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PREDICTION BASED ON A L;-METHOD IN THE
NONLINEAR AUTOREGRESSIVE MODEL

Running head : Forecasting by a Li-method

Benoit Cadre, Iréne Larramendy-Valverde
Laboratoire de Probabilités et Statistiques
CC 051, Place Eugene Bataillon
34095 MONTPELLIER Cedex 05
FRANCE

Abstract We consider in this paper the d-dimensional nonlinear autore-
gressive model of order 1 defined by:

X1 = F(Xn) + U(Xn)€n+17 n >0,

where (,),>1 is a sequence of independent, identically distributed IR%-
valued random variables, and F : IR? — IR? (resp. o : IR? — IRy) is
a Holder function. From a L;-method, we construct a robust and uniformly
consistent estimator m,, of the function F + cag, where ag € IR is the
unique Lj-median of £;. Since F/(X,,) + 0(X,,)ag is the best predictor (for
the Li-norm) of X,,1; we can get when X, is known, the estimator m,, pro-
vides the statistical predictor m,, (X, ). Numerical simulations are provided,
inciting the choice of Li-method for forecasting.

AMS 2000 subject classification : 62M10, 62M20.

Key-words and phrases : nonlinear model, L;-median, empirical
estimator, stationary distribution,
statistical prediction.

Introduction

We consider the d-dimensional nonlinear autoregressive model of order 1

(Xn)n>0 defined by:

X1 = F(Xn) + U(Xn)€n+17 n >0,



where F' : R* - R, 0 : IR* — IR, (€n)n>1 is a sequence of independent,
identically distributed R%valued random variables such that for all n > 0,
€p+1 is independent of Xg,---, X,,.

The aim of the paper is to construct a statistical predictor of X1 from
the data Xg,---, X,,. Mostly, the predictors of X, 1 are defined by a Lo-
method (i.e. using a quadratic minimizing criterion) and it is often assumed
that (X,)n>0 is a strictly stationary and mixing sequence (see for instance
Brockwell et al [5] for the linear case and Diebolt [8], Diebolt et al [9],
Doukhan et al [11], Robinson [17] for the nonlinear and univariate case). On
one hand, the Ly-methods do not give robusts estimators and a predictor
based on a Li-method should give a better prediction, just because the Lq-
norm is smaller than the Ly-norm. On the other hand, the stationarity
property on the sequence (X,,),>¢ turns to be a very restrictive assumption
(for instance, one has to assume that the law of Xy is the law of the unknown
stationarity distribution, when it exists). Moreover, the mixing condition
on the sequence (X,),>0 requires absolute continuity of £1’s density and the
particular form of the r_nixing coefficients involves additional assumptions on
the model (see Doukhan [10]).

In this article, we eliminate these severe drawbacks. We introduce another
predictor based on the Li-median. The L;-median provides a robust esti-
mator (see Kemperman ([15], Theorem 3.10)) and the statistical predictor
defined by this Li-method should give a better predictor than the one given
by the Lo-method, at least because the L{-norm is smaller than the Lo-norm.
Moreover, we shall not assume in this paper that the sequence (X,,),>o is
strictly stationary and mixing which, as mentioned above, involves very
restrictive assumptions on the model. However, we shall only prove the
consistency of our estimator, which is much more difficult than in the above
cases, just because the predictor may not be defined via a simple expression.
The numerical study of Section 2 proves the very good performances of our
predictor, compared to its analogous predictor constructed via a Ly-method.

Throughout the paper, we let ||.|| to be a fix norm on IR?. Recall that the
set of Li-medians of an integrable bounded measure v defined on IR? is:

ArgminaeRd/Hx — af|v(dz).

One easily prove that the set of Li-medians is always non-empty. For sta-
tistical uses of the Li-medians, we refer to the survey by Small [18] (see also
Berlinet et al [1] and [2], Gannoun et al [13]).



Let us now explain the basic idea of the paper. Assume that the law of £;
has a unique L;-median o € IR? (by Kemperman ([15], Theorem 3.17) or
Milasevic and Ducharme [16], this is the case if for instance, |.|| is strictly
convex - i.e. ||z + y|| < [|z|| + ||y|| whenever 2 and y are not proportional -
and if the support of the law of 1 is not included into a straight line). Then,
the law of X given Xy = z has a unique Li-median which is easily seen to
be F(z) + o(2)ag. One can now introduce an estimate of '+ oo from the
data Xg,---, X,,. We first consider a Nadaraya-Watson type estimator of
the law of X7 given Xg = 2, namely v. We then prove that with probability
1 and uniformly on z, the set of Li-medians of v, called m, (), converges
to F(z) + o(z)ag. Since F(X,) + o(X,)ag is the best predictor (for the
Li-norm) of X, 41 we can get when X, is known, the estimator m,, provides
the statistical predictor m,,(X,).

The paper is organized as follows. Notations, hypotheses and main results
are given in Section 1. Some numerical simulation are presented in Section
2. Section 3 is devoted to the proof of the main result.

1. Notations, hypotheses and main results
1.1 Notations and hypotheses

Notations and basic assumptions on the model. From now on, ¢ is a IR%
valued random variable with the same law as 1. We assume throughout
that ¢ has a positive, Lipschitz density g, and F[||¢]|*] < co. Moreover, we
assume that ¢ and F are Hélder functions of order Hy > 0 and Hy > 0,
inf o > 0 and we make the assumption that the model is stable i.e. there
exists a probability x on IR? such that with probability 1, the sequence of
probability measures

1>

weakly converges to i, where &, denotes the Dirac measure on z € IR?. We
finally assume that the law of £ has only one Li-median (for a sufficient
criterion of uniqueness, see Kemperman [15]). We let ag € IR? be the ;-
median of ¢ and for all z € Bd, we let v” to be the law of X; given Xy = z.
Note that since Xg is independent of £1, v7 is also the law of F(z) 4 o(x)e.
If moreover a € IR?, we let:

plafz) = / ly — allv*(dy) = E[[|F(x) 4 o(x)e - af]].
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Remark 1.1 If sup o < oo and there exists L < 1 such that
IF ()] < L=, Vo € R,

then, we deduce from an easy modification of Duflo ([12], p. 192, Example
2 - in which the case H; = 1 is considered) that the model is stable.

The empirical estimators. With the convention 0/0 = 0, the estimator of v*
is defined for all n > 1 by:

o iy Sx K (1| X — )
O K (| Xy — )

where ¢ > 0 and K : IRy — IR; is a Lipschitz density function with a
compact support contained in [0, 1] (for simplicity of the proofs). Moreover,
for o,z € IR? and n > 1, we let:

pnlala) = [ lly = allvi(dy).

With probability 1, for all z € IR? and n > 1, the set of L;-medians of v7,
i.e.:

n
Argmin, e pagn (0] ) = Argmin, epa D " Xi — ol K (% Xims = 2])),
=1
is non-empty. We let m,(z) to be one of the Li-medians of v¥.

1.2 The robust estimator

Theorem 1.1 Assume that sup, >, E[||Xp[|] < co. Ifad(4 +d) < 1 then,
with probability 1 (w.p. 1):

|lm, — (F'+ oag)|| = 0, as n — oo,
uniformly on every compact set.

Remark 1.2 The condition on the sequence (E[||X,|[|]),>1 always holds in
the following important cases :

- Xy is integrable and its law is given by u (because (X,),>o is then a
strictly stationary sequence);

- I’ and ¢ are bounded;

- I and o satisfy the conditions of Remark 1.1 (see Duflo ([12], p. 192)).



Remark 1.3 Several improvements of Theorem 1.1 may be considered. For
instance, one may consider the Banach AR(1) model (see Bosq [3]), or even
a functional autoregressive model defined on a Banach space. However, the
convergence is then obtained only for a weak topology (see Cadre [6] for a
result in this direction).

Remark 1.4 If we assume moreover that d > 2 and the sequence (Xn)nZO
is strictly stationary and geometrically mixing then, one can prove using the
Hoélder property of the Li-median given in Cadre [7] (for similar computa-
tions, see also the rate of convergence for the conditional Li-median in the
same paper) that w.p. 1:

Iy = (F + cao)|| = O(n= =2/,

uniformly on every compact set. In this particular framework, this gives a
non-optimal rate of convergence. The proof of this result is very different
from the proof of Theorem 1.1 : here, we insist again on the fact that
Theorem 1.1 is obtained under mild assumptions on the model.

1.3 Statistical prediction

One can easily prove that, for the Li-norm, F(X,,) 4+ o(X,,)ag is the best
appproximation of X, ;1 we can get when X,, is known, i.e.:

ElllXnt1 = (F(Xn) + o (Xn)ao)l[|Xn] = inf E[[[Xnt1 = af[[ Xn].

Hence, the estimator m,, of F'+oaq provides the statistical predictor m,, (X,,).
Note that if sup,s E[||X,||] < oo, then the sequence (X,,),> is tight. The
corollary below is then straightforward from Theorem 1.1.

Corollary 1.1 Assume that sup,, >, E[||Xp||] < oo. If ad(4 +d) < 1 then:
mp (X)) — (F(X,) + 0(X,)ag) = 0, as n — oo,

in probability.



In Section 2 below, we shall compare the performances of our predictor to
the performances of the analogous predictor constructed via a Lo-method
(see for example Robinson [17]).

2. Simulation study and data analysis
2.1 Notations and mean error of prediction

Let n be the sample size and zy, ..., x, the observations. We define 98]1
(respectively i?) the prediction of z; constructed from 2, ..., z;_; with the
classical kernel predictor (see for example Robinson [17]) (respectively with
the predictor defined in section 1.3.). When the number H of predictions is
given, we then compute the mean error of the predictions defined by

1 &z -4l 1 &z @
FK =— — T EM=— Lt AL
H 2 [EA H 2 [EA

j=n—H+1 j=n—H+1
In the numerical study, we choose the gaussian kernel K defined by

K(0) = Gy (= )

2.2 Simulations

In the univariate case (d = 1), a simulation study is undertaken to investi-
gate the methodology presented in the previous section. The different link
functions F' considered are :

F(z) = ax + 10 with ¢ € {0.8;0.9;1;1.02} (model A);

F(z) = /]z] + 10 (model B);

F(z) = |2]*/* + 10 (model C).

Two cases of error process (0(X,)e,41)n>0 are considered for each model:
o(z) =1 and o(x) = exp(—|2|), (€n41)n>0 being independently and identi-
cally distributed N(0,p) with p = 1 in model A and p = 0.5 in models B
and C (hence ag = 0 in all cases).

One sample size n = 100 is investigated and we predict the values of H =5
observations. For each combination of model and &, 50 independent sets of
data are generated.

Tables 2.1 - 2.4 give the means and the standard deviation of these 50 errors
'K and IYM obtained for each model.



a | Means and standard deviations (x 100) of
EK EM
0.8 | 2.18 (1.01) 1.64 (0.5)
0.0 | 1.70 (1.09) 0.84 (0.29)
1 | 9.45 (0.09) 1.02 (0.04)
1.02 | 10.22 (0.035) 2.29 (0.011)

Table 2.1. Model A with o(x) =1
(The standard deviations are in parentheses)

a Means and standard deviations (x 100) of
EK EM

0.8 | 0.28 (6.68 x1072) | 1.32 x10™* (2.68 x107°)

0.9 | 1.11 (0.01) 0.035 (3.41 x10™%)

1 9.47 (9.52 x107%) | 1.02 (1.03 x1077)

1.02 | 10.22 (3.51 x107%) | 2.29 (7.87 x10™%)

Table 2.2. Model A with o(x) = exp(—|z|)

o Means and standard deviations (x 100) of
EK EM
1 2.87 (0.92) 2.88 (0.89)
exp(—|z]) | 8.33 x107* (1.18 x107%) | 3.22 x107° (1.05 x107°)

Table 2.3. Model B.

o Means and standard deviations (x 100) of
EK EM
1 5.30 (0.66) 5.31 (0.66)
exp(—|z]) | 9.84 x107* (5.40 x10~%) | 3.07 x10~7 (1.54 x10~7)

Table 2.4. Model C.

One remarkable aspect of the study is how our procedure performed when
the linear model is asymptotically stationary and unstable (tables 2.1 and
22,a=0.9,1,1.02).

For models B and C (tables 2.3 and 2.4), the error is insensitive to the
choice of the predictor when o(2) = 1 but the difference between the two
errors K and FM are significant when o(z) = exp(—|z|). In all cases, it is
preferable to choose the Li-method that gives estimators of the errors with
smaller standard deviations.



2.3 Data Analysis

To confirm the advantages of the Li-method, we shall apply it to a time
series consisting of the IBM common stock closing prices (see Figure 2.1,
Box and Jenkins [4]). We suppose that the model is such that ag = 0.

600
580
560
540
520

500

W 40 60 80 100

Figure 1: Datas from 6th June to 3rd September 1961

We choose two sample sizes : n = 90 (datas from 6th June to 3rd September
1961) and n = 105 (datas from 6th June to 18th September 1961).

For n = 90, the number of predictions H is equal to 5 and for n = 105,
H = 20.

FK (x100) | EM(x100)
n =90 | 2.76 0.79
n =105 | 1.67 0.96
Table 2.5.

Table 2.5 shows that the error is smaller using Li-method. However, the
error obtained with the classical method of nonparametric regression is re-
duced choosing the sample size equal to 105. This phenomenom has already
been noted in the model A above (with ¢ = 1 against @ = 0.8). Indeed, one
remark that according to figure 1, the 80 first datas are observations of a
process with unit root (the trend is an increasing straight line) and the 20
last are observations of a stationary process.

The three curves (Figure 2) represent the 20 last observations and their
predictions according to the two methods.



600

590

580

570

Figure 2: Observations and predictions

(The solid line represents the observations; the dotted line, the predictions
by the Li-method; the dashed line, the predictions by the classical method.)

3. Proofs

For simplicity of the proofs, we let S C IR? be a compact set and we assume
in this Section that supg||F|| < 1, supgo < 1 and o, I are Lipschitz
functions (hence Hy = Hy = 1) of order < 1, i.e:

1 () = F@)ll < llz = yll, lo() = o(@)] < [lo = yll, Yo,y € R

We also assume that sup,; E[||X,]|]] < oo. According to Kronecker’s
Lemma, we then have w.p. 1:

1 n
ST IXi = o, . 3.0
n(logn)Qizlu | — as n — 0o (3.0)

First of all, we state three lemmas, delaying their proofs to the end of this
section.

Lemma 3.1 Let z € IR?. The probability measure v* has a unique Li-
median which is F'(z) + o(z)ag.

Lemma 3.2 Ifad(4+ d) < 1 then w.p. 1:

supsup ||my(2)]] < oo.
reSn>1



Lemma 3.3 Ifad(4+ d) < 1 then w.p. 1:

ilég lp(my, (z)|z) — p(F(2) + o(z)aglz)| = 0, as n — oo.

In the following, we denote by % the application defined for all & € IR? by:
¢(a) = Elfle — ofl].
Recall that we have:

Argmin, e paté(a) = {ac}.

Proof of Theorem 1.1 W.p. 1, forall > 0 and n > 1, there exists z,, € S
such that:

Sup [[ma (2) = (F(@) o (@)ao)|| < lmn(zn) = (F(@a)+oen)eo)ll+n.  (3-1)

Let us introduce the event:
Bo = [Sgp lm (@) || < 00, [@(mn(zs)|en) — @(F(2n) + o(zn)aol2,)| — 0].

By Lemmas 3.2 and 3.3, we have P(By) = 1. Fix w € By. From any
subsequence, one can extract a subsequence (ng)g>1 (depending on w) such
that: -

Ty, = Too and my, (2,,)(w) = X.

We first prove that Y = F(2.,) + 0(20)ap. Recall that for all a,z € IR:
plafe) = E[|F(2) + o(2)e = af] = o(2)p(o(x) " Ha = F(2))).  (3.2)
Then, by continuity:
p(Xl200) = lim o(my, (20, ) (@) ]2n,),
and since w € By, we have:

p(X|200) = lim @(F(2n,) + 0 (2, ) 0] 20y )-

10



Then, according to Lemma 3.1 and formula (3.2):

PXloc) = lim inf olalrn,)
= limo(ey,) inf v(o(e,,)™ (a = F(aa,))
= (o) il (a) = 0(r0)tb(a0)
= P(F(2e0) + o(e0)acles).

By Lemma 3.1, F'(2s) + 0(2eo)p is the unique Lj-median of v7> hence
X = F(2s) + 0(2o0)og. Moreover, by continuity of F' and o:

[0y (20 ) (@) = (F(2n,) + (20, )0) || = 0, as k — oo
As a conclusion, from any subsequence of the sequence:
([mn(zn) (@) = (F(2n) + 0 (2n)a0) | )nz1,

one can extract a subsequence which converges to 0. Hence this sequence
vanishes as n — oco. Since w € By, one deduce from (3.1) that w.p. 1:

sup ||my, (z) — (F(z) + o(2)ag)|| = 0, as n — oo,
€S

hence the theorem O
We now prove Lemmas 3.1-3.3. The proof of Lemma 3.1 is easy.
Proof of Lemma 3.1 By assumption on e:
Argmin, ¢ patv(a) = {ao}.

By above and (3.2), we deduce that:

Argmin, e gap(ale) = {F(z) + o(z)ao},
i.e. v* has a unique Li-median F(z) + o(z)ag O
For notational simplicity, we shall write for all 7 > 1 and u, 2 € IR®:

Ko (u) ="K (i"||u — z]|).

Lemma 3.4 The stationary distribution p of the Markov chain (Xn)nZO 18
absolutely continuous with respect to the Lebesgue measure. If we denote by

11



k the density, we have 1(S) =infgk > 0 and moreover, if 2ad < 1, w.p. 1,
for all n large enough and x € S:

nl(S) <23 K (Xi_1).
=1

Proof We deduce from an easy argument that the stationary distribution
is absolutely continuous with respect to the Lebesgue measure (see Duflo
[12], p. 187). Moreover, the transition probability of the Markov chain has
a density p which is easily seen to be:

pla,y) = a(x)_dg(a(x)_l(y — F(2))), Va,y € R,
Since inf ¢ > 0 and g is Lipschitz and bounded, we deduce from Proposition

7.1.8 by Duflo [12] that w.p. 1:

1 e
sup [— E K; »(Xi—1) — k(z)] = 0, as n — oo,
zes N =1

and hence one only needs now to prove that I(S) = infsk > 0. By Duflo
([12], page 187), the density k satisfies:

k) = [ kayr@) (o) (y - Fa))de, Yy € B (33)

Assume that there exists a compact set M C IR? such that infy &k = 0.
Then by (3.3), we have:

0=infl > /k(x)g(x)—dyig&g(a(x)—l(y—F(x)))dx

Jint o) g(ole) (y - F@)) [ Ke)de.

v

Since F' and ¢ are continuous, we deduce from the assumptions on ¢ that:

/M k(z)dz =0,

and hence that £ = 0 almost everywhere on M. Fix yo € M such that
k(yo) = 0. By (3.3), we then have:

[ k@)o(e)g(o () o - Fla))da =0,

12



so that almost everywhere (recall that inf ¢ is positive),

k(x)g(o(x) ™ (yo — F(x))) = 0.
By positivity of ¢, we deduce that k& = 0 almost everywhere. Since k is a
density, we have a contradiction O
If n > 2, we denote by 7, the real number:
1

Tn = ) (logn)?’

We now define a covering of S, which will be used several times. One can
find an increasing sequence of integers (ln)nZI such that sup,, ln'yff < 0o and

for all n > 1, there exists a7,---, 27 € IR? satisfying:
In
sup sup [|z3|| < oo and S C | B(2}, 7).

Without loss of generality, we assume throughout that for all » > 1 and
k=1,---1,: 2} €85.

Lemma 3.5 For all i > 1, let y; : IR* — IRy such that for all x € IR?,
V@) < 1+ [all.
If ad(4 + d) < 1, we have w.p. 1, as n — oo:
1 n

P SR () > (xiles)

=1

— Elxi(e)]) Kizp(Xi-1)| — 0.

If moreover E[x;(¢)] = 0 as i — oo, then w.p. I:

1 e
(e K o (X2 — 0.
nax s I(i,xZ(Xi—l)|;X (£0) Kizp (Xiz1)]

Proof Note that by Lemma 3.4, one only needs to prove that w.p. 1:

1 e
—max » (xi(e1) — E[Xi(%?)])Ki,xg(Xi—l) — 0, as n — oc.

13



Let 8> 0 and n > 1. Then,

n

<2 P _06(e) — ElG(@D Kiap(Xic)| 2 n8) - (3.4)

For all 7 > 1, let G; be the o-field generated by Xg,e1,---,2; and Gy be
generated by Xg. By a martingale property, one may use the exponential
inequality by Haeusler ([14], Lemma 1). If || K[| denotes the supremum
norm of K, we have for all n > 1 and z € S:

n

P () — B Kie(Xica)] 2 09)
<074 ) PG ~ KK Snllogn) ™)

#2P(3 Fl((e) ~ I RE (Xio)iGiet) > 225 expl=3) o))
<n7 £ P(ile) - BRI K > Bnogn)™)

123 Plvar(xi(e)n® K2, > 0257 exp(—3) (logm) ™)
=1

<0+ 3 Pxile) = EDa(@IIE |l > fn' = (log n) ™)

< c(log n)Sn—Z-I—Sad T n—2

9

where ¢ > 0 is a constant, since £ has a moment of order 3. Finally, Lemma
3.5 is then a straightforward consequence of (3.4) (recall that ad(4+d) < 1
and sup,, 1,7 < 00) O

For all A > 0 and D C IR?, let:
DY ={y € R* : 3» € D with [ly — z|| < A}.
If moreover n > 1, we let:
e, D) = [ Iylin)r(dy);

Hy(w.0) = [ylip(y)vi(dy).

14



Lemma 3.6 Let A > 0 and assume that for some R C IR?, v”(R°) < X\ and
H(z,R%) <X forallz € S. Then, if ad(4+ d) < 1, we have w.p. 1:

limsup sup 2 ((RY)°) < A;

n €S
lim sup sup H,(z, (R")°) < A.
n €S

Proof We only prove the second inequality. Let n > 1 and z € B(2},7v,),
for some k= 1,---,1,. An easy calculation shows that w.p. 1:

H (2, (RY))
< |Hy(w, (RY)) = Ho(af, (R + Hy(a}, (RY))
1z 22y 1G]] n||K||r
= (logn)? 3oy Kip(Xica)  (logn)? 3205 Kiw(Xioy)
+H, (2}, (RY)°).

Hy(af, (RY))

According to (3.0), the sequence of random variables

7, = nzzuxu

n(logn)

vanishes w.p. 1. By above and Lemma 3.4, we deduce that w.p. 1 and for
all n large enough:

. 2Z, || K||
ilég H,(z, (RA) ) < T)L
F AL e (R (3.5)

I1(5)(logn)?’ k<in

One only needs now to study the asymptotic behavior of the sequence
(maxy<i, Hy (27, (RY)))n. Since K has a compact support contained in
[0, 1], we have for all z € S and n > 1:

DXl xe(rrye K (Xic)

=1

=D X (X, o (Xamr )i (RN, X0y —af -y B (Xim1)
=1

D X P )b (Koot )ere (BN, Xy —al|<imo} Wi (Xio1)

=1

15



n

<N el Koo (Xion)

=1

o,

n

+ Z H ($) + U(x)giHI{F(QL’)-I-U(QU)Q‘ERC, ||5,‘||§/\ia—1}l(i,ac(Xi—1)7

1

3

ZHF( )+ o(@)eill Iy sy ie -1y Kio (Xiz1),

Mz

(L [leafl)e™ Ko (Xiva)

=1

o,

n

+ Y NIF (@) 4 o(@)2ill I{p@)+o@)eicre Kie (Xic1),

=1
n

+ Z(l + H&H)I{||sl||>/\za I}KZ x(Xi—l)-

=1

By Lemma 3.5, we have w.p. 1,

lim max H, (v, (R*)°) < sup B|F(2) + o ()<l payrotorzens]

Finally, by (3.5), we deduce that w.p. 1:

limsup Hy (2, (B*)°) < sup H(z, R°),
n ozes reSs

hence the lemma O
Lemma 3.7 Let o € IRY. Then, if ad(4+d) < 1, we have w.p. 1:

sup |on(a|z) — p(alz)] = 0, as n — oo.
reSs

Proof As in the beginning of the proof of Lemma 3.6, one deduce from an
easy calculation and Lemma 3.4 that w.p. 1, for all n large enough:

sup [ipn(ale) — p(alz)|

€S
2HKHL 2[| K|z
< e TN N X TN N ie3
<+ 7(9) (logn)? ZH |+ llaf]) + T75) (log n)2 155 % (alzy)
+2n§}§|99n(0‘|$k)_ (0‘|$k)|-
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By (3.0) and since ¢(«|.) is finite over S, one only needs to prove that w.p.
1:

2n<2}x lon(a]z}) — @(alzf)| — 0, as n — oo.

Forall n > 1 and a € S, since K has a compact support contained in [0, 1],
we have for all n:

Zlﬁzx 1—1 |99n(a| ) (Od|$)|

<A = oll = 1P() + o(@)ei — al) Ko (X ) Ty, -y —af <ime)]

D20~ all = 1P () + 0w = @l KXo I, i)
S + oe)es = BIIF) + () — all) Kiul(Xio1)|
i L )i K o (Xm)

n

H (1P (@) + o(z)ei — al| = E[|F(x) + o(x)e = all) Kio(Xi1)].

=1

Lemma 3.7 is then a straightforward consequence of Lemma 3.5 O
Lemma 3.8 Assume that ad(4+ d) < 1. Then, w.p. 1 and for all u > 0:

sup sup |g,(alz) — ¢(alz)] — 0, as n — oo.
rES [larl|<u

Proof For all ||a|| < u, we denote by f, the function:

faly) = lly —all, y € R,

and by A the set A = {f,, ||of] < u}. Note that the family (v")zes is
tight and ¢ is integrable, so that for all A > 0, there exists a bounded set
R C R¥such that Vo € S, v (R°) < Aand H(z, R°) < A. By Ascoli, the set
Alr (restriction of functions in A defined on R) endowed with the uniform
topology is totally bounded. Consequently, one can find {g1,---,¢,} C A
such that for all ||| < u, there exists j = 1,---, p with:

sgplfa( y) —g;(y)| < A

17



But g; € A, hence:

sup |fa(y) — g;()| < sup|fa(y) — g;(y)| + 22 < 3\
yERA yeR

Then w.p. 1 and for all z € S, n > 1:

”SHE lon(alz) — p(alz)]

= sup |v(fa) —v7(fa)]

llol|<w
< vy (RY) +uv® (RN + Ha(x, (RY)) + H(z, (RY)°)

+||Sl|l|E |V7f(fozIRk)_ l’(fozIRkﬂ

< upf (BNY) + u® ((RY)°) 4 Hy(w, (RY)) + H (x, (RY)°)
+6A + max [vn (951Rx) — v (gi1RA)]

< 2upf ((RYN)°) + 2uv” ((RY)°) 4+ 2H, (w, (RY)) + 2H (x, (RY)°)
+6X + max vy (95) — v*(g;)]-

Since R C R*, we deduce from Lemmas 3.6 and 3.7 that for all A > 0, w.p.
1:

limsupsup sup |p,(a]z) — ¢(alz)] < (10 4+ 4u)A.
mo w€S |al<u

Letting A — 0 through the rationals, one obtains that w.p. 1:

sup sup |g,(alz) — ¢(alz)] — 0, as n — oo.
rES [larl|<u

It is then a classical exercise to prove that the null set may be chosen so as
to be independent of v > 0 O

Proof of Lemma 3.2 By Lemma 3.8 and since I’ and ¢ are bounded by 1
over S, w.p. 1, there exists N > 1 such that for all n > N and z € S:

en(0]z) <1+ ¢(0]z) < 24 Efle]]].
Consequently, w.p. 1:

sup sup ¢, (0]2) < cc.
n>N z€S

Moreover, foralln =1,---, N and 2 € S:

< -
pu(Ofz) < max_ |G|

]

18



We deduce from the above inequalities that w.p. 1:

supsup ¢, (0]z) < oo. (3.6)
n>1 z€S

Now, observe that if n > 1 and 2 € S:

[ (@) < @n (1m0 (2)|2) + @0 (0]2),

and obviously:
en(mn(@)2) < @a(0]2),
so that:
supsup ||m,(2)|] < 2supsup ¢, (0]z),

n>1 z€S n>1 z€S
which is almost surely finite according to (3.6) O
Our last task is to prove Lemma 3.3.

Proof of Lemma 3.3 According to Lemma 3.2, the random variable

u = sup | F(x) + o(x)aoll + supsup [ (z)]
z€S r€Sn>1

is almost surely finite. By Lemma 3.1, we then have for all n > 1:

sup [p(m(2)|2) — @(F(z) + o (z)aole)|

z€S
< suplp(ma(@)l2) = @nlmna(@)l2)]
+sup| inf @,(ajz) — inf @(az)]
zes llof|l<u (a7) llof|<u (o)
< 2sup sup |gn(alz) - p(alz)],
r€5 ||af|<u

and the rightmost term vanishes almost surely according to Lemma 3.8 O
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