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Assessing the number of clusters of a statistical population is one of the essential issues of unsupervised learning. Given n independent observations X 1 , . . . , X n drawn from an unknown multivariate probability density f , we propose a new approach to estimate the number of connected components, or clusters, of the t-level set L(t) = {x : f (x) ≥ t}. The basic idea is to form a rough skeleton of the set L(t) using any preliminary estimator of f , and to count the number of connected components of the resulting graph. Under mild analytic conditions on f , and using tools from differential geometry, we establish the consistency of our method.

Introduction

Clustering is the problem of identifying groupings of similar points that are relatively isolated from each other, or in other words to partition the data into dissimilar groups of similar items. This unsupervised learning paradigm is perhaps one of the most widely used statistical techniques for exploratory data analysis. Across all disciplines, from social sciences over biology to computer science, practitioners try to get a first intuition about their data by identifying meaningful groups of observations. We refer the reader to Duda, Hart and Stork [START_REF] Duda | Pattern Classification, Second Edition[END_REF], Chapter 10, and Hastie, Tibshirani and Friedman [START_REF] Hastie | The Elements of Statistical Learning: Data Mining, Inference, and Prediction[END_REF], Chapter 14, for a general background on the question.

A major challenge in cluster analysis is to assess the number of clusters, say k. Practically speaking, the identification of k is essential for effective and efficient data partitioning, and it should be seen as a step preliminary to any clustering algorithm. For instance, popular clustering algorithms such as k-means or Gaussian mixture modeling may generate bad results if initial partitions are not properly chosen.

Contrary to data analysis methods such as regression or classification, there are many ways to define clustering-even the question "What is clustering?" is difficult to answer in all generality (von Luxburg and Ben-David [START_REF] Von Luxburg | Towards a statistical theory of clustering, PASCAL Workshop on Statistics and Optimization of Clustering[END_REF]). Thus, in order to make precise statements about k, a formal definition of cluster is needed. In the present paper, we will use the definition proposed by Hartigan [START_REF] Hartigan | Clustering Algorithms[END_REF]: Given a R d -valued random variable X with probability density f and a positive level t, a t-cluster is defined as a connected component (i.e., a maximal connected subset) of the t-level set

L(t) = {x ∈ R d : f (x) ≥ t}.
The advantage of this definition is that it is geometrically easy to understand. The level t should not be considered here as a smoothing parameter to be assigned in an optimum way: it just indicates the resolution level chosen for the practical clustering problem at hand. Thus, in this context, the number of connected components of L(t), say k(t), is considered as the "true" number of clusters of the underlying distribution.

In the present paper, our purpose is to estimate the positive integer k(t), given a random sample X 1 , . . . , X n drawn from f . A rough analysis suggests first to estimate the level sets of the probability density f (Polonik [START_REF] Polonik | Measuring mass concentrations and estimating density contour clusters-an excess mass approach[END_REF], Tsybakov [START_REF] Tsybakov | On nonparametric estimation of density level sets[END_REF], Cadre [START_REF] Cadre | Kernel estimation of density level sets[END_REF]), and then to evaluate the number of connected components of the resulting set estimate. However, this does not seem to be a promising strategy, especially because it requires assessing the level sets, which is, in the present context, a superfluous operation. (Note however that estimating the clusters can provide valuable information to group the data, see Cuevas, Febrero and Fraiman [START_REF] Cuevas | Cluster analysis: a further approach based on density estimation[END_REF]). Therefore, we propose a different approach, which bypass the estimation of the level sets, and which is computationally simple. The basic idea is to form a rough skeleton of the level set L(t) using any preliminary estimator of f , and to count the number of connected components of the resulting graph. Practically speaking, the latter operation can be performed efficiently using for example a tree search algorithm such as Depth-First Search (Cormen, Leiserson and Rivest [START_REF] Cormen | Introduction to Algorithms[END_REF]). Our approach is close in spirit to that of Cuevas, Febrero and Fraiman [START_REF] Cuevas | Estimating the number of clusters[END_REF], who analyse a simple algorithm to count the number of connected components of the Devroye-Wise [START_REF] Devroye | Detection of abnormal behavior via nonparametric estimation of the support[END_REF] estimate of L(t). We also refer the reader to Duda, Hart and Stork [START_REF] Duda | Pattern Classification, Second Edition[END_REF], Section 10.12, for an account on related graphtheoretic methods for clustering purposes.

The paper is organized as follows. In Section 2, we introduce notation and define k n (t), our graph-based estimator of the number of clusters. The convergence of k n (t) towards k(t) is studied in Section 3. Technical lemmas necessary to the proof of the results are postponed to the Appendix A.

Notation and assumptions

Let f be a probability density function on R d . As explained earlier, for any t > 0 in the range of f , we let the t-level set be defined as L(t) = {x ∈ R d : f (x) ≥ t}, and denote by k(t) the number of connected components of L(t). Recall that, in our framework, the integer k(t) is considered as the "true" number of clusters of the statistical population associated with f , in the sense of Hartigan's definition [START_REF] Hartigan | Clustering Algorithms[END_REF]. In all of the following, k(t) will be assumed finite.

Let D n = {X 1 , . . . , X n } be an i.i.d. sample drawn from f . In addition to the data set D n , it will also be supposed that at our disposal is an estimator f n of f , based on D n , and obtained by an arbitrary method, e.g., a kernel density estimator, but many other choices are possible.

We now proceed to define the estimator of k(t) by constructing a graph as follows. First, set J n (t) = {i = 1, . . . , n : f n (X i ) ≥ t}. Next, given a sequence (r n ) of (strictly) positive real numbers, consider the sample items falling in J n (t), and introduce the Card J n (t)×Card J n (t) matrix S n = [s ij ] with binary entries

s ij = 1 if X i -X j ≤ r n 0 otherwise,
where . is the Euclidean norm on R d . The matrix S n induces a graph, G n (t), the nodes of which are the points in J n (t), and where an edge joins node i and node j if and only if s ij = 1, or, equivalently, X i -X j ≤ r n . This algorithm produces a skeleton of the set J n (t), where two elements x and x of J n (t) are in the same cluster if and only if there exists a chain x, x 1 , . . . , x k , x in J n (t) such that x is connected to x 1 , x 1 to x 2 , and so on for the whole chain. Our proposal is to estimate k(t) by k n (t), the number of connected components of the graph G n (t), sometimes called ε-nearest neighbor graph. As explained in the Introduction, the evaluation of k n (t) does not require to estimate the whole set L(t). Moreover, its computation can be performed efficiently in O(V G n (t) + EG n (t)) operations (e.g., via the Depth-First Search algorithm, see Cormen, Leiserson and Rivest [START_REF] Cormen | Introduction to Algorithms[END_REF]), where V G n (t) (resp. EG n (t)) denotes the number of vertices (resp. edges) of the graph G n (t).

Our main result states that k n (t) is a consistent estimator of k(t). To prove this, and denoting by {f ∈ A} the set {x ∈ R d : f (x) ∈ A} for any Borel set A ⊂ R, we shall need the following assumptions.

Assumption 1

(a) The probability density f is of class C 1 on a neighborhood of {f = t}.

(b) For each x ∈ {f = t}, the gradient of f at x is non-zero.

Assumption 2

With probability 1, the estimator f n is of class C 1 .

Note that Assumption 1 (b) is equivalent to the fact that the differential df x of f at x is surjective at every x ∈ {f = t}. Furthermore, Assumption 1 implies that {f = t} has Lebesgue mass 0 and that each connected component of L(t) has positive Lebesgue mass, i.e., we have (i) λ({f = t}) = 0, and (ii) λ(C l (t)) > 0, where λ is the Lebesgue measure on R d , and where the C l are the connected components of L(t). At last, under Assumption 1, the set {f = t} is a submanifold of R d of codimension 1 by the Implicit Function Theorem. Finally, observe that Assumption 2 is not restrictive, and holds for example if f n is of kernel type with a continuously differentiable kernel.

In the following, ∇ stands for the gradient and . ∞ denotes the supremum norm over R d .

3 Main result Theorem 3.1 Suppose that Assumption 1 and Assumption 2 hold. Let (ε n ) be a sequence of positive real numbers such that ε n → 0 and ε n = o(r n ). Let V be a neighborhood of {f = t} such that inf V ∇f > 0. Then there exist two positive constants C 1 and C 2 such that:

P k n (t) = k(t) ≤ C 1 r -d n exp(-C 2 nr d n ) + 2P f n -f ∞ > ε n + P inf V ∇f n < 1 2 inf V ∇f .
As an example, consider the case where f n is a kernel estimator of f , i.e., for

x ∈ R d , f n (x) = 1 nh d n n i=1 K x -X i h n ,
where the kernel K is a probability density on R d , and the smoothing parameter h n vanishes as n → ∞. For simplicity, assume that K is the Gaussian kernel and that f is a C 1 probability density with bounded gradient. Let h n be such that h n = o(ε n ) and nh d+1 n / log n → ∞. Using Bernstein inequality, one easily derives exponential bounds for the two terms above involving f n and ∇f n (see, e.g., Prakasa Rao [START_REF] Rao | Nonparametric Functional Estimation[END_REF]). Moreover, assuming that h n ≤ ε 2 n , together with the condition nr d n / log n → ∞, we obtain the result

P k n (t) = k(t) = O 1 n 2 .
Since k n (t) and k(t) are integers, the Borel-Cantelli lemma shows that, with probability 1, k n (t) = k(t) for all n large enough.

Remark According to a referee, a challenging question is whether one can obtain similar results by using only the connected components of the standard ε-nearest and k-nearest neighbor graphs, for example by adapting methods of Brito, Chavez, Quiroz and Yukich [START_REF] Brito | Connectivity of the mutual k-nearest neighbor graph in clustering and outlier detection[END_REF] and Penrose [START_REF] Penrose | A strong law for the longest edge of the minimal spanning tree[END_REF].

Proof of Theorem 3.1 uses the following lemma.

Lemma 3.1 Suppose that Assumption 1 holds. Then, for ε > 0 small enough, we have

k(t -ε) = k(t) = k(t + ε).
Proof We only prove the equality k(t) = k(t + ε), the other case being similar. On the one hand, for ε > 0 small enough, k(t) ≤ k(t + ε) since λ({f = t}) = 0. On the other hand, the inequality k(t) ≥ k(t + ε) for ε > 0 small enough is clear, since the gradient of f does not vanish on a neighborhood of {f = t}.

From now on, we denote by kn (t) the number of connected components of the set

L n (t) = {x ∈ R d : f n (x) ≥ t}.
Lemma 3.2 Suppose that Assumption 1 and Assumption 2 hold. Then, for ε > 0 small enough, the following inclusion between probability events holds for all n ≥ 1:

f n -f ∞ ≤ ε ∩ inf V ∇f n ≥ 1 2 inf V ∇f ⊂ kn (t) = k(t) ,
where V is defined in Theorem 3.1.

Proof On the one hand, using Lemma 3.1, we know that, for ε > 0 small enough and all n ≥ 1,

f n -f ∞ ≤ ε ⊂ k(t -f n -f ∞ ) = k(t + f n -f ∞ )
between probability events. On the other hand, using the triangle inequality, we may write

L(t + f n -f ∞ ) ⊂ L n (t) ⊂ L(t -f n -f ∞ ). (3.1)
For any u > 0, we denote by C j (u), j = 1, . . . , k(u), the connected components of the set L(u). Then, for ε small enough, and after a possible rearrangement of the indices, we have

C j (t + f n -f ∞ ) ⊂ C j (t -f n -f ∞ ), for all j = 1, . . . , k(t), on the event [ f n -f ∞ ≤ ε]. Consequently, on the event [ f n -f ∞ ≤ ε], kn (t) ≥ k(t).
Under Assumption 1, there exists a neighborhood U of {f = t} on which df is never zero. Without loss of generality, one can assume that V ⊂ U. Now ε can be chosen small enough for we have

L(t -f n -f ∞ ) \ L(t + f n -f ∞ ) ⊂ V on the event [ f n -f ∞ ≤ ε]. Also, from equation (3.1), it follows that ∂L n (t) ⊂ L(t -f n -f ∞ ) \ L(t + f n -f ∞ ). Suppose that kn (t) > k(t) on the event f n -f ∞ ≤ ε ∩ inf V ∇f n ≥ 1 2 inf V ∇f .
Then f n must assume a local minimum at some point, say x, in V with f n (x) < t, which contradicts the fact that inf V ∇f n > 0. Hence, kn (t) = k(t).

Proof of Theorem 3.1 Consider a covering P n of L(t) composed of closed balls centered on points of L(t) and of radius r n /2. Recall that by recursing to a metric entropy argument (see for example Györfi, Kohler, Krzyżak and Walk [START_REF] Györfi | A Distribution-Free Theory of Nonparametric Regression[END_REF]), it may easily be shown that the minimal number of balls necessary to cover a given compact D of R d by balls of radius r with centers in D is of order O(r -d ). Thus, from now on, the covering P n will be assumed to be constructed in such a way that

Card (P n ) ≤ C 1 r -d n (3.2)
for some positive constant C 1 . Let us introduce the event Ω n (t) = ∀A ∈ P n :

i∈Jn(t) 1 A (X i ) ≥ 1 .
Finally, we denote by δ the smallest distance between two connected components of L(t) when k(t) ≥ 2, and let δ = +∞ otherwise. Note that δ > 0 by assumption.

Observe that, on the event Ω n (t), each element of P n , i.e., a ball of radius r n /2, contains at least one data point X i with i ∈ J n (t). Thus, as long as n is large enough such that (i) r n ≤ δ/2, and (ii) ε n is small enough for Lemma 3.1 to hold, we have

Ω n (t) ∩ f n -f ∞ ≤ ε n ⊂ k n (t) = kn (t) .
Consequently, using Lemma 3.2, we deduce that

Ω n (t) ∩ f n -f ∞ ≤ ε n ∩ inf V ∇f n ≥ 1 2 inf V ∇f ⊂ k n (t) = kn (t) ∩ kn (t) = k(t) ⊂ k n (t) = k(t) .
Therefore,

P k n (t) = k(t) ≥ P Ω n (t) ∩ f n -f ∞ ≤ ε n ∩ inf V ∇f n ≥ 1 2 inf V ∇f = P Ω n (t) -P Ω n (t) ∩ f n -f ∞ > ε n ∪ inf V ∇f n < 1 2 inf V ∇f ≥ P Ω n (t) -P f n -f ∞ > ε n -P inf V ∇f n < 1 2 inf V ∇f . (3.3)
Now we proceed to bound from below the term P(Ω n (t)). We have:

P Ω c n (t) ≤ P(∃A ∈ P n : i∈Jn(t) 1 A (X i ) = 0 and f n -f ∞ ≤ ε n ) + P f n -f ∞ > ε n ≤ Card (P n ) sup A∈Pn P(∀i ∈ J n (t) : X i ∈ A c and f n -f ∞ ≤ ε n ) + P( f n -f ∞ > ε n ). (3.4) Set Jn (t) = {i = 1, . . . , n : f (X i ) ≥ t + ε n }. On the event [ f n -f ∞ ≤ ε n ],
we have Jn (t) ⊂ J n (t). Consequently, for all A ∈ P n ,

P(∀i ∈ J n (t) : X i ∈ A c and f n -f ∞ ≤ ε n ) ≤ P(∀i ∈ Jn (t) : X i ∈ A c ).
(3.5) But, by definition of Jn (t),

P(∀i ∈ Jn (t) : X i ∈ A c ) = P ∀i = 1, . . . , n : (f (X i ) ≥ t + ε n and X i ∈ A c ) or (f (X i ) < t + ε n ) = µ {f ≥ t + ε n } ∩ A c + µ {f < t + ε n } n = 1 -µ A ∩ {f ≥ t + ε n } n , (3.6) 
where µ denotes the probability distribution associated with f .

Since ε n = o(r n ), it follows from Proposition A.2 that there exists a positive constant C 2 , independent of n and A, such that

µ A ∩ {f ≥ t + ε n } ≥ C 2 r d n . (3.7) 
Thus, we deduce from (3.2) and (3.4)-(3.7) that

P Ω c n (t) ≤ C 1 r -d n (1 -C 2 r d n ) n + P f n -f ∞ > ε n .
Using the inequality 1u ≤ exp(-u) for u ∈ R, we can now conclude from (3.3) that

P k n (t) = k(t) ≥ 1 -C 1 r -d n exp(-C 2 nr d n ) -2P f n -f ∞ > ε n -P inf V ∇f n < 1 2 inf V ∇f ,
as desired.

A Geometrical results

Let us start with some definitions. For general references, we refer the reader to Bredon [START_REF] Bredon | Topology and Geometry[END_REF], Chavel [START_REF] Chavel | Riemannian Geometry: A Modern Introduction[END_REF], and Kobayashi and Nomizu [START_REF] Kobayashi | Foundations of Differential Geometry[END_REF]. Let (M, σ) be a smooth and closed (i.e., compact and without boundary) submanifold of R d . Let T p M be the tangent space to M at p, and let T M be the tangent bundle of M. For all p ∈ M, T p M may be considered as a subspace of R d via the canonical identification of T p R d with R d itself. Via this identification, the normal space

T p M ⊥ to M at p is the orthogonal complement of T p M in R d . The normal bundle of M in R d is defined by T M ⊥ = ∪ p∈M T p M ⊥ ,
with bundle projection map π : T M ⊥ → M defined by π p, v = p, i.e., each element < p, v > of T M ⊥ is mapped on p by π.

Now let θ : T M ⊥ → R d be given by θ p, v = p+v. Also let T M ⊥ ε = { p, v ∈ T M ⊥ : v < ε}. Then the Tubular Neighborhood Theorem (see e.g., Bredon [START_REF] Bredon | Topology and Geometry[END_REF], page 93) states that there exists an ε > 0 such that θ : Proof By the Tubular Neighborhood Theorem, there exists a r 0 > 0 such that the set

T M ⊥ ε → R d is a diffeomorphism onto the neighborhood V(M, ε) = {x ∈ R d : dist(x, M) < ε} of M in R d ,
V(∂D, r 0 ) = {x ∈ R d : dist(x, ∂D) ≤ r 0 } is diffeomorphic to the subset T ∂D ⊥ ε = {< p, v >∈ T ∂D ⊥ : v ≤ ε}
of the normal bundle T ∂D ⊥ of ∂D. Thus each x ∈ V(∂D, r 0 ) projects uniquely onto ∂D, and may be expressed as

x = p x + v x e px ,
where e p denotes the unit-norm section of T ∂D ⊥ pointing inwards D, i.e., e p is the unit normal vector field to ∂D directed towards the interior of D.

Set r ≤ r 0 /2. Clearly, for all x ∈ D such that B(x, r) ⊂ D, we have

B x, r 2 ⊂ B(x, r).
Now we examine those cases for which B(x, r)∩D c = ∅. In this configuration, we have B(x, r) ⊂ V(∂D, r 0 ), since, for all y ∈ B(x, r), dist(y, ∂D) ≤ dist(y, x) + dist(x, ∂D) ≤ r 0 .

Set x = p x + v x e px , and consider the ball B(y, r/2) centered at y = p x + (v x + r/2)e px and of radius r/2. This ball is clearly contained in B(x, r). Now, suppose that B(y, r/2) is not included in D. Then, there exists a point q ∈ ∂D such that dist(q, y) < r 2 .

But

dist(q, y) ≥ dist(y, ∂D) = r 2 + v x ≥ r 2 ,
hence a contradiction.

Proposition A.2 Suppose that the probability density f satisfies Assumption 1. Let r n → 0 and let ε n = o(r n ). Then there exists a constant C > 0 such that, for all n large enough, and for all x ∈ {f ≥ t},

µ B(x, r n ) ∩ {f ≥ t + ε n } ≥ Cr d n ,
where µ denotes the probability distribution associated with f .

Proof Observe first that, since f satisfies Assumption 1, there exists an open neighborhood of {f = t} on which df is surjective. Consequently, from the Implicit Function Theorem, there exists ε 0 > 0 such that, for all ε ≤ ε 0 , {f = t + ε} is a submanifold of R d of codimension 1.

Consequently, for all n large enough such that ε n ≤ ε 0 , and for all x ∈ {f ≥ t + ε n }, the result follows from Proposition A.1. Thus there remains to examine those cases for which x ∈ {t ≤ f < t + ε n }. For this purpose, we first prove that, for all n large enough, B(x, r n ) has a non-empty intersection with {f ≥ t + ε n } for all x ∈ {t ≤ f < t + ε n }.

For all ε ≤ ε 0 , denote by r(ε) > 0 the maximal radius of a tubular neighborhood of {f = t + ε}, the existence of which follows from the Tubular Neighborhood Theorem, i.e., r(ε) is the largest number such that {x ∈ R d : dist(x, {f = t + ε})} is a tubular neighborhood of {f = t + ε}. Set ρ = inf 0≤ε≤ε 0 r(ε). Note that ρ > 0. Since ε n → 0, for all n large enough, we have {f = t} ⊂ V {f = t + ε n }, ρ .

Also, observe that in this case, {f = t + ε n } ⊂ V({f = t}, ρ). Thus, each x ∈ {f = t + ε n } may be expressed as x = p x + v x e px , where p x ∈ {f = t} and where v x = dist(x, {f = t}). Expanding f at p x yields f (p x + v x e px ) = f (p x ) + D ep x f (p x + ξe px )v x i.e., t + ε n = t + D ep x f (p x + ξe px )v x for some ξ > 0, and where D u f (y) denotes the directional derivative of f at y in the direction u. Since df is surjective for all x in {t ≤ f < ε 0 }, it follows that there exists a constant C > 0 such that sup q∈{f =t+εn} dist q, {f = t} ≤ Cε n . (A.1)

Consequently, since ε n = o(r n ), for all n large enough, the ball B(x, r n ) has a non-empty intersection with {f ≥ t + ε n } for all x ∈ {t ≤ f < t + ε n }.

Now, for all n large enough, each x ∈ {t ≤ f < t + ε n } may be expressed as x = p xv x e px , where p x ∈ {f = t + ε n }, and where v x > 0. Also, for all n large enough, the two following assertions hold:

(i) B(x, r n ) ⊂ V {f = t + ε n }, ρ .

2 ⊂

 2 which is called a tubular neighborhood of radius ε of M in R d . Proposition A.1 Let D be a connected domain of R d with smooth boundary ∂D. Then there exists ρ > 0 such that, for all r ≤ ρ and all x ∈ D, there exists a point y ∈ D such that B y, r B(x, r) ∩ D.

Acknowledgments The authors are indebted to two referees for a very careful reading of the paper and stimulating questions and remarks.

(ii) B(x, r n ) ∩ {f ≥ t + ε n } = ∅. Let y = p x + [(r nv x )/2]e px , and consider the ball B(y, (r nv x )/2). Clearly,

From (A.2) and (A.1), it follows that

where ω d = λ(B(0, 1)). Finally, the result follows from the fact that ε n = o(r n ).