ν(A ∩ B) = 0, and monotonicity of ν implies ν(A ∪ B) ≥ ν(B). Therefore

we have ν(A ∩ B) + ν(A ∪ B) = ν(A ∪ B) ≥ ν(A) + ν(B). Assume now

that ν(A) > 0 and ν(B) > 0. If either A = S or B = S, we obviously have

ν(A ∩ B) + ν(A ∪ B) = ν(A) + ν(B). If A 6= S and B 6= S, we have:

ν(A) + ν(B) = (1 − ε)P0(A) − δ + (1 − ε)P0(B) − δ

= (1 − ε)P0(A ∪ B) − δ + (1 − ε)P0(A ∩ B) − δ.

Clearly A ∩ B 6= S, hence (1 − ε)P0(A ∩ B) − δ ≤ ν(A ∩ B). Two cases are

possible:

(a) A ∪ B 6= S. We then have (1 − ε)P0(A ∪ B) − δ ≤ ν(A ∪ B).

(b) A∪B = S. We then have (1−ε)P0(A∪B)−δ = 1−ε−δ ≤ 1 = ν(A∪B).

Hence, we have for all A, B ∈ Σ, ν(A ∪ B) + ν(A ∩ B) ≥ ν(A) + ν(B), i.e., ν

convex.

Because an (ε, δ)−contaminations is convex, it represents its core. Let us

define:

Definition 3. An (ε, δ)−contamination of a probability measure P0 ∈ P is the

set

P(P0, ε, δ) = {P ∈ P|P (A) ≥ (1 − ε)P0(A) − δ},

where δ ∈ [0, 1) and ε ∈ [−δ, 1].

One can easily check that:

Remark 2. If a capacity ν is an (ε, δ)−contamination, then core(ν) = P(P0, ε, δ).

Remark 3. If a strictly positive capacity ν is an (ε, δ)− contamination, then

ν(A) = (1 − ε)P0(A) − δ for all A ∈ Σ \ {∅, S}.
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Remark 4. If S is finite, with |S| ≥ 2, a strictly positive (ε, δ)−contamination

is characterized by P0 strictly positive, δ ∈ [0, α
1−α

) where α = mins∈S P0({s})
2,

and ε ∈
[

−δ, 1 − δ
mins∈SP0({s})

)

.

3 Bayesian Regularity

We will focus, in this section, on the properties of a particular updating rule

for capacities – the so-called Full Bayesian Updating (FBU) rule –, from a

statistical point of view. Assume we want (i) to use the FBU rule and (ii)

that the updating process satisfies some natural properties. It might be the

case that the FBU rule does not satisfy these properties for all capacities.

Then, requiring (i) and (ii) will imply some constraints on the domain on

which the FBU rule should be applied. The question we address is: can we

precisely identify the domain on which the FBU rule can be safely applied

(with respect to some desirable properties)?

Let S be a nonempty set of states of the world, and Σ = 2S be an algebra

of events on it. We assume that |S| ≥ 4, where |A| denotes the cardinal of set

A. Given an event E, we denote by ΣE the subalgebra ΣE = {A ∈ Σ|A ⊆ E},

and by PE the set of probability measures on (E, ΣE). Assume that the initial

available information can be represented by a convex capacity ν on Σ, and

that we learn some event E ⊂ S. We thus have to update our information.

Several update rules exist. A very natural one is the so-called Full Bayesian

Update rule, that consists in apllying the classical bayesian update rule to each

probability measure that belongs to the core of ν, and then considering the

lower envelope of the resulting set. Formally, for all probability measure P on

(S, Σ) and E ∈ Σ be an event such that P (E) > 0. We denote by P E the

conditional probability measure P given E, defined as:

P E(A) =
P (A)

P (E)
, ∀A ∈ ΣE .

We extend this definition to sets of probability measures as follows. Let P be

a set of probability measures and E ∈ Σ be such that P (E) > 0 for all P ∈ P.

2Note that necessarily α

1−α
≤ 1.
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We denote by PE the conditional probability set P given E, defined as:

P
E = {P E ∈ PE|P ∈ P}.

We will refer to P
E as the full bayesian update of P given E.

Let ν be a convex capacity, and E ∈ Σ be such that ν(E) > 0, i.e., such

that P (E) > 0 for all P ∈ core(ν). The full bayesian update of ν given E is

the capacity νE defined as:

νE(A) = inf{P E(A)|P ∈ core(ν)}, ∀A ∈ ΣE .

Such a capacity can also be written as:

νE(A) =
ν(A)

ν(A) + 1 − ν(A ∪ Ec)
, ∀A ∈ ΣE ,

where Ec = S \ E. This rule has been studied, among others, by Fagin and

Halpern (1991), Jaffray (1992), Wasserman and Kadane (1990). Note that,

as proved by several authors (see e.g. Chateauneuf and Jaffray (1995)), νE

is convex. As shown by Jaffray (1992), it is in general not the case that νE

represents (core(ν))E , as shown by the following example provided in Jaffray

(1992)).

Example 1. Let S = {1, 2, 3, 4}, E = {1, 2, 3} and P = {p = ( 1
12

, 1
4
, 2

3
−

α, α), α ∈ [0, 2
3
]}. Define the capacity ν as follows: ν(A) = infp∈P p(A).

Then (core(ν))E = {p ∈ ∆({1, 2, 3})|p = (α, 3α, 1 − 4α), 1
12

≤ α ≤ 1
4
}

and core(ν)E = {p ∈ ∆({1, 2, 3})|p({1}) ≥ 1
12

, p({2}) ≥ 1
4
, p({1, 3}) ≥

1
4
, p({2, 3}) ≥ 3

4
}. The following picture shows PE = core(ν)E (in blue)

and core(νE) (in green).

In other words, applying the FBU rule to a convex capacity (which repre-

sents its core) may entail some lost of information. If such is not the case, that

is, if νE represents (core(ν))E for any non-null event E, we will say that the

updating is regular. Regularity is clearly a desirable property for an updating

rule. For future reference, we state formally this property.

Property 1 (Regular updating). A convex capacity ν is said to satisfy the

7



Figure 1: core(ν)E ( core(νE)

regular updating property for FBU rule if for all E ∈ Σ such that ν(E) > 0,

core(νE) = (core(ν))E .

We will try, in the sequel, to identify the class of strictly positive and convex

capacities that can be regularly updated by the FBU rule. We will succesively

consider the case of a finite and an infinite countable state-space.

3.1 The finite case

Jaffray (1992) has shown that when S is finite, a belief function ν satisfies the

regular updating property iff

[

A, B ∈ Σ \ {∅, S}

0 < ν(A ∩ B), ν(A ∪ B) < 1

]

⇒ [ν(A ∩ B) + ν(A ∪ B) = ν(A) + ν(B)] .

(⋆)

We first show that this results actually holds true for any convex capacity

when S is finite.

Proposition 1. Let S be finite. Then a convex capacity ν on (S, Σ) satisfies

the regular updating property for the FBU rule iff condition (⋆) holds.

Proof. See the Appendix.
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A consequence of the regular updating property is given by the following

corollary, which is a generalization of a result proved in Jaffray (1992) for belief

functions.

Corollary 1. Let S be finite, and ν be a convex capacity defined on Σ. The

following statements are equivalent:

(i) ν satisfies the regular updating property for the FBU rule;

(ii) For all E1, E2 ∈ Σ such that ν(E1 ∩ E2) > 0, νE1∩E2 =
(

νE1

)E2

Proof. See the Appendix.

Is it possible to provide a characterization of the set of capacities that

satisfy condition (⋆)? The following proposition provides an answer in the

case where S is finite and one focus on strictly positive convex capacities.

Proposition 2. Let S be finite, and ν be a strictly positive convex capacity

defined on Σ. The following statements are equivalent:

(i) Condition (⋆) holds;

(ii) ν satisfies the regular updating property for the FBU rule;

(iii) ν is an (ε, δ)−contamination.

Remark 5. Eichberger, Grant, and Lefort (2009) independently proposed a

characterization of convex capacities for which Condition (⋆) holds, under the

additional assumption that the capacity satisfies ν(A) = 0 iff ν(Ac) = 1. Con-

sidering a different domain, they obtained a different characterization.

Proof. See the Appendix.

Thus, the only strictly positive capacities that satisfy the regular updat-

ing property for the FBU rule are (ε, δ)−contaminations. A natural question is

then: how looks the full bayesian update of a strictly positive (ε, δ)−contamination?

The answer is: it is a strictly positive (ε, δ)−contamination.

Proposition 3. If ν is a strictly positive (ε, δ)−contamination, then νE is

also a strictly positive (ε, δ)−contamination.
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Proof. Let ν be a strictly positive (ε, δ)−contamination, i.e., ν({s}) = (1 −

ε)P0({s}) − δ > 0, for all s ∈ S. Observe that this implies P0(E) > 0 for

all E 6= ∅. Let E ∈ Σ be such that E 6= ∅, E 6= {s} and E 6= S (the cases

E = {s} and E = S are trivial). For all A 6= ∅, A ⊆ E, we have:

νE(A) =
ν(A)

ν(A) + 1 − ν(A ∪ Ec)

=
(1 − ε)P0(A) − δ

(1 − ε)P0(A) − δ + 1 − (1 − ε)P0(A ∪ Ec) + δ

=
(1 − ε)P0(A) − δ

(1 − ε)P0(E) + ε

=

(

1 −
ε

ε + (1 − ε)P0(E)

)

P0(A)

P0(E)
−

δ

ε + (1 − ε)P0(E)
.

Therefore, νE(A) = (1 − ε′)P E
0 (A) − δ′, with ε′ = ε

ε+(1−ε)P0(E)
and δ′ =

δ
ε+(1−ε)P0(E)

.

It is straightforward to check that νE is strictly positive. It thus remains

to check that δ′ ∈ [0, 1) and ε′ ∈ [−δ′, 1].

Since 1 ≥ (1− ε)P0(E)+ ε > 0, we have δ′ ≥ δ, hence δ′ ≥ 0, and ε′ ≥ −δ′.

Because νE is strictly positive, we have (1− ε′)P E
0 ({S})− δ′ > 0 for all s ∈ E.

Therefore ε′ < 1 − δ′

mins∈E P E
0

({s})
, and thus ε′ < 1.

It remains to check that δ′ < 1. Let us first assume that |E| ≥ 3. Con-

sider s1, s2 ∈ E with s1 6= s2. Because νE is a strictly positive capacity, we

have νE({s1, s2}) − νE({s1}) − νE({s2}) < 1. But νE({s1, s2}) − νE({s1}) −

νE({s2}) = (1 − ε′)P E
0 ({s1, s2}) − (1 − ε′)P E

0 ({s1}) − (1 − ε′)P E
0 ({s2}) + δ′.

Hence νE({s1, s2}) − νE({s1}) − νE({s2}) = δ′ and therefore δ′ < 1.

Assume finally that |E| = 2, and let E = {s1, s2}. Since νE is strictly

positive, we have (1 − ε′) minsi
P E

0 ({si}) − δ′ > 0. Hence ε′ < 1 − δ′

α′ , where

α′ = mini P
E
0 ({si}). Observe that −δ′ ≤ ε′ implies −δ′ < 1 − δ′

α′ , and thus

δ′ < α′

1−α′ . But α′

1−α′ ≤ 1, i.e., α′ ≤ 1
2
, and therefore δ′ < 1, which completes

the proof.

Note that Proposition 2 is not true if ν is not stricly positive, as shown by

the following example.

Example 2. Let S = {1, 2, 3, 4} and ν be defined on 2S by: ν({1, 2}) =

ν({3, 4}) = ν({1, 2, 3}) = ν({2, 3, 4}) = ν({1, 3, 4}) = ν({1, 2, 4}) = 1
8

and

ν(A) = 0 otherwise. It is easy to check that ν is convex and satisfies condition
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(⋆). However, ν cannot be an (ε, δ)−contamination. Indeed, if it were the

case, we should have:

ν({1, 2}) =
1

8
= (1 − ε)P0({1, 2}) − δ.

Therefore, ε 6= 1.

Since ν({1, 2}) = ν({1, 2, 3}) > 0, one gets P0({3}) = 0. A similar argu-

ment applied to ν({1, 2}) = ν({1, 2, 4}), ν({3, 4}) = ν({1, 2, 4}) and ν({3, 4}) =

ν({2, 3, 4}) gives P0({4}) = P0({1}) = P0({2}) = 0, hence P0 = 0, which is

impossible.

This example shows that if we relax the strict positivity assumption, some

capacities that are not (ε, δ)−capacities can be regularly updated by the FBU

rule. Although we do not know what is exactly the class of convex capacities

satisfying the regularity property for the FBU rule, we can see that it contains

at least the set of all (ε, δ)−capacities.

Proposition 4. Let S be finite. If ν is an (ε, δ)−contamination, then it sat-

isfies the regular updating property for the FBU rule.

Proof. By Proposition 1, it is enough to prove that any (ε, δ)−contamination

satisfies condition (⋆). Let ν be an (ε, δ)−contamination with respect to prob-

ability measure P0, and A, B ∈ Σ\{∅, S} such that 0 < ν(A∩B), ν(A∪B) < 1.

Because ν is monotone, we then have ν(A) > 0 and ν(B) > 0. Thus,

ν(A ∪ B) + ν(A ∩ B) = ((1 − ε)P0(A ∪ B) − δ) + ((1 − ε)P0(A ∩ B) − δ)

= (1 − ε)P0(A) + (1 − ε)P0(B) − (1 − ε)P0(A ∩ B)

−δ + (1 − ε)P0(A ∩ B) − δ

= (1 − ε)P0(A) − δ + (1 − ε)P0(B) − δ

= ν(A) + ν(B).

Therefore, ν satisfies condition (⋆).

3.2 The infinite countable case

We now consider the case of a countable state space. Then, the strict positivity

assumption will have important consequences.
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Proposition 5. Let ν be a strictly positive, weakly lower continuous, convex

capacity on 2N. The following statements are equivalent:

(i) ν satisfies the regular updating property;

(ii) ν is an ε−contamination with ε ∈ [0, 1) and P0 is σ−additive.

Proof. See the Appendix

4 Dempster-Shafer Consistency

If the use of the bayesian rule is uncontroversial when one has to update

probability measure, the question of how it should be extended to convex

capacities is matter of debate. Some authors (e.g. Dempster (1967), Dempster

(1968), Gilboa and Schmeidler (1993), Shafer (1976)) advocated for the so-

called Dempster-Shafer updating (DSU) rule3. The Dempster-Shafer update

of a convex capacity ν with respect to E, with ν(E) > 0 is a capacity νE

defined on ΣE by:

νE(A) =
ν(A ∪ Ec) − ν(Ec)

1 − ν(Ec)
, A ∈ ΣE

A property that might be desirable is that the FBU rule coincide with the

DSU rule. We thus state the:

Property 2 (Dempster-Shafer Consistency). A convex capacity ν satisfies the

Dempster-Shafer Consistency property for the FBU rule if for all E ∈ Σ such

that ν(E) > 0,

νE = νE.

Focusing again on strictly positive convex capacities defined on a finite al-

gebra, we have the following characterization of the Dempster-Shafer Property.

Proposition 6. Let S be finite, and ν be a strictly positive convex capacity on

Σ. The following statements are equivalent:

(i) ν satisfies the Dempster-Shafer Consistency Property for the FBU rule;

3Although the DSU rule was initally defined for beliefs, it can be extended to convex
capacities.
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(ii) ν is an ε−contamination with ε ∈ [0, 1).

Proof. That (ii) implies (i) is easily checked. Let us show that (i) implies (ii).

Let A, B ∈ Σ \ ∅ be such that A ∩ B = ∅ and A ∪ B 6= S. Define E = Bc.

Observe that since B 6= S, we have Bc 6= ∅ and thus ν(E) > 0. Since A ⊆ E,

we have by assumption

ν(A)

ν(A) + 1 − ν(A ∪ Ec)
=

ν(A ∪ Ec) − ν(Ec)

1 − ν(Ec)
,

i.e.,

ν(A)(1 − ν(B)) = (ν(A) + 1 − ν(A ∪ B))(ν(A ∪ B) − ν(B)),

or equivalently

(1 − ν(A ∪ B))(ν(A ∪ B) − ν(A) − ν(B)) = 0. (1)

Since ν is strictly positive, ν(A∪B) < 1. Thus equation (1) implies ν(A∪B) =

ν(A) + ν(B). Hence, for all A ∈ Σ \ {∅, S}, ν(A) =
∑

s∈A ν({s}). Define

a =
∑

s∈S ν({s}). Since ν is strictly positive, a > 0. Since ν is convex,
∑

s∈S ν({s}) ≤ 1. Thus 0 < a ≤ 1. Let P0({s}) = ν({s})
a

for all s ∈ S. We have
∑

s∈S P0({s}) = 1, and therefore P0 is a strictly positive probability measure

on (S, Σ). From equation (1) ν(A) = aP0(A) for all A 6= S (this equality is

obviously true if A = ∅). Let a = 1−ε. Since 0 < a ≤ 1, we have 0 ≤ ε < 1 and

ν(A) = (1 − ε)P0(A) for all A 6= S, ν(S) = 1. Thus ν is an ε−contamination

with ε ∈ [0, 1).

Proposition 6 does not hold true if ν is not strictly positive. For instance,

the capacity described in Example 2 is not an (ε, δ)−contamination, and can-

not therefore be an ε−contamination. It satisfies, however, the Dempster-

Shafer consistency property.

5 Conclusion

In this paper, we interpreted capacities as representing objective information.

This interpretation is standard in robust statistics, and had been used in deci-

sion theory by Jaffray (1989). However, Schmeidler (1989) provided a subjec-

tive interpretation of capacities. Capacities then embody the decision maker’s
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attitude towards uncertainty. A huge literature had grown since in this direc-

tion. It is clear that, if one interprets capacities as representing individuals’

preferences, then the updating process is related to dynamic behavior, and

specifically to dynamic consistency.

Now, assume that one can provide a behavioral interpretation of regular

updating (which is indeed the case, as shown e.g. in Pires (2002)). Then, it is

clear that our results could be revisited in a behavioral perspective, and pave

the way of a characterization of a parametric Choquet Expected Utility model.

A related question would be the behavioral signification of the parameters of

(ε, δ)−capacities. We leave these questions for future research.

Appendix

Proof of Proposition 1

Sufficiency.

Let E be such that ν(E) > 0, and assume that condition (⋆) holds. By

Proposition 6 in Chateauneuf and Jaffray (1995), νE is convex, and thus

core(νE) 6= ∅. Identify core(νE) to a subset of the |E|−dimensional simplex.

Let ΠE be the set of the permutations of all elements of E, and |E| = m. Given

π = {θi1 , . . . , θim} ∈ ΠE let Bk(π) = {θi1 , . . . , θik}, for all k ∈ {1, . . . , m}. Let

Qπ ∈ PE be defined as Qπ(Bk(π)) = νE(Bk(π)). We know from Proposi-

tion 13 in Chateauneuf and Jaffray (1989)) that core(νE) is a bounded convex

polyhedron with extreme points {Qπ|π ∈ Π}.

We have by definition (core(ν))E ⊆ core(νE). We thus have to show that

core(νE) ⊆ (core(ν))E . We know that (core(ν))E is convex (see e.g. Kyburg

(1987)). It is thus enough (since core(νE) is a bounded convex polyhedron) to

prove that any extreme point of core(νE) belongs to (core(ν))E .

Fix π ∈ ΠE. We have to show that Qπ ∈ (core(ν))E , i.e., that there exists

P ∈ core(ν) (and hence satisfying P (E) > 0 since P (E) ≥ ν(E) > 0) such

that:

P (Bi(π))

P (Bi(π)) + 1 − P (Bi(π) ∪ Ec)
=

ν(Bi(π))

ν(Bi(π)) + 1 − ν(Bi(π) ∪ Ec)
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or, equivalently, such that:

P (Bi(π))(1 − ν(Bi(π) ∪ Ec)) = ν(Bi(π))(1 − P (Bi(π) ∪ Ec)). (2)

By monotonocity of ν, there exist unique 0 ≤ i1 ≤ i2 ≤ m such that











ν(Bi(π)) = 0, for all 1 ≤ i ≤ i1;

ν(Bi(π)) > 0 and ν(Bi(π) ∪ Ec) < 1 for all i1 < i ≤ i2;

ν(Bi(π)) > 0 and ν(Bi(π) ∪ Ec) = 1 for all i2 < i ≤ m.

Observe that if ν(Bi(π)∪Ec) = 1 then P (Bi(π)∪Ec) = 1 for all P ∈ core(ν),

and thus equation (2) is satisfied for all P ∈ core(ν).

Because ν is convex, Proposition 9 in Chateauneuf and Jaffray (1989) im-

plies that there exists P̃ ∈ core(ν) such that P̃ (Bi(π)) = ν(Bi(π)) for all

1 ≤ i ≤ i2 and P̃ (Bi2(π) ∪ Ec) = ν(Bi2(π) ∪ Ec). Note that if 1 ≤ i ≤ i1,

P̃ (Bi(π)) = ν(Bi(π)) = 0 and thus P̃ satisfies equation (2). Assume now

i1 < i ≤ i2. Let A1 = Bi2(π) and A2 = Bi(π) ∪Ec. This implies A1 ∩A2 = Bi

and A1 ∪ A2 = Bi2(π) ∪ Ec. Thus ν(A1 ∩ A2) = ν(Bi) > 0 and ν(A1 ∪ A2) =

ν(Bi2(π) ∪ Ec) < 1. Therefore condition (⋆) implies

ν(A1 ∩ A2) + ν(A1 ∪ A2) = ν(A1) + ν(A2),

i.e.,

P̃ (Bi) + P̃ (Bi2(π)) + P̃ (Ec) = P̃ (Bi2(π)) + ν(Bi(π) ∪ Ec),

which simplifies to: P̃ (Bi(π) ∪ Ec) = ν(Bi(π)) ∪ Ec). Therefore P̃ satisfies

equation (2).

Necessity. Assume condition (⋆) is not satisfied, but that the regular updating

property holds. Thus, there exist A1 and A2 such that ν(A1 ∪ A2) < 1,

ν(A1 ∩ A2) > 0 and ν(A1 ∪ A2) + ν(A1 ∩ A2) > ν(A1) + ν(A2). Let A =

(A1∩A2)∪Ac
1. Since ν is convex, we have ν(A) ≥ ν(A1∩A2)+ν(Ac

1) > 0. Let

B = A2 and C = A1∩A2. By Proposition 6 in Chateauneuf and Jaffray (1995),

νA is convex. Thus by Proposition 11 in Chateauneuf and Jaffray (1989) there

exists a probability measure Q ∈ core(νA) such that Q(B) = νA(B) and

Q(C) = νA(C). Assume Q ∈ (core(ν))A. Then there exists a probability
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measure P ≥ ν such that:

P (B)

P (B) + 1 − P (B ∪ Ac)
=

ν(B)

ν(B) + 1 − ν(B ∪ Ac)
,

i.e.,

P (B)(1 − ν(B ∪ Ac)) = ν(B)(1 − P (B ∪ Ac)).

But P (B) ≥ ν(B) and (1 − ν(B ∪ Ac)) ≥ (1 − P (B ∪ Ac)). Furthermore,

B ∪ Ac = A1 ∪ A2 and therefore ν(B ∪ Ac) < 1, which implies (1 − ν(B ∪

Ac)) > 0. Thus P (B) = ν(B) ≥ ν(A1 ∩ A2) > 0, from which we deduce

ν(B ∪ Ac) = P (B ∪ Ac). Hence P (A2) = ν(A2) (because B = A2) and

P (A1 ∪ A2) = ν(A1 ∪ A2) (because B ∪ Ac = A1 ∪ A2). Replacing B by C in

the preceeding argument leads to P (A1∩A2) = ν(A1∩A2) and P (A1) = ν(A1).

Therefore ν(A1 ∪A2) + ν(A1 ∩A2) = ν(A1) + ν(A2), and thus condition (⋆) is

satisfied, which yields a contradiction.

Proof of Proposition 2

The equivalence between (i) and (ii) follows from Proposition 1. It is easy to

check that (iii) ⇒ (i). We will thus only prove that (i) ⇒ (iii).

We first show that there exists δ ∈ [0, 1) such that for all A, B ∈ Σ, A 6= ∅,

B 6= ∅, A ∩ B = ∅ and A ∪ B 6= S,

ν(A ∪ B) − ν(A) − ν(B) = δ.

Let us prove that this is true for singletons. For any distincts r, s, t in S

(note that this is possible since |S| ≥ 4), condition (⋆) implies:

{

ν({r, s}) + ν({s, t}) = ν({s}) + ν({r, s, t})

ν({r, s}) + ν({r, t}) = ν({r}) + ν({r, s, t}).

Thus:
{

ν({r, s}) − ν({s}) = ν({r, s, t}) − ν({s, t})

−ν({r}) = ν({r, s, t}) − ν({r, s}) − ν({r, t}).

Summing up these two equations, we obtain:

ν({r, s})−ν({r})−ν({s}) = 2ν({r, s, t})−ν({r, s})−ν({s, t})−ν({r, t}. (3)
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Permuting r and t in equation (3) leads to:

ν({s, t})−ν({s})−ν({t}) = 2ν({r, s, t})−ν({r, s})−ν({s, t})−ν({r, t}. (4)

Let u ∈ S be such that u /∈ {r, s, t} (which is possible, since |S| ≥ 4). Substi-

tuting u to r in equation (4) entails:

ν({s, t})−ν({s})−ν({t}) = 2ν({s, t, u})−ν({s, t})−ν({t, u})−ν({u, s}. (5)

Permuting s and u in equation (5), we get:

ν({t, u})−ν({t})−ν({u}) = 2ν({s, t, u})−ν({s, t})−ν({t, u})−ν({u, s}. (6)

Finally, equations (3) to (6) yield

ν({r, s}) − ν({r}) − ν({s}) = ν({t, u}) − ν({t}) − ν({u}),

the desired result.

It remains to show that for all A, B ∈ Σ, where A or B is not a singleton,

A 6= ∅, B 6= ∅, A ∩ B = ∅ and A ∪ B 6= S, there exist distinct r, s ∈ S such

that ν(A ∪ B) − ν(A) − ν(B) = ν({r, s}) − ν({r}) − ν({s}).

Observe that for all C, D ∈ Σ such that S ) C ⊇ D ⊇ {t, u}, condition (⋆)

implies ν(D∪ (C \{t}))+ν(D∩ (C \{t})) = ν(D)+ν(C \{t}) or equivalently

ν(C) − ν(D) = ν(C \ {t}) − ν(D \ {t}). (7)

Let A, B ∈ Σ, where without loss of generality A is assumed not to be a

singleton, be such that A 6= ∅, B 6= ∅, A ∩ B = ∅ and A ∪ B 6= S, and r ∈ A,

s ∈ B. By successive applications of equation (7),

ν(A ∪ B) − ν(A) = ν ((A ∪ B) \ (A \ {r})) − ν (A \ (A \ {r}))

= ν(B ∪ {r}) − ν({r}).

Thus:

ν(A ∪ B) − ν(A) − ν(B) = ν(B ∪ {r}) − ν(B) − ν({r}). (8)

Either B = {s} and ν(A∪B)− ν(A)− ν(B) = ν({r, s})− ν({r})− ν({s}) or
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applying equation (7) again, we obtain:

ν(B ∪ {r}) − ν(B) = ν ((B ∪ {r}) \ (B \ {s})) − ν (B \ (B \ {s}))

= ν({rs}) − ν({s}).

Substituting this last equality in equation (8) yields:

ν(A ∪ B) − ν(A) − ν(B) = ν({rs} − ν({r}) − ν({s}),

the desired result. Hence, since ν is a strictly positive convex capacity, there

exists δ ∈ [0, 1) such that for all A, B ∈ Σ, A 6= ∅, B 6= ∅, A ∩ B = ∅ and

A ∪ B 6= S,

ν(A ∪ B) − ν(A) − ν(B) = δ. (9)

For any A ∈ Σ, A 6= ∅, A 6= S, define: Q(A) = ν(A) + δ. For all A, B ∈ Σ,

A 6= ∅, B 6= ∅, A ∩ B = ∅ and A ∪ B 6= S, equation (9) implies Q(A ∪ B) =

Q(A) + Q(B). Therefore, for all A ∈ Σ, A 6= ∅, A 6= S, Q(A) =
∑

s∈A Q({s}).

Therefore, Q(A) + Q(Ac) =
∑

s∈S Q({s}). Define: Q(S) =
∑

s∈S Q({s}). We

then have, for all A, B ∈ Σ, A 6= ∅, B 6= ∅, A∩B = ∅, Q(A∪B) = Q(A)+Q(B).

Let a =
∑

s∈S Q({s}). Because ν is strictly positive, ν({s}) > 0 for all s ∈ S.

Since δ ∈ [0, 1), we have Q({s}) = ν({s}) + δ > 0 for all s ∈ S, and therefore

a > 0. Define: P0(A) = 1
a
Q(A) for all A ∈ Σ, A 6= ∅ and P0(∅) = 0. Clearly,

P0 is a probability measure on (S, Σ), and we have, for all A ∈ Σ, A 6= ∅,

A 6= S,

ν(A) = aP0(A) − δ.

We already know that δ ∈ [0, 1). Let a = 1 − ε. Because S is finite with

|S| ≥ 4, there exists A, B ∈ Σ such that A 6= ∅, A 6= S, B 6= S, A ∪ B = S

and A ∩ B 6= ∅. From the strict positivity of ν, one obtains:

ν(A) + ν(B) = (1 − ε)P0(A) − δ + (1 − ε)P0(B) − δ

= (1 − ε)P0(A ∪ B) − δ + (1 − ε)P0(A ∩ B) − δ.

Hence ν(A) + ν(B) − ν(A ∩B) = 1 − ε − δ. Therefore, convexity of ν implies

1 − ε − δ ≤ 1, i.e., ε ≥ −δ. Furthermore, since ν is strictly positive, P0 is

also strictly positive and (1 − ε)P0({s}) − δ > 0 for all s ∈ S. Therefore

ε ∈
[

−δ, 1 − δ
mins∈S P0({s})

)

. Thus ν is a strictly positive (ε, δ)−contamination.
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Proof of Corollary 1

We first prove that (i) implies (ii). Let ν be a convex capacity, and let E1, E2 ∈

Σ be such that ν(E1 ∩ E2) > 0. By (i), we have core(ν(E1)) = {P E1|P ∈

core(ν)}. On the other hand, (i) also implies:

core
(

(

νE1

)E2

)

=
{

P E2

∣

∣P ∈ core(νE1)
}

=
{

P E1∩E2 |P ∈ core(ν)
}

= core
(

νE1 ∩E2

)

.

Thus νE1∩E2 =
(

νE1

)E2.

We now prove that (ii) implies (i). Let us consider A, B ∈ Σ \ {∅, S} such

that (i) is not satisfied, i.e., 0 < ν(A∩B), ν(A∪B) < 1 and ν(A∩B)+ ν(A∪

B) > ν(A) + ν(B).

The proof will be completed if we show that there exist E1, E2 ∈ Σ with

E2 ⊂ E1 such that
(

νE1

)E2 6= νE2 . Define E1 = B∪Ac, E2 = (A∩B)∪(Ac∩Bc)

and C = A ∩ B (thus C ∪ Ec
1 = A, C ∪ (E1 \ E2) = B and C ∪ Bc = A ∪ B).

We have:

νE2(C) =
ν(C)

ν(C) + 1 − ν(C ∪ Ec
2)

=
ν(A ∩ B)

ν(A ∩ B) + 1 − ν(A ∪ B)
.

Similarly, from:

(

νE1

)E2

(C) =
νE1(C)

νE1(C) + 1 − νE1(C ∪ (E1 \ E2))

νE1(C) =
ν(C)

ν(C) + 1 − ν(C ∪ Ec
1)

νE1(C ∪ (E1 \ E2)) =
ν(C ∪ (E1 \ E2))

ν(C ∪ (E1 \ E2)) + 1 − ν(C ∪ Ec
2)

,

it follows that:

(

νE1

)E2

(C) =
ν(A ∩ B)

ν(A ∩ B) + [1−ν(A∪B)][ν(A∩B)+1−ν(A)]
ν(B)+1−ν(A∪B)

.

From ν(A∩B)+ν(A∪B) > ν(A)+ν(B) it follows that
(

νE1

)E2 (C) < νE2(C),
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hence
(

νE1

)E2 6= νE2 , which completes the proof.

Proof of Proposition 5

[(i) ⇒ (ii)]

The arguments used in the proof of Proposition 2 and the weak lower

continuity of ν imply that there exists δ ≥ 0, ε ∈ [0, 1) and a strictly pos-

itive σ−additive probability measure P0 on (N, 2N) such that ν(A) = (1 −

ε)P0(A)− δ for all A 6= S. Since ν({k}) = (1− ε)P0({k})− δ, ν({k}) > 0 and

limk→+∞ P0({k}) = 0, we have δ = 0. Therefore, ν(A) = (1 − ε)P0(A), for all

A 6= S.

[(ii) ⇒ (i)] Let ν be an ε−contamination with respect to the strictly positive

σ−additive probability measure P0, and ε ∈ [0, 1). It is straightforward to

check that the core of ν is:

core(ν) =

{

P ∈ P

∣

∣

∣

∣

∣

P ({s}) = (1 − ε)P0({s}) + λ(N, s)ε

with λ(S, s) ≥ 0 and
∑

s∈N
λ(N, s) = 1

}

.

For all A ∈ 2N, let λ(N, A) =
∑

s∈A λ(N, s).

Let E ∈ 2N \ {N, ∅} and Q ∈ core(νE). We have to show that there exists

P ∈ core(ν) such that P E(A) = Q(A) for all A ⊂ E, i.e., P E({s}) = Q({s})

for all s ∈ E.

Note that νE({s}) = (1 − ε′)P E
0 ({s}) for all s ∈ E, with ε′ = ε

ε+(1−ε)P0(E)
.

Let λE be the weight function of Q, i.e., for all s ∈ E,

Q({s}) = (1 − ε′)P E
0 ({s}) + λE(E, s)ε′.

We have to show that there exists P ∈ core(ν) such that P E({s}) = Q({s}),

i.e., that there exists a weight function λ(N, s) such that:

Q({s}) = (1−ε′)P E
0 ({s})+λE(E, s)ε′ =

(1 − ε)P0({s}) + λ(N, s)ε

(1 − ε)P0(E) + λ(N, E)ε
= P E({s}),

which is equivalent to

λ(N, s) ((1 − ε)P0(E) + ε)

20



= λ(N, E)
(

(1 − ε)P0({s}) + ελE(E, s) + (1 − ε)(P0(E)λE(E, s) − P0({s})
)

.

(10)

Summing equation (10) on s ∈ E leads to:

λ(N, E) ((1 − ε)P0(E) + ε) = λ(N, E) ((1 − ε)P0(E) + ε) . (11)

Thus the only constraint on λ(N, E) is that 0 ≤ λ(N, E) ≤ 1. It is thus

necessary and sufficient to find λ satisfying λ(N, s) ≥ 0 for all a s ∈ E and

0 ≤ λ(N, E) ≤ 1. From equation (10) we have:

λ(N, s) ≥ 0 ⇔ λ(N, E) ≥
(1 − ε)P0({s}) − (1 − ε)P0(E)λE(E, s)

(1 − ε)P0({s}) + ελE(E, s)
, ∀s ∈ E.

Therefore,

λ(N, E) ≥ sup
s∈E

(1 − ε)P0({s}) − (1 − ε)P0(E)λE(E, s)

(1 − ε)P0({s}) + ελE(E, s)
. (12)

Note that the right-hand side of equation (12) is less or equal than 1. Indeed,

if it were greater than 1, there would exist s ∈ E such that

−(1 − ε)P0(E)λE(E, s) > ελ(E, s),

or equivalently

(ε + (1 − ε)P0(E))λE(E, s) < 0,

which is impossible. Thus, choosing arbitrarily λ(N, E) such that equation

(12) is satisfied and 0 ≤ λ(N, E) ≤ 1 leads to λ(N, s) ≥ 0 for all s ∈ N, and

therefore, by equation (10)
∑

s∈E λ(N, s) = λ(N, E), the desired result.
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